Merge tag 'sound-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[linux-2.6-block.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
8c3d3d4b 4 * Maintained by: Tejun Heo <tj@kernel.org>
af36d7f0
JG
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
428ac5fc 62#include <linux/glob.h>
1da177e4 63#include <scsi/scsi.h>
193515d5 64#include <scsi/scsi_cmnd.h>
1da177e4
LT
65#include <scsi/scsi_host.h>
66#include <linux/libata.h>
1da177e4 67#include <asm/byteorder.h>
140b5e59 68#include <linux/cdrom.h>
9990b6f3 69#include <linux/ratelimit.h>
9ee4f393 70#include <linux/pm_runtime.h>
b7db04d9 71#include <linux/platform_device.h>
1da177e4 72
255c03d1
HR
73#define CREATE_TRACE_POINTS
74#include <trace/events/libata.h>
75
1da177e4 76#include "libata.h"
d9027470 77#include "libata-transport.h"
fda0efc5 78
d7bb4cc7 79/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
80const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
81const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
82const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 83
029cfd6b 84const struct ata_port_operations ata_base_port_ops = {
0aa1113d 85 .prereset = ata_std_prereset,
203c75b8 86 .postreset = ata_std_postreset,
a1efdaba 87 .error_handler = ata_std_error_handler,
e4a9c373
DW
88 .sched_eh = ata_std_sched_eh,
89 .end_eh = ata_std_end_eh,
029cfd6b
TH
90};
91
92const struct ata_port_operations sata_port_ops = {
93 .inherits = &ata_base_port_ops,
94
95 .qc_defer = ata_std_qc_defer,
57c9efdf 96 .hardreset = sata_std_hardreset,
029cfd6b
TH
97};
98
3373efd8
TH
99static unsigned int ata_dev_init_params(struct ata_device *dev,
100 u16 heads, u16 sectors);
101static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
102static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 103static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 104
a78f57af 105atomic_t ata_print_id = ATOMIC_INIT(0);
1da177e4 106
33267325
TH
107struct ata_force_param {
108 const char *name;
109 unsigned int cbl;
110 int spd_limit;
111 unsigned long xfer_mask;
112 unsigned int horkage_on;
113 unsigned int horkage_off;
05944bdf 114 unsigned int lflags;
33267325
TH
115};
116
117struct ata_force_ent {
118 int port;
119 int device;
120 struct ata_force_param param;
121};
122
123static struct ata_force_ent *ata_force_tbl;
124static int ata_force_tbl_size;
125
126static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
127/* param_buf is thrown away after initialization, disallow read */
128module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
129MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
130
2486fa56 131static int atapi_enabled = 1;
1623c81e 132module_param(atapi_enabled, int, 0444);
ad5d8eac 133MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 134
c5c61bda 135static int atapi_dmadir = 0;
95de719a 136module_param(atapi_dmadir, int, 0444);
ad5d8eac 137MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 138
baf4fdfa
ML
139int atapi_passthru16 = 1;
140module_param(atapi_passthru16, int, 0444);
ad5d8eac 141MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 142
c3c013a2
JG
143int libata_fua = 0;
144module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 145MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 146
2dcb407e 147static int ata_ignore_hpa;
1e999736
AC
148module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
149MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
150
b3a70601
AC
151static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
152module_param_named(dma, libata_dma_mask, int, 0444);
153MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
154
87fbc5a0 155static int ata_probe_timeout;
a8601e5f
AM
156module_param(ata_probe_timeout, int, 0444);
157MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
158
6ebe9d86 159int libata_noacpi = 0;
d7d0dad6 160module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 161MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 162
ae8d4ee7
AC
163int libata_allow_tpm = 0;
164module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 165MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 166
e7ecd435
TH
167static int atapi_an;
168module_param(atapi_an, int, 0444);
169MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
170
1da177e4
LT
171MODULE_AUTHOR("Jeff Garzik");
172MODULE_DESCRIPTION("Library module for ATA devices");
173MODULE_LICENSE("GPL");
174MODULE_VERSION(DRV_VERSION);
175
0baab86b 176
9913ff8a
TH
177static bool ata_sstatus_online(u32 sstatus)
178{
179 return (sstatus & 0xf) == 0x3;
180}
181
1eca4365
TH
182/**
183 * ata_link_next - link iteration helper
184 * @link: the previous link, NULL to start
185 * @ap: ATA port containing links to iterate
186 * @mode: iteration mode, one of ATA_LITER_*
187 *
188 * LOCKING:
189 * Host lock or EH context.
aadffb68 190 *
1eca4365
TH
191 * RETURNS:
192 * Pointer to the next link.
aadffb68 193 */
1eca4365
TH
194struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
195 enum ata_link_iter_mode mode)
aadffb68 196{
1eca4365
TH
197 BUG_ON(mode != ATA_LITER_EDGE &&
198 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
199
aadffb68 200 /* NULL link indicates start of iteration */
1eca4365
TH
201 if (!link)
202 switch (mode) {
203 case ATA_LITER_EDGE:
204 case ATA_LITER_PMP_FIRST:
205 if (sata_pmp_attached(ap))
206 return ap->pmp_link;
207 /* fall through */
208 case ATA_LITER_HOST_FIRST:
209 return &ap->link;
210 }
aadffb68 211
1eca4365
TH
212 /* we just iterated over the host link, what's next? */
213 if (link == &ap->link)
214 switch (mode) {
215 case ATA_LITER_HOST_FIRST:
216 if (sata_pmp_attached(ap))
217 return ap->pmp_link;
218 /* fall through */
219 case ATA_LITER_PMP_FIRST:
220 if (unlikely(ap->slave_link))
b1c72916 221 return ap->slave_link;
1eca4365
TH
222 /* fall through */
223 case ATA_LITER_EDGE:
aadffb68 224 return NULL;
b1c72916 225 }
aadffb68 226
b1c72916
TH
227 /* slave_link excludes PMP */
228 if (unlikely(link == ap->slave_link))
229 return NULL;
230
1eca4365 231 /* we were over a PMP link */
aadffb68
TH
232 if (++link < ap->pmp_link + ap->nr_pmp_links)
233 return link;
1eca4365
TH
234
235 if (mode == ATA_LITER_PMP_FIRST)
236 return &ap->link;
237
aadffb68
TH
238 return NULL;
239}
240
1eca4365
TH
241/**
242 * ata_dev_next - device iteration helper
243 * @dev: the previous device, NULL to start
244 * @link: ATA link containing devices to iterate
245 * @mode: iteration mode, one of ATA_DITER_*
246 *
247 * LOCKING:
248 * Host lock or EH context.
249 *
250 * RETURNS:
251 * Pointer to the next device.
252 */
253struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
254 enum ata_dev_iter_mode mode)
255{
256 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
257 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
258
259 /* NULL dev indicates start of iteration */
260 if (!dev)
261 switch (mode) {
262 case ATA_DITER_ENABLED:
263 case ATA_DITER_ALL:
264 dev = link->device;
265 goto check;
266 case ATA_DITER_ENABLED_REVERSE:
267 case ATA_DITER_ALL_REVERSE:
268 dev = link->device + ata_link_max_devices(link) - 1;
269 goto check;
270 }
271
272 next:
273 /* move to the next one */
274 switch (mode) {
275 case ATA_DITER_ENABLED:
276 case ATA_DITER_ALL:
277 if (++dev < link->device + ata_link_max_devices(link))
278 goto check;
279 return NULL;
280 case ATA_DITER_ENABLED_REVERSE:
281 case ATA_DITER_ALL_REVERSE:
282 if (--dev >= link->device)
283 goto check;
284 return NULL;
285 }
286
287 check:
288 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
289 !ata_dev_enabled(dev))
290 goto next;
291 return dev;
292}
293
b1c72916
TH
294/**
295 * ata_dev_phys_link - find physical link for a device
296 * @dev: ATA device to look up physical link for
297 *
298 * Look up physical link which @dev is attached to. Note that
299 * this is different from @dev->link only when @dev is on slave
300 * link. For all other cases, it's the same as @dev->link.
301 *
302 * LOCKING:
303 * Don't care.
304 *
305 * RETURNS:
306 * Pointer to the found physical link.
307 */
308struct ata_link *ata_dev_phys_link(struct ata_device *dev)
309{
310 struct ata_port *ap = dev->link->ap;
311
312 if (!ap->slave_link)
313 return dev->link;
314 if (!dev->devno)
315 return &ap->link;
316 return ap->slave_link;
317}
318
33267325
TH
319/**
320 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 321 * @ap: ATA port of interest
33267325
TH
322 *
323 * Force cable type according to libata.force and whine about it.
324 * The last entry which has matching port number is used, so it
325 * can be specified as part of device force parameters. For
326 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
327 * same effect.
328 *
329 * LOCKING:
330 * EH context.
331 */
332void ata_force_cbl(struct ata_port *ap)
333{
334 int i;
335
336 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
337 const struct ata_force_ent *fe = &ata_force_tbl[i];
338
339 if (fe->port != -1 && fe->port != ap->print_id)
340 continue;
341
342 if (fe->param.cbl == ATA_CBL_NONE)
343 continue;
344
345 ap->cbl = fe->param.cbl;
a9a79dfe 346 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
33267325
TH
347 return;
348 }
349}
350
351/**
05944bdf 352 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
353 * @link: ATA link of interest
354 *
05944bdf
TH
355 * Force link flags and SATA spd limit according to libata.force
356 * and whine about it. When only the port part is specified
357 * (e.g. 1:), the limit applies to all links connected to both
358 * the host link and all fan-out ports connected via PMP. If the
359 * device part is specified as 0 (e.g. 1.00:), it specifies the
360 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
361 * points to the host link whether PMP is attached or not. If the
362 * controller has slave link, device number 16 points to it.
33267325
TH
363 *
364 * LOCKING:
365 * EH context.
366 */
05944bdf 367static void ata_force_link_limits(struct ata_link *link)
33267325 368{
05944bdf 369 bool did_spd = false;
b1c72916
TH
370 int linkno = link->pmp;
371 int i;
33267325
TH
372
373 if (ata_is_host_link(link))
b1c72916 374 linkno += 15;
33267325
TH
375
376 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
377 const struct ata_force_ent *fe = &ata_force_tbl[i];
378
379 if (fe->port != -1 && fe->port != link->ap->print_id)
380 continue;
381
382 if (fe->device != -1 && fe->device != linkno)
383 continue;
384
05944bdf
TH
385 /* only honor the first spd limit */
386 if (!did_spd && fe->param.spd_limit) {
387 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
a9a79dfe 388 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
05944bdf
TH
389 fe->param.name);
390 did_spd = true;
391 }
33267325 392
05944bdf
TH
393 /* let lflags stack */
394 if (fe->param.lflags) {
395 link->flags |= fe->param.lflags;
a9a79dfe 396 ata_link_notice(link,
05944bdf
TH
397 "FORCE: link flag 0x%x forced -> 0x%x\n",
398 fe->param.lflags, link->flags);
399 }
33267325
TH
400 }
401}
402
403/**
404 * ata_force_xfermask - force xfermask according to libata.force
405 * @dev: ATA device of interest
406 *
407 * Force xfer_mask according to libata.force and whine about it.
408 * For consistency with link selection, device number 15 selects
409 * the first device connected to the host link.
410 *
411 * LOCKING:
412 * EH context.
413 */
414static void ata_force_xfermask(struct ata_device *dev)
415{
416 int devno = dev->link->pmp + dev->devno;
417 int alt_devno = devno;
418 int i;
419
b1c72916
TH
420 /* allow n.15/16 for devices attached to host port */
421 if (ata_is_host_link(dev->link))
422 alt_devno += 15;
33267325
TH
423
424 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
425 const struct ata_force_ent *fe = &ata_force_tbl[i];
426 unsigned long pio_mask, mwdma_mask, udma_mask;
427
428 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
429 continue;
430
431 if (fe->device != -1 && fe->device != devno &&
432 fe->device != alt_devno)
433 continue;
434
435 if (!fe->param.xfer_mask)
436 continue;
437
438 ata_unpack_xfermask(fe->param.xfer_mask,
439 &pio_mask, &mwdma_mask, &udma_mask);
440 if (udma_mask)
441 dev->udma_mask = udma_mask;
442 else if (mwdma_mask) {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = mwdma_mask;
445 } else {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = 0;
448 dev->pio_mask = pio_mask;
449 }
450
a9a79dfe
JP
451 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
452 fe->param.name);
33267325
TH
453 return;
454 }
455}
456
457/**
458 * ata_force_horkage - force horkage according to libata.force
459 * @dev: ATA device of interest
460 *
461 * Force horkage according to libata.force and whine about it.
462 * For consistency with link selection, device number 15 selects
463 * the first device connected to the host link.
464 *
465 * LOCKING:
466 * EH context.
467 */
468static void ata_force_horkage(struct ata_device *dev)
469{
470 int devno = dev->link->pmp + dev->devno;
471 int alt_devno = devno;
472 int i;
473
b1c72916
TH
474 /* allow n.15/16 for devices attached to host port */
475 if (ata_is_host_link(dev->link))
476 alt_devno += 15;
33267325
TH
477
478 for (i = 0; i < ata_force_tbl_size; i++) {
479 const struct ata_force_ent *fe = &ata_force_tbl[i];
480
481 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
482 continue;
483
484 if (fe->device != -1 && fe->device != devno &&
485 fe->device != alt_devno)
486 continue;
487
488 if (!(~dev->horkage & fe->param.horkage_on) &&
489 !(dev->horkage & fe->param.horkage_off))
490 continue;
491
492 dev->horkage |= fe->param.horkage_on;
493 dev->horkage &= ~fe->param.horkage_off;
494
a9a79dfe
JP
495 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
496 fe->param.name);
33267325
TH
497 }
498}
499
436d34b3
TH
500/**
501 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
502 * @opcode: SCSI opcode
503 *
504 * Determine ATAPI command type from @opcode.
505 *
506 * LOCKING:
507 * None.
508 *
509 * RETURNS:
510 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
511 */
512int atapi_cmd_type(u8 opcode)
513{
514 switch (opcode) {
515 case GPCMD_READ_10:
516 case GPCMD_READ_12:
517 return ATAPI_READ;
518
519 case GPCMD_WRITE_10:
520 case GPCMD_WRITE_12:
521 case GPCMD_WRITE_AND_VERIFY_10:
522 return ATAPI_WRITE;
523
524 case GPCMD_READ_CD:
525 case GPCMD_READ_CD_MSF:
526 return ATAPI_READ_CD;
527
e52dcc48
TH
528 case ATA_16:
529 case ATA_12:
530 if (atapi_passthru16)
531 return ATAPI_PASS_THRU;
532 /* fall thru */
436d34b3
TH
533 default:
534 return ATAPI_MISC;
535 }
536}
537
1da177e4
LT
538/**
539 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
540 * @tf: Taskfile to convert
1da177e4 541 * @pmp: Port multiplier port
9977126c
TH
542 * @is_cmd: This FIS is for command
543 * @fis: Buffer into which data will output
1da177e4
LT
544 *
545 * Converts a standard ATA taskfile to a Serial ATA
546 * FIS structure (Register - Host to Device).
547 *
548 * LOCKING:
549 * Inherited from caller.
550 */
9977126c 551void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 552{
9977126c
TH
553 fis[0] = 0x27; /* Register - Host to Device FIS */
554 fis[1] = pmp & 0xf; /* Port multiplier number*/
555 if (is_cmd)
556 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
557
1da177e4
LT
558 fis[2] = tf->command;
559 fis[3] = tf->feature;
560
561 fis[4] = tf->lbal;
562 fis[5] = tf->lbam;
563 fis[6] = tf->lbah;
564 fis[7] = tf->device;
565
566 fis[8] = tf->hob_lbal;
567 fis[9] = tf->hob_lbam;
568 fis[10] = tf->hob_lbah;
569 fis[11] = tf->hob_feature;
570
571 fis[12] = tf->nsect;
572 fis[13] = tf->hob_nsect;
573 fis[14] = 0;
574 fis[15] = tf->ctl;
575
86a565e6
MC
576 fis[16] = tf->auxiliary & 0xff;
577 fis[17] = (tf->auxiliary >> 8) & 0xff;
578 fis[18] = (tf->auxiliary >> 16) & 0xff;
579 fis[19] = (tf->auxiliary >> 24) & 0xff;
1da177e4
LT
580}
581
582/**
583 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
584 * @fis: Buffer from which data will be input
585 * @tf: Taskfile to output
586 *
e12a1be6 587 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
588 *
589 * LOCKING:
590 * Inherited from caller.
591 */
592
057ace5e 593void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
594{
595 tf->command = fis[2]; /* status */
596 tf->feature = fis[3]; /* error */
597
598 tf->lbal = fis[4];
599 tf->lbam = fis[5];
600 tf->lbah = fis[6];
601 tf->device = fis[7];
602
603 tf->hob_lbal = fis[8];
604 tf->hob_lbam = fis[9];
605 tf->hob_lbah = fis[10];
606
607 tf->nsect = fis[12];
608 tf->hob_nsect = fis[13];
609}
610
8cbd6df1
AL
611static const u8 ata_rw_cmds[] = {
612 /* pio multi */
613 ATA_CMD_READ_MULTI,
614 ATA_CMD_WRITE_MULTI,
615 ATA_CMD_READ_MULTI_EXT,
616 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
617 0,
618 0,
619 0,
620 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
621 /* pio */
622 ATA_CMD_PIO_READ,
623 ATA_CMD_PIO_WRITE,
624 ATA_CMD_PIO_READ_EXT,
625 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
626 0,
627 0,
628 0,
629 0,
8cbd6df1
AL
630 /* dma */
631 ATA_CMD_READ,
632 ATA_CMD_WRITE,
633 ATA_CMD_READ_EXT,
9a3dccc4
TH
634 ATA_CMD_WRITE_EXT,
635 0,
636 0,
637 0,
638 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 639};
1da177e4
LT
640
641/**
8cbd6df1 642 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
643 * @tf: command to examine and configure
644 * @dev: device tf belongs to
1da177e4 645 *
2e9edbf8 646 * Examine the device configuration and tf->flags to calculate
8cbd6df1 647 * the proper read/write commands and protocol to use.
1da177e4
LT
648 *
649 * LOCKING:
650 * caller.
651 */
bd056d7e 652static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 653{
9a3dccc4 654 u8 cmd;
1da177e4 655
9a3dccc4 656 int index, fua, lba48, write;
2e9edbf8 657
9a3dccc4 658 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
659 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
660 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 661
8cbd6df1
AL
662 if (dev->flags & ATA_DFLAG_PIO) {
663 tf->protocol = ATA_PROT_PIO;
9a3dccc4 664 index = dev->multi_count ? 0 : 8;
9af5c9c9 665 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
666 /* Unable to use DMA due to host limitation */
667 tf->protocol = ATA_PROT_PIO;
0565c26d 668 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
669 } else {
670 tf->protocol = ATA_PROT_DMA;
9a3dccc4 671 index = 16;
8cbd6df1 672 }
1da177e4 673
9a3dccc4
TH
674 cmd = ata_rw_cmds[index + fua + lba48 + write];
675 if (cmd) {
676 tf->command = cmd;
677 return 0;
678 }
679 return -1;
1da177e4
LT
680}
681
35b649fe
TH
682/**
683 * ata_tf_read_block - Read block address from ATA taskfile
684 * @tf: ATA taskfile of interest
685 * @dev: ATA device @tf belongs to
686 *
687 * LOCKING:
688 * None.
689 *
690 * Read block address from @tf. This function can handle all
691 * three address formats - LBA, LBA48 and CHS. tf->protocol and
692 * flags select the address format to use.
693 *
694 * RETURNS:
695 * Block address read from @tf.
696 */
fe16d4f2 697u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
35b649fe
TH
698{
699 u64 block = 0;
700
fe16d4f2 701 if (tf->flags & ATA_TFLAG_LBA) {
35b649fe
TH
702 if (tf->flags & ATA_TFLAG_LBA48) {
703 block |= (u64)tf->hob_lbah << 40;
704 block |= (u64)tf->hob_lbam << 32;
44901a96 705 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
706 } else
707 block |= (tf->device & 0xf) << 24;
708
709 block |= tf->lbah << 16;
710 block |= tf->lbam << 8;
711 block |= tf->lbal;
712 } else {
713 u32 cyl, head, sect;
714
715 cyl = tf->lbam | (tf->lbah << 8);
716 head = tf->device & 0xf;
717 sect = tf->lbal;
718
ac8672ea 719 if (!sect) {
a9a79dfe
JP
720 ata_dev_warn(dev,
721 "device reported invalid CHS sector 0\n");
ac8672ea
TH
722 sect = 1; /* oh well */
723 }
724
725 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
726 }
727
728 return block;
729}
730
bd056d7e
TH
731/**
732 * ata_build_rw_tf - Build ATA taskfile for given read/write request
733 * @tf: Target ATA taskfile
734 * @dev: ATA device @tf belongs to
735 * @block: Block address
736 * @n_block: Number of blocks
737 * @tf_flags: RW/FUA etc...
738 * @tag: tag
739 *
740 * LOCKING:
741 * None.
742 *
743 * Build ATA taskfile @tf for read/write request described by
744 * @block, @n_block, @tf_flags and @tag on @dev.
745 *
746 * RETURNS:
747 *
748 * 0 on success, -ERANGE if the request is too large for @dev,
749 * -EINVAL if the request is invalid.
750 */
751int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
752 u64 block, u32 n_block, unsigned int tf_flags,
753 unsigned int tag)
754{
755 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
756 tf->flags |= tf_flags;
757
6d1245bf 758 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
759 /* yay, NCQ */
760 if (!lba_48_ok(block, n_block))
761 return -ERANGE;
762
763 tf->protocol = ATA_PROT_NCQ;
764 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
765
766 if (tf->flags & ATA_TFLAG_WRITE)
767 tf->command = ATA_CMD_FPDMA_WRITE;
768 else
769 tf->command = ATA_CMD_FPDMA_READ;
770
771 tf->nsect = tag << 3;
772 tf->hob_feature = (n_block >> 8) & 0xff;
773 tf->feature = n_block & 0xff;
774
775 tf->hob_lbah = (block >> 40) & 0xff;
776 tf->hob_lbam = (block >> 32) & 0xff;
777 tf->hob_lbal = (block >> 24) & 0xff;
778 tf->lbah = (block >> 16) & 0xff;
779 tf->lbam = (block >> 8) & 0xff;
780 tf->lbal = block & 0xff;
781
9ca7cfa4 782 tf->device = ATA_LBA;
bd056d7e
TH
783 if (tf->flags & ATA_TFLAG_FUA)
784 tf->device |= 1 << 7;
785 } else if (dev->flags & ATA_DFLAG_LBA) {
786 tf->flags |= ATA_TFLAG_LBA;
787
788 if (lba_28_ok(block, n_block)) {
789 /* use LBA28 */
790 tf->device |= (block >> 24) & 0xf;
791 } else if (lba_48_ok(block, n_block)) {
792 if (!(dev->flags & ATA_DFLAG_LBA48))
793 return -ERANGE;
794
795 /* use LBA48 */
796 tf->flags |= ATA_TFLAG_LBA48;
797
798 tf->hob_nsect = (n_block >> 8) & 0xff;
799
800 tf->hob_lbah = (block >> 40) & 0xff;
801 tf->hob_lbam = (block >> 32) & 0xff;
802 tf->hob_lbal = (block >> 24) & 0xff;
803 } else
804 /* request too large even for LBA48 */
805 return -ERANGE;
806
807 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
808 return -EINVAL;
809
810 tf->nsect = n_block & 0xff;
811
812 tf->lbah = (block >> 16) & 0xff;
813 tf->lbam = (block >> 8) & 0xff;
814 tf->lbal = block & 0xff;
815
816 tf->device |= ATA_LBA;
817 } else {
818 /* CHS */
819 u32 sect, head, cyl, track;
820
821 /* The request -may- be too large for CHS addressing. */
822 if (!lba_28_ok(block, n_block))
823 return -ERANGE;
824
825 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
826 return -EINVAL;
827
828 /* Convert LBA to CHS */
829 track = (u32)block / dev->sectors;
830 cyl = track / dev->heads;
831 head = track % dev->heads;
832 sect = (u32)block % dev->sectors + 1;
833
834 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
835 (u32)block, track, cyl, head, sect);
836
837 /* Check whether the converted CHS can fit.
838 Cylinder: 0-65535
839 Head: 0-15
840 Sector: 1-255*/
841 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
842 return -ERANGE;
843
844 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
845 tf->lbal = sect;
846 tf->lbam = cyl;
847 tf->lbah = cyl >> 8;
848 tf->device |= head;
849 }
850
851 return 0;
852}
853
cb95d562
TH
854/**
855 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
856 * @pio_mask: pio_mask
857 * @mwdma_mask: mwdma_mask
858 * @udma_mask: udma_mask
859 *
860 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
861 * unsigned int xfer_mask.
862 *
863 * LOCKING:
864 * None.
865 *
866 * RETURNS:
867 * Packed xfer_mask.
868 */
7dc951ae
TH
869unsigned long ata_pack_xfermask(unsigned long pio_mask,
870 unsigned long mwdma_mask,
871 unsigned long udma_mask)
cb95d562
TH
872{
873 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
874 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
875 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
876}
877
c0489e4e
TH
878/**
879 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
880 * @xfer_mask: xfer_mask to unpack
881 * @pio_mask: resulting pio_mask
882 * @mwdma_mask: resulting mwdma_mask
883 * @udma_mask: resulting udma_mask
884 *
885 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
886 * Any NULL distination masks will be ignored.
887 */
7dc951ae
TH
888void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
889 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
890{
891 if (pio_mask)
892 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
893 if (mwdma_mask)
894 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
895 if (udma_mask)
896 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
897}
898
cb95d562 899static const struct ata_xfer_ent {
be9a50c8 900 int shift, bits;
cb95d562
TH
901 u8 base;
902} ata_xfer_tbl[] = {
70cd071e
TH
903 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
904 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
905 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
906 { -1, },
907};
908
909/**
910 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
911 * @xfer_mask: xfer_mask of interest
912 *
913 * Return matching XFER_* value for @xfer_mask. Only the highest
914 * bit of @xfer_mask is considered.
915 *
916 * LOCKING:
917 * None.
918 *
919 * RETURNS:
70cd071e 920 * Matching XFER_* value, 0xff if no match found.
cb95d562 921 */
7dc951ae 922u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
923{
924 int highbit = fls(xfer_mask) - 1;
925 const struct ata_xfer_ent *ent;
926
927 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
928 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
929 return ent->base + highbit - ent->shift;
70cd071e 930 return 0xff;
cb95d562
TH
931}
932
933/**
934 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
935 * @xfer_mode: XFER_* of interest
936 *
937 * Return matching xfer_mask for @xfer_mode.
938 *
939 * LOCKING:
940 * None.
941 *
942 * RETURNS:
943 * Matching xfer_mask, 0 if no match found.
944 */
7dc951ae 945unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
946{
947 const struct ata_xfer_ent *ent;
948
949 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
950 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
951 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
952 & ~((1 << ent->shift) - 1);
cb95d562
TH
953 return 0;
954}
955
956/**
957 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
958 * @xfer_mode: XFER_* of interest
959 *
960 * Return matching xfer_shift for @xfer_mode.
961 *
962 * LOCKING:
963 * None.
964 *
965 * RETURNS:
966 * Matching xfer_shift, -1 if no match found.
967 */
7dc951ae 968int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
969{
970 const struct ata_xfer_ent *ent;
971
972 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
973 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
974 return ent->shift;
975 return -1;
976}
977
1da177e4 978/**
1da7b0d0
TH
979 * ata_mode_string - convert xfer_mask to string
980 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
981 *
982 * Determine string which represents the highest speed
1da7b0d0 983 * (highest bit in @modemask).
1da177e4
LT
984 *
985 * LOCKING:
986 * None.
987 *
988 * RETURNS:
989 * Constant C string representing highest speed listed in
1da7b0d0 990 * @mode_mask, or the constant C string "<n/a>".
1da177e4 991 */
7dc951ae 992const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 993{
75f554bc
TH
994 static const char * const xfer_mode_str[] = {
995 "PIO0",
996 "PIO1",
997 "PIO2",
998 "PIO3",
999 "PIO4",
b352e57d
AC
1000 "PIO5",
1001 "PIO6",
75f554bc
TH
1002 "MWDMA0",
1003 "MWDMA1",
1004 "MWDMA2",
b352e57d
AC
1005 "MWDMA3",
1006 "MWDMA4",
75f554bc
TH
1007 "UDMA/16",
1008 "UDMA/25",
1009 "UDMA/33",
1010 "UDMA/44",
1011 "UDMA/66",
1012 "UDMA/100",
1013 "UDMA/133",
1014 "UDMA7",
1015 };
1da7b0d0 1016 int highbit;
1da177e4 1017
1da7b0d0
TH
1018 highbit = fls(xfer_mask) - 1;
1019 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1020 return xfer_mode_str[highbit];
1da177e4 1021 return "<n/a>";
1da177e4
LT
1022}
1023
d9027470 1024const char *sata_spd_string(unsigned int spd)
4c360c81
TH
1025{
1026 static const char * const spd_str[] = {
1027 "1.5 Gbps",
1028 "3.0 Gbps",
8522ee25 1029 "6.0 Gbps",
4c360c81
TH
1030 };
1031
1032 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1033 return "<unknown>";
1034 return spd_str[spd - 1];
1035}
1036
1da177e4
LT
1037/**
1038 * ata_dev_classify - determine device type based on ATA-spec signature
1039 * @tf: ATA taskfile register set for device to be identified
1040 *
1041 * Determine from taskfile register contents whether a device is
1042 * ATA or ATAPI, as per "Signature and persistence" section
1043 * of ATA/PI spec (volume 1, sect 5.14).
1044 *
1045 * LOCKING:
1046 * None.
1047 *
1048 * RETURNS:
9162c657
HR
1049 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1050 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1051 */
057ace5e 1052unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1053{
1054 /* Apple's open source Darwin code hints that some devices only
1055 * put a proper signature into the LBA mid/high registers,
1056 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1057 *
1058 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1059 * signatures for ATA and ATAPI devices attached on SerialATA,
1060 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1061 * spec has never mentioned about using different signatures
1062 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1063 * Multiplier specification began to use 0x69/0x96 to identify
1064 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1065 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1066 * 0x69/0x96 shortly and described them as reserved for
1067 * SerialATA.
1068 *
1069 * We follow the current spec and consider that 0x69/0x96
1070 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1071 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1072 * SEMB signature. This is worked around in
1073 * ata_dev_read_id().
1da177e4 1074 */
633273a3 1075 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1076 DPRINTK("found ATA device by sig\n");
1077 return ATA_DEV_ATA;
1078 }
1079
633273a3 1080 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1081 DPRINTK("found ATAPI device by sig\n");
1082 return ATA_DEV_ATAPI;
1083 }
1084
633273a3
TH
1085 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1086 DPRINTK("found PMP device by sig\n");
1087 return ATA_DEV_PMP;
1088 }
1089
1090 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1091 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1092 return ATA_DEV_SEMB;
633273a3
TH
1093 }
1094
9162c657
HR
1095 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1096 DPRINTK("found ZAC device by sig\n");
1097 return ATA_DEV_ZAC;
1098 }
1099
1da177e4
LT
1100 DPRINTK("unknown device\n");
1101 return ATA_DEV_UNKNOWN;
1102}
1103
1da177e4 1104/**
6a62a04d 1105 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1106 * @id: IDENTIFY DEVICE results we will examine
1107 * @s: string into which data is output
1108 * @ofs: offset into identify device page
1109 * @len: length of string to return. must be an even number.
1110 *
1111 * The strings in the IDENTIFY DEVICE page are broken up into
1112 * 16-bit chunks. Run through the string, and output each
1113 * 8-bit chunk linearly, regardless of platform.
1114 *
1115 * LOCKING:
1116 * caller.
1117 */
1118
6a62a04d
TH
1119void ata_id_string(const u16 *id, unsigned char *s,
1120 unsigned int ofs, unsigned int len)
1da177e4
LT
1121{
1122 unsigned int c;
1123
963e4975
AC
1124 BUG_ON(len & 1);
1125
1da177e4
LT
1126 while (len > 0) {
1127 c = id[ofs] >> 8;
1128 *s = c;
1129 s++;
1130
1131 c = id[ofs] & 0xff;
1132 *s = c;
1133 s++;
1134
1135 ofs++;
1136 len -= 2;
1137 }
1138}
1139
0e949ff3 1140/**
6a62a04d 1141 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1142 * @id: IDENTIFY DEVICE results we will examine
1143 * @s: string into which data is output
1144 * @ofs: offset into identify device page
1145 * @len: length of string to return. must be an odd number.
1146 *
6a62a04d 1147 * This function is identical to ata_id_string except that it
0e949ff3
TH
1148 * trims trailing spaces and terminates the resulting string with
1149 * null. @len must be actual maximum length (even number) + 1.
1150 *
1151 * LOCKING:
1152 * caller.
1153 */
6a62a04d
TH
1154void ata_id_c_string(const u16 *id, unsigned char *s,
1155 unsigned int ofs, unsigned int len)
0e949ff3
TH
1156{
1157 unsigned char *p;
1158
6a62a04d 1159 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1160
1161 p = s + strnlen(s, len - 1);
1162 while (p > s && p[-1] == ' ')
1163 p--;
1164 *p = '\0';
1165}
0baab86b 1166
db6f8759
TH
1167static u64 ata_id_n_sectors(const u16 *id)
1168{
1169 if (ata_id_has_lba(id)) {
1170 if (ata_id_has_lba48(id))
968e594a 1171 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1172 else
968e594a 1173 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1174 } else {
1175 if (ata_id_current_chs_valid(id))
968e594a
RH
1176 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1177 id[ATA_ID_CUR_SECTORS];
db6f8759 1178 else
968e594a
RH
1179 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1180 id[ATA_ID_SECTORS];
db6f8759
TH
1181 }
1182}
1183
a5987e0a 1184u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1185{
1186 u64 sectors = 0;
1187
1188 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1189 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1190 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1191 sectors |= (tf->lbah & 0xff) << 16;
1192 sectors |= (tf->lbam & 0xff) << 8;
1193 sectors |= (tf->lbal & 0xff);
1194
a5987e0a 1195 return sectors;
1e999736
AC
1196}
1197
a5987e0a 1198u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1199{
1200 u64 sectors = 0;
1201
1202 sectors |= (tf->device & 0x0f) << 24;
1203 sectors |= (tf->lbah & 0xff) << 16;
1204 sectors |= (tf->lbam & 0xff) << 8;
1205 sectors |= (tf->lbal & 0xff);
1206
a5987e0a 1207 return sectors;
1e999736
AC
1208}
1209
1210/**
c728a914
TH
1211 * ata_read_native_max_address - Read native max address
1212 * @dev: target device
1213 * @max_sectors: out parameter for the result native max address
1e999736 1214 *
c728a914
TH
1215 * Perform an LBA48 or LBA28 native size query upon the device in
1216 * question.
1e999736 1217 *
c728a914
TH
1218 * RETURNS:
1219 * 0 on success, -EACCES if command is aborted by the drive.
1220 * -EIO on other errors.
1e999736 1221 */
c728a914 1222static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1223{
c728a914 1224 unsigned int err_mask;
1e999736 1225 struct ata_taskfile tf;
c728a914 1226 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1227
1228 ata_tf_init(dev, &tf);
1229
c728a914 1230 /* always clear all address registers */
1e999736 1231 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1232
c728a914
TH
1233 if (lba48) {
1234 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1235 tf.flags |= ATA_TFLAG_LBA48;
1236 } else
1237 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1238
1e999736 1239 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1240 tf.device |= ATA_LBA;
1241
2b789108 1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1243 if (err_mask) {
a9a79dfe
JP
1244 ata_dev_warn(dev,
1245 "failed to read native max address (err_mask=0x%x)\n",
1246 err_mask);
c728a914
TH
1247 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1248 return -EACCES;
1249 return -EIO;
1250 }
1e999736 1251
c728a914 1252 if (lba48)
a5987e0a 1253 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1254 else
a5987e0a 1255 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1256 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1257 (*max_sectors)--;
c728a914 1258 return 0;
1e999736
AC
1259}
1260
1261/**
c728a914
TH
1262 * ata_set_max_sectors - Set max sectors
1263 * @dev: target device
6b38d1d1 1264 * @new_sectors: new max sectors value to set for the device
1e999736 1265 *
c728a914
TH
1266 * Set max sectors of @dev to @new_sectors.
1267 *
1268 * RETURNS:
1269 * 0 on success, -EACCES if command is aborted or denied (due to
1270 * previous non-volatile SET_MAX) by the drive. -EIO on other
1271 * errors.
1e999736 1272 */
05027adc 1273static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1274{
c728a914 1275 unsigned int err_mask;
1e999736 1276 struct ata_taskfile tf;
c728a914 1277 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1278
1279 new_sectors--;
1280
1281 ata_tf_init(dev, &tf);
1282
1e999736 1283 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1284
1285 if (lba48) {
1286 tf.command = ATA_CMD_SET_MAX_EXT;
1287 tf.flags |= ATA_TFLAG_LBA48;
1288
1289 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1290 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1291 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1292 } else {
c728a914
TH
1293 tf.command = ATA_CMD_SET_MAX;
1294
1e582ba4
TH
1295 tf.device |= (new_sectors >> 24) & 0xf;
1296 }
1297
1e999736 1298 tf.protocol |= ATA_PROT_NODATA;
c728a914 1299 tf.device |= ATA_LBA;
1e999736
AC
1300
1301 tf.lbal = (new_sectors >> 0) & 0xff;
1302 tf.lbam = (new_sectors >> 8) & 0xff;
1303 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1304
2b789108 1305 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914 1306 if (err_mask) {
a9a79dfe
JP
1307 ata_dev_warn(dev,
1308 "failed to set max address (err_mask=0x%x)\n",
1309 err_mask);
c728a914
TH
1310 if (err_mask == AC_ERR_DEV &&
1311 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1312 return -EACCES;
1313 return -EIO;
1314 }
1315
c728a914 1316 return 0;
1e999736
AC
1317}
1318
1319/**
1320 * ata_hpa_resize - Resize a device with an HPA set
1321 * @dev: Device to resize
1322 *
1323 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1324 * it if required to the full size of the media. The caller must check
1325 * the drive has the HPA feature set enabled.
05027adc
TH
1326 *
1327 * RETURNS:
1328 * 0 on success, -errno on failure.
1e999736 1329 */
05027adc 1330static int ata_hpa_resize(struct ata_device *dev)
1e999736 1331{
05027adc
TH
1332 struct ata_eh_context *ehc = &dev->link->eh_context;
1333 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1334 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1335 u64 sectors = ata_id_n_sectors(dev->id);
1336 u64 native_sectors;
c728a914 1337 int rc;
a617c09f 1338
05027adc 1339 /* do we need to do it? */
9162c657 1340 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
05027adc
TH
1341 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1342 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1343 return 0;
1e999736 1344
05027adc
TH
1345 /* read native max address */
1346 rc = ata_read_native_max_address(dev, &native_sectors);
1347 if (rc) {
dda7aba1
TH
1348 /* If device aborted the command or HPA isn't going to
1349 * be unlocked, skip HPA resizing.
05027adc 1350 */
445d211b 1351 if (rc == -EACCES || !unlock_hpa) {
a9a79dfe
JP
1352 ata_dev_warn(dev,
1353 "HPA support seems broken, skipping HPA handling\n");
05027adc
TH
1354 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1355
1356 /* we can continue if device aborted the command */
1357 if (rc == -EACCES)
1358 rc = 0;
1e999736 1359 }
37301a55 1360
05027adc
TH
1361 return rc;
1362 }
5920dadf 1363 dev->n_native_sectors = native_sectors;
05027adc
TH
1364
1365 /* nothing to do? */
445d211b 1366 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1367 if (!print_info || native_sectors == sectors)
1368 return 0;
1369
1370 if (native_sectors > sectors)
a9a79dfe 1371 ata_dev_info(dev,
05027adc
TH
1372 "HPA detected: current %llu, native %llu\n",
1373 (unsigned long long)sectors,
1374 (unsigned long long)native_sectors);
1375 else if (native_sectors < sectors)
a9a79dfe
JP
1376 ata_dev_warn(dev,
1377 "native sectors (%llu) is smaller than sectors (%llu)\n",
05027adc
TH
1378 (unsigned long long)native_sectors,
1379 (unsigned long long)sectors);
1380 return 0;
1381 }
1382
1383 /* let's unlock HPA */
1384 rc = ata_set_max_sectors(dev, native_sectors);
1385 if (rc == -EACCES) {
1386 /* if device aborted the command, skip HPA resizing */
a9a79dfe
JP
1387 ata_dev_warn(dev,
1388 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1389 (unsigned long long)sectors,
1390 (unsigned long long)native_sectors);
05027adc
TH
1391 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1392 return 0;
1393 } else if (rc)
1394 return rc;
1395
1396 /* re-read IDENTIFY data */
1397 rc = ata_dev_reread_id(dev, 0);
1398 if (rc) {
a9a79dfe
JP
1399 ata_dev_err(dev,
1400 "failed to re-read IDENTIFY data after HPA resizing\n");
05027adc
TH
1401 return rc;
1402 }
1403
1404 if (print_info) {
1405 u64 new_sectors = ata_id_n_sectors(dev->id);
a9a79dfe 1406 ata_dev_info(dev,
05027adc
TH
1407 "HPA unlocked: %llu -> %llu, native %llu\n",
1408 (unsigned long long)sectors,
1409 (unsigned long long)new_sectors,
1410 (unsigned long long)native_sectors);
1411 }
1412
1413 return 0;
1e999736
AC
1414}
1415
1da177e4
LT
1416/**
1417 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1418 * @id: IDENTIFY DEVICE page to dump
1da177e4 1419 *
0bd3300a
TH
1420 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1421 * page.
1da177e4
LT
1422 *
1423 * LOCKING:
1424 * caller.
1425 */
1426
0bd3300a 1427static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1428{
1429 DPRINTK("49==0x%04x "
1430 "53==0x%04x "
1431 "63==0x%04x "
1432 "64==0x%04x "
1433 "75==0x%04x \n",
0bd3300a
TH
1434 id[49],
1435 id[53],
1436 id[63],
1437 id[64],
1438 id[75]);
1da177e4
LT
1439 DPRINTK("80==0x%04x "
1440 "81==0x%04x "
1441 "82==0x%04x "
1442 "83==0x%04x "
1443 "84==0x%04x \n",
0bd3300a
TH
1444 id[80],
1445 id[81],
1446 id[82],
1447 id[83],
1448 id[84]);
1da177e4
LT
1449 DPRINTK("88==0x%04x "
1450 "93==0x%04x\n",
0bd3300a
TH
1451 id[88],
1452 id[93]);
1da177e4
LT
1453}
1454
cb95d562
TH
1455/**
1456 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1457 * @id: IDENTIFY data to compute xfer mask from
1458 *
1459 * Compute the xfermask for this device. This is not as trivial
1460 * as it seems if we must consider early devices correctly.
1461 *
1462 * FIXME: pre IDE drive timing (do we care ?).
1463 *
1464 * LOCKING:
1465 * None.
1466 *
1467 * RETURNS:
1468 * Computed xfermask
1469 */
7dc951ae 1470unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1471{
7dc951ae 1472 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1473
1474 /* Usual case. Word 53 indicates word 64 is valid */
1475 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1476 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1477 pio_mask <<= 3;
1478 pio_mask |= 0x7;
1479 } else {
1480 /* If word 64 isn't valid then Word 51 high byte holds
1481 * the PIO timing number for the maximum. Turn it into
1482 * a mask.
1483 */
7a0f1c8a 1484 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1485 if (mode < 5) /* Valid PIO range */
2dcb407e 1486 pio_mask = (2 << mode) - 1;
46767aeb
AC
1487 else
1488 pio_mask = 1;
cb95d562
TH
1489
1490 /* But wait.. there's more. Design your standards by
1491 * committee and you too can get a free iordy field to
1492 * process. However its the speeds not the modes that
1493 * are supported... Note drivers using the timing API
1494 * will get this right anyway
1495 */
1496 }
1497
1498 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1499
b352e57d
AC
1500 if (ata_id_is_cfa(id)) {
1501 /*
1502 * Process compact flash extended modes
1503 */
62afe5d7
SS
1504 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1505 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1506
1507 if (pio)
1508 pio_mask |= (1 << 5);
1509 if (pio > 1)
1510 pio_mask |= (1 << 6);
1511 if (dma)
1512 mwdma_mask |= (1 << 3);
1513 if (dma > 1)
1514 mwdma_mask |= (1 << 4);
1515 }
1516
fb21f0d0
TH
1517 udma_mask = 0;
1518 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1519 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1520
1521 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1522}
1523
7102d230 1524static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1525{
77853bf2 1526 struct completion *waiting = qc->private_data;
a2a7a662 1527
a2a7a662 1528 complete(waiting);
a2a7a662
TH
1529}
1530
1531/**
2432697b 1532 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1533 * @dev: Device to which the command is sent
1534 * @tf: Taskfile registers for the command and the result
d69cf37d 1535 * @cdb: CDB for packet command
e227867f 1536 * @dma_dir: Data transfer direction of the command
5c1ad8b3 1537 * @sgl: sg list for the data buffer of the command
2432697b 1538 * @n_elem: Number of sg entries
2b789108 1539 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1540 *
1541 * Executes libata internal command with timeout. @tf contains
1542 * command on entry and result on return. Timeout and error
1543 * conditions are reported via return value. No recovery action
1544 * is taken after a command times out. It's caller's duty to
1545 * clean up after timeout.
1546 *
1547 * LOCKING:
1548 * None. Should be called with kernel context, might sleep.
551e8889
TH
1549 *
1550 * RETURNS:
1551 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1552 */
2432697b
TH
1553unsigned ata_exec_internal_sg(struct ata_device *dev,
1554 struct ata_taskfile *tf, const u8 *cdb,
87260216 1555 int dma_dir, struct scatterlist *sgl,
2b789108 1556 unsigned int n_elem, unsigned long timeout)
a2a7a662 1557{
9af5c9c9
TH
1558 struct ata_link *link = dev->link;
1559 struct ata_port *ap = link->ap;
a2a7a662 1560 u8 command = tf->command;
87fbc5a0 1561 int auto_timeout = 0;
a2a7a662 1562 struct ata_queued_cmd *qc;
2ab7db1f 1563 unsigned int tag, preempted_tag;
dedaf2b0 1564 u32 preempted_sactive, preempted_qc_active;
da917d69 1565 int preempted_nr_active_links;
60be6b9a 1566 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1567 unsigned long flags;
77853bf2 1568 unsigned int err_mask;
d95a717f 1569 int rc;
a2a7a662 1570
ba6a1308 1571 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1572
e3180499 1573 /* no internal command while frozen */
b51e9e5d 1574 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1575 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1576 return AC_ERR_SYSTEM;
1577 }
1578
2ab7db1f 1579 /* initialize internal qc */
a2a7a662 1580
2ab7db1f
TH
1581 /* XXX: Tag 0 is used for drivers with legacy EH as some
1582 * drivers choke if any other tag is given. This breaks
1583 * ata_tag_internal() test for those drivers. Don't use new
1584 * EH stuff without converting to it.
1585 */
1586 if (ap->ops->error_handler)
1587 tag = ATA_TAG_INTERNAL;
1588 else
1589 tag = 0;
1590
f69499f4 1591 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1592
1593 qc->tag = tag;
1594 qc->scsicmd = NULL;
1595 qc->ap = ap;
1596 qc->dev = dev;
1597 ata_qc_reinit(qc);
1598
9af5c9c9
TH
1599 preempted_tag = link->active_tag;
1600 preempted_sactive = link->sactive;
dedaf2b0 1601 preempted_qc_active = ap->qc_active;
da917d69 1602 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1603 link->active_tag = ATA_TAG_POISON;
1604 link->sactive = 0;
dedaf2b0 1605 ap->qc_active = 0;
da917d69 1606 ap->nr_active_links = 0;
2ab7db1f
TH
1607
1608 /* prepare & issue qc */
a2a7a662 1609 qc->tf = *tf;
d69cf37d
TH
1610 if (cdb)
1611 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e771451c
VP
1612
1613 /* some SATA bridges need us to indicate data xfer direction */
1614 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1615 dma_dir == DMA_FROM_DEVICE)
1616 qc->tf.feature |= ATAPI_DMADIR;
1617
e61e0672 1618 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1619 qc->dma_dir = dma_dir;
1620 if (dma_dir != DMA_NONE) {
2432697b 1621 unsigned int i, buflen = 0;
87260216 1622 struct scatterlist *sg;
2432697b 1623
87260216
JA
1624 for_each_sg(sgl, sg, n_elem, i)
1625 buflen += sg->length;
2432697b 1626
87260216 1627 ata_sg_init(qc, sgl, n_elem);
49c80429 1628 qc->nbytes = buflen;
a2a7a662
TH
1629 }
1630
77853bf2 1631 qc->private_data = &wait;
a2a7a662
TH
1632 qc->complete_fn = ata_qc_complete_internal;
1633
8e0e694a 1634 ata_qc_issue(qc);
a2a7a662 1635
ba6a1308 1636 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1637
87fbc5a0
TH
1638 if (!timeout) {
1639 if (ata_probe_timeout)
1640 timeout = ata_probe_timeout * 1000;
1641 else {
1642 timeout = ata_internal_cmd_timeout(dev, command);
1643 auto_timeout = 1;
1644 }
1645 }
2b789108 1646
c0c362b6
TH
1647 if (ap->ops->error_handler)
1648 ata_eh_release(ap);
1649
2b789108 1650 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1651
c0c362b6
TH
1652 if (ap->ops->error_handler)
1653 ata_eh_acquire(ap);
1654
c429137a 1655 ata_sff_flush_pio_task(ap);
41ade50c 1656
d95a717f 1657 if (!rc) {
ba6a1308 1658 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1659
1660 /* We're racing with irq here. If we lose, the
1661 * following test prevents us from completing the qc
d95a717f
TH
1662 * twice. If we win, the port is frozen and will be
1663 * cleaned up by ->post_internal_cmd().
a2a7a662 1664 */
77853bf2 1665 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1666 qc->err_mask |= AC_ERR_TIMEOUT;
1667
1668 if (ap->ops->error_handler)
1669 ata_port_freeze(ap);
1670 else
1671 ata_qc_complete(qc);
f15a1daf 1672
0dd4b21f 1673 if (ata_msg_warn(ap))
a9a79dfe
JP
1674 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1675 command);
a2a7a662
TH
1676 }
1677
ba6a1308 1678 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1679 }
1680
d95a717f
TH
1681 /* do post_internal_cmd */
1682 if (ap->ops->post_internal_cmd)
1683 ap->ops->post_internal_cmd(qc);
1684
a51d644a
TH
1685 /* perform minimal error analysis */
1686 if (qc->flags & ATA_QCFLAG_FAILED) {
1687 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1688 qc->err_mask |= AC_ERR_DEV;
1689
1690 if (!qc->err_mask)
1691 qc->err_mask |= AC_ERR_OTHER;
1692
1693 if (qc->err_mask & ~AC_ERR_OTHER)
1694 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1695 }
1696
15869303 1697 /* finish up */
ba6a1308 1698 spin_lock_irqsave(ap->lock, flags);
15869303 1699
e61e0672 1700 *tf = qc->result_tf;
77853bf2
TH
1701 err_mask = qc->err_mask;
1702
1703 ata_qc_free(qc);
9af5c9c9
TH
1704 link->active_tag = preempted_tag;
1705 link->sactive = preempted_sactive;
dedaf2b0 1706 ap->qc_active = preempted_qc_active;
da917d69 1707 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1708
ba6a1308 1709 spin_unlock_irqrestore(ap->lock, flags);
15869303 1710
87fbc5a0
TH
1711 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1712 ata_internal_cmd_timed_out(dev, command);
1713
77853bf2 1714 return err_mask;
a2a7a662
TH
1715}
1716
2432697b 1717/**
33480a0e 1718 * ata_exec_internal - execute libata internal command
2432697b
TH
1719 * @dev: Device to which the command is sent
1720 * @tf: Taskfile registers for the command and the result
1721 * @cdb: CDB for packet command
e227867f 1722 * @dma_dir: Data transfer direction of the command
2432697b
TH
1723 * @buf: Data buffer of the command
1724 * @buflen: Length of data buffer
2b789108 1725 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1726 *
1727 * Wrapper around ata_exec_internal_sg() which takes simple
1728 * buffer instead of sg list.
1729 *
1730 * LOCKING:
1731 * None. Should be called with kernel context, might sleep.
1732 *
1733 * RETURNS:
1734 * Zero on success, AC_ERR_* mask on failure
1735 */
1736unsigned ata_exec_internal(struct ata_device *dev,
1737 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1738 int dma_dir, void *buf, unsigned int buflen,
1739 unsigned long timeout)
2432697b 1740{
33480a0e
TH
1741 struct scatterlist *psg = NULL, sg;
1742 unsigned int n_elem = 0;
2432697b 1743
33480a0e
TH
1744 if (dma_dir != DMA_NONE) {
1745 WARN_ON(!buf);
1746 sg_init_one(&sg, buf, buflen);
1747 psg = &sg;
1748 n_elem++;
1749 }
2432697b 1750
2b789108
TH
1751 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1752 timeout);
2432697b
TH
1753}
1754
1bc4ccff
AC
1755/**
1756 * ata_pio_need_iordy - check if iordy needed
1757 * @adev: ATA device
1758 *
1759 * Check if the current speed of the device requires IORDY. Used
1760 * by various controllers for chip configuration.
1761 */
1bc4ccff
AC
1762unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1763{
0d9e6659
TH
1764 /* Don't set IORDY if we're preparing for reset. IORDY may
1765 * lead to controller lock up on certain controllers if the
1766 * port is not occupied. See bko#11703 for details.
1767 */
1768 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1769 return 0;
1770 /* Controller doesn't support IORDY. Probably a pointless
1771 * check as the caller should know this.
1772 */
9af5c9c9 1773 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1774 return 0;
5c18c4d2
DD
1775 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1776 if (ata_id_is_cfa(adev->id)
1777 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1778 return 0;
432729f0
AC
1779 /* PIO3 and higher it is mandatory */
1780 if (adev->pio_mode > XFER_PIO_2)
1781 return 1;
1782 /* We turn it on when possible */
1783 if (ata_id_has_iordy(adev->id))
1bc4ccff 1784 return 1;
432729f0
AC
1785 return 0;
1786}
2e9edbf8 1787
432729f0
AC
1788/**
1789 * ata_pio_mask_no_iordy - Return the non IORDY mask
1790 * @adev: ATA device
1791 *
1792 * Compute the highest mode possible if we are not using iordy. Return
1793 * -1 if no iordy mode is available.
1794 */
432729f0
AC
1795static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1796{
1bc4ccff 1797 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1798 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1799 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1800 /* Is the speed faster than the drive allows non IORDY ? */
1801 if (pio) {
1802 /* This is cycle times not frequency - watch the logic! */
1803 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1804 return 3 << ATA_SHIFT_PIO;
1805 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1806 }
1807 }
432729f0 1808 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1809}
1810
963e4975
AC
1811/**
1812 * ata_do_dev_read_id - default ID read method
1813 * @dev: device
1814 * @tf: proposed taskfile
1815 * @id: data buffer
1816 *
1817 * Issue the identify taskfile and hand back the buffer containing
1818 * identify data. For some RAID controllers and for pre ATA devices
1819 * this function is wrapped or replaced by the driver
1820 */
1821unsigned int ata_do_dev_read_id(struct ata_device *dev,
1822 struct ata_taskfile *tf, u16 *id)
1823{
1824 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1825 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1826}
1827
1da177e4 1828/**
49016aca 1829 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1830 * @dev: target device
1831 * @p_class: pointer to class of the target device (may be changed)
bff04647 1832 * @flags: ATA_READID_* flags
fe635c7e 1833 * @id: buffer to read IDENTIFY data into
1da177e4 1834 *
49016aca
TH
1835 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1836 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1837 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1838 * for pre-ATA4 drives.
1da177e4 1839 *
50a99018 1840 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 1841 * now we abort if we hit that case.
50a99018 1842 *
1da177e4 1843 * LOCKING:
49016aca
TH
1844 * Kernel thread context (may sleep)
1845 *
1846 * RETURNS:
1847 * 0 on success, -errno otherwise.
1da177e4 1848 */
a9beec95 1849int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 1850 unsigned int flags, u16 *id)
1da177e4 1851{
9af5c9c9 1852 struct ata_port *ap = dev->link->ap;
49016aca 1853 unsigned int class = *p_class;
a0123703 1854 struct ata_taskfile tf;
49016aca
TH
1855 unsigned int err_mask = 0;
1856 const char *reason;
79b42bab 1857 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 1858 int may_fallback = 1, tried_spinup = 0;
49016aca 1859 int rc;
1da177e4 1860
0dd4b21f 1861 if (ata_msg_ctl(ap))
a9a79dfe 1862 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 1863
963e4975 1864retry:
3373efd8 1865 ata_tf_init(dev, &tf);
a0123703 1866
49016aca 1867 switch (class) {
79b42bab
TH
1868 case ATA_DEV_SEMB:
1869 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 1870 case ATA_DEV_ATA:
9162c657 1871 case ATA_DEV_ZAC:
a0123703 1872 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1873 break;
1874 case ATA_DEV_ATAPI:
a0123703 1875 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1876 break;
1877 default:
1878 rc = -ENODEV;
1879 reason = "unsupported class";
1880 goto err_out;
1da177e4
LT
1881 }
1882
a0123703 1883 tf.protocol = ATA_PROT_PIO;
81afe893
TH
1884
1885 /* Some devices choke if TF registers contain garbage. Make
1886 * sure those are properly initialized.
1887 */
1888 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1889
1890 /* Device presence detection is unreliable on some
1891 * controllers. Always poll IDENTIFY if available.
1892 */
1893 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 1894
963e4975
AC
1895 if (ap->ops->read_id)
1896 err_mask = ap->ops->read_id(dev, &tf, id);
1897 else
1898 err_mask = ata_do_dev_read_id(dev, &tf, id);
1899
a0123703 1900 if (err_mask) {
800b3996 1901 if (err_mask & AC_ERR_NODEV_HINT) {
a9a79dfe 1902 ata_dev_dbg(dev, "NODEV after polling detection\n");
55a8e2c8
TH
1903 return -ENOENT;
1904 }
1905
79b42bab 1906 if (is_semb) {
a9a79dfe
JP
1907 ata_dev_info(dev,
1908 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
79b42bab
TH
1909 /* SEMB is not supported yet */
1910 *p_class = ATA_DEV_SEMB_UNSUP;
1911 return 0;
1912 }
1913
1ffc151f
TH
1914 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1915 /* Device or controller might have reported
1916 * the wrong device class. Give a shot at the
1917 * other IDENTIFY if the current one is
1918 * aborted by the device.
1919 */
1920 if (may_fallback) {
1921 may_fallback = 0;
1922
1923 if (class == ATA_DEV_ATA)
1924 class = ATA_DEV_ATAPI;
1925 else
1926 class = ATA_DEV_ATA;
1927 goto retry;
1928 }
1929
1930 /* Control reaches here iff the device aborted
1931 * both flavors of IDENTIFYs which happens
1932 * sometimes with phantom devices.
1933 */
a9a79dfe
JP
1934 ata_dev_dbg(dev,
1935 "both IDENTIFYs aborted, assuming NODEV\n");
1ffc151f 1936 return -ENOENT;
54936f8b
TH
1937 }
1938
49016aca
TH
1939 rc = -EIO;
1940 reason = "I/O error";
1da177e4
LT
1941 goto err_out;
1942 }
1943
43c9c591 1944 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
a9a79dfe
JP
1945 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1946 "class=%d may_fallback=%d tried_spinup=%d\n",
1947 class, may_fallback, tried_spinup);
43c9c591
TH
1948 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1949 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1950 }
1951
54936f8b
TH
1952 /* Falling back doesn't make sense if ID data was read
1953 * successfully at least once.
1954 */
1955 may_fallback = 0;
1956
49016aca 1957 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1958
49016aca 1959 /* sanity check */
a4f5749b 1960 rc = -EINVAL;
6070068b 1961 reason = "device reports invalid type";
a4f5749b 1962
9162c657 1963 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
a4f5749b
TH
1964 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1965 goto err_out;
db63a4c8
AW
1966 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1967 ata_id_is_ata(id)) {
1968 ata_dev_dbg(dev,
1969 "host indicates ignore ATA devices, ignored\n");
1970 return -ENOENT;
1971 }
a4f5749b
TH
1972 } else {
1973 if (ata_id_is_ata(id))
1974 goto err_out;
49016aca
TH
1975 }
1976
169439c2
ML
1977 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1978 tried_spinup = 1;
1979 /*
1980 * Drive powered-up in standby mode, and requires a specific
1981 * SET_FEATURES spin-up subcommand before it will accept
1982 * anything other than the original IDENTIFY command.
1983 */
218f3d30 1984 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 1985 if (err_mask && id[2] != 0x738c) {
169439c2
ML
1986 rc = -EIO;
1987 reason = "SPINUP failed";
1988 goto err_out;
1989 }
1990 /*
1991 * If the drive initially returned incomplete IDENTIFY info,
1992 * we now must reissue the IDENTIFY command.
1993 */
1994 if (id[2] == 0x37c8)
1995 goto retry;
1996 }
1997
9162c657
HR
1998 if ((flags & ATA_READID_POSTRESET) &&
1999 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
49016aca
TH
2000 /*
2001 * The exact sequence expected by certain pre-ATA4 drives is:
2002 * SRST RESET
50a99018
AC
2003 * IDENTIFY (optional in early ATA)
2004 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2005 * anything else..
2006 * Some drives were very specific about that exact sequence.
50a99018
AC
2007 *
2008 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2009 * should never trigger.
49016aca
TH
2010 */
2011 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2012 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2013 if (err_mask) {
2014 rc = -EIO;
2015 reason = "INIT_DEV_PARAMS failed";
2016 goto err_out;
2017 }
2018
2019 /* current CHS translation info (id[53-58]) might be
2020 * changed. reread the identify device info.
2021 */
bff04647 2022 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2023 goto retry;
2024 }
2025 }
2026
2027 *p_class = class;
fe635c7e 2028
49016aca
TH
2029 return 0;
2030
2031 err_out:
88574551 2032 if (ata_msg_warn(ap))
a9a79dfe
JP
2033 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2034 reason, err_mask);
49016aca
TH
2035 return rc;
2036}
2037
9062712f
TH
2038static int ata_do_link_spd_horkage(struct ata_device *dev)
2039{
2040 struct ata_link *plink = ata_dev_phys_link(dev);
2041 u32 target, target_limit;
2042
2043 if (!sata_scr_valid(plink))
2044 return 0;
2045
2046 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2047 target = 1;
2048 else
2049 return 0;
2050
2051 target_limit = (1 << target) - 1;
2052
2053 /* if already on stricter limit, no need to push further */
2054 if (plink->sata_spd_limit <= target_limit)
2055 return 0;
2056
2057 plink->sata_spd_limit = target_limit;
2058
2059 /* Request another EH round by returning -EAGAIN if link is
2060 * going faster than the target speed. Forward progress is
2061 * guaranteed by setting sata_spd_limit to target_limit above.
2062 */
2063 if (plink->sata_spd > target) {
a9a79dfe
JP
2064 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2065 sata_spd_string(target));
9062712f
TH
2066 return -EAGAIN;
2067 }
2068 return 0;
2069}
2070
3373efd8 2071static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2072{
9af5c9c9 2073 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2074
2075 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2076 return 0;
2077
9af5c9c9 2078 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2079}
2080
388539f3 2081static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2082 char *desc, size_t desc_sz)
2083{
9af5c9c9 2084 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2085 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2086 unsigned int err_mask;
2087 char *aa_desc = "";
a6e6ce8e
TH
2088
2089 if (!ata_id_has_ncq(dev->id)) {
2090 desc[0] = '\0';
388539f3 2091 return 0;
a6e6ce8e 2092 }
75683fe7 2093 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2094 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2095 return 0;
6919a0a6 2096 }
a6e6ce8e 2097 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2098 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2099 dev->flags |= ATA_DFLAG_NCQ;
2100 }
2101
388539f3
SL
2102 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2103 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2104 ata_id_has_fpdma_aa(dev->id)) {
2105 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2106 SATA_FPDMA_AA);
2107 if (err_mask) {
a9a79dfe
JP
2108 ata_dev_err(dev,
2109 "failed to enable AA (error_mask=0x%x)\n",
2110 err_mask);
388539f3
SL
2111 if (err_mask != AC_ERR_DEV) {
2112 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2113 return -EIO;
2114 }
2115 } else
2116 aa_desc = ", AA";
2117 }
2118
a6e6ce8e 2119 if (hdepth >= ddepth)
388539f3 2120 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2121 else
388539f3
SL
2122 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2123 ddepth, aa_desc);
ed36911c
MC
2124
2125 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2126 ata_id_has_ncq_send_and_recv(dev->id)) {
2127 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2128 0, ap->sector_buf, 1);
2129 if (err_mask) {
2130 ata_dev_dbg(dev,
2131 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2132 err_mask);
2133 } else {
f78dea06
MC
2134 u8 *cmds = dev->ncq_send_recv_cmds;
2135
ed36911c 2136 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
f78dea06
MC
2137 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2138
2139 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2140 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2141 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2142 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2143 }
ed36911c
MC
2144 }
2145 }
2146
388539f3 2147 return 0;
a6e6ce8e
TH
2148}
2149
49016aca 2150/**
ffeae418 2151 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2152 * @dev: Target device to configure
2153 *
2154 * Configure @dev according to @dev->id. Generic and low-level
2155 * driver specific fixups are also applied.
49016aca
TH
2156 *
2157 * LOCKING:
ffeae418
TH
2158 * Kernel thread context (may sleep)
2159 *
2160 * RETURNS:
2161 * 0 on success, -errno otherwise
49016aca 2162 */
efdaedc4 2163int ata_dev_configure(struct ata_device *dev)
49016aca 2164{
9af5c9c9
TH
2165 struct ata_port *ap = dev->link->ap;
2166 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2167 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2168 const u16 *id = dev->id;
7dc951ae 2169 unsigned long xfer_mask;
65fe1f0f 2170 unsigned int err_mask;
b352e57d 2171 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2172 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2173 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2174 int rc;
49016aca 2175
0dd4b21f 2176 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
a9a79dfe 2177 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
ffeae418 2178 return 0;
49016aca
TH
2179 }
2180
0dd4b21f 2181 if (ata_msg_probe(ap))
a9a79dfe 2182 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1da177e4 2183
75683fe7
TH
2184 /* set horkage */
2185 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2186 ata_force_horkage(dev);
75683fe7 2187
50af2fa1 2188 if (dev->horkage & ATA_HORKAGE_DISABLE) {
a9a79dfe 2189 ata_dev_info(dev, "unsupported device, disabling\n");
50af2fa1
TH
2190 ata_dev_disable(dev);
2191 return 0;
2192 }
2193
2486fa56
TH
2194 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2195 dev->class == ATA_DEV_ATAPI) {
a9a79dfe
JP
2196 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2197 atapi_enabled ? "not supported with this driver"
2198 : "disabled");
2486fa56
TH
2199 ata_dev_disable(dev);
2200 return 0;
2201 }
2202
9062712f
TH
2203 rc = ata_do_link_spd_horkage(dev);
2204 if (rc)
2205 return rc;
2206
ecd75ad5
TH
2207 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2208 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2209 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2210 dev->horkage |= ATA_HORKAGE_NOLPM;
2211
2212 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2213 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2214 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2215 }
2216
6746544c
TH
2217 /* let ACPI work its magic */
2218 rc = ata_acpi_on_devcfg(dev);
2219 if (rc)
2220 return rc;
08573a86 2221
05027adc
TH
2222 /* massage HPA, do it early as it might change IDENTIFY data */
2223 rc = ata_hpa_resize(dev);
2224 if (rc)
2225 return rc;
2226
c39f5ebe 2227 /* print device capabilities */
0dd4b21f 2228 if (ata_msg_probe(ap))
a9a79dfe
JP
2229 ata_dev_dbg(dev,
2230 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2231 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2232 __func__,
2233 id[49], id[82], id[83], id[84],
2234 id[85], id[86], id[87], id[88]);
c39f5ebe 2235
208a9933 2236 /* initialize to-be-configured parameters */
ea1dd4e1 2237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2238 dev->max_sectors = 0;
2239 dev->cdb_len = 0;
2240 dev->n_sectors = 0;
2241 dev->cylinders = 0;
2242 dev->heads = 0;
2243 dev->sectors = 0;
e18086d6 2244 dev->multi_count = 0;
208a9933 2245
1da177e4
LT
2246 /*
2247 * common ATA, ATAPI feature tests
2248 */
2249
ff8854b2 2250 /* find max transfer mode; for printk only */
1148c3a7 2251 xfer_mask = ata_id_xfermask(id);
1da177e4 2252
0dd4b21f
BP
2253 if (ata_msg_probe(ap))
2254 ata_dump_id(id);
1da177e4 2255
ef143d57
AL
2256 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2257 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2258 sizeof(fwrevbuf));
2259
2260 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2261 sizeof(modelbuf));
2262
1da177e4 2263 /* ATA-specific feature tests */
9162c657 2264 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
b352e57d 2265 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2266 /* CPRM may make this media unusable */
2267 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
a9a79dfe
JP
2268 ata_dev_warn(dev,
2269 "supports DRM functions and may not be fully accessible\n");
b352e57d 2270 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2271 } else {
2dcb407e 2272 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2273 /* Warn the user if the device has TPM extensions */
2274 if (ata_id_has_tpm(id))
a9a79dfe
JP
2275 ata_dev_warn(dev,
2276 "supports DRM functions and may not be fully accessible\n");
ae8d4ee7 2277 }
b352e57d 2278
1148c3a7 2279 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2280
e18086d6
ML
2281 /* get current R/W Multiple count setting */
2282 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2283 unsigned int max = dev->id[47] & 0xff;
2284 unsigned int cnt = dev->id[59] & 0xff;
2285 /* only recognize/allow powers of two here */
2286 if (is_power_of_2(max) && is_power_of_2(cnt))
2287 if (cnt <= max)
2288 dev->multi_count = cnt;
2289 }
3f64f565 2290
1148c3a7 2291 if (ata_id_has_lba(id)) {
4c2d721a 2292 const char *lba_desc;
388539f3 2293 char ncq_desc[24];
8bf62ece 2294
4c2d721a
TH
2295 lba_desc = "LBA";
2296 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2297 if (ata_id_has_lba48(id)) {
8bf62ece 2298 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2299 lba_desc = "LBA48";
6fc49adb
TH
2300
2301 if (dev->n_sectors >= (1UL << 28) &&
2302 ata_id_has_flush_ext(id))
2303 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2304 }
8bf62ece 2305
a6e6ce8e 2306 /* config NCQ */
388539f3
SL
2307 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2308 if (rc)
2309 return rc;
a6e6ce8e 2310
8bf62ece 2311 /* print device info to dmesg */
3f64f565 2312 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2313 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2314 revbuf, modelbuf, fwrevbuf,
2315 ata_mode_string(xfer_mask));
2316 ata_dev_info(dev,
2317 "%llu sectors, multi %u: %s %s\n",
f15a1daf 2318 (unsigned long long)dev->n_sectors,
3f64f565
EM
2319 dev->multi_count, lba_desc, ncq_desc);
2320 }
ffeae418 2321 } else {
8bf62ece
AL
2322 /* CHS */
2323
2324 /* Default translation */
1148c3a7
TH
2325 dev->cylinders = id[1];
2326 dev->heads = id[3];
2327 dev->sectors = id[6];
8bf62ece 2328
1148c3a7 2329 if (ata_id_current_chs_valid(id)) {
8bf62ece 2330 /* Current CHS translation is valid. */
1148c3a7
TH
2331 dev->cylinders = id[54];
2332 dev->heads = id[55];
2333 dev->sectors = id[56];
8bf62ece
AL
2334 }
2335
2336 /* print device info to dmesg */
3f64f565 2337 if (ata_msg_drv(ap) && print_info) {
a9a79dfe
JP
2338 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2339 revbuf, modelbuf, fwrevbuf,
2340 ata_mode_string(xfer_mask));
2341 ata_dev_info(dev,
2342 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2343 (unsigned long long)dev->n_sectors,
2344 dev->multi_count, dev->cylinders,
2345 dev->heads, dev->sectors);
3f64f565 2346 }
07f6f7d0
AL
2347 }
2348
803739d2
SH
2349 /* Check and mark DevSlp capability. Get DevSlp timing variables
2350 * from SATA Settings page of Identify Device Data Log.
65fe1f0f 2351 */
803739d2 2352 if (ata_id_has_devslp(dev->id)) {
8e725c7f 2353 u8 *sata_setting = ap->sector_buf;
803739d2
SH
2354 int i, j;
2355
2356 dev->flags |= ATA_DFLAG_DEVSLP;
65fe1f0f
SH
2357 err_mask = ata_read_log_page(dev,
2358 ATA_LOG_SATA_ID_DEV_DATA,
2359 ATA_LOG_SATA_SETTINGS,
803739d2 2360 sata_setting,
65fe1f0f
SH
2361 1);
2362 if (err_mask)
2363 ata_dev_dbg(dev,
2364 "failed to get Identify Device Data, Emask 0x%x\n",
2365 err_mask);
803739d2
SH
2366 else
2367 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2368 j = ATA_LOG_DEVSLP_OFFSET + i;
2369 dev->devslp_timing[i] = sata_setting[j];
2370 }
65fe1f0f 2371 }
84ded2f8 2372
6e7846e9 2373 dev->cdb_len = 16;
1da177e4
LT
2374 }
2375
2376 /* ATAPI-specific feature tests */
2c13b7ce 2377 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2378 const char *cdb_intr_string = "";
2379 const char *atapi_an_string = "";
91163006 2380 const char *dma_dir_string = "";
7d77b247 2381 u32 sntf;
08a556db 2382
1148c3a7 2383 rc = atapi_cdb_len(id);
1da177e4 2384 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2385 if (ata_msg_warn(ap))
a9a79dfe 2386 ata_dev_warn(dev, "unsupported CDB len\n");
ffeae418 2387 rc = -EINVAL;
1da177e4
LT
2388 goto err_out_nosup;
2389 }
6e7846e9 2390 dev->cdb_len = (unsigned int) rc;
1da177e4 2391
7d77b247
TH
2392 /* Enable ATAPI AN if both the host and device have
2393 * the support. If PMP is attached, SNTF is required
2394 * to enable ATAPI AN to discern between PHY status
2395 * changed notifications and ATAPI ANs.
9f45cbd3 2396 */
e7ecd435
TH
2397 if (atapi_an &&
2398 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2399 (!sata_pmp_attached(ap) ||
7d77b247 2400 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
9f45cbd3 2401 /* issue SET feature command to turn this on */
218f3d30
JG
2402 err_mask = ata_dev_set_feature(dev,
2403 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2404 if (err_mask)
a9a79dfe
JP
2405 ata_dev_err(dev,
2406 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2407 err_mask);
854c73a2 2408 else {
9f45cbd3 2409 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2410 atapi_an_string = ", ATAPI AN";
2411 }
9f45cbd3
KCA
2412 }
2413
08a556db 2414 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2415 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2416 cdb_intr_string = ", CDB intr";
2417 }
312f7da2 2418
966fbe19 2419 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
91163006
TH
2420 dev->flags |= ATA_DFLAG_DMADIR;
2421 dma_dir_string = ", DMADIR";
2422 }
2423
afe75951 2424 if (ata_id_has_da(dev->id)) {
b1354cbb 2425 dev->flags |= ATA_DFLAG_DA;
afe75951
AL
2426 zpodd_init(dev);
2427 }
b1354cbb 2428
1da177e4 2429 /* print device info to dmesg */
5afc8142 2430 if (ata_msg_drv(ap) && print_info)
a9a79dfe
JP
2431 ata_dev_info(dev,
2432 "ATAPI: %s, %s, max %s%s%s%s\n",
2433 modelbuf, fwrevbuf,
2434 ata_mode_string(xfer_mask),
2435 cdb_intr_string, atapi_an_string,
2436 dma_dir_string);
1da177e4
LT
2437 }
2438
914ed354
TH
2439 /* determine max_sectors */
2440 dev->max_sectors = ATA_MAX_SECTORS;
2441 if (dev->flags & ATA_DFLAG_LBA48)
2442 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2443
c5038fc0
AC
2444 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2445 200 sectors */
3373efd8 2446 if (ata_dev_knobble(dev)) {
5afc8142 2447 if (ata_msg_drv(ap) && print_info)
a9a79dfe 2448 ata_dev_info(dev, "applying bridge limits\n");
5a529139 2449 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2450 dev->max_sectors = ATA_MAX_SECTORS;
2451 }
2452
f8d8e579 2453 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2454 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2455 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2456 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2457 }
f8d8e579 2458
75683fe7 2459 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2460 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2461 dev->max_sectors);
18d6e9d5 2462
af34d637
DM
2463 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2464 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2465 dev->max_sectors);
2466
a32450e1
SH
2467 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2468 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2469
4b2f3ede 2470 if (ap->ops->dev_config)
cd0d3bbc 2471 ap->ops->dev_config(dev);
4b2f3ede 2472
c5038fc0
AC
2473 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2474 /* Let the user know. We don't want to disallow opens for
2475 rescue purposes, or in case the vendor is just a blithering
2476 idiot. Do this after the dev_config call as some controllers
2477 with buggy firmware may want to avoid reporting false device
2478 bugs */
2479
2480 if (print_info) {
a9a79dfe 2481 ata_dev_warn(dev,
c5038fc0 2482"Drive reports diagnostics failure. This may indicate a drive\n");
a9a79dfe 2483 ata_dev_warn(dev,
c5038fc0
AC
2484"fault or invalid emulation. Contact drive vendor for information.\n");
2485 }
2486 }
2487
ac70a964 2488 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
a9a79dfe
JP
2489 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2490 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
ac70a964
TH
2491 }
2492
ffeae418 2493 return 0;
1da177e4
LT
2494
2495err_out_nosup:
0dd4b21f 2496 if (ata_msg_probe(ap))
a9a79dfe 2497 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
ffeae418 2498 return rc;
1da177e4
LT
2499}
2500
be0d18df 2501/**
2e41e8e6 2502 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2503 * @ap: port
2504 *
2e41e8e6 2505 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2506 * detection.
2507 */
2508
2509int ata_cable_40wire(struct ata_port *ap)
2510{
2511 return ATA_CBL_PATA40;
2512}
2513
2514/**
2e41e8e6 2515 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2516 * @ap: port
2517 *
2e41e8e6 2518 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2519 * detection.
2520 */
2521
2522int ata_cable_80wire(struct ata_port *ap)
2523{
2524 return ATA_CBL_PATA80;
2525}
2526
2527/**
2528 * ata_cable_unknown - return unknown PATA cable.
2529 * @ap: port
2530 *
2531 * Helper method for drivers which have no PATA cable detection.
2532 */
2533
2534int ata_cable_unknown(struct ata_port *ap)
2535{
2536 return ATA_CBL_PATA_UNK;
2537}
2538
c88f90c3
TH
2539/**
2540 * ata_cable_ignore - return ignored PATA cable.
2541 * @ap: port
2542 *
2543 * Helper method for drivers which don't use cable type to limit
2544 * transfer mode.
2545 */
2546int ata_cable_ignore(struct ata_port *ap)
2547{
2548 return ATA_CBL_PATA_IGN;
2549}
2550
be0d18df
AC
2551/**
2552 * ata_cable_sata - return SATA cable type
2553 * @ap: port
2554 *
2555 * Helper method for drivers which have SATA cables
2556 */
2557
2558int ata_cable_sata(struct ata_port *ap)
2559{
2560 return ATA_CBL_SATA;
2561}
2562
1da177e4
LT
2563/**
2564 * ata_bus_probe - Reset and probe ATA bus
2565 * @ap: Bus to probe
2566 *
0cba632b
JG
2567 * Master ATA bus probing function. Initiates a hardware-dependent
2568 * bus reset, then attempts to identify any devices found on
2569 * the bus.
2570 *
1da177e4 2571 * LOCKING:
0cba632b 2572 * PCI/etc. bus probe sem.
1da177e4
LT
2573 *
2574 * RETURNS:
96072e69 2575 * Zero on success, negative errno otherwise.
1da177e4
LT
2576 */
2577
80289167 2578int ata_bus_probe(struct ata_port *ap)
1da177e4 2579{
28ca5c57 2580 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2581 int tries[ATA_MAX_DEVICES];
f58229f8 2582 int rc;
e82cbdb9 2583 struct ata_device *dev;
1da177e4 2584
1eca4365 2585 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2586 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2587
2588 retry:
1eca4365 2589 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2590 /* If we issue an SRST then an ATA drive (not ATAPI)
2591 * may change configuration and be in PIO0 timing. If
2592 * we do a hard reset (or are coming from power on)
2593 * this is true for ATA or ATAPI. Until we've set a
2594 * suitable controller mode we should not touch the
2595 * bus as we may be talking too fast.
2596 */
2597 dev->pio_mode = XFER_PIO_0;
5416912a 2598 dev->dma_mode = 0xff;
cdeab114
TH
2599
2600 /* If the controller has a pio mode setup function
2601 * then use it to set the chipset to rights. Don't
2602 * touch the DMA setup as that will be dealt with when
2603 * configuring devices.
2604 */
2605 if (ap->ops->set_piomode)
2606 ap->ops->set_piomode(ap, dev);
2607 }
2608
2044470c 2609 /* reset and determine device classes */
52783c5d 2610 ap->ops->phy_reset(ap);
2061a47a 2611
1eca4365 2612 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2613 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2614 classes[dev->devno] = dev->class;
2615 else
2616 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2617
52783c5d 2618 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2619 }
1da177e4 2620
f31f0cc2
JG
2621 /* read IDENTIFY page and configure devices. We have to do the identify
2622 specific sequence bass-ackwards so that PDIAG- is released by
2623 the slave device */
2624
1eca4365 2625 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2626 if (tries[dev->devno])
2627 dev->class = classes[dev->devno];
ffeae418 2628
14d2bac1 2629 if (!ata_dev_enabled(dev))
ffeae418 2630 continue;
ffeae418 2631
bff04647
TH
2632 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2633 dev->id);
14d2bac1
TH
2634 if (rc)
2635 goto fail;
f31f0cc2
JG
2636 }
2637
be0d18df
AC
2638 /* Now ask for the cable type as PDIAG- should have been released */
2639 if (ap->ops->cable_detect)
2640 ap->cbl = ap->ops->cable_detect(ap);
2641
1eca4365
TH
2642 /* We may have SATA bridge glue hiding here irrespective of
2643 * the reported cable types and sensed types. When SATA
2644 * drives indicate we have a bridge, we don't know which end
2645 * of the link the bridge is which is a problem.
2646 */
2647 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2648 if (ata_id_is_sata(dev->id))
2649 ap->cbl = ATA_CBL_SATA;
614fe29b 2650
f31f0cc2
JG
2651 /* After the identify sequence we can now set up the devices. We do
2652 this in the normal order so that the user doesn't get confused */
2653
1eca4365 2654 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2655 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2656 rc = ata_dev_configure(dev);
9af5c9c9 2657 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2658 if (rc)
2659 goto fail;
1da177e4
LT
2660 }
2661
e82cbdb9 2662 /* configure transfer mode */
0260731f 2663 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2664 if (rc)
51713d35 2665 goto fail;
1da177e4 2666
1eca4365
TH
2667 ata_for_each_dev(dev, &ap->link, ENABLED)
2668 return 0;
1da177e4 2669
96072e69 2670 return -ENODEV;
14d2bac1
TH
2671
2672 fail:
4ae72a1e
TH
2673 tries[dev->devno]--;
2674
14d2bac1
TH
2675 switch (rc) {
2676 case -EINVAL:
4ae72a1e 2677 /* eeek, something went very wrong, give up */
14d2bac1
TH
2678 tries[dev->devno] = 0;
2679 break;
4ae72a1e
TH
2680
2681 case -ENODEV:
2682 /* give it just one more chance */
2683 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2684 case -EIO:
4ae72a1e
TH
2685 if (tries[dev->devno] == 1) {
2686 /* This is the last chance, better to slow
2687 * down than lose it.
2688 */
a07d499b 2689 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2690 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2691 }
14d2bac1
TH
2692 }
2693
4ae72a1e 2694 if (!tries[dev->devno])
3373efd8 2695 ata_dev_disable(dev);
ec573755 2696
14d2bac1 2697 goto retry;
1da177e4
LT
2698}
2699
3be680b7
TH
2700/**
2701 * sata_print_link_status - Print SATA link status
936fd732 2702 * @link: SATA link to printk link status about
3be680b7
TH
2703 *
2704 * This function prints link speed and status of a SATA link.
2705 *
2706 * LOCKING:
2707 * None.
2708 */
6bdb4fc9 2709static void sata_print_link_status(struct ata_link *link)
3be680b7 2710{
6d5f9732 2711 u32 sstatus, scontrol, tmp;
3be680b7 2712
936fd732 2713 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2714 return;
936fd732 2715 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2716
b1c72916 2717 if (ata_phys_link_online(link)) {
3be680b7 2718 tmp = (sstatus >> 4) & 0xf;
a9a79dfe
JP
2719 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2720 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2721 } else {
a9a79dfe
JP
2722 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2723 sstatus, scontrol);
3be680b7
TH
2724 }
2725}
2726
ebdfca6e
AC
2727/**
2728 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2729 * @adev: device
2730 *
2731 * Obtain the other device on the same cable, or if none is
2732 * present NULL is returned
2733 */
2e9edbf8 2734
3373efd8 2735struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2736{
9af5c9c9
TH
2737 struct ata_link *link = adev->link;
2738 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2739 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2740 return NULL;
2741 return pair;
2742}
2743
1c3fae4d 2744/**
3c567b7d 2745 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2746 * @link: Link to adjust SATA spd limit for
a07d499b 2747 * @spd_limit: Additional limit
1c3fae4d 2748 *
936fd732 2749 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2750 * function only adjusts the limit. The change must be applied
3c567b7d 2751 * using sata_set_spd().
1c3fae4d 2752 *
a07d499b
TH
2753 * If @spd_limit is non-zero, the speed is limited to equal to or
2754 * lower than @spd_limit if such speed is supported. If
2755 * @spd_limit is slower than any supported speed, only the lowest
2756 * supported speed is allowed.
2757 *
1c3fae4d
TH
2758 * LOCKING:
2759 * Inherited from caller.
2760 *
2761 * RETURNS:
2762 * 0 on success, negative errno on failure
2763 */
a07d499b 2764int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2765{
81952c54 2766 u32 sstatus, spd, mask;
a07d499b 2767 int rc, bit;
1c3fae4d 2768
936fd732 2769 if (!sata_scr_valid(link))
008a7896
TH
2770 return -EOPNOTSUPP;
2771
2772 /* If SCR can be read, use it to determine the current SPD.
936fd732 2773 * If not, use cached value in link->sata_spd.
008a7896 2774 */
936fd732 2775 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2776 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2777 spd = (sstatus >> 4) & 0xf;
2778 else
936fd732 2779 spd = link->sata_spd;
1c3fae4d 2780
936fd732 2781 mask = link->sata_spd_limit;
1c3fae4d
TH
2782 if (mask <= 1)
2783 return -EINVAL;
008a7896
TH
2784
2785 /* unconditionally mask off the highest bit */
a07d499b
TH
2786 bit = fls(mask) - 1;
2787 mask &= ~(1 << bit);
1c3fae4d 2788
008a7896
TH
2789 /* Mask off all speeds higher than or equal to the current
2790 * one. Force 1.5Gbps if current SPD is not available.
2791 */
2792 if (spd > 1)
2793 mask &= (1 << (spd - 1)) - 1;
2794 else
2795 mask &= 1;
2796
2797 /* were we already at the bottom? */
1c3fae4d
TH
2798 if (!mask)
2799 return -EINVAL;
2800
a07d499b
TH
2801 if (spd_limit) {
2802 if (mask & ((1 << spd_limit) - 1))
2803 mask &= (1 << spd_limit) - 1;
2804 else {
2805 bit = ffs(mask) - 1;
2806 mask = 1 << bit;
2807 }
2808 }
2809
936fd732 2810 link->sata_spd_limit = mask;
1c3fae4d 2811
a9a79dfe
JP
2812 ata_link_warn(link, "limiting SATA link speed to %s\n",
2813 sata_spd_string(fls(mask)));
1c3fae4d
TH
2814
2815 return 0;
2816}
2817
936fd732 2818static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2819{
5270222f
TH
2820 struct ata_link *host_link = &link->ap->link;
2821 u32 limit, target, spd;
1c3fae4d 2822
5270222f
TH
2823 limit = link->sata_spd_limit;
2824
2825 /* Don't configure downstream link faster than upstream link.
2826 * It doesn't speed up anything and some PMPs choke on such
2827 * configuration.
2828 */
2829 if (!ata_is_host_link(link) && host_link->sata_spd)
2830 limit &= (1 << host_link->sata_spd) - 1;
2831
2832 if (limit == UINT_MAX)
2833 target = 0;
1c3fae4d 2834 else
5270222f 2835 target = fls(limit);
1c3fae4d
TH
2836
2837 spd = (*scontrol >> 4) & 0xf;
5270222f 2838 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2839
5270222f 2840 return spd != target;
1c3fae4d
TH
2841}
2842
2843/**
3c567b7d 2844 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2845 * @link: Link in question
1c3fae4d
TH
2846 *
2847 * Test whether the spd limit in SControl matches
936fd732 2848 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2849 * whether hardreset is necessary to apply SATA spd
2850 * configuration.
2851 *
2852 * LOCKING:
2853 * Inherited from caller.
2854 *
2855 * RETURNS:
2856 * 1 if SATA spd configuration is needed, 0 otherwise.
2857 */
1dc55e87 2858static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2859{
2860 u32 scontrol;
2861
936fd732 2862 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2863 return 1;
1c3fae4d 2864
936fd732 2865 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
2866}
2867
2868/**
3c567b7d 2869 * sata_set_spd - set SATA spd according to spd limit
936fd732 2870 * @link: Link to set SATA spd for
1c3fae4d 2871 *
936fd732 2872 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
2873 *
2874 * LOCKING:
2875 * Inherited from caller.
2876 *
2877 * RETURNS:
2878 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 2879 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 2880 */
936fd732 2881int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
2882{
2883 u32 scontrol;
81952c54 2884 int rc;
1c3fae4d 2885
936fd732 2886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 2887 return rc;
1c3fae4d 2888
936fd732 2889 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
2890 return 0;
2891
936fd732 2892 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
2893 return rc;
2894
1c3fae4d
TH
2895 return 1;
2896}
2897
452503f9
AC
2898/*
2899 * This mode timing computation functionality is ported over from
2900 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2901 */
2902/*
b352e57d 2903 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 2904 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
2905 * for UDMA6, which is currently supported only by Maxtor drives.
2906 *
2907 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
2908 */
2909
2910static const struct ata_timing ata_timing[] = {
3ada9c12
DD
2911/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2912 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2913 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2914 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2915 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2916 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2917 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2918 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2919
2920 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2921 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2922 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2923
2924 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2925 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2926 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2927 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2928 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2929
2930/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2931 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2932 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2933 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2934 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2935 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2936 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2937 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
2938
2939 { 0xFF }
2940};
2941
2dcb407e
JG
2942#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2943#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
2944
2945static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2946{
3ada9c12
DD
2947 q->setup = EZ(t->setup * 1000, T);
2948 q->act8b = EZ(t->act8b * 1000, T);
2949 q->rec8b = EZ(t->rec8b * 1000, T);
2950 q->cyc8b = EZ(t->cyc8b * 1000, T);
2951 q->active = EZ(t->active * 1000, T);
2952 q->recover = EZ(t->recover * 1000, T);
2953 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2954 q->cycle = EZ(t->cycle * 1000, T);
2955 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
2956}
2957
2958void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2959 struct ata_timing *m, unsigned int what)
2960{
2961 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2962 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2963 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2964 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2965 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2966 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 2967 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
2968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2970}
2971
6357357c 2972const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 2973{
70cd071e
TH
2974 const struct ata_timing *t = ata_timing;
2975
2976 while (xfer_mode > t->mode)
2977 t++;
452503f9 2978
70cd071e
TH
2979 if (xfer_mode == t->mode)
2980 return t;
cd705d5a
BP
2981
2982 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2983 __func__, xfer_mode);
2984
70cd071e 2985 return NULL;
452503f9
AC
2986}
2987
2988int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2989 struct ata_timing *t, int T, int UT)
2990{
9e8808a9 2991 const u16 *id = adev->id;
452503f9
AC
2992 const struct ata_timing *s;
2993 struct ata_timing p;
2994
2995 /*
2e9edbf8 2996 * Find the mode.
75b1f2f8 2997 */
452503f9
AC
2998
2999 if (!(s = ata_timing_find_mode(speed)))
3000 return -EINVAL;
3001
75b1f2f8
AL
3002 memcpy(t, s, sizeof(*s));
3003
452503f9
AC
3004 /*
3005 * If the drive is an EIDE drive, it can tell us it needs extended
3006 * PIO/MW_DMA cycle timing.
3007 */
3008
9e8808a9 3009 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3010 memset(&p, 0, sizeof(p));
9e8808a9 3011
bff00256 3012 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
9e8808a9
BZ
3013 if (speed <= XFER_PIO_2)
3014 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3015 else if ((speed <= XFER_PIO_4) ||
3016 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3017 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3018 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3019 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3020
452503f9
AC
3021 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3022 }
3023
3024 /*
3025 * Convert the timing to bus clock counts.
3026 */
3027
75b1f2f8 3028 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3029
3030 /*
c893a3ae
RD
3031 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3032 * S.M.A.R.T * and some other commands. We have to ensure that the
3033 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3034 */
3035
fd3367af 3036 if (speed > XFER_PIO_6) {
452503f9
AC
3037 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3038 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3039 }
3040
3041 /*
c893a3ae 3042 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3043 */
3044
3045 if (t->act8b + t->rec8b < t->cyc8b) {
3046 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3047 t->rec8b = t->cyc8b - t->act8b;
3048 }
3049
3050 if (t->active + t->recover < t->cycle) {
3051 t->active += (t->cycle - (t->active + t->recover)) / 2;
3052 t->recover = t->cycle - t->active;
3053 }
a617c09f 3054
4f701d1e
AC
3055 /* In a few cases quantisation may produce enough errors to
3056 leave t->cycle too low for the sum of active and recovery
3057 if so we must correct this */
3058 if (t->active + t->recover > t->cycle)
3059 t->cycle = t->active + t->recover;
452503f9
AC
3060
3061 return 0;
3062}
3063
a0f79b92
TH
3064/**
3065 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3066 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3067 * @cycle: cycle duration in ns
3068 *
3069 * Return matching xfer mode for @cycle. The returned mode is of
3070 * the transfer type specified by @xfer_shift. If @cycle is too
3071 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3072 * than the fastest known mode, the fasted mode is returned.
3073 *
3074 * LOCKING:
3075 * None.
3076 *
3077 * RETURNS:
3078 * Matching xfer_mode, 0xff if no match found.
3079 */
3080u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3081{
3082 u8 base_mode = 0xff, last_mode = 0xff;
3083 const struct ata_xfer_ent *ent;
3084 const struct ata_timing *t;
3085
3086 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3087 if (ent->shift == xfer_shift)
3088 base_mode = ent->base;
3089
3090 for (t = ata_timing_find_mode(base_mode);
3091 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3092 unsigned short this_cycle;
3093
3094 switch (xfer_shift) {
3095 case ATA_SHIFT_PIO:
3096 case ATA_SHIFT_MWDMA:
3097 this_cycle = t->cycle;
3098 break;
3099 case ATA_SHIFT_UDMA:
3100 this_cycle = t->udma;
3101 break;
3102 default:
3103 return 0xff;
3104 }
3105
3106 if (cycle > this_cycle)
3107 break;
3108
3109 last_mode = t->mode;
3110 }
3111
3112 return last_mode;
3113}
3114
cf176e1a
TH
3115/**
3116 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3117 * @dev: Device to adjust xfer masks
458337db 3118 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3119 *
3120 * Adjust xfer masks of @dev downward. Note that this function
3121 * does not apply the change. Invoking ata_set_mode() afterwards
3122 * will apply the limit.
3123 *
3124 * LOCKING:
3125 * Inherited from caller.
3126 *
3127 * RETURNS:
3128 * 0 on success, negative errno on failure
3129 */
458337db 3130int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3131{
458337db 3132 char buf[32];
7dc951ae
TH
3133 unsigned long orig_mask, xfer_mask;
3134 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3135 int quiet, highbit;
cf176e1a 3136
458337db
TH
3137 quiet = !!(sel & ATA_DNXFER_QUIET);
3138 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3139
458337db
TH
3140 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3141 dev->mwdma_mask,
3142 dev->udma_mask);
3143 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3144
458337db
TH
3145 switch (sel) {
3146 case ATA_DNXFER_PIO:
3147 highbit = fls(pio_mask) - 1;
3148 pio_mask &= ~(1 << highbit);
3149 break;
3150
3151 case ATA_DNXFER_DMA:
3152 if (udma_mask) {
3153 highbit = fls(udma_mask) - 1;
3154 udma_mask &= ~(1 << highbit);
3155 if (!udma_mask)
3156 return -ENOENT;
3157 } else if (mwdma_mask) {
3158 highbit = fls(mwdma_mask) - 1;
3159 mwdma_mask &= ~(1 << highbit);
3160 if (!mwdma_mask)
3161 return -ENOENT;
3162 }
3163 break;
3164
3165 case ATA_DNXFER_40C:
3166 udma_mask &= ATA_UDMA_MASK_40C;
3167 break;
3168
3169 case ATA_DNXFER_FORCE_PIO0:
3170 pio_mask &= 1;
3171 case ATA_DNXFER_FORCE_PIO:
3172 mwdma_mask = 0;
3173 udma_mask = 0;
3174 break;
3175
458337db
TH
3176 default:
3177 BUG();
3178 }
3179
3180 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3181
3182 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3183 return -ENOENT;
3184
3185 if (!quiet) {
3186 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3187 snprintf(buf, sizeof(buf), "%s:%s",
3188 ata_mode_string(xfer_mask),
3189 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3190 else
3191 snprintf(buf, sizeof(buf), "%s",
3192 ata_mode_string(xfer_mask));
3193
a9a79dfe 3194 ata_dev_warn(dev, "limiting speed to %s\n", buf);
458337db 3195 }
cf176e1a
TH
3196
3197 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3198 &dev->udma_mask);
3199
cf176e1a 3200 return 0;
cf176e1a
TH
3201}
3202
3373efd8 3203static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3204{
d0cb43b3 3205 struct ata_port *ap = dev->link->ap;
9af5c9c9 3206 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3207 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3208 const char *dev_err_whine = "";
3209 int ign_dev_err = 0;
d0cb43b3 3210 unsigned int err_mask = 0;
83206a29 3211 int rc;
1da177e4 3212
e8384607 3213 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3214 if (dev->xfer_shift == ATA_SHIFT_PIO)
3215 dev->flags |= ATA_DFLAG_PIO;
3216
d0cb43b3
TH
3217 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3218 dev_err_whine = " (SET_XFERMODE skipped)";
3219 else {
3220 if (nosetxfer)
a9a79dfe
JP
3221 ata_dev_warn(dev,
3222 "NOSETXFER but PATA detected - can't "
3223 "skip SETXFER, might malfunction\n");
d0cb43b3
TH
3224 err_mask = ata_dev_set_xfermode(dev);
3225 }
2dcb407e 3226
4055dee7
TH
3227 if (err_mask & ~AC_ERR_DEV)
3228 goto fail;
3229
3230 /* revalidate */
3231 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3232 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3233 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3234 if (rc)
3235 return rc;
3236
b93fda12
AC
3237 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3238 /* Old CFA may refuse this command, which is just fine */
3239 if (ata_id_is_cfa(dev->id))
3240 ign_dev_err = 1;
3241 /* Catch several broken garbage emulations plus some pre
3242 ATA devices */
3243 if (ata_id_major_version(dev->id) == 0 &&
3244 dev->pio_mode <= XFER_PIO_2)
3245 ign_dev_err = 1;
3246 /* Some very old devices and some bad newer ones fail
3247 any kind of SET_XFERMODE request but support PIO0-2
3248 timings and no IORDY */
3249 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3250 ign_dev_err = 1;
3251 }
3acaf94b
AC
3252 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3253 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3254 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3255 dev->dma_mode == XFER_MW_DMA_0 &&
3256 (dev->id[63] >> 8) & 1)
4055dee7 3257 ign_dev_err = 1;
3acaf94b 3258
4055dee7
TH
3259 /* if the device is actually configured correctly, ignore dev err */
3260 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3261 ign_dev_err = 1;
1da177e4 3262
4055dee7
TH
3263 if (err_mask & AC_ERR_DEV) {
3264 if (!ign_dev_err)
3265 goto fail;
3266 else
3267 dev_err_whine = " (device error ignored)";
3268 }
48a8a14f 3269
23e71c3d
TH
3270 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3271 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3272
a9a79dfe
JP
3273 ata_dev_info(dev, "configured for %s%s\n",
3274 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3275 dev_err_whine);
4055dee7 3276
83206a29 3277 return 0;
4055dee7
TH
3278
3279 fail:
a9a79dfe 3280 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
4055dee7 3281 return -EIO;
1da177e4
LT
3282}
3283
1da177e4 3284/**
04351821 3285 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3286 * @link: link on which timings will be programmed
1967b7ff 3287 * @r_failed_dev: out parameter for failed device
1da177e4 3288 *
04351821
A
3289 * Standard implementation of the function used to tune and set
3290 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3291 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3292 * returned in @r_failed_dev.
780a87f7 3293 *
1da177e4 3294 * LOCKING:
0cba632b 3295 * PCI/etc. bus probe sem.
e82cbdb9
TH
3296 *
3297 * RETURNS:
3298 * 0 on success, negative errno otherwise
1da177e4 3299 */
04351821 3300
0260731f 3301int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3302{
0260731f 3303 struct ata_port *ap = link->ap;
e8e0619f 3304 struct ata_device *dev;
f58229f8 3305 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3306
a6d5a51c 3307 /* step 1: calculate xfer_mask */
1eca4365 3308 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3309 unsigned long pio_mask, dma_mask;
b3a70601 3310 unsigned int mode_mask;
a6d5a51c 3311
b3a70601
AC
3312 mode_mask = ATA_DMA_MASK_ATA;
3313 if (dev->class == ATA_DEV_ATAPI)
3314 mode_mask = ATA_DMA_MASK_ATAPI;
3315 else if (ata_id_is_cfa(dev->id))
3316 mode_mask = ATA_DMA_MASK_CFA;
3317
3373efd8 3318 ata_dev_xfermask(dev);
33267325 3319 ata_force_xfermask(dev);
1da177e4 3320
acf356b1 3321 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
b3a70601
AC
3322
3323 if (libata_dma_mask & mode_mask)
80a9c430
SS
3324 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3325 dev->udma_mask);
b3a70601
AC
3326 else
3327 dma_mask = 0;
3328
acf356b1
TH
3329 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3330 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3331
4f65977d 3332 found = 1;
b15b3eba 3333 if (ata_dma_enabled(dev))
5444a6f4 3334 used_dma = 1;
a6d5a51c 3335 }
4f65977d 3336 if (!found)
e82cbdb9 3337 goto out;
a6d5a51c
TH
3338
3339 /* step 2: always set host PIO timings */
1eca4365 3340 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3341 if (dev->pio_mode == 0xff) {
a9a79dfe 3342 ata_dev_warn(dev, "no PIO support\n");
e8e0619f 3343 rc = -EINVAL;
e82cbdb9 3344 goto out;
e8e0619f
TH
3345 }
3346
3347 dev->xfer_mode = dev->pio_mode;
3348 dev->xfer_shift = ATA_SHIFT_PIO;
3349 if (ap->ops->set_piomode)
3350 ap->ops->set_piomode(ap, dev);
3351 }
1da177e4 3352
a6d5a51c 3353 /* step 3: set host DMA timings */
1eca4365
TH
3354 ata_for_each_dev(dev, link, ENABLED) {
3355 if (!ata_dma_enabled(dev))
e8e0619f
TH
3356 continue;
3357
3358 dev->xfer_mode = dev->dma_mode;
3359 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3360 if (ap->ops->set_dmamode)
3361 ap->ops->set_dmamode(ap, dev);
3362 }
1da177e4
LT
3363
3364 /* step 4: update devices' xfer mode */
1eca4365 3365 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3366 rc = ata_dev_set_mode(dev);
5bbc53f4 3367 if (rc)
e82cbdb9 3368 goto out;
83206a29 3369 }
1da177e4 3370
e8e0619f
TH
3371 /* Record simplex status. If we selected DMA then the other
3372 * host channels are not permitted to do so.
5444a6f4 3373 */
cca3974e 3374 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3375 ap->host->simplex_claimed = ap;
5444a6f4 3376
e82cbdb9
TH
3377 out:
3378 if (rc)
3379 *r_failed_dev = dev;
3380 return rc;
1da177e4
LT
3381}
3382
aa2731ad
TH
3383/**
3384 * ata_wait_ready - wait for link to become ready
3385 * @link: link to be waited on
3386 * @deadline: deadline jiffies for the operation
3387 * @check_ready: callback to check link readiness
3388 *
3389 * Wait for @link to become ready. @check_ready should return
3390 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3391 * link doesn't seem to be occupied, other errno for other error
3392 * conditions.
3393 *
3394 * Transient -ENODEV conditions are allowed for
3395 * ATA_TMOUT_FF_WAIT.
3396 *
3397 * LOCKING:
3398 * EH context.
3399 *
3400 * RETURNS:
3401 * 0 if @linke is ready before @deadline; otherwise, -errno.
3402 */
3403int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3404 int (*check_ready)(struct ata_link *link))
3405{
3406 unsigned long start = jiffies;
b48d58f5 3407 unsigned long nodev_deadline;
aa2731ad
TH
3408 int warned = 0;
3409
b48d58f5
TH
3410 /* choose which 0xff timeout to use, read comment in libata.h */
3411 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3412 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3413 else
3414 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3415
b1c72916
TH
3416 /* Slave readiness can't be tested separately from master. On
3417 * M/S emulation configuration, this function should be called
3418 * only on the master and it will handle both master and slave.
3419 */
3420 WARN_ON(link == link->ap->slave_link);
3421
aa2731ad
TH
3422 if (time_after(nodev_deadline, deadline))
3423 nodev_deadline = deadline;
3424
3425 while (1) {
3426 unsigned long now = jiffies;
3427 int ready, tmp;
3428
3429 ready = tmp = check_ready(link);
3430 if (ready > 0)
3431 return 0;
3432
b48d58f5
TH
3433 /*
3434 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3435 * is online. Also, some SATA devices take a long
b48d58f5
TH
3436 * time to clear 0xff after reset. Wait for
3437 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3438 * offline.
aa2731ad
TH
3439 *
3440 * Note that some PATA controllers (pata_ali) explode
3441 * if status register is read more than once when
3442 * there's no device attached.
3443 */
3444 if (ready == -ENODEV) {
3445 if (ata_link_online(link))
3446 ready = 0;
3447 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3448 !ata_link_offline(link) &&
3449 time_before(now, nodev_deadline))
3450 ready = 0;
3451 }
3452
3453 if (ready)
3454 return ready;
3455 if (time_after(now, deadline))
3456 return -EBUSY;
3457
3458 if (!warned && time_after(now, start + 5 * HZ) &&
3459 (deadline - now > 3 * HZ)) {
a9a79dfe 3460 ata_link_warn(link,
aa2731ad
TH
3461 "link is slow to respond, please be patient "
3462 "(ready=%d)\n", tmp);
3463 warned = 1;
3464 }
3465
97750ceb 3466 ata_msleep(link->ap, 50);
aa2731ad
TH
3467 }
3468}
3469
3470/**
3471 * ata_wait_after_reset - wait for link to become ready after reset
3472 * @link: link to be waited on
3473 * @deadline: deadline jiffies for the operation
3474 * @check_ready: callback to check link readiness
3475 *
3476 * Wait for @link to become ready after reset.
3477 *
3478 * LOCKING:
3479 * EH context.
3480 *
3481 * RETURNS:
3482 * 0 if @linke is ready before @deadline; otherwise, -errno.
3483 */
2b4221bb 3484int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3485 int (*check_ready)(struct ata_link *link))
3486{
97750ceb 3487 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3488
3489 return ata_wait_ready(link, deadline, check_ready);
3490}
3491
d7bb4cc7 3492/**
936fd732
TH
3493 * sata_link_debounce - debounce SATA phy status
3494 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3495 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3496 * @deadline: deadline jiffies for the operation
d7bb4cc7 3497 *
1152b261 3498 * Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3499 * holding the same value where DET is not 1 for @duration polled
3500 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3501 * beginning of the stable state. Because DET gets stuck at 1 on
3502 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3503 * until timeout then returns 0 if DET is stable at 1.
3504 *
d4b2bab4
TH
3505 * @timeout is further limited by @deadline. The sooner of the
3506 * two is used.
3507 *
d7bb4cc7
TH
3508 * LOCKING:
3509 * Kernel thread context (may sleep)
3510 *
3511 * RETURNS:
3512 * 0 on success, -errno on failure.
3513 */
936fd732
TH
3514int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3515 unsigned long deadline)
7a7921e8 3516{
341c2c95
TH
3517 unsigned long interval = params[0];
3518 unsigned long duration = params[1];
d4b2bab4 3519 unsigned long last_jiffies, t;
d7bb4cc7
TH
3520 u32 last, cur;
3521 int rc;
3522
341c2c95 3523 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3524 if (time_before(t, deadline))
3525 deadline = t;
3526
936fd732 3527 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3528 return rc;
3529 cur &= 0xf;
3530
3531 last = cur;
3532 last_jiffies = jiffies;
3533
3534 while (1) {
97750ceb 3535 ata_msleep(link->ap, interval);
936fd732 3536 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3537 return rc;
3538 cur &= 0xf;
3539
3540 /* DET stable? */
3541 if (cur == last) {
d4b2bab4 3542 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3543 continue;
341c2c95
TH
3544 if (time_after(jiffies,
3545 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3546 return 0;
3547 continue;
3548 }
3549
3550 /* unstable, start over */
3551 last = cur;
3552 last_jiffies = jiffies;
3553
f1545154
TH
3554 /* Check deadline. If debouncing failed, return
3555 * -EPIPE to tell upper layer to lower link speed.
3556 */
d4b2bab4 3557 if (time_after(jiffies, deadline))
f1545154 3558 return -EPIPE;
d7bb4cc7
TH
3559 }
3560}
3561
3562/**
936fd732
TH
3563 * sata_link_resume - resume SATA link
3564 * @link: ATA link to resume SATA
d7bb4cc7 3565 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3566 * @deadline: deadline jiffies for the operation
d7bb4cc7 3567 *
936fd732 3568 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3569 *
3570 * LOCKING:
3571 * Kernel thread context (may sleep)
3572 *
3573 * RETURNS:
3574 * 0 on success, -errno on failure.
3575 */
936fd732
TH
3576int sata_link_resume(struct ata_link *link, const unsigned long *params,
3577 unsigned long deadline)
d7bb4cc7 3578{
5040ab67 3579 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3580 u32 scontrol, serror;
81952c54
TH
3581 int rc;
3582
936fd732 3583 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3584 return rc;
7a7921e8 3585
5040ab67
TH
3586 /*
3587 * Writes to SControl sometimes get ignored under certain
3588 * controllers (ata_piix SIDPR). Make sure DET actually is
3589 * cleared.
3590 */
3591 do {
3592 scontrol = (scontrol & 0x0f0) | 0x300;
3593 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3594 return rc;
3595 /*
3596 * Some PHYs react badly if SStatus is pounded
3597 * immediately after resuming. Delay 200ms before
3598 * debouncing.
3599 */
97750ceb 3600 ata_msleep(link->ap, 200);
81952c54 3601
5040ab67
TH
3602 /* is SControl restored correctly? */
3603 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3604 return rc;
3605 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3606
5040ab67 3607 if ((scontrol & 0xf0f) != 0x300) {
38941c95 3608 ata_link_warn(link, "failed to resume link (SControl %X)\n",
a9a79dfe 3609 scontrol);
5040ab67
TH
3610 return 0;
3611 }
3612
3613 if (tries < ATA_LINK_RESUME_TRIES)
a9a79dfe
JP
3614 ata_link_warn(link, "link resume succeeded after %d retries\n",
3615 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3616
ac371987
TH
3617 if ((rc = sata_link_debounce(link, params, deadline)))
3618 return rc;
3619
f046519f 3620 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3621 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3622 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3623
f046519f 3624 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3625}
3626
1152b261
TH
3627/**
3628 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3629 * @link: ATA link to manipulate SControl for
3630 * @policy: LPM policy to configure
3631 * @spm_wakeup: initiate LPM transition to active state
3632 *
3633 * Manipulate the IPM field of the SControl register of @link
3634 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3635 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3636 * the link. This function also clears PHYRDY_CHG before
3637 * returning.
3638 *
3639 * LOCKING:
3640 * EH context.
3641 *
3642 * RETURNS:
8485187b 3643 * 0 on success, -errno otherwise.
1152b261
TH
3644 */
3645int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3646 bool spm_wakeup)
3647{
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 bool woken_up = false;
3650 u32 scontrol;
3651 int rc;
3652
3653 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3654 if (rc)
3655 return rc;
3656
3657 switch (policy) {
3658 case ATA_LPM_MAX_POWER:
3659 /* disable all LPM transitions */
65fe1f0f 3660 scontrol |= (0x7 << 8);
1152b261
TH
3661 /* initiate transition to active state */
3662 if (spm_wakeup) {
3663 scontrol |= (0x4 << 12);
3664 woken_up = true;
3665 }
3666 break;
3667 case ATA_LPM_MED_POWER:
3668 /* allow LPM to PARTIAL */
3669 scontrol &= ~(0x1 << 8);
65fe1f0f 3670 scontrol |= (0x6 << 8);
1152b261
TH
3671 break;
3672 case ATA_LPM_MIN_POWER:
8a745f1f
KCA
3673 if (ata_link_nr_enabled(link) > 0)
3674 /* no restrictions on LPM transitions */
65fe1f0f 3675 scontrol &= ~(0x7 << 8);
8a745f1f
KCA
3676 else {
3677 /* empty port, power off */
3678 scontrol &= ~0xf;
3679 scontrol |= (0x1 << 2);
3680 }
1152b261
TH
3681 break;
3682 default:
3683 WARN_ON(1);
3684 }
3685
3686 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3687 if (rc)
3688 return rc;
3689
3690 /* give the link time to transit out of LPM state */
3691 if (woken_up)
3692 msleep(10);
3693
3694 /* clear PHYRDY_CHG from SError */
3695 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3696 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3697}
3698
f5914a46 3699/**
0aa1113d 3700 * ata_std_prereset - prepare for reset
cc0680a5 3701 * @link: ATA link to be reset
d4b2bab4 3702 * @deadline: deadline jiffies for the operation
f5914a46 3703 *
cc0680a5 3704 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3705 * prereset makes libata abort whole reset sequence and give up
3706 * that port, so prereset should be best-effort. It does its
3707 * best to prepare for reset sequence but if things go wrong, it
3708 * should just whine, not fail.
f5914a46
TH
3709 *
3710 * LOCKING:
3711 * Kernel thread context (may sleep)
3712 *
3713 * RETURNS:
3714 * 0 on success, -errno otherwise.
3715 */
0aa1113d 3716int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3717{
cc0680a5 3718 struct ata_port *ap = link->ap;
936fd732 3719 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3720 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3721 int rc;
3722
f5914a46
TH
3723 /* if we're about to do hardreset, nothing more to do */
3724 if (ehc->i.action & ATA_EH_HARDRESET)
3725 return 0;
3726
936fd732 3727 /* if SATA, resume link */
a16abc0b 3728 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3729 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3730 /* whine about phy resume failure but proceed */
3731 if (rc && rc != -EOPNOTSUPP)
a9a79dfe
JP
3732 ata_link_warn(link,
3733 "failed to resume link for reset (errno=%d)\n",
3734 rc);
f5914a46
TH
3735 }
3736
45db2f6c 3737 /* no point in trying softreset on offline link */
b1c72916 3738 if (ata_phys_link_offline(link))
45db2f6c
TH
3739 ehc->i.action &= ~ATA_EH_SOFTRESET;
3740
f5914a46
TH
3741 return 0;
3742}
3743
c2bd5804 3744/**
624d5c51
TH
3745 * sata_link_hardreset - reset link via SATA phy reset
3746 * @link: link to reset
3747 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3748 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3749 * @online: optional out parameter indicating link onlineness
3750 * @check_ready: optional callback to check link readiness
c2bd5804 3751 *
624d5c51 3752 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3753 * After hardreset, link readiness is waited upon using
3754 * ata_wait_ready() if @check_ready is specified. LLDs are
3755 * allowed to not specify @check_ready and wait itself after this
3756 * function returns. Device classification is LLD's
3757 * responsibility.
3758 *
3759 * *@online is set to one iff reset succeeded and @link is online
3760 * after reset.
c2bd5804
TH
3761 *
3762 * LOCKING:
3763 * Kernel thread context (may sleep)
3764 *
3765 * RETURNS:
3766 * 0 on success, -errno otherwise.
3767 */
624d5c51 3768int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3769 unsigned long deadline,
3770 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3771{
624d5c51 3772 u32 scontrol;
81952c54 3773 int rc;
852ee16a 3774
c2bd5804
TH
3775 DPRINTK("ENTER\n");
3776
9dadd45b
TH
3777 if (online)
3778 *online = false;
3779
936fd732 3780 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3781 /* SATA spec says nothing about how to reconfigure
3782 * spd. To be on the safe side, turn off phy during
3783 * reconfiguration. This works for at least ICH7 AHCI
3784 * and Sil3124.
3785 */
936fd732 3786 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3787 goto out;
81952c54 3788
a34b6fc0 3789 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3790
936fd732 3791 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3792 goto out;
1c3fae4d 3793
936fd732 3794 sata_set_spd(link);
1c3fae4d
TH
3795 }
3796
3797 /* issue phy wake/reset */
936fd732 3798 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3799 goto out;
81952c54 3800
852ee16a 3801 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3802
936fd732 3803 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3804 goto out;
c2bd5804 3805
1c3fae4d 3806 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3807 * 10.4.2 says at least 1 ms.
3808 */
97750ceb 3809 ata_msleep(link->ap, 1);
c2bd5804 3810
936fd732
TH
3811 /* bring link back */
3812 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3813 if (rc)
3814 goto out;
3815 /* if link is offline nothing more to do */
b1c72916 3816 if (ata_phys_link_offline(link))
9dadd45b
TH
3817 goto out;
3818
3819 /* Link is online. From this point, -ENODEV too is an error. */
3820 if (online)
3821 *online = true;
3822
071f44b1 3823 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3824 /* If PMP is supported, we have to do follow-up SRST.
3825 * Some PMPs don't send D2H Reg FIS after hardreset if
3826 * the first port is empty. Wait only for
3827 * ATA_TMOUT_PMP_SRST_WAIT.
3828 */
3829 if (check_ready) {
3830 unsigned long pmp_deadline;
3831
341c2c95
TH
3832 pmp_deadline = ata_deadline(jiffies,
3833 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3834 if (time_after(pmp_deadline, deadline))
3835 pmp_deadline = deadline;
3836 ata_wait_ready(link, pmp_deadline, check_ready);
3837 }
3838 rc = -EAGAIN;
3839 goto out;
3840 }
3841
3842 rc = 0;
3843 if (check_ready)
3844 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3845 out:
0cbf0711
TH
3846 if (rc && rc != -EAGAIN) {
3847 /* online is set iff link is online && reset succeeded */
3848 if (online)
3849 *online = false;
a9a79dfe 3850 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3851 }
b6103f6d
TH
3852 DPRINTK("EXIT, rc=%d\n", rc);
3853 return rc;
3854}
3855
57c9efdf
TH
3856/**
3857 * sata_std_hardreset - COMRESET w/o waiting or classification
3858 * @link: link to reset
3859 * @class: resulting class of attached device
3860 * @deadline: deadline jiffies for the operation
3861 *
3862 * Standard SATA COMRESET w/o waiting or classification.
3863 *
3864 * LOCKING:
3865 * Kernel thread context (may sleep)
3866 *
3867 * RETURNS:
3868 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3869 */
3870int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3871 unsigned long deadline)
3872{
3873 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3874 bool online;
3875 int rc;
3876
3877 /* do hardreset */
3878 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3879 return online ? -EAGAIN : rc;
3880}
3881
c2bd5804 3882/**
203c75b8 3883 * ata_std_postreset - standard postreset callback
cc0680a5 3884 * @link: the target ata_link
c2bd5804
TH
3885 * @classes: classes of attached devices
3886 *
3887 * This function is invoked after a successful reset. Note that
3888 * the device might have been reset more than once using
3889 * different reset methods before postreset is invoked.
c2bd5804 3890 *
c2bd5804
TH
3891 * LOCKING:
3892 * Kernel thread context (may sleep)
3893 */
203c75b8 3894void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3895{
f046519f
TH
3896 u32 serror;
3897
c2bd5804
TH
3898 DPRINTK("ENTER\n");
3899
f046519f
TH
3900 /* reset complete, clear SError */
3901 if (!sata_scr_read(link, SCR_ERROR, &serror))
3902 sata_scr_write(link, SCR_ERROR, serror);
3903
c2bd5804 3904 /* print link status */
936fd732 3905 sata_print_link_status(link);
c2bd5804 3906
c2bd5804
TH
3907 DPRINTK("EXIT\n");
3908}
3909
623a3128
TH
3910/**
3911 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3912 * @dev: device to compare against
3913 * @new_class: class of the new device
3914 * @new_id: IDENTIFY page of the new device
3915 *
3916 * Compare @new_class and @new_id against @dev and determine
3917 * whether @dev is the device indicated by @new_class and
3918 * @new_id.
3919 *
3920 * LOCKING:
3921 * None.
3922 *
3923 * RETURNS:
3924 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3925 */
3373efd8
TH
3926static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3927 const u16 *new_id)
623a3128
TH
3928{
3929 const u16 *old_id = dev->id;
a0cf733b
TH
3930 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3931 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3932
3933 if (dev->class != new_class) {
a9a79dfe
JP
3934 ata_dev_info(dev, "class mismatch %d != %d\n",
3935 dev->class, new_class);
623a3128
TH
3936 return 0;
3937 }
3938
a0cf733b
TH
3939 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3940 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3941 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3942 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
3943
3944 if (strcmp(model[0], model[1])) {
a9a79dfe
JP
3945 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3946 model[0], model[1]);
623a3128
TH
3947 return 0;
3948 }
3949
3950 if (strcmp(serial[0], serial[1])) {
a9a79dfe
JP
3951 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3952 serial[0], serial[1]);
623a3128
TH
3953 return 0;
3954 }
3955
623a3128
TH
3956 return 1;
3957}
3958
3959/**
fe30911b 3960 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 3961 * @dev: target ATA device
bff04647 3962 * @readid_flags: read ID flags
623a3128
TH
3963 *
3964 * Re-read IDENTIFY page and make sure @dev is still attached to
3965 * the port.
3966 *
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, negative errno otherwise
3972 */
fe30911b 3973int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 3974{
5eb45c02 3975 unsigned int class = dev->class;
9af5c9c9 3976 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
3977 int rc;
3978
fe635c7e 3979 /* read ID data */
bff04647 3980 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 3981 if (rc)
fe30911b 3982 return rc;
623a3128
TH
3983
3984 /* is the device still there? */
fe30911b
TH
3985 if (!ata_dev_same_device(dev, class, id))
3986 return -ENODEV;
623a3128 3987
fe635c7e 3988 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
3989 return 0;
3990}
3991
3992/**
3993 * ata_dev_revalidate - Revalidate ATA device
3994 * @dev: device to revalidate
422c9daa 3995 * @new_class: new class code
fe30911b
TH
3996 * @readid_flags: read ID flags
3997 *
3998 * Re-read IDENTIFY page, make sure @dev is still attached to the
3999 * port and reconfigure it according to the new IDENTIFY page.
4000 *
4001 * LOCKING:
4002 * Kernel thread context (may sleep)
4003 *
4004 * RETURNS:
4005 * 0 on success, negative errno otherwise
4006 */
422c9daa
TH
4007int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4008 unsigned int readid_flags)
fe30911b 4009{
6ddcd3b0 4010 u64 n_sectors = dev->n_sectors;
5920dadf 4011 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4012 int rc;
4013
4014 if (!ata_dev_enabled(dev))
4015 return -ENODEV;
4016
422c9daa
TH
4017 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4018 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4019 new_class != ATA_DEV_ATA &&
4020 new_class != ATA_DEV_ATAPI &&
9162c657 4021 new_class != ATA_DEV_ZAC &&
f0d0613d 4022 new_class != ATA_DEV_SEMB) {
a9a79dfe
JP
4023 ata_dev_info(dev, "class mismatch %u != %u\n",
4024 dev->class, new_class);
422c9daa
TH
4025 rc = -ENODEV;
4026 goto fail;
4027 }
4028
fe30911b
TH
4029 /* re-read ID */
4030 rc = ata_dev_reread_id(dev, readid_flags);
4031 if (rc)
4032 goto fail;
623a3128
TH
4033
4034 /* configure device according to the new ID */
efdaedc4 4035 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4036 if (rc)
4037 goto fail;
4038
4039 /* verify n_sectors hasn't changed */
445d211b
TH
4040 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4041 dev->n_sectors == n_sectors)
4042 return 0;
4043
4044 /* n_sectors has changed */
a9a79dfe
JP
4045 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4046 (unsigned long long)n_sectors,
4047 (unsigned long long)dev->n_sectors);
445d211b
TH
4048
4049 /*
4050 * Something could have caused HPA to be unlocked
4051 * involuntarily. If n_native_sectors hasn't changed and the
4052 * new size matches it, keep the device.
4053 */
4054 if (dev->n_native_sectors == n_native_sectors &&
4055 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
a9a79dfe
JP
4056 ata_dev_warn(dev,
4057 "new n_sectors matches native, probably "
4058 "late HPA unlock, n_sectors updated\n");
68939ce5 4059 /* use the larger n_sectors */
445d211b 4060 return 0;
6ddcd3b0
TH
4061 }
4062
445d211b
TH
4063 /*
4064 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4065 * unlocking HPA in those cases.
4066 *
4067 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4068 */
4069 if (dev->n_native_sectors == n_native_sectors &&
4070 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4071 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
a9a79dfe
JP
4072 ata_dev_warn(dev,
4073 "old n_sectors matches native, probably "
4074 "late HPA lock, will try to unlock HPA\n");
445d211b
TH
4075 /* try unlocking HPA */
4076 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4077 rc = -EIO;
4078 } else
4079 rc = -ENODEV;
623a3128 4080
445d211b
TH
4081 /* restore original n_[native_]sectors and fail */
4082 dev->n_native_sectors = n_native_sectors;
4083 dev->n_sectors = n_sectors;
623a3128 4084 fail:
a9a79dfe 4085 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4086 return rc;
4087}
4088
6919a0a6
AC
4089struct ata_blacklist_entry {
4090 const char *model_num;
4091 const char *model_rev;
4092 unsigned long horkage;
4093};
4094
4095static const struct ata_blacklist_entry ata_device_blacklist [] = {
4096 /* Devices with DMA related problems under Linux */
4097 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4098 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4099 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4100 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4101 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4103 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4104 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4105 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4106 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4107 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4108 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4109 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4110 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4111 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4112 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4113 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4114 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4115 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4116 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4117 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4118 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4119 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4120 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4121 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4122 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4123 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4124 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
d17d794c 4125 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
3af9a77a 4126 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4127 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4128
18d6e9d5 4129 /* Weird ATAPI devices */
40a1d531 4130 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4131 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
a32450e1 4132 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
0523f037 4133 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
18d6e9d5 4134
af34d637
DM
4135 /*
4136 * Causes silent data corruption with higher max sects.
4137 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4138 */
4139 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4140
6919a0a6
AC
4141 /* Devices we expect to fail diagnostics */
4142
4143 /* Devices where NCQ should be avoided */
4144 /* NCQ is slow */
2dcb407e 4145 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4146 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4147 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4148 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4149 /* NCQ is broken */
539cc7c7 4150 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4151 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4152 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4153 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4154 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4155
ac70a964 4156 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4157 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4158 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4159
4d1f9082 4160 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162
4d1f9082 4163 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4164 ATA_HORKAGE_FIRMWARE_WARN },
4165
4d1f9082 4166 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168
08c85d2a 4169 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
87809942 4170 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
b28a613e 4171 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
08c85d2a 4172 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
87809942 4173
36e337d0
RH
4174 /* Blacklist entries taken from Silicon Image 3124/3132
4175 Windows driver .inf file - also several Linux problem reports */
4176 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4177 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4178 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4179
68b0ddb2
TH
4180 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4181 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4182
16c55b03
TH
4183 /* devices which puke on READ_NATIVE_MAX */
4184 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4185 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4186 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4187 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4188
7831387b
TH
4189 /* this one allows HPA unlocking but fails IOs on the area */
4190 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4191
93328e11
AC
4192 /* Devices which report 1 sector over size HPA */
4193 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4194 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4195 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4196
6bbfd53d
AC
4197 /* Devices which get the IVB wrong */
4198 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4199 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4200 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4201
9ce8e307
JA
4202 /* Devices that do not need bridging limits applied */
4203 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
04d0f1b8 4204 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
9ce8e307 4205
9062712f
TH
4206 /* Devices which aren't very happy with higher link speeds */
4207 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
c531077f 4208 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
9062712f 4209
d0cb43b3
TH
4210 /*
4211 * Devices which choke on SETXFER. Applies only if both the
4212 * device and controller are SATA.
4213 */
cd691876 4214 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
3a25179e
VL
4215 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4216 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
cd691876
TH
4217 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4218 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
d0cb43b3 4219
f78dea06 4220 /* devices that don't properly handle queued TRIM commands */
243918be 4221 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4222 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4223 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4224 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9051bd39 4225 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
ff7f53fb
MP
4226 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4227 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4228 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4229 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
e61f7d1c 4230 ATA_HORKAGE_ZERO_AFTER_TRIM, },
9a9324d3 4231 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
6fc4d97a 4232 ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c 4233
cda57b1b
AF
4234 /* devices that don't properly handle TRIM commands */
4235 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4236
e61f7d1c
MP
4237 /*
4238 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4239 * (Return Zero After Trim) flags in the ATA Command Set are
4240 * unreliable in the sense that they only define what happens if
4241 * the device successfully executed the DSM TRIM command. TRIM
4242 * is only advisory, however, and the device is free to silently
4243 * ignore all or parts of the request.
4244 *
4245 * Whitelist drives that are known to reliably return zeroes
4246 * after TRIM.
4247 */
4248
4249 /*
4250 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4251 * that model before whitelisting all other intel SSDs.
4252 */
4253 { "INTEL*SSDSC2MH*", NULL, 0, },
4254
ff7f53fb
MP
4255 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4256 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
e61f7d1c
MP
4257 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4258 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4259 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4260 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
f78dea06 4262
ecd75ad5
TH
4263 /*
4264 * Some WD SATA-I drives spin up and down erratically when the link
4265 * is put into the slumber mode. We don't have full list of the
4266 * affected devices. Disable LPM if the device matches one of the
4267 * known prefixes and is SATA-1. As a side effect LPM partial is
4268 * lost too.
4269 *
4270 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4271 */
4272 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4273 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4274 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4275 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4276 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4277 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279
6919a0a6
AC
4280 /* End Marker */
4281 { }
1da177e4 4282};
2e9edbf8 4283
75683fe7 4284static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4285{
8bfa79fc
TH
4286 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4287 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4288 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4289
8bfa79fc
TH
4290 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4291 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4292
6919a0a6 4293 while (ad->model_num) {
1c402799 4294 if (glob_match(ad->model_num, model_num)) {
6919a0a6
AC
4295 if (ad->model_rev == NULL)
4296 return ad->horkage;
1c402799 4297 if (glob_match(ad->model_rev, model_rev))
6919a0a6 4298 return ad->horkage;
f4b15fef 4299 }
6919a0a6 4300 ad++;
f4b15fef 4301 }
1da177e4
LT
4302 return 0;
4303}
4304
6919a0a6
AC
4305static int ata_dma_blacklisted(const struct ata_device *dev)
4306{
4307 /* We don't support polling DMA.
4308 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4309 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4310 */
9af5c9c9 4311 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4312 (dev->flags & ATA_DFLAG_CDB_INTR))
4313 return 1;
75683fe7 4314 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4315}
4316
6bbfd53d
AC
4317/**
4318 * ata_is_40wire - check drive side detection
4319 * @dev: device
4320 *
4321 * Perform drive side detection decoding, allowing for device vendors
4322 * who can't follow the documentation.
4323 */
4324
4325static int ata_is_40wire(struct ata_device *dev)
4326{
4327 if (dev->horkage & ATA_HORKAGE_IVB)
4328 return ata_drive_40wire_relaxed(dev->id);
4329 return ata_drive_40wire(dev->id);
4330}
4331
15a5551c
AC
4332/**
4333 * cable_is_40wire - 40/80/SATA decider
4334 * @ap: port to consider
4335 *
4336 * This function encapsulates the policy for speed management
4337 * in one place. At the moment we don't cache the result but
4338 * there is a good case for setting ap->cbl to the result when
4339 * we are called with unknown cables (and figuring out if it
4340 * impacts hotplug at all).
4341 *
4342 * Return 1 if the cable appears to be 40 wire.
4343 */
4344
4345static int cable_is_40wire(struct ata_port *ap)
4346{
4347 struct ata_link *link;
4348 struct ata_device *dev;
4349
4a9c7b33 4350 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4351 if (ap->cbl == ATA_CBL_PATA40)
4352 return 1;
4a9c7b33
TH
4353
4354 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4355 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4356 return 0;
4a9c7b33
TH
4357
4358 /* If the system is known to be 40 wire short cable (eg
4359 * laptop), then we allow 80 wire modes even if the drive
4360 * isn't sure.
4361 */
f792068e
AC
4362 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4363 return 0;
4a9c7b33
TH
4364
4365 /* If the controller doesn't know, we scan.
4366 *
4367 * Note: We look for all 40 wire detects at this point. Any
4368 * 80 wire detect is taken to be 80 wire cable because
4369 * - in many setups only the one drive (slave if present) will
4370 * give a valid detect
4371 * - if you have a non detect capable drive you don't want it
4372 * to colour the choice
4373 */
1eca4365
TH
4374 ata_for_each_link(link, ap, EDGE) {
4375 ata_for_each_dev(dev, link, ENABLED) {
4376 if (!ata_is_40wire(dev))
15a5551c
AC
4377 return 0;
4378 }
4379 }
4380 return 1;
4381}
4382
a6d5a51c
TH
4383/**
4384 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4385 * @dev: Device to compute xfermask for
4386 *
acf356b1
TH
4387 * Compute supported xfermask of @dev and store it in
4388 * dev->*_mask. This function is responsible for applying all
4389 * known limits including host controller limits, device
4390 * blacklist, etc...
a6d5a51c
TH
4391 *
4392 * LOCKING:
4393 * None.
a6d5a51c 4394 */
3373efd8 4395static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4396{
9af5c9c9
TH
4397 struct ata_link *link = dev->link;
4398 struct ata_port *ap = link->ap;
cca3974e 4399 struct ata_host *host = ap->host;
a6d5a51c 4400 unsigned long xfer_mask;
1da177e4 4401
37deecb5 4402 /* controller modes available */
565083e1
TH
4403 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4404 ap->mwdma_mask, ap->udma_mask);
4405
8343f889 4406 /* drive modes available */
37deecb5
TH
4407 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4408 dev->mwdma_mask, dev->udma_mask);
4409 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4410
b352e57d
AC
4411 /*
4412 * CFA Advanced TrueIDE timings are not allowed on a shared
4413 * cable
4414 */
4415 if (ata_dev_pair(dev)) {
4416 /* No PIO5 or PIO6 */
4417 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4418 /* No MWDMA3 or MWDMA 4 */
4419 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4420 }
4421
37deecb5
TH
4422 if (ata_dma_blacklisted(dev)) {
4423 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4424 ata_dev_warn(dev,
4425 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4426 }
a6d5a51c 4427
14d66ab7 4428 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4429 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5 4430 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
a9a79dfe
JP
4431 ata_dev_warn(dev,
4432 "simplex DMA is claimed by other device, disabling DMA\n");
5444a6f4 4433 }
565083e1 4434
e424675f
JG
4435 if (ap->flags & ATA_FLAG_NO_IORDY)
4436 xfer_mask &= ata_pio_mask_no_iordy(dev);
4437
5444a6f4 4438 if (ap->ops->mode_filter)
a76b62ca 4439 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4440
8343f889
RH
4441 /* Apply cable rule here. Don't apply it early because when
4442 * we handle hot plug the cable type can itself change.
4443 * Check this last so that we know if the transfer rate was
4444 * solely limited by the cable.
4445 * Unknown or 80 wire cables reported host side are checked
4446 * drive side as well. Cases where we know a 40wire cable
4447 * is used safely for 80 are not checked here.
4448 */
4449 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4450 /* UDMA/44 or higher would be available */
15a5551c 4451 if (cable_is_40wire(ap)) {
a9a79dfe
JP
4452 ata_dev_warn(dev,
4453 "limited to UDMA/33 due to 40-wire cable\n");
8343f889
RH
4454 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4455 }
4456
565083e1
TH
4457 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4458 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4459}
4460
1da177e4
LT
4461/**
4462 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4463 * @dev: Device to which command will be sent
4464 *
780a87f7
JG
4465 * Issue SET FEATURES - XFER MODE command to device @dev
4466 * on port @ap.
4467 *
1da177e4 4468 * LOCKING:
0cba632b 4469 * PCI/etc. bus probe sem.
83206a29
TH
4470 *
4471 * RETURNS:
4472 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4473 */
4474
3373efd8 4475static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4476{
a0123703 4477 struct ata_taskfile tf;
83206a29 4478 unsigned int err_mask;
1da177e4
LT
4479
4480 /* set up set-features taskfile */
4481 DPRINTK("set features - xfer mode\n");
4482
464cf177
TH
4483 /* Some controllers and ATAPI devices show flaky interrupt
4484 * behavior after setting xfer mode. Use polling instead.
4485 */
3373efd8 4486 ata_tf_init(dev, &tf);
a0123703
TH
4487 tf.command = ATA_CMD_SET_FEATURES;
4488 tf.feature = SETFEATURES_XFER;
464cf177 4489 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4490 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4491 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4492 if (ata_pio_need_iordy(dev))
4493 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4494 /* If the device has IORDY and the controller does not - turn it off */
4495 else if (ata_id_has_iordy(dev->id))
11b7becc 4496 tf.nsect = 0x01;
b9f8ab2d
AC
4497 else /* In the ancient relic department - skip all of this */
4498 return 0;
1da177e4 4499
d531be2c
MP
4500 /* On some disks, this command causes spin-up, so we need longer timeout */
4501 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
9f45cbd3
KCA
4502
4503 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4504 return err_mask;
4505}
1152b261 4506
9f45cbd3 4507/**
218f3d30 4508 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4509 * @dev: Device to which command will be sent
4510 * @enable: Whether to enable or disable the feature
218f3d30 4511 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4512 *
4513 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4514 * on port @ap with sector count
9f45cbd3
KCA
4515 *
4516 * LOCKING:
4517 * PCI/etc. bus probe sem.
4518 *
4519 * RETURNS:
4520 * 0 on success, AC_ERR_* mask otherwise.
4521 */
1152b261 4522unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
9f45cbd3
KCA
4523{
4524 struct ata_taskfile tf;
4525 unsigned int err_mask;
4526
4527 /* set up set-features taskfile */
4528 DPRINTK("set features - SATA features\n");
4529
4530 ata_tf_init(dev, &tf);
4531 tf.command = ATA_CMD_SET_FEATURES;
4532 tf.feature = enable;
4533 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4534 tf.protocol = ATA_PROT_NODATA;
218f3d30 4535 tf.nsect = feature;
9f45cbd3 4536
2b789108 4537 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4538
83206a29
TH
4539 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4540 return err_mask;
1da177e4 4541}
633de4cc 4542EXPORT_SYMBOL_GPL(ata_dev_set_feature);
1da177e4 4543
8bf62ece
AL
4544/**
4545 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4546 * @dev: Device to which command will be sent
e2a7f77a
RD
4547 * @heads: Number of heads (taskfile parameter)
4548 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4549 *
4550 * LOCKING:
6aff8f1f
TH
4551 * Kernel thread context (may sleep)
4552 *
4553 * RETURNS:
4554 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4555 */
3373efd8
TH
4556static unsigned int ata_dev_init_params(struct ata_device *dev,
4557 u16 heads, u16 sectors)
8bf62ece 4558{
a0123703 4559 struct ata_taskfile tf;
6aff8f1f 4560 unsigned int err_mask;
8bf62ece
AL
4561
4562 /* Number of sectors per track 1-255. Number of heads 1-16 */
4563 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4564 return AC_ERR_INVALID;
8bf62ece
AL
4565
4566 /* set up init dev params taskfile */
4567 DPRINTK("init dev params \n");
4568
3373efd8 4569 ata_tf_init(dev, &tf);
a0123703
TH
4570 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4571 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4572 tf.protocol = ATA_PROT_NODATA;
4573 tf.nsect = sectors;
4574 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4575
2b789108 4576 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4577 /* A clean abort indicates an original or just out of spec drive
4578 and we should continue as we issue the setup based on the
4579 drive reported working geometry */
4580 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4581 err_mask = 0;
8bf62ece 4582
6aff8f1f
TH
4583 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4584 return err_mask;
8bf62ece
AL
4585}
4586
1da177e4 4587/**
0cba632b
JG
4588 * ata_sg_clean - Unmap DMA memory associated with command
4589 * @qc: Command containing DMA memory to be released
4590 *
4591 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4592 *
4593 * LOCKING:
cca3974e 4594 * spin_lock_irqsave(host lock)
1da177e4 4595 */
70e6ad0c 4596void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4597{
4598 struct ata_port *ap = qc->ap;
ff2aeb1e 4599 struct scatterlist *sg = qc->sg;
1da177e4
LT
4600 int dir = qc->dma_dir;
4601
efcb3cf7 4602 WARN_ON_ONCE(sg == NULL);
1da177e4 4603
dde20207 4604 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4605
dde20207 4606 if (qc->n_elem)
5825627c 4607 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4608
4609 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4610 qc->sg = NULL;
1da177e4
LT
4611}
4612
1da177e4 4613/**
5895ef9a 4614 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4615 * @qc: Metadata associated with taskfile to check
4616 *
780a87f7
JG
4617 * Allow low-level driver to filter ATA PACKET commands, returning
4618 * a status indicating whether or not it is OK to use DMA for the
4619 * supplied PACKET command.
4620 *
1da177e4 4621 * LOCKING:
624d5c51
TH
4622 * spin_lock_irqsave(host lock)
4623 *
4624 * RETURNS: 0 when ATAPI DMA can be used
4625 * nonzero otherwise
4626 */
5895ef9a 4627int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4628{
4629 struct ata_port *ap = qc->ap;
71601958 4630
624d5c51
TH
4631 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4632 * few ATAPI devices choke on such DMA requests.
4633 */
6a87e42e
TH
4634 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4635 unlikely(qc->nbytes & 15))
624d5c51 4636 return 1;
e2cec771 4637
624d5c51
TH
4638 if (ap->ops->check_atapi_dma)
4639 return ap->ops->check_atapi_dma(qc);
e2cec771 4640
624d5c51
TH
4641 return 0;
4642}
1da177e4 4643
624d5c51
TH
4644/**
4645 * ata_std_qc_defer - Check whether a qc needs to be deferred
4646 * @qc: ATA command in question
4647 *
4648 * Non-NCQ commands cannot run with any other command, NCQ or
4649 * not. As upper layer only knows the queue depth, we are
4650 * responsible for maintaining exclusion. This function checks
4651 * whether a new command @qc can be issued.
4652 *
4653 * LOCKING:
4654 * spin_lock_irqsave(host lock)
4655 *
4656 * RETURNS:
4657 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4658 */
4659int ata_std_qc_defer(struct ata_queued_cmd *qc)
4660{
4661 struct ata_link *link = qc->dev->link;
e2cec771 4662
624d5c51
TH
4663 if (qc->tf.protocol == ATA_PROT_NCQ) {
4664 if (!ata_tag_valid(link->active_tag))
4665 return 0;
4666 } else {
4667 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4668 return 0;
4669 }
e2cec771 4670
624d5c51
TH
4671 return ATA_DEFER_LINK;
4672}
6912ccd5 4673
624d5c51 4674void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4675
624d5c51
TH
4676/**
4677 * ata_sg_init - Associate command with scatter-gather table.
4678 * @qc: Command to be associated
4679 * @sg: Scatter-gather table.
4680 * @n_elem: Number of elements in s/g table.
4681 *
4682 * Initialize the data-related elements of queued_cmd @qc
4683 * to point to a scatter-gather table @sg, containing @n_elem
4684 * elements.
4685 *
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4688 */
4689void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4690 unsigned int n_elem)
4691{
4692 qc->sg = sg;
4693 qc->n_elem = n_elem;
4694 qc->cursg = qc->sg;
4695}
bb5cb290 4696
624d5c51
TH
4697/**
4698 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4699 * @qc: Command with scatter-gather table to be mapped.
4700 *
4701 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4702 *
4703 * LOCKING:
4704 * spin_lock_irqsave(host lock)
4705 *
4706 * RETURNS:
4707 * Zero on success, negative on error.
4708 *
4709 */
4710static int ata_sg_setup(struct ata_queued_cmd *qc)
4711{
4712 struct ata_port *ap = qc->ap;
4713 unsigned int n_elem;
1da177e4 4714
624d5c51 4715 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4716
624d5c51
TH
4717 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4718 if (n_elem < 1)
4719 return -1;
bb5cb290 4720
624d5c51 4721 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4722 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4723 qc->n_elem = n_elem;
4724 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4725
624d5c51 4726 return 0;
1da177e4
LT
4727}
4728
624d5c51
TH
4729/**
4730 * swap_buf_le16 - swap halves of 16-bit words in place
4731 * @buf: Buffer to swap
4732 * @buf_words: Number of 16-bit words in buffer.
4733 *
4734 * Swap halves of 16-bit words if needed to convert from
4735 * little-endian byte order to native cpu byte order, or
4736 * vice-versa.
4737 *
4738 * LOCKING:
4739 * Inherited from caller.
4740 */
4741void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4742{
624d5c51
TH
4743#ifdef __BIG_ENDIAN
4744 unsigned int i;
8061f5f0 4745
624d5c51
TH
4746 for (i = 0; i < buf_words; i++)
4747 buf[i] = le16_to_cpu(buf[i]);
4748#endif /* __BIG_ENDIAN */
8061f5f0
TH
4749}
4750
8a8bc223 4751/**
98bd4be1
SL
4752 * ata_qc_new_init - Request an available ATA command, and initialize it
4753 * @dev: Device from whom we request an available command structure
1871ee13 4754 *
8a8bc223
TH
4755 * LOCKING:
4756 * None.
4757 */
4758
98bd4be1 4759struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
8a8bc223 4760{
98bd4be1 4761 struct ata_port *ap = dev->link->ap;
12cb5ce1 4762 struct ata_queued_cmd *qc;
8a8bc223
TH
4763
4764 /* no command while frozen */
4765 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4766 return NULL;
4767
98bd4be1 4768 /* libsas case */
5067c046 4769 if (ap->flags & ATA_FLAG_SAS_HOST) {
98bd4be1
SL
4770 tag = ata_sas_allocate_tag(ap);
4771 if (tag < 0)
4772 return NULL;
8a4aeec8 4773 }
8a8bc223 4774
98bd4be1
SL
4775 qc = __ata_qc_from_tag(ap, tag);
4776 qc->tag = tag;
4777 qc->scsicmd = NULL;
4778 qc->ap = ap;
4779 qc->dev = dev;
1da177e4 4780
98bd4be1 4781 ata_qc_reinit(qc);
1da177e4
LT
4782
4783 return qc;
4784}
4785
8a8bc223
TH
4786/**
4787 * ata_qc_free - free unused ata_queued_cmd
4788 * @qc: Command to complete
4789 *
4790 * Designed to free unused ata_queued_cmd object
4791 * in case something prevents using it.
4792 *
4793 * LOCKING:
4794 * spin_lock_irqsave(host lock)
4795 */
4796void ata_qc_free(struct ata_queued_cmd *qc)
4797{
a1104016 4798 struct ata_port *ap;
8a8bc223
TH
4799 unsigned int tag;
4800
efcb3cf7 4801 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4802 ap = qc->ap;
8a8bc223
TH
4803
4804 qc->flags = 0;
4805 tag = qc->tag;
4806 if (likely(ata_tag_valid(tag))) {
4807 qc->tag = ATA_TAG_POISON;
5067c046 4808 if (ap->flags & ATA_FLAG_SAS_HOST)
98bd4be1 4809 ata_sas_free_tag(tag, ap);
8a8bc223
TH
4810 }
4811}
4812
76014427 4813void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4814{
a1104016
JL
4815 struct ata_port *ap;
4816 struct ata_link *link;
dedaf2b0 4817
efcb3cf7
TH
4818 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4819 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4820 ap = qc->ap;
4821 link = qc->dev->link;
1da177e4
LT
4822
4823 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4824 ata_sg_clean(qc);
4825
7401abf2 4826 /* command should be marked inactive atomically with qc completion */
da917d69 4827 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4828 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4829 if (!link->sactive)
4830 ap->nr_active_links--;
4831 } else {
9af5c9c9 4832 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4833 ap->nr_active_links--;
4834 }
4835
4836 /* clear exclusive status */
4837 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4838 ap->excl_link == link))
4839 ap->excl_link = NULL;
7401abf2 4840
3f3791d3
AL
4841 /* atapi: mark qc as inactive to prevent the interrupt handler
4842 * from completing the command twice later, before the error handler
4843 * is called. (when rc != 0 and atapi request sense is needed)
4844 */
4845 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4846 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4847
1da177e4 4848 /* call completion callback */
77853bf2 4849 qc->complete_fn(qc);
1da177e4
LT
4850}
4851
39599a53
TH
4852static void fill_result_tf(struct ata_queued_cmd *qc)
4853{
4854 struct ata_port *ap = qc->ap;
4855
39599a53 4856 qc->result_tf.flags = qc->tf.flags;
22183bf5 4857 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4858}
4859
00115e0f
TH
4860static void ata_verify_xfer(struct ata_queued_cmd *qc)
4861{
4862 struct ata_device *dev = qc->dev;
4863
00115e0f
TH
4864 if (ata_is_nodata(qc->tf.protocol))
4865 return;
4866
4867 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4868 return;
4869
4870 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4871}
4872
f686bcb8
TH
4873/**
4874 * ata_qc_complete - Complete an active ATA command
4875 * @qc: Command to complete
f686bcb8 4876 *
1aadf5c3
TH
4877 * Indicate to the mid and upper layers that an ATA command has
4878 * completed, with either an ok or not-ok status.
4879 *
4880 * Refrain from calling this function multiple times when
4881 * successfully completing multiple NCQ commands.
4882 * ata_qc_complete_multiple() should be used instead, which will
4883 * properly update IRQ expect state.
f686bcb8
TH
4884 *
4885 * LOCKING:
cca3974e 4886 * spin_lock_irqsave(host lock)
f686bcb8
TH
4887 */
4888void ata_qc_complete(struct ata_queued_cmd *qc)
4889{
4890 struct ata_port *ap = qc->ap;
4891
4892 /* XXX: New EH and old EH use different mechanisms to
4893 * synchronize EH with regular execution path.
4894 *
4895 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4896 * Normal execution path is responsible for not accessing a
4897 * failed qc. libata core enforces the rule by returning NULL
4898 * from ata_qc_from_tag() for failed qcs.
4899 *
4900 * Old EH depends on ata_qc_complete() nullifying completion
4901 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4902 * not synchronize with interrupt handler. Only PIO task is
4903 * taken care of.
4904 */
4905 if (ap->ops->error_handler) {
4dbfa39b
TH
4906 struct ata_device *dev = qc->dev;
4907 struct ata_eh_info *ehi = &dev->link->eh_info;
4908
f686bcb8
TH
4909 if (unlikely(qc->err_mask))
4910 qc->flags |= ATA_QCFLAG_FAILED;
4911
f08dc1ac
TH
4912 /*
4913 * Finish internal commands without any further processing
4914 * and always with the result TF filled.
4915 */
4916 if (unlikely(ata_tag_internal(qc->tag))) {
f4b31db9 4917 fill_result_tf(qc);
255c03d1 4918 trace_ata_qc_complete_internal(qc);
f08dc1ac
TH
4919 __ata_qc_complete(qc);
4920 return;
4921 }
f4b31db9 4922
f08dc1ac
TH
4923 /*
4924 * Non-internal qc has failed. Fill the result TF and
4925 * summon EH.
4926 */
4927 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4928 fill_result_tf(qc);
255c03d1 4929 trace_ata_qc_complete_failed(qc);
f08dc1ac 4930 ata_qc_schedule_eh(qc);
f4b31db9 4931 return;
f686bcb8
TH
4932 }
4933
4dc738ed
TH
4934 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4935
f686bcb8
TH
4936 /* read result TF if requested */
4937 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4938 fill_result_tf(qc);
f686bcb8 4939
255c03d1 4940 trace_ata_qc_complete_done(qc);
4dbfa39b
TH
4941 /* Some commands need post-processing after successful
4942 * completion.
4943 */
4944 switch (qc->tf.command) {
4945 case ATA_CMD_SET_FEATURES:
4946 if (qc->tf.feature != SETFEATURES_WC_ON &&
4947 qc->tf.feature != SETFEATURES_WC_OFF)
4948 break;
4949 /* fall through */
4950 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4951 case ATA_CMD_SET_MULTI: /* multi_count changed */
4952 /* revalidate device */
4953 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4954 ata_port_schedule_eh(ap);
4955 break;
054a5fba
TH
4956
4957 case ATA_CMD_SLEEP:
4958 dev->flags |= ATA_DFLAG_SLEEPING;
4959 break;
4dbfa39b
TH
4960 }
4961
00115e0f
TH
4962 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4963 ata_verify_xfer(qc);
4964
f686bcb8
TH
4965 __ata_qc_complete(qc);
4966 } else {
4967 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4968 return;
4969
4970 /* read result TF if failed or requested */
4971 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4972 fill_result_tf(qc);
f686bcb8
TH
4973
4974 __ata_qc_complete(qc);
4975 }
4976}
4977
dedaf2b0
TH
4978/**
4979 * ata_qc_complete_multiple - Complete multiple qcs successfully
4980 * @ap: port in question
4981 * @qc_active: new qc_active mask
dedaf2b0
TH
4982 *
4983 * Complete in-flight commands. This functions is meant to be
4984 * called from low-level driver's interrupt routine to complete
4985 * requests normally. ap->qc_active and @qc_active is compared
4986 * and commands are completed accordingly.
4987 *
1aadf5c3
TH
4988 * Always use this function when completing multiple NCQ commands
4989 * from IRQ handlers instead of calling ata_qc_complete()
4990 * multiple times to keep IRQ expect status properly in sync.
4991 *
dedaf2b0 4992 * LOCKING:
cca3974e 4993 * spin_lock_irqsave(host lock)
dedaf2b0
TH
4994 *
4995 * RETURNS:
4996 * Number of completed commands on success, -errno otherwise.
4997 */
79f97dad 4998int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
4999{
5000 int nr_done = 0;
5001 u32 done_mask;
dedaf2b0
TH
5002
5003 done_mask = ap->qc_active ^ qc_active;
5004
5005 if (unlikely(done_mask & qc_active)) {
a9a79dfe
JP
5006 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5007 ap->qc_active, qc_active);
dedaf2b0
TH
5008 return -EINVAL;
5009 }
5010
43768180 5011 while (done_mask) {
dedaf2b0 5012 struct ata_queued_cmd *qc;
43768180 5013 unsigned int tag = __ffs(done_mask);
dedaf2b0 5014
43768180
JA
5015 qc = ata_qc_from_tag(ap, tag);
5016 if (qc) {
dedaf2b0
TH
5017 ata_qc_complete(qc);
5018 nr_done++;
5019 }
43768180 5020 done_mask &= ~(1 << tag);
dedaf2b0
TH
5021 }
5022
5023 return nr_done;
5024}
5025
1da177e4
LT
5026/**
5027 * ata_qc_issue - issue taskfile to device
5028 * @qc: command to issue to device
5029 *
5030 * Prepare an ATA command to submission to device.
5031 * This includes mapping the data into a DMA-able
5032 * area, filling in the S/G table, and finally
5033 * writing the taskfile to hardware, starting the command.
5034 *
5035 * LOCKING:
cca3974e 5036 * spin_lock_irqsave(host lock)
1da177e4 5037 */
8e0e694a 5038void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5039{
5040 struct ata_port *ap = qc->ap;
9af5c9c9 5041 struct ata_link *link = qc->dev->link;
405e66b3 5042 u8 prot = qc->tf.protocol;
1da177e4 5043
dedaf2b0
TH
5044 /* Make sure only one non-NCQ command is outstanding. The
5045 * check is skipped for old EH because it reuses active qc to
5046 * request ATAPI sense.
5047 */
efcb3cf7 5048 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5049
1973a023 5050 if (ata_is_ncq(prot)) {
efcb3cf7 5051 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5052
5053 if (!link->sactive)
5054 ap->nr_active_links++;
9af5c9c9 5055 link->sactive |= 1 << qc->tag;
dedaf2b0 5056 } else {
efcb3cf7 5057 WARN_ON_ONCE(link->sactive);
da917d69
TH
5058
5059 ap->nr_active_links++;
9af5c9c9 5060 link->active_tag = qc->tag;
dedaf2b0
TH
5061 }
5062
e4a70e76 5063 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5064 ap->qc_active |= 1 << qc->tag;
e4a70e76 5065
60f5d6ef
TH
5066 /*
5067 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5068 * non-zero sg if the command is a data command.
5069 */
60f5d6ef
TH
5070 if (WARN_ON_ONCE(ata_is_data(prot) &&
5071 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5072 goto sys_err;
f92a2636 5073
405e66b3 5074 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5075 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5076 if (ata_sg_setup(qc))
60f5d6ef 5077 goto sys_err;
1da177e4 5078
cf480626 5079 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5080 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5081 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5082 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5083 ata_link_abort(link);
5084 return;
5085 }
5086
1da177e4 5087 ap->ops->qc_prep(qc);
255c03d1 5088 trace_ata_qc_issue(qc);
8e0e694a
TH
5089 qc->err_mask |= ap->ops->qc_issue(qc);
5090 if (unlikely(qc->err_mask))
5091 goto err;
5092 return;
1da177e4 5093
60f5d6ef 5094sys_err:
8e0e694a
TH
5095 qc->err_mask |= AC_ERR_SYSTEM;
5096err:
5097 ata_qc_complete(qc);
1da177e4
LT
5098}
5099
34bf2170
TH
5100/**
5101 * sata_scr_valid - test whether SCRs are accessible
936fd732 5102 * @link: ATA link to test SCR accessibility for
34bf2170 5103 *
936fd732 5104 * Test whether SCRs are accessible for @link.
34bf2170
TH
5105 *
5106 * LOCKING:
5107 * None.
5108 *
5109 * RETURNS:
5110 * 1 if SCRs are accessible, 0 otherwise.
5111 */
936fd732 5112int sata_scr_valid(struct ata_link *link)
34bf2170 5113{
936fd732
TH
5114 struct ata_port *ap = link->ap;
5115
a16abc0b 5116 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5117}
5118
5119/**
5120 * sata_scr_read - read SCR register of the specified port
936fd732 5121 * @link: ATA link to read SCR for
34bf2170
TH
5122 * @reg: SCR to read
5123 * @val: Place to store read value
5124 *
936fd732 5125 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5126 * guaranteed to succeed if @link is ap->link, the cable type of
5127 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5128 *
5129 * LOCKING:
633273a3 5130 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5131 *
5132 * RETURNS:
5133 * 0 on success, negative errno on failure.
5134 */
936fd732 5135int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5136{
633273a3 5137 if (ata_is_host_link(link)) {
633273a3 5138 if (sata_scr_valid(link))
82ef04fb 5139 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5140 return -EOPNOTSUPP;
5141 }
5142
5143 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5144}
5145
5146/**
5147 * sata_scr_write - write SCR register of the specified port
936fd732 5148 * @link: ATA link to write SCR for
34bf2170
TH
5149 * @reg: SCR to write
5150 * @val: value to write
5151 *
936fd732 5152 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5153 * guaranteed to succeed if @link is ap->link, the cable type of
5154 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5155 *
5156 * LOCKING:
633273a3 5157 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5158 *
5159 * RETURNS:
5160 * 0 on success, negative errno on failure.
5161 */
936fd732 5162int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5163{
633273a3 5164 if (ata_is_host_link(link)) {
633273a3 5165 if (sata_scr_valid(link))
82ef04fb 5166 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5167 return -EOPNOTSUPP;
5168 }
936fd732 5169
633273a3 5170 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5171}
5172
5173/**
5174 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5175 * @link: ATA link to write SCR for
34bf2170
TH
5176 * @reg: SCR to write
5177 * @val: value to write
5178 *
5179 * This function is identical to sata_scr_write() except that this
5180 * function performs flush after writing to the register.
5181 *
5182 * LOCKING:
633273a3 5183 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5184 *
5185 * RETURNS:
5186 * 0 on success, negative errno on failure.
5187 */
936fd732 5188int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5189{
633273a3 5190 if (ata_is_host_link(link)) {
633273a3 5191 int rc;
da3dbb17 5192
633273a3 5193 if (sata_scr_valid(link)) {
82ef04fb 5194 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5195 if (rc == 0)
82ef04fb 5196 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5197 return rc;
5198 }
5199 return -EOPNOTSUPP;
34bf2170 5200 }
633273a3
TH
5201
5202 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5203}
5204
5205/**
b1c72916 5206 * ata_phys_link_online - test whether the given link is online
936fd732 5207 * @link: ATA link to test
34bf2170 5208 *
936fd732
TH
5209 * Test whether @link is online. Note that this function returns
5210 * 0 if online status of @link cannot be obtained, so
5211 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5212 *
5213 * LOCKING:
5214 * None.
5215 *
5216 * RETURNS:
b5b3fa38 5217 * True if the port online status is available and online.
34bf2170 5218 */
b1c72916 5219bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5220{
5221 u32 sstatus;
5222
936fd732 5223 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5224 ata_sstatus_online(sstatus))
b5b3fa38
TH
5225 return true;
5226 return false;
34bf2170
TH
5227}
5228
5229/**
b1c72916 5230 * ata_phys_link_offline - test whether the given link is offline
936fd732 5231 * @link: ATA link to test
34bf2170 5232 *
936fd732
TH
5233 * Test whether @link is offline. Note that this function
5234 * returns 0 if offline status of @link cannot be obtained, so
5235 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5236 *
5237 * LOCKING:
5238 * None.
5239 *
5240 * RETURNS:
b5b3fa38 5241 * True if the port offline status is available and offline.
34bf2170 5242 */
b1c72916 5243bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5244{
5245 u32 sstatus;
5246
936fd732 5247 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5248 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5249 return true;
5250 return false;
34bf2170 5251}
0baab86b 5252
b1c72916
TH
5253/**
5254 * ata_link_online - test whether the given link is online
5255 * @link: ATA link to test
5256 *
5257 * Test whether @link is online. This is identical to
5258 * ata_phys_link_online() when there's no slave link. When
5259 * there's a slave link, this function should only be called on
5260 * the master link and will return true if any of M/S links is
5261 * online.
5262 *
5263 * LOCKING:
5264 * None.
5265 *
5266 * RETURNS:
5267 * True if the port online status is available and online.
5268 */
5269bool ata_link_online(struct ata_link *link)
5270{
5271 struct ata_link *slave = link->ap->slave_link;
5272
5273 WARN_ON(link == slave); /* shouldn't be called on slave link */
5274
5275 return ata_phys_link_online(link) ||
5276 (slave && ata_phys_link_online(slave));
5277}
5278
5279/**
5280 * ata_link_offline - test whether the given link is offline
5281 * @link: ATA link to test
5282 *
5283 * Test whether @link is offline. This is identical to
5284 * ata_phys_link_offline() when there's no slave link. When
5285 * there's a slave link, this function should only be called on
5286 * the master link and will return true if both M/S links are
5287 * offline.
5288 *
5289 * LOCKING:
5290 * None.
5291 *
5292 * RETURNS:
5293 * True if the port offline status is available and offline.
5294 */
5295bool ata_link_offline(struct ata_link *link)
5296{
5297 struct ata_link *slave = link->ap->slave_link;
5298
5299 WARN_ON(link == slave); /* shouldn't be called on slave link */
5300
5301 return ata_phys_link_offline(link) &&
5302 (!slave || ata_phys_link_offline(slave));
5303}
5304
6ffa01d8 5305#ifdef CONFIG_PM
bc6e7c4b
DW
5306static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5307 unsigned int action, unsigned int ehi_flags,
5308 bool async)
500530f6 5309{
5ef41082 5310 struct ata_link *link;
500530f6 5311 unsigned long flags;
500530f6 5312
5ef41082
LM
5313 /* Previous resume operation might still be in
5314 * progress. Wait for PM_PENDING to clear.
5315 */
5316 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5317 ata_port_wait_eh(ap);
5318 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5319 }
500530f6 5320
5ef41082
LM
5321 /* request PM ops to EH */
5322 spin_lock_irqsave(ap->lock, flags);
500530f6 5323
5ef41082 5324 ap->pm_mesg = mesg;
5ef41082
LM
5325 ap->pflags |= ATA_PFLAG_PM_PENDING;
5326 ata_for_each_link(link, ap, HOST_FIRST) {
5327 link->eh_info.action |= action;
5328 link->eh_info.flags |= ehi_flags;
5329 }
500530f6 5330
5ef41082 5331 ata_port_schedule_eh(ap);
500530f6 5332
5ef41082 5333 spin_unlock_irqrestore(ap->lock, flags);
500530f6 5334
2fcbdcb4 5335 if (!async) {
5ef41082
LM
5336 ata_port_wait_eh(ap);
5337 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
500530f6 5338 }
500530f6
TH
5339}
5340
bc6e7c4b
DW
5341/*
5342 * On some hardware, device fails to respond after spun down for suspend. As
5343 * the device won't be used before being resumed, we don't need to touch the
5344 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5345 *
5346 * http://thread.gmane.org/gmane.linux.ide/46764
5347 */
5348static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5349 | ATA_EHI_NO_AUTOPSY
5350 | ATA_EHI_NO_RECOVERY;
5351
5352static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5ef41082 5353{
bc6e7c4b 5354 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5ef41082
LM
5355}
5356
bc6e7c4b 5357static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5358{
bc6e7c4b 5359 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
2fcbdcb4
DW
5360}
5361
bc6e7c4b 5362static int ata_port_pm_suspend(struct device *dev)
5ef41082 5363{
bc6e7c4b
DW
5364 struct ata_port *ap = to_ata_port(dev);
5365
5ef41082
LM
5366 if (pm_runtime_suspended(dev))
5367 return 0;
5368
bc6e7c4b
DW
5369 ata_port_suspend(ap, PMSG_SUSPEND);
5370 return 0;
33574d68
LM
5371}
5372
bc6e7c4b 5373static int ata_port_pm_freeze(struct device *dev)
33574d68 5374{
bc6e7c4b
DW
5375 struct ata_port *ap = to_ata_port(dev);
5376
33574d68 5377 if (pm_runtime_suspended(dev))
f5e6d0d0 5378 return 0;
33574d68 5379
bc6e7c4b
DW
5380 ata_port_suspend(ap, PMSG_FREEZE);
5381 return 0;
33574d68
LM
5382}
5383
bc6e7c4b 5384static int ata_port_pm_poweroff(struct device *dev)
33574d68 5385{
bc6e7c4b
DW
5386 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5387 return 0;
5ef41082
LM
5388}
5389
bc6e7c4b
DW
5390static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5391 | ATA_EHI_QUIET;
5ef41082 5392
bc6e7c4b
DW
5393static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5394{
5395 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5ef41082
LM
5396}
5397
bc6e7c4b 5398static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
2fcbdcb4 5399{
bc6e7c4b 5400 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
2fcbdcb4
DW
5401}
5402
bc6e7c4b 5403static int ata_port_pm_resume(struct device *dev)
e90b1e5a 5404{
200421a8 5405 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
bc6e7c4b
DW
5406 pm_runtime_disable(dev);
5407 pm_runtime_set_active(dev);
5408 pm_runtime_enable(dev);
5409 return 0;
e90b1e5a
LM
5410}
5411
7e15e9be
AL
5412/*
5413 * For ODDs, the upper layer will poll for media change every few seconds,
5414 * which will make it enter and leave suspend state every few seconds. And
5415 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5416 * is very little and the ODD may malfunction after constantly being reset.
5417 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5418 * ODD is attached to the port.
5419 */
9ee4f393
LM
5420static int ata_port_runtime_idle(struct device *dev)
5421{
7e15e9be
AL
5422 struct ata_port *ap = to_ata_port(dev);
5423 struct ata_link *link;
5424 struct ata_device *adev;
5425
5426 ata_for_each_link(link, ap, HOST_FIRST) {
5427 ata_for_each_dev(adev, link, ENABLED)
5428 if (adev->class == ATA_DEV_ATAPI &&
5429 !zpodd_dev_enabled(adev))
5430 return -EBUSY;
5431 }
5432
45f0a85c 5433 return 0;
9ee4f393
LM
5434}
5435
a7ff60db
AL
5436static int ata_port_runtime_suspend(struct device *dev)
5437{
bc6e7c4b
DW
5438 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5439 return 0;
a7ff60db
AL
5440}
5441
5442static int ata_port_runtime_resume(struct device *dev)
5443{
bc6e7c4b
DW
5444 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5445 return 0;
a7ff60db
AL
5446}
5447
5ef41082 5448static const struct dev_pm_ops ata_port_pm_ops = {
bc6e7c4b
DW
5449 .suspend = ata_port_pm_suspend,
5450 .resume = ata_port_pm_resume,
5451 .freeze = ata_port_pm_freeze,
5452 .thaw = ata_port_pm_resume,
5453 .poweroff = ata_port_pm_poweroff,
5454 .restore = ata_port_pm_resume,
9ee4f393 5455
a7ff60db
AL
5456 .runtime_suspend = ata_port_runtime_suspend,
5457 .runtime_resume = ata_port_runtime_resume,
9ee4f393 5458 .runtime_idle = ata_port_runtime_idle,
5ef41082
LM
5459};
5460
2fcbdcb4
DW
5461/* sas ports don't participate in pm runtime management of ata_ports,
5462 * and need to resume ata devices at the domain level, not the per-port
5463 * level. sas suspend/resume is async to allow parallel port recovery
5464 * since sas has multiple ata_port instances per Scsi_Host.
5465 */
bc6e7c4b 5466void ata_sas_port_suspend(struct ata_port *ap)
2fcbdcb4 5467{
bc6e7c4b 5468 ata_port_suspend_async(ap, PMSG_SUSPEND);
2fcbdcb4 5469}
bc6e7c4b 5470EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
2fcbdcb4 5471
bc6e7c4b 5472void ata_sas_port_resume(struct ata_port *ap)
2fcbdcb4 5473{
bc6e7c4b 5474 ata_port_resume_async(ap, PMSG_RESUME);
2fcbdcb4 5475}
bc6e7c4b 5476EXPORT_SYMBOL_GPL(ata_sas_port_resume);
2fcbdcb4 5477
500530f6 5478/**
cca3974e
JG
5479 * ata_host_suspend - suspend host
5480 * @host: host to suspend
500530f6
TH
5481 * @mesg: PM message
5482 *
5ef41082 5483 * Suspend @host. Actual operation is performed by port suspend.
500530f6 5484 */
cca3974e 5485int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5486{
5ef41082
LM
5487 host->dev->power.power_state = mesg;
5488 return 0;
500530f6
TH
5489}
5490
5491/**
cca3974e
JG
5492 * ata_host_resume - resume host
5493 * @host: host to resume
500530f6 5494 *
5ef41082 5495 * Resume @host. Actual operation is performed by port resume.
500530f6 5496 */
cca3974e 5497void ata_host_resume(struct ata_host *host)
500530f6 5498{
72ad6ec4 5499 host->dev->power.power_state = PMSG_ON;
500530f6 5500}
6ffa01d8 5501#endif
500530f6 5502
5ef41082
LM
5503struct device_type ata_port_type = {
5504 .name = "ata_port",
5505#ifdef CONFIG_PM
5506 .pm = &ata_port_pm_ops,
5507#endif
5508};
5509
3ef3b43d
TH
5510/**
5511 * ata_dev_init - Initialize an ata_device structure
5512 * @dev: Device structure to initialize
5513 *
5514 * Initialize @dev in preparation for probing.
5515 *
5516 * LOCKING:
5517 * Inherited from caller.
5518 */
5519void ata_dev_init(struct ata_device *dev)
5520{
b1c72916 5521 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5522 struct ata_port *ap = link->ap;
72fa4b74
TH
5523 unsigned long flags;
5524
b1c72916 5525 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5526 link->sata_spd_limit = link->hw_sata_spd_limit;
5527 link->sata_spd = 0;
5a04bf4b 5528
72fa4b74
TH
5529 /* High bits of dev->flags are used to record warm plug
5530 * requests which occur asynchronously. Synchronize using
cca3974e 5531 * host lock.
72fa4b74 5532 */
ba6a1308 5533 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5534 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5535 dev->horkage = 0;
ba6a1308 5536 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5537
99cf610a
TH
5538 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5539 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5540 dev->pio_mask = UINT_MAX;
5541 dev->mwdma_mask = UINT_MAX;
5542 dev->udma_mask = UINT_MAX;
5543}
5544
4fb37a25
TH
5545/**
5546 * ata_link_init - Initialize an ata_link structure
5547 * @ap: ATA port link is attached to
5548 * @link: Link structure to initialize
8989805d 5549 * @pmp: Port multiplier port number
4fb37a25
TH
5550 *
5551 * Initialize @link.
5552 *
5553 * LOCKING:
5554 * Kernel thread context (may sleep)
5555 */
fb7fd614 5556void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5557{
5558 int i;
5559
5560 /* clear everything except for devices */
d9027470
GG
5561 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5562 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
4fb37a25
TH
5563
5564 link->ap = ap;
8989805d 5565 link->pmp = pmp;
4fb37a25
TH
5566 link->active_tag = ATA_TAG_POISON;
5567 link->hw_sata_spd_limit = UINT_MAX;
5568
5569 /* can't use iterator, ap isn't initialized yet */
5570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5571 struct ata_device *dev = &link->device[i];
5572
5573 dev->link = link;
5574 dev->devno = dev - link->device;
110f66d2
TH
5575#ifdef CONFIG_ATA_ACPI
5576 dev->gtf_filter = ata_acpi_gtf_filter;
5577#endif
4fb37a25
TH
5578 ata_dev_init(dev);
5579 }
5580}
5581
5582/**
5583 * sata_link_init_spd - Initialize link->sata_spd_limit
5584 * @link: Link to configure sata_spd_limit for
5585 *
5586 * Initialize @link->[hw_]sata_spd_limit to the currently
5587 * configured value.
5588 *
5589 * LOCKING:
5590 * Kernel thread context (may sleep).
5591 *
5592 * RETURNS:
5593 * 0 on success, -errno on failure.
5594 */
fb7fd614 5595int sata_link_init_spd(struct ata_link *link)
4fb37a25 5596{
33267325 5597 u8 spd;
4fb37a25
TH
5598 int rc;
5599
d127ea7b 5600 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5601 if (rc)
5602 return rc;
5603
d127ea7b 5604 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5605 if (spd)
5606 link->hw_sata_spd_limit &= (1 << spd) - 1;
5607
05944bdf 5608 ata_force_link_limits(link);
33267325 5609
4fb37a25
TH
5610 link->sata_spd_limit = link->hw_sata_spd_limit;
5611
5612 return 0;
5613}
5614
1da177e4 5615/**
f3187195
TH
5616 * ata_port_alloc - allocate and initialize basic ATA port resources
5617 * @host: ATA host this allocated port belongs to
1da177e4 5618 *
f3187195
TH
5619 * Allocate and initialize basic ATA port resources.
5620 *
5621 * RETURNS:
5622 * Allocate ATA port on success, NULL on failure.
0cba632b 5623 *
1da177e4 5624 * LOCKING:
f3187195 5625 * Inherited from calling layer (may sleep).
1da177e4 5626 */
f3187195 5627struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5628{
f3187195 5629 struct ata_port *ap;
1da177e4 5630
f3187195
TH
5631 DPRINTK("ENTER\n");
5632
5633 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5634 if (!ap)
5635 return NULL;
4fca377f 5636
7b3a24c5 5637 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
cca3974e 5638 ap->lock = &host->lock;
f3187195 5639 ap->print_id = -1;
e628dc99 5640 ap->local_port_no = -1;
cca3974e 5641 ap->host = host;
f3187195 5642 ap->dev = host->dev;
bd5d825c
BP
5643
5644#if defined(ATA_VERBOSE_DEBUG)
5645 /* turn on all debugging levels */
5646 ap->msg_enable = 0x00FF;
5647#elif defined(ATA_DEBUG)
5648 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5649#else
0dd4b21f 5650 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5651#endif
1da177e4 5652
ad72cf98 5653 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5654 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5655 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5656 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5657 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5658 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5659 init_timer_deferrable(&ap->fastdrain_timer);
5660 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5661 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5662
838df628 5663 ap->cbl = ATA_CBL_NONE;
838df628 5664
8989805d 5665 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5666
5667#ifdef ATA_IRQ_TRAP
5668 ap->stats.unhandled_irq = 1;
5669 ap->stats.idle_irq = 1;
5670#endif
270390e1
TH
5671 ata_sff_port_init(ap);
5672
1da177e4 5673 return ap;
1da177e4
LT
5674}
5675
f0d36efd
TH
5676static void ata_host_release(struct device *gendev, void *res)
5677{
5678 struct ata_host *host = dev_get_drvdata(gendev);
5679 int i;
5680
1aa506e4
TH
5681 for (i = 0; i < host->n_ports; i++) {
5682 struct ata_port *ap = host->ports[i];
5683
4911487a
TH
5684 if (!ap)
5685 continue;
5686
5687 if (ap->scsi_host)
1aa506e4
TH
5688 scsi_host_put(ap->scsi_host);
5689
633273a3 5690 kfree(ap->pmp_link);
b1c72916 5691 kfree(ap->slave_link);
4911487a 5692 kfree(ap);
1aa506e4
TH
5693 host->ports[i] = NULL;
5694 }
5695
1aa56cca 5696 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5697}
5698
f3187195
TH
5699/**
5700 * ata_host_alloc - allocate and init basic ATA host resources
5701 * @dev: generic device this host is associated with
5702 * @max_ports: maximum number of ATA ports associated with this host
5703 *
5704 * Allocate and initialize basic ATA host resources. LLD calls
5705 * this function to allocate a host, initializes it fully and
5706 * attaches it using ata_host_register().
5707 *
5708 * @max_ports ports are allocated and host->n_ports is
5709 * initialized to @max_ports. The caller is allowed to decrease
5710 * host->n_ports before calling ata_host_register(). The unused
5711 * ports will be automatically freed on registration.
5712 *
5713 * RETURNS:
5714 * Allocate ATA host on success, NULL on failure.
5715 *
5716 * LOCKING:
5717 * Inherited from calling layer (may sleep).
5718 */
5719struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5720{
5721 struct ata_host *host;
5722 size_t sz;
5723 int i;
5724
5725 DPRINTK("ENTER\n");
5726
5727 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5728 return NULL;
5729
5730 /* alloc a container for our list of ATA ports (buses) */
5731 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5732 /* alloc a container for our list of ATA ports (buses) */
5733 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5734 if (!host)
5735 goto err_out;
5736
5737 devres_add(dev, host);
5738 dev_set_drvdata(dev, host);
5739
5740 spin_lock_init(&host->lock);
c0c362b6 5741 mutex_init(&host->eh_mutex);
f3187195
TH
5742 host->dev = dev;
5743 host->n_ports = max_ports;
5744
5745 /* allocate ports bound to this host */
5746 for (i = 0; i < max_ports; i++) {
5747 struct ata_port *ap;
5748
5749 ap = ata_port_alloc(host);
5750 if (!ap)
5751 goto err_out;
5752
5753 ap->port_no = i;
5754 host->ports[i] = ap;
5755 }
5756
5757 devres_remove_group(dev, NULL);
5758 return host;
5759
5760 err_out:
5761 devres_release_group(dev, NULL);
5762 return NULL;
5763}
5764
f5cda257
TH
5765/**
5766 * ata_host_alloc_pinfo - alloc host and init with port_info array
5767 * @dev: generic device this host is associated with
5768 * @ppi: array of ATA port_info to initialize host with
5769 * @n_ports: number of ATA ports attached to this host
5770 *
5771 * Allocate ATA host and initialize with info from @ppi. If NULL
5772 * terminated, @ppi may contain fewer entries than @n_ports. The
5773 * last entry will be used for the remaining ports.
5774 *
5775 * RETURNS:
5776 * Allocate ATA host on success, NULL on failure.
5777 *
5778 * LOCKING:
5779 * Inherited from calling layer (may sleep).
5780 */
5781struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5782 const struct ata_port_info * const * ppi,
5783 int n_ports)
5784{
5785 const struct ata_port_info *pi;
5786 struct ata_host *host;
5787 int i, j;
5788
5789 host = ata_host_alloc(dev, n_ports);
5790 if (!host)
5791 return NULL;
5792
5793 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5794 struct ata_port *ap = host->ports[i];
5795
5796 if (ppi[j])
5797 pi = ppi[j++];
5798
5799 ap->pio_mask = pi->pio_mask;
5800 ap->mwdma_mask = pi->mwdma_mask;
5801 ap->udma_mask = pi->udma_mask;
5802 ap->flags |= pi->flags;
0c88758b 5803 ap->link.flags |= pi->link_flags;
f5cda257
TH
5804 ap->ops = pi->port_ops;
5805
5806 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5807 host->ops = pi->port_ops;
f5cda257
TH
5808 }
5809
5810 return host;
5811}
5812
b1c72916
TH
5813/**
5814 * ata_slave_link_init - initialize slave link
5815 * @ap: port to initialize slave link for
5816 *
5817 * Create and initialize slave link for @ap. This enables slave
5818 * link handling on the port.
5819 *
5820 * In libata, a port contains links and a link contains devices.
5821 * There is single host link but if a PMP is attached to it,
5822 * there can be multiple fan-out links. On SATA, there's usually
5823 * a single device connected to a link but PATA and SATA
5824 * controllers emulating TF based interface can have two - master
5825 * and slave.
5826 *
5827 * However, there are a few controllers which don't fit into this
5828 * abstraction too well - SATA controllers which emulate TF
5829 * interface with both master and slave devices but also have
5830 * separate SCR register sets for each device. These controllers
5831 * need separate links for physical link handling
5832 * (e.g. onlineness, link speed) but should be treated like a
5833 * traditional M/S controller for everything else (e.g. command
5834 * issue, softreset).
5835 *
5836 * slave_link is libata's way of handling this class of
5837 * controllers without impacting core layer too much. For
5838 * anything other than physical link handling, the default host
5839 * link is used for both master and slave. For physical link
5840 * handling, separate @ap->slave_link is used. All dirty details
5841 * are implemented inside libata core layer. From LLD's POV, the
5842 * only difference is that prereset, hardreset and postreset are
5843 * called once more for the slave link, so the reset sequence
5844 * looks like the following.
5845 *
5846 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5847 * softreset(M) -> postreset(M) -> postreset(S)
5848 *
5849 * Note that softreset is called only for the master. Softreset
5850 * resets both M/S by definition, so SRST on master should handle
5851 * both (the standard method will work just fine).
5852 *
5853 * LOCKING:
5854 * Should be called before host is registered.
5855 *
5856 * RETURNS:
5857 * 0 on success, -errno on failure.
5858 */
5859int ata_slave_link_init(struct ata_port *ap)
5860{
5861 struct ata_link *link;
5862
5863 WARN_ON(ap->slave_link);
5864 WARN_ON(ap->flags & ATA_FLAG_PMP);
5865
5866 link = kzalloc(sizeof(*link), GFP_KERNEL);
5867 if (!link)
5868 return -ENOMEM;
5869
5870 ata_link_init(ap, link, 1);
5871 ap->slave_link = link;
5872 return 0;
5873}
5874
32ebbc0c
TH
5875static void ata_host_stop(struct device *gendev, void *res)
5876{
5877 struct ata_host *host = dev_get_drvdata(gendev);
5878 int i;
5879
5880 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5881
5882 for (i = 0; i < host->n_ports; i++) {
5883 struct ata_port *ap = host->ports[i];
5884
5885 if (ap->ops->port_stop)
5886 ap->ops->port_stop(ap);
5887 }
5888
5889 if (host->ops->host_stop)
5890 host->ops->host_stop(host);
5891}
5892
029cfd6b
TH
5893/**
5894 * ata_finalize_port_ops - finalize ata_port_operations
5895 * @ops: ata_port_operations to finalize
5896 *
5897 * An ata_port_operations can inherit from another ops and that
5898 * ops can again inherit from another. This can go on as many
5899 * times as necessary as long as there is no loop in the
5900 * inheritance chain.
5901 *
5902 * Ops tables are finalized when the host is started. NULL or
5903 * unspecified entries are inherited from the closet ancestor
5904 * which has the method and the entry is populated with it.
5905 * After finalization, the ops table directly points to all the
5906 * methods and ->inherits is no longer necessary and cleared.
5907 *
5908 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5909 *
5910 * LOCKING:
5911 * None.
5912 */
5913static void ata_finalize_port_ops(struct ata_port_operations *ops)
5914{
2da67659 5915 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5916 const struct ata_port_operations *cur;
5917 void **begin = (void **)ops;
5918 void **end = (void **)&ops->inherits;
5919 void **pp;
5920
5921 if (!ops || !ops->inherits)
5922 return;
5923
5924 spin_lock(&lock);
5925
5926 for (cur = ops->inherits; cur; cur = cur->inherits) {
5927 void **inherit = (void **)cur;
5928
5929 for (pp = begin; pp < end; pp++, inherit++)
5930 if (!*pp)
5931 *pp = *inherit;
5932 }
5933
5934 for (pp = begin; pp < end; pp++)
5935 if (IS_ERR(*pp))
5936 *pp = NULL;
5937
5938 ops->inherits = NULL;
5939
5940 spin_unlock(&lock);
5941}
5942
ecef7253
TH
5943/**
5944 * ata_host_start - start and freeze ports of an ATA host
5945 * @host: ATA host to start ports for
5946 *
5947 * Start and then freeze ports of @host. Started status is
5948 * recorded in host->flags, so this function can be called
5949 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5950 * once. If host->ops isn't initialized yet, its set to the
5951 * first non-dummy port ops.
ecef7253
TH
5952 *
5953 * LOCKING:
5954 * Inherited from calling layer (may sleep).
5955 *
5956 * RETURNS:
5957 * 0 if all ports are started successfully, -errno otherwise.
5958 */
5959int ata_host_start(struct ata_host *host)
5960{
32ebbc0c
TH
5961 int have_stop = 0;
5962 void *start_dr = NULL;
ecef7253
TH
5963 int i, rc;
5964
5965 if (host->flags & ATA_HOST_STARTED)
5966 return 0;
5967
029cfd6b
TH
5968 ata_finalize_port_ops(host->ops);
5969
ecef7253
TH
5970 for (i = 0; i < host->n_ports; i++) {
5971 struct ata_port *ap = host->ports[i];
5972
029cfd6b
TH
5973 ata_finalize_port_ops(ap->ops);
5974
f3187195
TH
5975 if (!host->ops && !ata_port_is_dummy(ap))
5976 host->ops = ap->ops;
5977
32ebbc0c
TH
5978 if (ap->ops->port_stop)
5979 have_stop = 1;
5980 }
5981
5982 if (host->ops->host_stop)
5983 have_stop = 1;
5984
5985 if (have_stop) {
5986 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5987 if (!start_dr)
5988 return -ENOMEM;
5989 }
5990
5991 for (i = 0; i < host->n_ports; i++) {
5992 struct ata_port *ap = host->ports[i];
5993
ecef7253
TH
5994 if (ap->ops->port_start) {
5995 rc = ap->ops->port_start(ap);
5996 if (rc) {
0f9fe9b7 5997 if (rc != -ENODEV)
a44fec1f
JP
5998 dev_err(host->dev,
5999 "failed to start port %d (errno=%d)\n",
6000 i, rc);
ecef7253
TH
6001 goto err_out;
6002 }
6003 }
ecef7253
TH
6004 ata_eh_freeze_port(ap);
6005 }
6006
32ebbc0c
TH
6007 if (start_dr)
6008 devres_add(host->dev, start_dr);
ecef7253
TH
6009 host->flags |= ATA_HOST_STARTED;
6010 return 0;
6011
6012 err_out:
6013 while (--i >= 0) {
6014 struct ata_port *ap = host->ports[i];
6015
6016 if (ap->ops->port_stop)
6017 ap->ops->port_stop(ap);
6018 }
32ebbc0c 6019 devres_free(start_dr);
ecef7253
TH
6020 return rc;
6021}
6022
b03732f0 6023/**
8d8e7d13 6024 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
cca3974e
JG
6025 * @host: host to initialize
6026 * @dev: device host is attached to
cca3974e 6027 * @ops: port_ops
b03732f0 6028 *
b03732f0 6029 */
cca3974e 6030void ata_host_init(struct ata_host *host, struct device *dev,
8d8e7d13 6031 struct ata_port_operations *ops)
b03732f0 6032{
cca3974e 6033 spin_lock_init(&host->lock);
c0c362b6 6034 mutex_init(&host->eh_mutex);
1a112d10 6035 host->n_tags = ATA_MAX_QUEUE - 1;
cca3974e 6036 host->dev = dev;
cca3974e 6037 host->ops = ops;
b03732f0
BK
6038}
6039
9508a66f 6040void __ata_port_probe(struct ata_port *ap)
79318057 6041{
9508a66f
DW
6042 struct ata_eh_info *ehi = &ap->link.eh_info;
6043 unsigned long flags;
886ad09f 6044
9508a66f
DW
6045 /* kick EH for boot probing */
6046 spin_lock_irqsave(ap->lock, flags);
79318057 6047
9508a66f
DW
6048 ehi->probe_mask |= ATA_ALL_DEVICES;
6049 ehi->action |= ATA_EH_RESET;
6050 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
79318057 6051
9508a66f
DW
6052 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6053 ap->pflags |= ATA_PFLAG_LOADING;
6054 ata_port_schedule_eh(ap);
79318057 6055
9508a66f
DW
6056 spin_unlock_irqrestore(ap->lock, flags);
6057}
79318057 6058
9508a66f
DW
6059int ata_port_probe(struct ata_port *ap)
6060{
6061 int rc = 0;
79318057 6062
9508a66f
DW
6063 if (ap->ops->error_handler) {
6064 __ata_port_probe(ap);
79318057
AV
6065 ata_port_wait_eh(ap);
6066 } else {
6067 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6068 rc = ata_bus_probe(ap);
6069 DPRINTK("ata%u: bus probe end\n", ap->print_id);
79318057 6070 }
238c9cf9
JB
6071 return rc;
6072}
6073
6074
6075static void async_port_probe(void *data, async_cookie_t cookie)
6076{
6077 struct ata_port *ap = data;
4fca377f 6078
238c9cf9
JB
6079 /*
6080 * If we're not allowed to scan this host in parallel,
6081 * we need to wait until all previous scans have completed
6082 * before going further.
6083 * Jeff Garzik says this is only within a controller, so we
6084 * don't need to wait for port 0, only for later ports.
6085 */
6086 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6087 async_synchronize_cookie(cookie);
6088
6089 (void)ata_port_probe(ap);
f29d3b23
AV
6090
6091 /* in order to keep device order, we need to synchronize at this point */
6092 async_synchronize_cookie(cookie);
6093
6094 ata_scsi_scan_host(ap, 1);
79318057 6095}
238c9cf9 6096
f3187195
TH
6097/**
6098 * ata_host_register - register initialized ATA host
6099 * @host: ATA host to register
6100 * @sht: template for SCSI host
6101 *
6102 * Register initialized ATA host. @host is allocated using
6103 * ata_host_alloc() and fully initialized by LLD. This function
6104 * starts ports, registers @host with ATA and SCSI layers and
6105 * probe registered devices.
6106 *
6107 * LOCKING:
6108 * Inherited from calling layer (may sleep).
6109 *
6110 * RETURNS:
6111 * 0 on success, -errno otherwise.
6112 */
6113int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6114{
6115 int i, rc;
6116
1a112d10 6117 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
1871ee13 6118
f3187195
TH
6119 /* host must have been started */
6120 if (!(host->flags & ATA_HOST_STARTED)) {
a44fec1f 6121 dev_err(host->dev, "BUG: trying to register unstarted host\n");
f3187195
TH
6122 WARN_ON(1);
6123 return -EINVAL;
6124 }
6125
6126 /* Blow away unused ports. This happens when LLD can't
6127 * determine the exact number of ports to allocate at
6128 * allocation time.
6129 */
6130 for (i = host->n_ports; host->ports[i]; i++)
6131 kfree(host->ports[i]);
6132
6133 /* give ports names and add SCSI hosts */
e628dc99 6134 for (i = 0; i < host->n_ports; i++) {
85d6725b 6135 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
e628dc99
DM
6136 host->ports[i]->local_port_no = i + 1;
6137 }
4fca377f 6138
d9027470
GG
6139 /* Create associated sysfs transport objects */
6140 for (i = 0; i < host->n_ports; i++) {
6141 rc = ata_tport_add(host->dev,host->ports[i]);
6142 if (rc) {
6143 goto err_tadd;
6144 }
6145 }
6146
f3187195
TH
6147 rc = ata_scsi_add_hosts(host, sht);
6148 if (rc)
d9027470 6149 goto err_tadd;
f3187195
TH
6150
6151 /* set cable, sata_spd_limit and report */
6152 for (i = 0; i < host->n_ports; i++) {
6153 struct ata_port *ap = host->ports[i];
f3187195
TH
6154 unsigned long xfer_mask;
6155
6156 /* set SATA cable type if still unset */
6157 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6158 ap->cbl = ATA_CBL_SATA;
6159
6160 /* init sata_spd_limit to the current value */
4fb37a25 6161 sata_link_init_spd(&ap->link);
b1c72916
TH
6162 if (ap->slave_link)
6163 sata_link_init_spd(ap->slave_link);
f3187195 6164
cbcdd875 6165 /* print per-port info to dmesg */
f3187195
TH
6166 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6167 ap->udma_mask);
6168
abf6e8ed 6169 if (!ata_port_is_dummy(ap)) {
a9a79dfe
JP
6170 ata_port_info(ap, "%cATA max %s %s\n",
6171 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6172 ata_mode_string(xfer_mask),
6173 ap->link.eh_info.desc);
abf6e8ed
TH
6174 ata_ehi_clear_desc(&ap->link.eh_info);
6175 } else
a9a79dfe 6176 ata_port_info(ap, "DUMMY\n");
f3187195
TH
6177 }
6178
f6005354 6179 /* perform each probe asynchronously */
f3187195
TH
6180 for (i = 0; i < host->n_ports; i++) {
6181 struct ata_port *ap = host->ports[i];
79318057 6182 async_schedule(async_port_probe, ap);
f3187195 6183 }
f3187195
TH
6184
6185 return 0;
d9027470
GG
6186
6187 err_tadd:
6188 while (--i >= 0) {
6189 ata_tport_delete(host->ports[i]);
6190 }
6191 return rc;
6192
f3187195
TH
6193}
6194
f5cda257
TH
6195/**
6196 * ata_host_activate - start host, request IRQ and register it
6197 * @host: target ATA host
6198 * @irq: IRQ to request
6199 * @irq_handler: irq_handler used when requesting IRQ
6200 * @irq_flags: irq_flags used when requesting IRQ
6201 * @sht: scsi_host_template to use when registering the host
6202 *
6203 * After allocating an ATA host and initializing it, most libata
6204 * LLDs perform three steps to activate the host - start host,
6205 * request IRQ and register it. This helper takes necessasry
6206 * arguments and performs the three steps in one go.
6207 *
3d46b2e2
PM
6208 * An invalid IRQ skips the IRQ registration and expects the host to
6209 * have set polling mode on the port. In this case, @irq_handler
6210 * should be NULL.
6211 *
f5cda257
TH
6212 * LOCKING:
6213 * Inherited from calling layer (may sleep).
6214 *
6215 * RETURNS:
6216 * 0 on success, -errno otherwise.
6217 */
6218int ata_host_activate(struct ata_host *host, int irq,
6219 irq_handler_t irq_handler, unsigned long irq_flags,
6220 struct scsi_host_template *sht)
6221{
cbcdd875 6222 int i, rc;
f5cda257
TH
6223
6224 rc = ata_host_start(host);
6225 if (rc)
6226 return rc;
6227
3d46b2e2
PM
6228 /* Special case for polling mode */
6229 if (!irq) {
6230 WARN_ON(irq_handler);
6231 return ata_host_register(host, sht);
6232 }
6233
f5cda257 6234 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
4f37b504 6235 dev_name(host->dev), host);
f5cda257
TH
6236 if (rc)
6237 return rc;
6238
cbcdd875
TH
6239 for (i = 0; i < host->n_ports; i++)
6240 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6241
f5cda257
TH
6242 rc = ata_host_register(host, sht);
6243 /* if failed, just free the IRQ and leave ports alone */
6244 if (rc)
6245 devm_free_irq(host->dev, irq, host);
6246
6247 return rc;
6248}
6249
720ba126
TH
6250/**
6251 * ata_port_detach - Detach ATA port in prepration of device removal
6252 * @ap: ATA port to be detached
6253 *
6254 * Detach all ATA devices and the associated SCSI devices of @ap;
6255 * then, remove the associated SCSI host. @ap is guaranteed to
6256 * be quiescent on return from this function.
6257 *
6258 * LOCKING:
6259 * Kernel thread context (may sleep).
6260 */
741b7763 6261static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6262{
6263 unsigned long flags;
a6f9bf4d
LK
6264 struct ata_link *link;
6265 struct ata_device *dev;
720ba126
TH
6266
6267 if (!ap->ops->error_handler)
c3cf30a9 6268 goto skip_eh;
720ba126
TH
6269
6270 /* tell EH we're leaving & flush EH */
ba6a1308 6271 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6272 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6273 ata_port_schedule_eh(ap);
ba6a1308 6274 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6275
ece180d1 6276 /* wait till EH commits suicide */
720ba126
TH
6277 ata_port_wait_eh(ap);
6278
ece180d1
TH
6279 /* it better be dead now */
6280 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6281
afe2c511 6282 cancel_delayed_work_sync(&ap->hotplug_task);
720ba126 6283
c3cf30a9 6284 skip_eh:
a6f9bf4d
LK
6285 /* clean up zpodd on port removal */
6286 ata_for_each_link(link, ap, HOST_FIRST) {
6287 ata_for_each_dev(dev, link, ALL) {
6288 if (zpodd_dev_enabled(dev))
6289 zpodd_exit(dev);
6290 }
6291 }
d9027470
GG
6292 if (ap->pmp_link) {
6293 int i;
6294 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6295 ata_tlink_delete(&ap->pmp_link[i]);
6296 }
720ba126 6297 /* remove the associated SCSI host */
cca3974e 6298 scsi_remove_host(ap->scsi_host);
c5700766 6299 ata_tport_delete(ap);
720ba126
TH
6300}
6301
0529c159
TH
6302/**
6303 * ata_host_detach - Detach all ports of an ATA host
6304 * @host: Host to detach
6305 *
6306 * Detach all ports of @host.
6307 *
6308 * LOCKING:
6309 * Kernel thread context (may sleep).
6310 */
6311void ata_host_detach(struct ata_host *host)
6312{
6313 int i;
6314
6315 for (i = 0; i < host->n_ports; i++)
6316 ata_port_detach(host->ports[i]);
562f0c2d
TH
6317
6318 /* the host is dead now, dissociate ACPI */
6319 ata_acpi_dissociate(host);
0529c159
TH
6320}
6321
374b1873
JG
6322#ifdef CONFIG_PCI
6323
1da177e4
LT
6324/**
6325 * ata_pci_remove_one - PCI layer callback for device removal
6326 * @pdev: PCI device that was removed
6327 *
b878ca5d
TH
6328 * PCI layer indicates to libata via this hook that hot-unplug or
6329 * module unload event has occurred. Detach all ports. Resource
6330 * release is handled via devres.
1da177e4
LT
6331 *
6332 * LOCKING:
6333 * Inherited from PCI layer (may sleep).
6334 */
f0d36efd 6335void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6336{
04a3f5b7 6337 struct ata_host *host = pci_get_drvdata(pdev);
1da177e4 6338
b878ca5d 6339 ata_host_detach(host);
1da177e4
LT
6340}
6341
6342/* move to PCI subsystem */
057ace5e 6343int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6344{
6345 unsigned long tmp = 0;
6346
6347 switch (bits->width) {
6348 case 1: {
6349 u8 tmp8 = 0;
6350 pci_read_config_byte(pdev, bits->reg, &tmp8);
6351 tmp = tmp8;
6352 break;
6353 }
6354 case 2: {
6355 u16 tmp16 = 0;
6356 pci_read_config_word(pdev, bits->reg, &tmp16);
6357 tmp = tmp16;
6358 break;
6359 }
6360 case 4: {
6361 u32 tmp32 = 0;
6362 pci_read_config_dword(pdev, bits->reg, &tmp32);
6363 tmp = tmp32;
6364 break;
6365 }
6366
6367 default:
6368 return -EINVAL;
6369 }
6370
6371 tmp &= bits->mask;
6372
6373 return (tmp == bits->val) ? 1 : 0;
6374}
9b847548 6375
6ffa01d8 6376#ifdef CONFIG_PM
3c5100c1 6377void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6378{
6379 pci_save_state(pdev);
4c90d971 6380 pci_disable_device(pdev);
500530f6 6381
3a2d5b70 6382 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6383 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6384}
6385
553c4aa6 6386int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6387{
553c4aa6
TH
6388 int rc;
6389
9b847548
JA
6390 pci_set_power_state(pdev, PCI_D0);
6391 pci_restore_state(pdev);
553c4aa6 6392
b878ca5d 6393 rc = pcim_enable_device(pdev);
553c4aa6 6394 if (rc) {
a44fec1f
JP
6395 dev_err(&pdev->dev,
6396 "failed to enable device after resume (%d)\n", rc);
553c4aa6
TH
6397 return rc;
6398 }
6399
9b847548 6400 pci_set_master(pdev);
553c4aa6 6401 return 0;
500530f6
TH
6402}
6403
3c5100c1 6404int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6405{
04a3f5b7 6406 struct ata_host *host = pci_get_drvdata(pdev);
500530f6
TH
6407 int rc = 0;
6408
cca3974e 6409 rc = ata_host_suspend(host, mesg);
500530f6
TH
6410 if (rc)
6411 return rc;
6412
3c5100c1 6413 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6414
6415 return 0;
6416}
6417
6418int ata_pci_device_resume(struct pci_dev *pdev)
6419{
04a3f5b7 6420 struct ata_host *host = pci_get_drvdata(pdev);
553c4aa6 6421 int rc;
500530f6 6422
553c4aa6
TH
6423 rc = ata_pci_device_do_resume(pdev);
6424 if (rc == 0)
6425 ata_host_resume(host);
6426 return rc;
9b847548 6427}
6ffa01d8
TH
6428#endif /* CONFIG_PM */
6429
1da177e4
LT
6430#endif /* CONFIG_PCI */
6431
b7db04d9
BN
6432/**
6433 * ata_platform_remove_one - Platform layer callback for device removal
6434 * @pdev: Platform device that was removed
6435 *
6436 * Platform layer indicates to libata via this hook that hot-unplug or
6437 * module unload event has occurred. Detach all ports. Resource
6438 * release is handled via devres.
6439 *
6440 * LOCKING:
6441 * Inherited from platform layer (may sleep).
6442 */
6443int ata_platform_remove_one(struct platform_device *pdev)
6444{
6445 struct ata_host *host = platform_get_drvdata(pdev);
6446
6447 ata_host_detach(host);
6448
6449 return 0;
6450}
6451
33267325
TH
6452static int __init ata_parse_force_one(char **cur,
6453 struct ata_force_ent *force_ent,
6454 const char **reason)
6455{
0f5f264b 6456 static const struct ata_force_param force_tbl[] __initconst = {
33267325
TH
6457 { "40c", .cbl = ATA_CBL_PATA40 },
6458 { "80c", .cbl = ATA_CBL_PATA80 },
6459 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6460 { "unk", .cbl = ATA_CBL_PATA_UNK },
6461 { "ign", .cbl = ATA_CBL_PATA_IGN },
6462 { "sata", .cbl = ATA_CBL_SATA },
6463 { "1.5Gbps", .spd_limit = 1 },
6464 { "3.0Gbps", .spd_limit = 2 },
6465 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6466 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
d7b16e4f
MP
6467 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6468 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
43c9c591 6469 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6470 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6471 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6472 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6473 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6474 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6475 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6476 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6477 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6478 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6479 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6480 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6481 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6482 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6483 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6484 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6485 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6486 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6487 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6488 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6489 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6490 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6491 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6492 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6493 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6494 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6495 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6496 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6497 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6498 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6499 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6500 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6501 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6502 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6503 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6504 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6505 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6506 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
ca6d43b0 6507 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
966fbe19 6508 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
b8bd6dc3 6509 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
33267325
TH
6510 };
6511 char *start = *cur, *p = *cur;
6512 char *id, *val, *endp;
6513 const struct ata_force_param *match_fp = NULL;
6514 int nr_matches = 0, i;
6515
6516 /* find where this param ends and update *cur */
6517 while (*p != '\0' && *p != ',')
6518 p++;
6519
6520 if (*p == '\0')
6521 *cur = p;
6522 else
6523 *cur = p + 1;
6524
6525 *p = '\0';
6526
6527 /* parse */
6528 p = strchr(start, ':');
6529 if (!p) {
6530 val = strstrip(start);
6531 goto parse_val;
6532 }
6533 *p = '\0';
6534
6535 id = strstrip(start);
6536 val = strstrip(p + 1);
6537
6538 /* parse id */
6539 p = strchr(id, '.');
6540 if (p) {
6541 *p++ = '\0';
6542 force_ent->device = simple_strtoul(p, &endp, 10);
6543 if (p == endp || *endp != '\0') {
6544 *reason = "invalid device";
6545 return -EINVAL;
6546 }
6547 }
6548
6549 force_ent->port = simple_strtoul(id, &endp, 10);
6550 if (p == endp || *endp != '\0') {
6551 *reason = "invalid port/link";
6552 return -EINVAL;
6553 }
6554
6555 parse_val:
6556 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6557 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6558 const struct ata_force_param *fp = &force_tbl[i];
6559
6560 if (strncasecmp(val, fp->name, strlen(val)))
6561 continue;
6562
6563 nr_matches++;
6564 match_fp = fp;
6565
6566 if (strcasecmp(val, fp->name) == 0) {
6567 nr_matches = 1;
6568 break;
6569 }
6570 }
6571
6572 if (!nr_matches) {
6573 *reason = "unknown value";
6574 return -EINVAL;
6575 }
6576 if (nr_matches > 1) {
6577 *reason = "ambigious value";
6578 return -EINVAL;
6579 }
6580
6581 force_ent->param = *match_fp;
6582
6583 return 0;
6584}
6585
6586static void __init ata_parse_force_param(void)
6587{
6588 int idx = 0, size = 1;
6589 int last_port = -1, last_device = -1;
6590 char *p, *cur, *next;
6591
6592 /* calculate maximum number of params and allocate force_tbl */
6593 for (p = ata_force_param_buf; *p; p++)
6594 if (*p == ',')
6595 size++;
6596
6597 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6598 if (!ata_force_tbl) {
6599 printk(KERN_WARNING "ata: failed to extend force table, "
6600 "libata.force ignored\n");
6601 return;
6602 }
6603
6604 /* parse and populate the table */
6605 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6606 const char *reason = "";
6607 struct ata_force_ent te = { .port = -1, .device = -1 };
6608
6609 next = cur;
6610 if (ata_parse_force_one(&next, &te, &reason)) {
6611 printk(KERN_WARNING "ata: failed to parse force "
6612 "parameter \"%s\" (%s)\n",
6613 cur, reason);
6614 continue;
6615 }
6616
6617 if (te.port == -1) {
6618 te.port = last_port;
6619 te.device = last_device;
6620 }
6621
6622 ata_force_tbl[idx++] = te;
6623
6624 last_port = te.port;
6625 last_device = te.device;
6626 }
6627
6628 ata_force_tbl_size = idx;
6629}
1da177e4 6630
1da177e4
LT
6631static int __init ata_init(void)
6632{
d9027470 6633 int rc;
270390e1 6634
33267325
TH
6635 ata_parse_force_param();
6636
270390e1 6637 rc = ata_sff_init();
ad72cf98
TH
6638 if (rc) {
6639 kfree(ata_force_tbl);
6640 return rc;
6641 }
453b07ac 6642
d9027470
GG
6643 libata_transport_init();
6644 ata_scsi_transport_template = ata_attach_transport();
6645 if (!ata_scsi_transport_template) {
6646 ata_sff_exit();
6647 rc = -ENOMEM;
6648 goto err_out;
4fca377f 6649 }
d9027470 6650
1da177e4
LT
6651 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6652 return 0;
d9027470
GG
6653
6654err_out:
6655 return rc;
1da177e4
LT
6656}
6657
6658static void __exit ata_exit(void)
6659{
d9027470
GG
6660 ata_release_transport(ata_scsi_transport_template);
6661 libata_transport_exit();
270390e1 6662 ata_sff_exit();
33267325 6663 kfree(ata_force_tbl);
1da177e4
LT
6664}
6665
a4625085 6666subsys_initcall(ata_init);
1da177e4
LT
6667module_exit(ata_exit);
6668
9990b6f3 6669static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6670
6671int ata_ratelimit(void)
6672{
9990b6f3 6673 return __ratelimit(&ratelimit);
67846b30
JG
6674}
6675
c0c362b6
TH
6676/**
6677 * ata_msleep - ATA EH owner aware msleep
6678 * @ap: ATA port to attribute the sleep to
6679 * @msecs: duration to sleep in milliseconds
6680 *
6681 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6682 * ownership is released before going to sleep and reacquired
6683 * after the sleep is complete. IOW, other ports sharing the
6684 * @ap->host will be allowed to own the EH while this task is
6685 * sleeping.
6686 *
6687 * LOCKING:
6688 * Might sleep.
6689 */
97750ceb
TH
6690void ata_msleep(struct ata_port *ap, unsigned int msecs)
6691{
c0c362b6
TH
6692 bool owns_eh = ap && ap->host->eh_owner == current;
6693
6694 if (owns_eh)
6695 ata_eh_release(ap);
6696
97750ceb 6697 msleep(msecs);
c0c362b6
TH
6698
6699 if (owns_eh)
6700 ata_eh_acquire(ap);
97750ceb
TH
6701}
6702
c22daff4
TH
6703/**
6704 * ata_wait_register - wait until register value changes
97750ceb 6705 * @ap: ATA port to wait register for, can be NULL
c22daff4
TH
6706 * @reg: IO-mapped register
6707 * @mask: Mask to apply to read register value
6708 * @val: Wait condition
341c2c95
TH
6709 * @interval: polling interval in milliseconds
6710 * @timeout: timeout in milliseconds
c22daff4
TH
6711 *
6712 * Waiting for some bits of register to change is a common
6713 * operation for ATA controllers. This function reads 32bit LE
6714 * IO-mapped register @reg and tests for the following condition.
6715 *
6716 * (*@reg & mask) != val
6717 *
6718 * If the condition is met, it returns; otherwise, the process is
6719 * repeated after @interval_msec until timeout.
6720 *
6721 * LOCKING:
6722 * Kernel thread context (may sleep)
6723 *
6724 * RETURNS:
6725 * The final register value.
6726 */
97750ceb 6727u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
341c2c95 6728 unsigned long interval, unsigned long timeout)
c22daff4 6729{
341c2c95 6730 unsigned long deadline;
c22daff4
TH
6731 u32 tmp;
6732
6733 tmp = ioread32(reg);
6734
6735 /* Calculate timeout _after_ the first read to make sure
6736 * preceding writes reach the controller before starting to
6737 * eat away the timeout.
6738 */
341c2c95 6739 deadline = ata_deadline(jiffies, timeout);
c22daff4 6740
341c2c95 6741 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
97750ceb 6742 ata_msleep(ap, interval);
c22daff4
TH
6743 tmp = ioread32(reg);
6744 }
6745
6746 return tmp;
6747}
6748
8393b811
GM
6749/**
6750 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6751 * @link: Link receiving the event
6752 *
6753 * Test whether the received PHY event has to be ignored or not.
6754 *
6755 * LOCKING:
6756 * None:
6757 *
6758 * RETURNS:
6759 * True if the event has to be ignored.
6760 */
6761bool sata_lpm_ignore_phy_events(struct ata_link *link)
6762{
09c5b480
GM
6763 unsigned long lpm_timeout = link->last_lpm_change +
6764 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6765
8393b811 6766 /* if LPM is enabled, PHYRDY doesn't mean anything */
09c5b480
GM
6767 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6768 return true;
6769
6770 /* ignore the first PHY event after the LPM policy changed
6771 * as it is might be spurious
6772 */
6773 if ((link->flags & ATA_LFLAG_CHANGED) &&
6774 time_before(jiffies, lpm_timeout))
6775 return true;
6776
6777 return false;
8393b811
GM
6778}
6779EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6780
dd5b06c4
TH
6781/*
6782 * Dummy port_ops
6783 */
182d7bba 6784static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6785{
182d7bba 6786 return AC_ERR_SYSTEM;
dd5b06c4
TH
6787}
6788
182d7bba 6789static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6790{
182d7bba 6791 /* truly dummy */
dd5b06c4
TH
6792}
6793
029cfd6b 6794struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6795 .qc_prep = ata_noop_qc_prep,
6796 .qc_issue = ata_dummy_qc_issue,
182d7bba 6797 .error_handler = ata_dummy_error_handler,
e4a9c373
DW
6798 .sched_eh = ata_std_sched_eh,
6799 .end_eh = ata_std_end_eh,
dd5b06c4
TH
6800};
6801
21b0ad4f
TH
6802const struct ata_port_info ata_dummy_port_info = {
6803 .port_ops = &ata_dummy_port_ops,
6804};
6805
a9a79dfe
JP
6806/*
6807 * Utility print functions
6808 */
d7bead1b
JP
6809void ata_port_printk(const struct ata_port *ap, const char *level,
6810 const char *fmt, ...)
a9a79dfe
JP
6811{
6812 struct va_format vaf;
6813 va_list args;
a9a79dfe
JP
6814
6815 va_start(args, fmt);
6816
6817 vaf.fmt = fmt;
6818 vaf.va = &args;
6819
d7bead1b 6820 printk("%sata%u: %pV", level, ap->print_id, &vaf);
a9a79dfe
JP
6821
6822 va_end(args);
a9a79dfe
JP
6823}
6824EXPORT_SYMBOL(ata_port_printk);
6825
d7bead1b
JP
6826void ata_link_printk(const struct ata_link *link, const char *level,
6827 const char *fmt, ...)
a9a79dfe
JP
6828{
6829 struct va_format vaf;
6830 va_list args;
a9a79dfe
JP
6831
6832 va_start(args, fmt);
6833
6834 vaf.fmt = fmt;
6835 vaf.va = &args;
6836
6837 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
d7bead1b
JP
6838 printk("%sata%u.%02u: %pV",
6839 level, link->ap->print_id, link->pmp, &vaf);
a9a79dfe 6840 else
d7bead1b
JP
6841 printk("%sata%u: %pV",
6842 level, link->ap->print_id, &vaf);
a9a79dfe
JP
6843
6844 va_end(args);
a9a79dfe
JP
6845}
6846EXPORT_SYMBOL(ata_link_printk);
6847
d7bead1b 6848void ata_dev_printk(const struct ata_device *dev, const char *level,
a9a79dfe
JP
6849 const char *fmt, ...)
6850{
6851 struct va_format vaf;
6852 va_list args;
a9a79dfe
JP
6853
6854 va_start(args, fmt);
6855
6856 vaf.fmt = fmt;
6857 vaf.va = &args;
6858
d7bead1b
JP
6859 printk("%sata%u.%02u: %pV",
6860 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6861 &vaf);
a9a79dfe
JP
6862
6863 va_end(args);
a9a79dfe
JP
6864}
6865EXPORT_SYMBOL(ata_dev_printk);
6866
06296a1e
JP
6867void ata_print_version(const struct device *dev, const char *version)
6868{
6869 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6870}
6871EXPORT_SYMBOL(ata_print_version);
6872
1da177e4
LT
6873/*
6874 * libata is essentially a library of internal helper functions for
6875 * low-level ATA host controller drivers. As such, the API/ABI is
6876 * likely to change as new drivers are added and updated.
6877 * Do not depend on ABI/API stability.
6878 */
e9c83914
TH
6879EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6880EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6881EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6882EXPORT_SYMBOL_GPL(ata_base_port_ops);
6883EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6884EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6885EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6886EXPORT_SYMBOL_GPL(ata_link_next);
6887EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6888EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6889EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6890EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6891EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6892EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6893EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6894EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6895EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6896EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6897EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6898EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6899EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6900EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6901EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6902EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6903EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6904EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6905EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6906EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6907EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6908EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6909EXPORT_SYMBOL_GPL(ata_mode_string);
6910EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6911EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6912EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6913EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6914EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6915EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6916EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6917EXPORT_SYMBOL_GPL(sata_link_debounce);
6918EXPORT_SYMBOL_GPL(sata_link_resume);
1152b261 6919EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
0aa1113d 6920EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6921EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6922EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6923EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6924EXPORT_SYMBOL_GPL(ata_dev_classify);
6925EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6926EXPORT_SYMBOL_GPL(ata_ratelimit);
97750ceb 6927EXPORT_SYMBOL_GPL(ata_msleep);
c22daff4 6928EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6929EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6930EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6931EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6932EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
f6e67035 6933EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
34bf2170
TH
6934EXPORT_SYMBOL_GPL(sata_scr_valid);
6935EXPORT_SYMBOL_GPL(sata_scr_read);
6936EXPORT_SYMBOL_GPL(sata_scr_write);
6937EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6938EXPORT_SYMBOL_GPL(ata_link_online);
6939EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6940#ifdef CONFIG_PM
cca3974e
JG
6941EXPORT_SYMBOL_GPL(ata_host_suspend);
6942EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6943#endif /* CONFIG_PM */
6a62a04d
TH
6944EXPORT_SYMBOL_GPL(ata_id_string);
6945EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6946EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6947EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6948
1bc4ccff 6949EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6950EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6951EXPORT_SYMBOL_GPL(ata_timing_compute);
6952EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6953EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6954
1da177e4
LT
6955#ifdef CONFIG_PCI
6956EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6957EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6958#ifdef CONFIG_PM
500530f6
TH
6959EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6960EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6961EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6962EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6963#endif /* CONFIG_PM */
1da177e4 6964#endif /* CONFIG_PCI */
9b847548 6965
b7db04d9
BN
6966EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6967
b64bbc39
TH
6968EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6969EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6970EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6971EXPORT_SYMBOL_GPL(ata_port_desc);
6972#ifdef CONFIG_PCI
6973EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6974#endif /* CONFIG_PCI */
7b70fc03 6975EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6976EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6977EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6978EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6979EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6980EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6981EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6982EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6983EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6984EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6985EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6986EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6987
6988EXPORT_SYMBOL_GPL(ata_cable_40wire);
6989EXPORT_SYMBOL_GPL(ata_cable_80wire);
6990EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6991EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6992EXPORT_SYMBOL_GPL(ata_cable_sata);