drivers/rtc/rtc-da9052.c: add constraints to set valid year
[linux-2.6-block.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include "blk-cgroup.h"
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
8a3d2615
TH
86/* Per-cpu group stats */
87struct tg_stats_cpu {
88 /* total bytes transferred */
89 struct blkg_rwstat service_bytes;
90 /* total IOs serviced, post merge */
91 struct blkg_rwstat serviced;
92};
93
e43473b7 94struct throtl_grp {
f95a04af
TH
95 /* must be the first member */
96 struct blkg_policy_data pd;
97
c9e0332e 98 /* active throtl group service_queue member */
e43473b7
VG
99 struct rb_node rb_node;
100
0f3457f6
TH
101 /* throtl_data this group belongs to */
102 struct throtl_data *td;
103
49a2f1e3
TH
104 /* this group's service queue */
105 struct throtl_service_queue service_queue;
106
c5cc2070
TH
107 /*
108 * qnode_on_self is used when bios are directly queued to this
109 * throtl_grp so that local bios compete fairly with bios
110 * dispatched from children. qnode_on_parent is used when bios are
111 * dispatched from this throtl_grp into its parent and will compete
112 * with the sibling qnode_on_parents and the parent's
113 * qnode_on_self.
114 */
115 struct throtl_qnode qnode_on_self[2];
116 struct throtl_qnode qnode_on_parent[2];
117
e43473b7
VG
118 /*
119 * Dispatch time in jiffies. This is the estimated time when group
120 * will unthrottle and is ready to dispatch more bio. It is used as
121 * key to sort active groups in service tree.
122 */
123 unsigned long disptime;
124
e43473b7
VG
125 unsigned int flags;
126
693e751e
TH
127 /* are there any throtl rules between this group and td? */
128 bool has_rules[2];
129
e43473b7
VG
130 /* bytes per second rate limits */
131 uint64_t bps[2];
132
8e89d13f
VG
133 /* IOPS limits */
134 unsigned int iops[2];
135
e43473b7
VG
136 /* Number of bytes disptached in current slice */
137 uint64_t bytes_disp[2];
8e89d13f
VG
138 /* Number of bio's dispatched in current slice */
139 unsigned int io_disp[2];
e43473b7
VG
140
141 /* When did we start a new slice */
142 unsigned long slice_start[2];
143 unsigned long slice_end[2];
fe071437 144
8a3d2615
TH
145 /* Per cpu stats pointer */
146 struct tg_stats_cpu __percpu *stats_cpu;
147
148 /* List of tgs waiting for per cpu stats memory to be allocated */
149 struct list_head stats_alloc_node;
e43473b7
VG
150};
151
152struct throtl_data
153{
e43473b7 154 /* service tree for active throtl groups */
c9e0332e 155 struct throtl_service_queue service_queue;
e43473b7 156
e43473b7
VG
157 struct request_queue *queue;
158
159 /* Total Number of queued bios on READ and WRITE lists */
160 unsigned int nr_queued[2];
161
162 /*
02977e4a 163 * number of total undestroyed groups
e43473b7
VG
164 */
165 unsigned int nr_undestroyed_grps;
166
167 /* Work for dispatching throttled bios */
69df0ab0 168 struct work_struct dispatch_work;
e43473b7
VG
169};
170
8a3d2615
TH
171/* list and work item to allocate percpu group stats */
172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
173static LIST_HEAD(tg_stats_alloc_list);
174
175static void tg_stats_alloc_fn(struct work_struct *);
176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
177
69df0ab0
TH
178static void throtl_pending_timer_fn(unsigned long arg);
179
f95a04af
TH
180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
181{
182 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
183}
184
3c798398 185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 186{
f95a04af 187 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
188}
189
3c798398 190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 191{
f95a04af 192 return pd_to_blkg(&tg->pd);
0381411e
TH
193}
194
03d8e111
TH
195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
196{
197 return blkg_to_tg(td->queue->root_blkg);
198}
199
fda6f272
TH
200/**
201 * sq_to_tg - return the throl_grp the specified service queue belongs to
202 * @sq: the throtl_service_queue of interest
203 *
204 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
205 * embedded in throtl_data, %NULL is returned.
206 */
207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
208{
209 if (sq && sq->parent_sq)
210 return container_of(sq, struct throtl_grp, service_queue);
211 else
212 return NULL;
213}
214
215/**
216 * sq_to_td - return throtl_data the specified service queue belongs to
217 * @sq: the throtl_service_queue of interest
218 *
219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
220 * Determine the associated throtl_data accordingly and return it.
221 */
222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
223{
224 struct throtl_grp *tg = sq_to_tg(sq);
225
226 if (tg)
227 return tg->td;
228 else
229 return container_of(sq, struct throtl_data, service_queue);
230}
231
232/**
233 * throtl_log - log debug message via blktrace
234 * @sq: the service_queue being reported
235 * @fmt: printf format string
236 * @args: printf args
237 *
238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
239 * throtl_grp; otherwise, just "throtl".
240 *
241 * TODO: this should be made a function and name formatting should happen
242 * after testing whether blktrace is enabled.
243 */
244#define throtl_log(sq, fmt, args...) do { \
245 struct throtl_grp *__tg = sq_to_tg((sq)); \
246 struct throtl_data *__td = sq_to_td((sq)); \
247 \
248 (void)__td; \
249 if ((__tg)) { \
250 char __pbuf[128]; \
54e7ed12 251 \
fda6f272
TH
252 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
253 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
254 } else { \
255 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
256 } \
54e7ed12 257} while (0)
e43473b7 258
90d3839b
PZ
259static void tg_stats_init(struct tg_stats_cpu *tg_stats)
260{
261 blkg_rwstat_init(&tg_stats->service_bytes);
262 blkg_rwstat_init(&tg_stats->serviced);
263}
264
8a3d2615
TH
265/*
266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
3b07e9ca 267 * system_wq once there are some groups on the alloc_list waiting for
8a3d2615
TH
268 * allocation.
269 */
270static void tg_stats_alloc_fn(struct work_struct *work)
271{
272 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
273 struct delayed_work *dwork = to_delayed_work(work);
274 bool empty = false;
275
276alloc_stats:
277 if (!stats_cpu) {
90d3839b
PZ
278 int cpu;
279
8a3d2615
TH
280 stats_cpu = alloc_percpu(struct tg_stats_cpu);
281 if (!stats_cpu) {
282 /* allocation failed, try again after some time */
3b07e9ca 283 schedule_delayed_work(dwork, msecs_to_jiffies(10));
8a3d2615
TH
284 return;
285 }
90d3839b
PZ
286 for_each_possible_cpu(cpu)
287 tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
8a3d2615
TH
288 }
289
290 spin_lock_irq(&tg_stats_alloc_lock);
291
292 if (!list_empty(&tg_stats_alloc_list)) {
293 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
294 struct throtl_grp,
295 stats_alloc_node);
296 swap(tg->stats_cpu, stats_cpu);
297 list_del_init(&tg->stats_alloc_node);
298 }
299
300 empty = list_empty(&tg_stats_alloc_list);
301 spin_unlock_irq(&tg_stats_alloc_lock);
302 if (!empty)
303 goto alloc_stats;
304}
305
c5cc2070
TH
306static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
307{
308 INIT_LIST_HEAD(&qn->node);
309 bio_list_init(&qn->bios);
310 qn->tg = tg;
311}
312
313/**
314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
315 * @bio: bio being added
316 * @qn: qnode to add bio to
317 * @queued: the service_queue->queued[] list @qn belongs to
318 *
319 * Add @bio to @qn and put @qn on @queued if it's not already on.
320 * @qn->tg's reference count is bumped when @qn is activated. See the
321 * comment on top of throtl_qnode definition for details.
322 */
323static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
324 struct list_head *queued)
325{
326 bio_list_add(&qn->bios, bio);
327 if (list_empty(&qn->node)) {
328 list_add_tail(&qn->node, queued);
329 blkg_get(tg_to_blkg(qn->tg));
330 }
331}
332
333/**
334 * throtl_peek_queued - peek the first bio on a qnode list
335 * @queued: the qnode list to peek
336 */
337static struct bio *throtl_peek_queued(struct list_head *queued)
338{
339 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
340 struct bio *bio;
341
342 if (list_empty(queued))
343 return NULL;
344
345 bio = bio_list_peek(&qn->bios);
346 WARN_ON_ONCE(!bio);
347 return bio;
348}
349
350/**
351 * throtl_pop_queued - pop the first bio form a qnode list
352 * @queued: the qnode list to pop a bio from
353 * @tg_to_put: optional out argument for throtl_grp to put
354 *
355 * Pop the first bio from the qnode list @queued. After popping, the first
356 * qnode is removed from @queued if empty or moved to the end of @queued so
357 * that the popping order is round-robin.
358 *
359 * When the first qnode is removed, its associated throtl_grp should be put
360 * too. If @tg_to_put is NULL, this function automatically puts it;
361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
362 * responsible for putting it.
363 */
364static struct bio *throtl_pop_queued(struct list_head *queued,
365 struct throtl_grp **tg_to_put)
366{
367 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
368 struct bio *bio;
369
370 if (list_empty(queued))
371 return NULL;
372
373 bio = bio_list_pop(&qn->bios);
374 WARN_ON_ONCE(!bio);
375
376 if (bio_list_empty(&qn->bios)) {
377 list_del_init(&qn->node);
378 if (tg_to_put)
379 *tg_to_put = qn->tg;
380 else
381 blkg_put(tg_to_blkg(qn->tg));
382 } else {
383 list_move_tail(&qn->node, queued);
384 }
385
386 return bio;
387}
388
49a2f1e3 389/* init a service_queue, assumes the caller zeroed it */
77216b04
TH
390static void throtl_service_queue_init(struct throtl_service_queue *sq,
391 struct throtl_service_queue *parent_sq)
49a2f1e3 392{
c5cc2070
TH
393 INIT_LIST_HEAD(&sq->queued[0]);
394 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 395 sq->pending_tree = RB_ROOT;
77216b04 396 sq->parent_sq = parent_sq;
69df0ab0
TH
397 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
398 (unsigned long)sq);
399}
400
401static void throtl_service_queue_exit(struct throtl_service_queue *sq)
402{
403 del_timer_sync(&sq->pending_timer);
49a2f1e3
TH
404}
405
3c798398 406static void throtl_pd_init(struct blkcg_gq *blkg)
a29a171e 407{
0381411e 408 struct throtl_grp *tg = blkg_to_tg(blkg);
77216b04 409 struct throtl_data *td = blkg->q->td;
9138125b 410 struct throtl_service_queue *parent_sq;
ff26eaad 411 unsigned long flags;
c5cc2070 412 int rw;
cd1604fa 413
9138125b 414 /*
aa6ec29b 415 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
416 * behavior where limits on a given throtl_grp are applied to the
417 * whole subtree rather than just the group itself. e.g. If 16M
418 * read_bps limit is set on the root group, the whole system can't
419 * exceed 16M for the device.
420 *
aa6ec29b 421 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
422 * behavior is retained where all throtl_grps are treated as if
423 * they're all separate root groups right below throtl_data.
424 * Limits of a group don't interact with limits of other groups
425 * regardless of the position of the group in the hierarchy.
426 */
427 parent_sq = &td->service_queue;
428
aa6ec29b 429 if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
9138125b
TH
430 parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
431
432 throtl_service_queue_init(&tg->service_queue, parent_sq);
433
c5cc2070
TH
434 for (rw = READ; rw <= WRITE; rw++) {
435 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
436 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
437 }
438
a29a171e 439 RB_CLEAR_NODE(&tg->rb_node);
77216b04 440 tg->td = td;
a29a171e 441
e56da7e2
TH
442 tg->bps[READ] = -1;
443 tg->bps[WRITE] = -1;
444 tg->iops[READ] = -1;
445 tg->iops[WRITE] = -1;
8a3d2615
TH
446
447 /*
448 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
449 * but percpu allocator can't be called from IO path. Queue tg on
450 * tg_stats_alloc_list and allocate from work item.
451 */
ff26eaad 452 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 453 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
3b07e9ca 454 schedule_delayed_work(&tg_stats_alloc_work, 0);
ff26eaad 455 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
456}
457
693e751e
TH
458/*
459 * Set has_rules[] if @tg or any of its parents have limits configured.
460 * This doesn't require walking up to the top of the hierarchy as the
461 * parent's has_rules[] is guaranteed to be correct.
462 */
463static void tg_update_has_rules(struct throtl_grp *tg)
464{
465 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
466 int rw;
467
468 for (rw = READ; rw <= WRITE; rw++)
469 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
470 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
471}
472
473static void throtl_pd_online(struct blkcg_gq *blkg)
474{
475 /*
476 * We don't want new groups to escape the limits of its ancestors.
477 * Update has_rules[] after a new group is brought online.
478 */
479 tg_update_has_rules(blkg_to_tg(blkg));
480}
481
3c798398 482static void throtl_pd_exit(struct blkcg_gq *blkg)
8a3d2615
TH
483{
484 struct throtl_grp *tg = blkg_to_tg(blkg);
ff26eaad 485 unsigned long flags;
8a3d2615 486
ff26eaad 487 spin_lock_irqsave(&tg_stats_alloc_lock, flags);
8a3d2615 488 list_del_init(&tg->stats_alloc_node);
ff26eaad 489 spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
8a3d2615
TH
490
491 free_percpu(tg->stats_cpu);
69df0ab0
TH
492
493 throtl_service_queue_exit(&tg->service_queue);
8a3d2615
TH
494}
495
3c798398 496static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
8a3d2615
TH
497{
498 struct throtl_grp *tg = blkg_to_tg(blkg);
499 int cpu;
500
501 if (tg->stats_cpu == NULL)
502 return;
503
504 for_each_possible_cpu(cpu) {
505 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
506
507 blkg_rwstat_reset(&sc->service_bytes);
508 blkg_rwstat_reset(&sc->serviced);
509 }
a29a171e
VG
510}
511
3c798398
TH
512static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
513 struct blkcg *blkcg)
e43473b7 514{
be2c6b19 515 /*
3c798398
TH
516 * This is the common case when there are no blkcgs. Avoid lookup
517 * in this case
cd1604fa 518 */
3c798398 519 if (blkcg == &blkcg_root)
03d8e111 520 return td_root_tg(td);
e43473b7 521
e8989fae 522 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
e43473b7
VG
523}
524
cd1604fa 525static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
3c798398 526 struct blkcg *blkcg)
e43473b7 527{
f469a7b4 528 struct request_queue *q = td->queue;
cd1604fa 529 struct throtl_grp *tg = NULL;
bc16a4f9 530
f469a7b4 531 /*
3c798398
TH
532 * This is the common case when there are no blkcgs. Avoid lookup
533 * in this case
f469a7b4 534 */
3c798398 535 if (blkcg == &blkcg_root) {
03d8e111 536 tg = td_root_tg(td);
cd1604fa 537 } else {
3c798398 538 struct blkcg_gq *blkg;
f469a7b4 539
3c96cb32 540 blkg = blkg_lookup_create(blkcg, q);
f469a7b4 541
cd1604fa
TH
542 /* if %NULL and @q is alive, fall back to root_tg */
543 if (!IS_ERR(blkg))
0381411e 544 tg = blkg_to_tg(blkg);
3f3299d5 545 else if (!blk_queue_dying(q))
03d8e111 546 tg = td_root_tg(td);
f469a7b4
VG
547 }
548
e43473b7
VG
549 return tg;
550}
551
0049af73
TH
552static struct throtl_grp *
553throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
554{
555 /* Service tree is empty */
0049af73 556 if (!parent_sq->nr_pending)
e43473b7
VG
557 return NULL;
558
0049af73
TH
559 if (!parent_sq->first_pending)
560 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 561
0049af73
TH
562 if (parent_sq->first_pending)
563 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
564
565 return NULL;
566}
567
568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
569{
570 rb_erase(n, root);
571 RB_CLEAR_NODE(n);
572}
573
0049af73
TH
574static void throtl_rb_erase(struct rb_node *n,
575 struct throtl_service_queue *parent_sq)
e43473b7 576{
0049af73
TH
577 if (parent_sq->first_pending == n)
578 parent_sq->first_pending = NULL;
579 rb_erase_init(n, &parent_sq->pending_tree);
580 --parent_sq->nr_pending;
e43473b7
VG
581}
582
0049af73 583static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
584{
585 struct throtl_grp *tg;
586
0049af73 587 tg = throtl_rb_first(parent_sq);
e43473b7
VG
588 if (!tg)
589 return;
590
0049af73 591 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
592}
593
77216b04 594static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 595{
77216b04 596 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 597 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
598 struct rb_node *parent = NULL;
599 struct throtl_grp *__tg;
600 unsigned long key = tg->disptime;
601 int left = 1;
602
603 while (*node != NULL) {
604 parent = *node;
605 __tg = rb_entry_tg(parent);
606
607 if (time_before(key, __tg->disptime))
608 node = &parent->rb_left;
609 else {
610 node = &parent->rb_right;
611 left = 0;
612 }
613 }
614
615 if (left)
0049af73 616 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
617
618 rb_link_node(&tg->rb_node, parent, node);
0049af73 619 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
620}
621
77216b04 622static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 623{
77216b04 624 tg_service_queue_add(tg);
5b2c16aa 625 tg->flags |= THROTL_TG_PENDING;
77216b04 626 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
627}
628
77216b04 629static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 630{
5b2c16aa 631 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 632 __throtl_enqueue_tg(tg);
e43473b7
VG
633}
634
77216b04 635static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 636{
77216b04 637 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 638 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
639}
640
77216b04 641static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 642{
5b2c16aa 643 if (tg->flags & THROTL_TG_PENDING)
77216b04 644 __throtl_dequeue_tg(tg);
e43473b7
VG
645}
646
a9131a27 647/* Call with queue lock held */
69df0ab0
TH
648static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
649 unsigned long expires)
a9131a27 650{
69df0ab0
TH
651 mod_timer(&sq->pending_timer, expires);
652 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
653 expires - jiffies, jiffies);
a9131a27
TH
654}
655
7f52f98c
TH
656/**
657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
658 * @sq: the service_queue to schedule dispatch for
659 * @force: force scheduling
660 *
661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
662 * dispatch time of the first pending child. Returns %true if either timer
663 * is armed or there's no pending child left. %false if the current
664 * dispatch window is still open and the caller should continue
665 * dispatching.
666 *
667 * If @force is %true, the dispatch timer is always scheduled and this
668 * function is guaranteed to return %true. This is to be used when the
669 * caller can't dispatch itself and needs to invoke pending_timer
670 * unconditionally. Note that forced scheduling is likely to induce short
671 * delay before dispatch starts even if @sq->first_pending_disptime is not
672 * in the future and thus shouldn't be used in hot paths.
673 */
674static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
675 bool force)
e43473b7 676{
6a525600 677 /* any pending children left? */
c9e0332e 678 if (!sq->nr_pending)
7f52f98c 679 return true;
e43473b7 680
c9e0332e 681 update_min_dispatch_time(sq);
e43473b7 682
69df0ab0 683 /* is the next dispatch time in the future? */
7f52f98c 684 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 685 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 686 return true;
69df0ab0
TH
687 }
688
7f52f98c
TH
689 /* tell the caller to continue dispatching */
690 return false;
e43473b7
VG
691}
692
32ee5bc4
VG
693static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
694 bool rw, unsigned long start)
695{
696 tg->bytes_disp[rw] = 0;
697 tg->io_disp[rw] = 0;
698
699 /*
700 * Previous slice has expired. We must have trimmed it after last
701 * bio dispatch. That means since start of last slice, we never used
702 * that bandwidth. Do try to make use of that bandwidth while giving
703 * credit.
704 */
705 if (time_after_eq(start, tg->slice_start[rw]))
706 tg->slice_start[rw] = start;
707
708 tg->slice_end[rw] = jiffies + throtl_slice;
709 throtl_log(&tg->service_queue,
710 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
711 rw == READ ? 'R' : 'W', tg->slice_start[rw],
712 tg->slice_end[rw], jiffies);
713}
714
0f3457f6 715static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
716{
717 tg->bytes_disp[rw] = 0;
8e89d13f 718 tg->io_disp[rw] = 0;
e43473b7
VG
719 tg->slice_start[rw] = jiffies;
720 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
721 throtl_log(&tg->service_queue,
722 "[%c] new slice start=%lu end=%lu jiffies=%lu",
723 rw == READ ? 'R' : 'W', tg->slice_start[rw],
724 tg->slice_end[rw], jiffies);
e43473b7
VG
725}
726
0f3457f6
TH
727static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
728 unsigned long jiffy_end)
d1ae8ffd
VG
729{
730 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
731}
732
0f3457f6
TH
733static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
734 unsigned long jiffy_end)
e43473b7
VG
735{
736 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
737 throtl_log(&tg->service_queue,
738 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
739 rw == READ ? 'R' : 'W', tg->slice_start[rw],
740 tg->slice_end[rw], jiffies);
e43473b7
VG
741}
742
743/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 744static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
745{
746 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 747 return false;
e43473b7
VG
748
749 return 1;
750}
751
752/* Trim the used slices and adjust slice start accordingly */
0f3457f6 753static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 754{
3aad5d3e
VG
755 unsigned long nr_slices, time_elapsed, io_trim;
756 u64 bytes_trim, tmp;
e43473b7
VG
757
758 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
759
760 /*
761 * If bps are unlimited (-1), then time slice don't get
762 * renewed. Don't try to trim the slice if slice is used. A new
763 * slice will start when appropriate.
764 */
0f3457f6 765 if (throtl_slice_used(tg, rw))
e43473b7
VG
766 return;
767
d1ae8ffd
VG
768 /*
769 * A bio has been dispatched. Also adjust slice_end. It might happen
770 * that initially cgroup limit was very low resulting in high
771 * slice_end, but later limit was bumped up and bio was dispached
772 * sooner, then we need to reduce slice_end. A high bogus slice_end
773 * is bad because it does not allow new slice to start.
774 */
775
0f3457f6 776 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 777
e43473b7
VG
778 time_elapsed = jiffies - tg->slice_start[rw];
779
780 nr_slices = time_elapsed / throtl_slice;
781
782 if (!nr_slices)
783 return;
3aad5d3e
VG
784 tmp = tg->bps[rw] * throtl_slice * nr_slices;
785 do_div(tmp, HZ);
786 bytes_trim = tmp;
e43473b7 787
8e89d13f 788 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 789
8e89d13f 790 if (!bytes_trim && !io_trim)
e43473b7
VG
791 return;
792
793 if (tg->bytes_disp[rw] >= bytes_trim)
794 tg->bytes_disp[rw] -= bytes_trim;
795 else
796 tg->bytes_disp[rw] = 0;
797
8e89d13f
VG
798 if (tg->io_disp[rw] >= io_trim)
799 tg->io_disp[rw] -= io_trim;
800 else
801 tg->io_disp[rw] = 0;
802
e43473b7
VG
803 tg->slice_start[rw] += nr_slices * throtl_slice;
804
fda6f272
TH
805 throtl_log(&tg->service_queue,
806 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
807 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
808 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
809}
810
0f3457f6
TH
811static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
812 unsigned long *wait)
e43473b7
VG
813{
814 bool rw = bio_data_dir(bio);
8e89d13f 815 unsigned int io_allowed;
e43473b7 816 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 817 u64 tmp;
e43473b7 818
8e89d13f 819 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 820
8e89d13f
VG
821 /* Slice has just started. Consider one slice interval */
822 if (!jiffy_elapsed)
823 jiffy_elapsed_rnd = throtl_slice;
824
825 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
826
c49c06e4
VG
827 /*
828 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
829 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
830 * will allow dispatch after 1 second and after that slice should
831 * have been trimmed.
832 */
833
834 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
835 do_div(tmp, HZ);
836
837 if (tmp > UINT_MAX)
838 io_allowed = UINT_MAX;
839 else
840 io_allowed = tmp;
8e89d13f
VG
841
842 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
843 if (wait)
844 *wait = 0;
5cf8c227 845 return true;
e43473b7
VG
846 }
847
8e89d13f
VG
848 /* Calc approx time to dispatch */
849 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
850
851 if (jiffy_wait > jiffy_elapsed)
852 jiffy_wait = jiffy_wait - jiffy_elapsed;
853 else
854 jiffy_wait = 1;
855
856 if (wait)
857 *wait = jiffy_wait;
858 return 0;
859}
860
0f3457f6
TH
861static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
862 unsigned long *wait)
8e89d13f
VG
863{
864 bool rw = bio_data_dir(bio);
3aad5d3e 865 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 866 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
867
868 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
869
870 /* Slice has just started. Consider one slice interval */
871 if (!jiffy_elapsed)
872 jiffy_elapsed_rnd = throtl_slice;
873
874 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
875
5e901a2b
VG
876 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
877 do_div(tmp, HZ);
3aad5d3e 878 bytes_allowed = tmp;
e43473b7 879
4f024f37 880 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
881 if (wait)
882 *wait = 0;
5cf8c227 883 return true;
e43473b7
VG
884 }
885
886 /* Calc approx time to dispatch */
4f024f37 887 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
e43473b7
VG
888 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
889
890 if (!jiffy_wait)
891 jiffy_wait = 1;
892
893 /*
894 * This wait time is without taking into consideration the rounding
895 * up we did. Add that time also.
896 */
897 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
898 if (wait)
899 *wait = jiffy_wait;
8e89d13f
VG
900 return 0;
901}
902
903/*
904 * Returns whether one can dispatch a bio or not. Also returns approx number
905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
906 */
0f3457f6
TH
907static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
908 unsigned long *wait)
8e89d13f
VG
909{
910 bool rw = bio_data_dir(bio);
911 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
912
913 /*
914 * Currently whole state machine of group depends on first bio
915 * queued in the group bio list. So one should not be calling
916 * this function with a different bio if there are other bios
917 * queued.
918 */
73f0d49a 919 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 920 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 921
8e89d13f
VG
922 /* If tg->bps = -1, then BW is unlimited */
923 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
924 if (wait)
925 *wait = 0;
5cf8c227 926 return true;
8e89d13f
VG
927 }
928
929 /*
930 * If previous slice expired, start a new one otherwise renew/extend
931 * existing slice to make sure it is at least throtl_slice interval
932 * long since now.
933 */
0f3457f6
TH
934 if (throtl_slice_used(tg, rw))
935 throtl_start_new_slice(tg, rw);
8e89d13f
VG
936 else {
937 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 938 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
939 }
940
0f3457f6
TH
941 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
942 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
943 if (wait)
944 *wait = 0;
945 return 1;
946 }
947
948 max_wait = max(bps_wait, iops_wait);
949
950 if (wait)
951 *wait = max_wait;
952
953 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 954 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
955
956 return 0;
957}
958
3c798398 959static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
629ed0b1
TH
960 int rw)
961{
8a3d2615
TH
962 struct throtl_grp *tg = blkg_to_tg(blkg);
963 struct tg_stats_cpu *stats_cpu;
629ed0b1
TH
964 unsigned long flags;
965
966 /* If per cpu stats are not allocated yet, don't do any accounting. */
8a3d2615 967 if (tg->stats_cpu == NULL)
629ed0b1
TH
968 return;
969
970 /*
971 * Disabling interrupts to provide mutual exclusion between two
972 * writes on same cpu. It probably is not needed for 64bit. Not
973 * optimizing that case yet.
974 */
975 local_irq_save(flags);
976
8a3d2615 977 stats_cpu = this_cpu_ptr(tg->stats_cpu);
629ed0b1 978
629ed0b1
TH
979 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
980 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
981
982 local_irq_restore(flags);
983}
984
e43473b7
VG
985static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
986{
987 bool rw = bio_data_dir(bio);
e43473b7
VG
988
989 /* Charge the bio to the group */
4f024f37 990 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 991 tg->io_disp[rw]++;
e43473b7 992
2a0f61e6
TH
993 /*
994 * REQ_THROTTLED is used to prevent the same bio to be throttled
995 * more than once as a throttled bio will go through blk-throtl the
996 * second time when it eventually gets issued. Set it when a bio
997 * is being charged to a tg.
998 *
999 * Dispatch stats aren't recursive and each @bio should only be
1000 * accounted by the @tg it was originally associated with. Let's
1001 * update the stats when setting REQ_THROTTLED for the first time
1002 * which is guaranteed to be for the @bio's original tg.
1003 */
1004 if (!(bio->bi_rw & REQ_THROTTLED)) {
1005 bio->bi_rw |= REQ_THROTTLED;
4f024f37
KO
1006 throtl_update_dispatch_stats(tg_to_blkg(tg),
1007 bio->bi_iter.bi_size, bio->bi_rw);
2a0f61e6 1008 }
e43473b7
VG
1009}
1010
c5cc2070
TH
1011/**
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013 * @bio: bio to add
1014 * @qn: qnode to use
1015 * @tg: the target throtl_grp
1016 *
1017 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1019 */
1020static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021 struct throtl_grp *tg)
e43473b7 1022{
73f0d49a 1023 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1024 bool rw = bio_data_dir(bio);
1025
c5cc2070
TH
1026 if (!qn)
1027 qn = &tg->qnode_on_self[rw];
1028
0e9f4164
TH
1029 /*
1030 * If @tg doesn't currently have any bios queued in the same
1031 * direction, queueing @bio can change when @tg should be
1032 * dispatched. Mark that @tg was empty. This is automatically
1033 * cleaered on the next tg_update_disptime().
1034 */
1035 if (!sq->nr_queued[rw])
1036 tg->flags |= THROTL_TG_WAS_EMPTY;
1037
c5cc2070
TH
1038 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039
73f0d49a 1040 sq->nr_queued[rw]++;
77216b04 1041 throtl_enqueue_tg(tg);
e43473b7
VG
1042}
1043
77216b04 1044static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 1045{
73f0d49a 1046 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1047 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048 struct bio *bio;
1049
c5cc2070 1050 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 1051 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 1052
c5cc2070 1053 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 1054 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
1055
1056 min_wait = min(read_wait, write_wait);
1057 disptime = jiffies + min_wait;
1058
e43473b7 1059 /* Update dispatch time */
77216b04 1060 throtl_dequeue_tg(tg);
e43473b7 1061 tg->disptime = disptime;
77216b04 1062 throtl_enqueue_tg(tg);
0e9f4164
TH
1063
1064 /* see throtl_add_bio_tg() */
1065 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
1066}
1067
32ee5bc4
VG
1068static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069 struct throtl_grp *parent_tg, bool rw)
1070{
1071 if (throtl_slice_used(parent_tg, rw)) {
1072 throtl_start_new_slice_with_credit(parent_tg, rw,
1073 child_tg->slice_start[rw]);
1074 }
1075
1076}
1077
77216b04 1078static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 1079{
73f0d49a 1080 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
1081 struct throtl_service_queue *parent_sq = sq->parent_sq;
1082 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 1083 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
1084 struct bio *bio;
1085
c5cc2070
TH
1086 /*
1087 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1088 * from @tg may put its reference and @parent_sq might end up
1089 * getting released prematurely. Remember the tg to put and put it
1090 * after @bio is transferred to @parent_sq.
1091 */
1092 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 1093 sq->nr_queued[rw]--;
e43473b7
VG
1094
1095 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
1096
1097 /*
1098 * If our parent is another tg, we just need to transfer @bio to
1099 * the parent using throtl_add_bio_tg(). If our parent is
1100 * @td->service_queue, @bio is ready to be issued. Put it on its
1101 * bio_lists[] and decrease total number queued. The caller is
1102 * responsible for issuing these bios.
1103 */
1104 if (parent_tg) {
c5cc2070 1105 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 1106 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 1107 } else {
c5cc2070
TH
1108 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109 &parent_sq->queued[rw]);
6bc9c2b4
TH
1110 BUG_ON(tg->td->nr_queued[rw] <= 0);
1111 tg->td->nr_queued[rw]--;
1112 }
e43473b7 1113
0f3457f6 1114 throtl_trim_slice(tg, rw);
6bc9c2b4 1115
c5cc2070
TH
1116 if (tg_to_put)
1117 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
1118}
1119
77216b04 1120static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 1121{
73f0d49a 1122 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1123 unsigned int nr_reads = 0, nr_writes = 0;
1124 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 1125 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
1126 struct bio *bio;
1127
1128 /* Try to dispatch 75% READS and 25% WRITES */
1129
c5cc2070 1130 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 1131 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1132
77216b04 1133 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1134 nr_reads++;
1135
1136 if (nr_reads >= max_nr_reads)
1137 break;
1138 }
1139
c5cc2070 1140 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 1141 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 1142
77216b04 1143 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
1144 nr_writes++;
1145
1146 if (nr_writes >= max_nr_writes)
1147 break;
1148 }
1149
1150 return nr_reads + nr_writes;
1151}
1152
651930bc 1153static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
1154{
1155 unsigned int nr_disp = 0;
e43473b7
VG
1156
1157 while (1) {
73f0d49a
TH
1158 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
1160
1161 if (!tg)
1162 break;
1163
1164 if (time_before(jiffies, tg->disptime))
1165 break;
1166
77216b04 1167 throtl_dequeue_tg(tg);
e43473b7 1168
77216b04 1169 nr_disp += throtl_dispatch_tg(tg);
e43473b7 1170
73f0d49a 1171 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 1172 tg_update_disptime(tg);
e43473b7
VG
1173
1174 if (nr_disp >= throtl_quantum)
1175 break;
1176 }
1177
1178 return nr_disp;
1179}
1180
6e1a5704
TH
1181/**
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1184 *
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1188 * dispatches bio's from the children throtl_grps to the parent
1189 * service_queue.
1190 *
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly. If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
6e1a5704 1195 */
69df0ab0
TH
1196static void throtl_pending_timer_fn(unsigned long arg)
1197{
1198 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1199 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1200 struct throtl_data *td = sq_to_td(sq);
cb76199c 1201 struct request_queue *q = td->queue;
2e48a530
TH
1202 struct throtl_service_queue *parent_sq;
1203 bool dispatched;
6e1a5704 1204 int ret;
e43473b7
VG
1205
1206 spin_lock_irq(q->queue_lock);
2e48a530
TH
1207again:
1208 parent_sq = sq->parent_sq;
1209 dispatched = false;
e43473b7 1210
7f52f98c
TH
1211 while (true) {
1212 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1213 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1215
1216 ret = throtl_select_dispatch(sq);
1217 if (ret) {
7f52f98c
TH
1218 throtl_log(sq, "bios disp=%u", ret);
1219 dispatched = true;
1220 }
e43473b7 1221
7f52f98c
TH
1222 if (throtl_schedule_next_dispatch(sq, false))
1223 break;
e43473b7 1224
7f52f98c
TH
1225 /* this dispatch windows is still open, relax and repeat */
1226 spin_unlock_irq(q->queue_lock);
1227 cpu_relax();
1228 spin_lock_irq(q->queue_lock);
651930bc 1229 }
e43473b7 1230
2e48a530
TH
1231 if (!dispatched)
1232 goto out_unlock;
6e1a5704 1233
2e48a530
TH
1234 if (parent_sq) {
1235 /* @parent_sq is another throl_grp, propagate dispatch */
1236 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237 tg_update_disptime(tg);
1238 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239 /* window is already open, repeat dispatching */
1240 sq = parent_sq;
1241 tg = sq_to_tg(sq);
1242 goto again;
1243 }
1244 }
1245 } else {
1246 /* reached the top-level, queue issueing */
1247 queue_work(kthrotld_workqueue, &td->dispatch_work);
1248 }
1249out_unlock:
e43473b7 1250 spin_unlock_irq(q->queue_lock);
6e1a5704 1251}
e43473b7 1252
6e1a5704
TH
1253/**
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1256 *
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue. Those bio's are ready and issued by this
1259 * function.
1260 */
8876e140 1261static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1262{
1263 struct throtl_data *td = container_of(work, struct throtl_data,
1264 dispatch_work);
1265 struct throtl_service_queue *td_sq = &td->service_queue;
1266 struct request_queue *q = td->queue;
1267 struct bio_list bio_list_on_stack;
1268 struct bio *bio;
1269 struct blk_plug plug;
1270 int rw;
1271
1272 bio_list_init(&bio_list_on_stack);
1273
1274 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1275 for (rw = READ; rw <= WRITE; rw++)
1276 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1278 spin_unlock_irq(q->queue_lock);
1279
1280 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1281 blk_start_plug(&plug);
e43473b7
VG
1282 while((bio = bio_list_pop(&bio_list_on_stack)))
1283 generic_make_request(bio);
69d60eb9 1284 blk_finish_plug(&plug);
e43473b7 1285 }
e43473b7
VG
1286}
1287
f95a04af
TH
1288static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289 struct blkg_policy_data *pd, int off)
41b38b6d 1290{
f95a04af 1291 struct throtl_grp *tg = pd_to_tg(pd);
41b38b6d
TH
1292 struct blkg_rwstat rwstat = { }, tmp;
1293 int i, cpu;
1294
045c47ca
TLSC
1295 if (tg->stats_cpu == NULL)
1296 return 0;
1297
41b38b6d 1298 for_each_possible_cpu(cpu) {
8a3d2615 1299 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
41b38b6d
TH
1300
1301 tmp = blkg_rwstat_read((void *)sc + off);
1302 for (i = 0; i < BLKG_RWSTAT_NR; i++)
1303 rwstat.cnt[i] += tmp.cnt[i];
1304 }
1305
f95a04af 1306 return __blkg_prfill_rwstat(sf, pd, &rwstat);
41b38b6d
TH
1307}
1308
2da8ca82 1309static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
41b38b6d 1310{
2da8ca82
TH
1311 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1312 &blkcg_policy_throtl, seq_cft(sf)->private, true);
41b38b6d
TH
1313 return 0;
1314}
1315
f95a04af
TH
1316static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1317 int off)
60c2bc2d 1318{
f95a04af
TH
1319 struct throtl_grp *tg = pd_to_tg(pd);
1320 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1321
af133ceb 1322 if (v == -1)
60c2bc2d 1323 return 0;
f95a04af 1324 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1325}
1326
f95a04af
TH
1327static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1328 int off)
e43473b7 1329{
f95a04af
TH
1330 struct throtl_grp *tg = pd_to_tg(pd);
1331 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1332
af133ceb
TH
1333 if (v == -1)
1334 return 0;
f95a04af 1335 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1336}
1337
2da8ca82 1338static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1339{
2da8ca82
TH
1340 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1341 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1342 return 0;
8e89d13f
VG
1343}
1344
2da8ca82 1345static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1346{
2da8ca82
TH
1347 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1348 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1349 return 0;
60c2bc2d
TH
1350}
1351
451af504
TH
1352static ssize_t tg_set_conf(struct kernfs_open_file *of,
1353 char *buf, size_t nbytes, loff_t off, bool is_u64)
60c2bc2d 1354{
451af504 1355 struct blkcg *blkcg = css_to_blkcg(of_css(of));
60c2bc2d 1356 struct blkg_conf_ctx ctx;
af133ceb 1357 struct throtl_grp *tg;
69df0ab0 1358 struct throtl_service_queue *sq;
693e751e 1359 struct blkcg_gq *blkg;
492eb21b 1360 struct cgroup_subsys_state *pos_css;
60c2bc2d
TH
1361 int ret;
1362
3c798398 1363 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
60c2bc2d
TH
1364 if (ret)
1365 return ret;
1366
af133ceb 1367 tg = blkg_to_tg(ctx.blkg);
69df0ab0 1368 sq = &tg->service_queue;
af133ceb 1369
a2b1693b
TH
1370 if (!ctx.v)
1371 ctx.v = -1;
af133ceb 1372
a2b1693b 1373 if (is_u64)
451af504 1374 *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
a2b1693b 1375 else
451af504 1376 *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
af133ceb 1377
fda6f272
TH
1378 throtl_log(&tg->service_queue,
1379 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1380 tg->bps[READ], tg->bps[WRITE],
1381 tg->iops[READ], tg->iops[WRITE]);
632b4493 1382
693e751e
TH
1383 /*
1384 * Update has_rules[] flags for the updated tg's subtree. A tg is
1385 * considered to have rules if either the tg itself or any of its
1386 * ancestors has rules. This identifies groups without any
1387 * restrictions in the whole hierarchy and allows them to bypass
1388 * blk-throttle.
1389 */
492eb21b 1390 blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
693e751e
TH
1391 tg_update_has_rules(blkg_to_tg(blkg));
1392
632b4493
TH
1393 /*
1394 * We're already holding queue_lock and know @tg is valid. Let's
1395 * apply the new config directly.
1396 *
1397 * Restart the slices for both READ and WRITES. It might happen
1398 * that a group's limit are dropped suddenly and we don't want to
1399 * account recently dispatched IO with new low rate.
1400 */
0f3457f6
TH
1401 throtl_start_new_slice(tg, 0);
1402 throtl_start_new_slice(tg, 1);
632b4493 1403
5b2c16aa 1404 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1405 tg_update_disptime(tg);
7f52f98c 1406 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1407 }
60c2bc2d
TH
1408
1409 blkg_conf_finish(&ctx);
451af504 1410 return nbytes;
8e89d13f
VG
1411}
1412
451af504
TH
1413static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1414 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1415{
451af504 1416 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1417}
1418
451af504
TH
1419static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1420 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1421{
451af504 1422 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1423}
1424
1425static struct cftype throtl_files[] = {
1426 {
1427 .name = "throttle.read_bps_device",
af133ceb 1428 .private = offsetof(struct throtl_grp, bps[READ]),
2da8ca82 1429 .seq_show = tg_print_conf_u64,
451af504 1430 .write = tg_set_conf_u64,
60c2bc2d
TH
1431 },
1432 {
1433 .name = "throttle.write_bps_device",
af133ceb 1434 .private = offsetof(struct throtl_grp, bps[WRITE]),
2da8ca82 1435 .seq_show = tg_print_conf_u64,
451af504 1436 .write = tg_set_conf_u64,
60c2bc2d
TH
1437 },
1438 {
1439 .name = "throttle.read_iops_device",
af133ceb 1440 .private = offsetof(struct throtl_grp, iops[READ]),
2da8ca82 1441 .seq_show = tg_print_conf_uint,
451af504 1442 .write = tg_set_conf_uint,
60c2bc2d
TH
1443 },
1444 {
1445 .name = "throttle.write_iops_device",
af133ceb 1446 .private = offsetof(struct throtl_grp, iops[WRITE]),
2da8ca82 1447 .seq_show = tg_print_conf_uint,
451af504 1448 .write = tg_set_conf_uint,
60c2bc2d
TH
1449 },
1450 {
1451 .name = "throttle.io_service_bytes",
5bc4afb1 1452 .private = offsetof(struct tg_stats_cpu, service_bytes),
2da8ca82 1453 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1454 },
1455 {
1456 .name = "throttle.io_serviced",
5bc4afb1 1457 .private = offsetof(struct tg_stats_cpu, serviced),
2da8ca82 1458 .seq_show = tg_print_cpu_rwstat,
60c2bc2d
TH
1459 },
1460 { } /* terminate */
1461};
1462
da527770 1463static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1464{
1465 struct throtl_data *td = q->td;
1466
69df0ab0 1467 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1468}
1469
3c798398 1470static struct blkcg_policy blkcg_policy_throtl = {
f9fcc2d3
TH
1471 .pd_size = sizeof(struct throtl_grp),
1472 .cftypes = throtl_files,
1473
1474 .pd_init_fn = throtl_pd_init,
693e751e 1475 .pd_online_fn = throtl_pd_online,
f9fcc2d3
TH
1476 .pd_exit_fn = throtl_pd_exit,
1477 .pd_reset_stats_fn = throtl_pd_reset_stats,
e43473b7
VG
1478};
1479
bc16a4f9 1480bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
e43473b7
VG
1481{
1482 struct throtl_data *td = q->td;
c5cc2070 1483 struct throtl_qnode *qn = NULL;
e43473b7 1484 struct throtl_grp *tg;
73f0d49a 1485 struct throtl_service_queue *sq;
0e9f4164 1486 bool rw = bio_data_dir(bio);
3c798398 1487 struct blkcg *blkcg;
bc16a4f9 1488 bool throttled = false;
e43473b7 1489
2a0f61e6
TH
1490 /* see throtl_charge_bio() */
1491 if (bio->bi_rw & REQ_THROTTLED)
bc16a4f9 1492 goto out;
e43473b7 1493
af75cd3c
VG
1494 /*
1495 * A throtl_grp pointer retrieved under rcu can be used to access
1496 * basic fields like stats and io rates. If a group has no rules,
1497 * just update the dispatch stats in lockless manner and return.
1498 */
af75cd3c 1499 rcu_read_lock();
3c798398 1500 blkcg = bio_blkcg(bio);
cd1604fa 1501 tg = throtl_lookup_tg(td, blkcg);
af75cd3c 1502 if (tg) {
693e751e 1503 if (!tg->has_rules[rw]) {
629ed0b1 1504 throtl_update_dispatch_stats(tg_to_blkg(tg),
4f024f37 1505 bio->bi_iter.bi_size, bio->bi_rw);
2a7f1244 1506 goto out_unlock_rcu;
af75cd3c
VG
1507 }
1508 }
af75cd3c
VG
1509
1510 /*
1511 * Either group has not been allocated yet or it is not an unlimited
1512 * IO group
1513 */
e43473b7 1514 spin_lock_irq(q->queue_lock);
cd1604fa 1515 tg = throtl_lookup_create_tg(td, blkcg);
bc16a4f9
TH
1516 if (unlikely(!tg))
1517 goto out_unlock;
f469a7b4 1518
73f0d49a
TH
1519 sq = &tg->service_queue;
1520
9e660acf
TH
1521 while (true) {
1522 /* throtl is FIFO - if bios are already queued, should queue */
1523 if (sq->nr_queued[rw])
1524 break;
de701c74 1525
9e660acf
TH
1526 /* if above limits, break to queue */
1527 if (!tg_may_dispatch(tg, bio, NULL))
1528 break;
1529
1530 /* within limits, let's charge and dispatch directly */
e43473b7 1531 throtl_charge_bio(tg, bio);
04521db0
VG
1532
1533 /*
1534 * We need to trim slice even when bios are not being queued
1535 * otherwise it might happen that a bio is not queued for
1536 * a long time and slice keeps on extending and trim is not
1537 * called for a long time. Now if limits are reduced suddenly
1538 * we take into account all the IO dispatched so far at new
1539 * low rate and * newly queued IO gets a really long dispatch
1540 * time.
1541 *
1542 * So keep on trimming slice even if bio is not queued.
1543 */
0f3457f6 1544 throtl_trim_slice(tg, rw);
9e660acf
TH
1545
1546 /*
1547 * @bio passed through this layer without being throttled.
1548 * Climb up the ladder. If we''re already at the top, it
1549 * can be executed directly.
1550 */
c5cc2070 1551 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1552 sq = sq->parent_sq;
1553 tg = sq_to_tg(sq);
1554 if (!tg)
1555 goto out_unlock;
e43473b7
VG
1556 }
1557
9e660acf 1558 /* out-of-limit, queue to @tg */
fda6f272
TH
1559 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1560 rw == READ ? 'R' : 'W',
4f024f37 1561 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
fda6f272
TH
1562 tg->io_disp[rw], tg->iops[rw],
1563 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1564
671058fb 1565 bio_associate_current(bio);
6bc9c2b4 1566 tg->td->nr_queued[rw]++;
c5cc2070 1567 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1568 throttled = true;
e43473b7 1569
7f52f98c
TH
1570 /*
1571 * Update @tg's dispatch time and force schedule dispatch if @tg
1572 * was empty before @bio. The forced scheduling isn't likely to
1573 * cause undue delay as @bio is likely to be dispatched directly if
1574 * its @tg's disptime is not in the future.
1575 */
0e9f4164 1576 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1577 tg_update_disptime(tg);
7f52f98c 1578 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1579 }
1580
bc16a4f9 1581out_unlock:
e43473b7 1582 spin_unlock_irq(q->queue_lock);
2a7f1244
TH
1583out_unlock_rcu:
1584 rcu_read_unlock();
bc16a4f9 1585out:
2a0f61e6
TH
1586 /*
1587 * As multiple blk-throtls may stack in the same issue path, we
1588 * don't want bios to leave with the flag set. Clear the flag if
1589 * being issued.
1590 */
1591 if (!throttled)
1592 bio->bi_rw &= ~REQ_THROTTLED;
bc16a4f9 1593 return throttled;
e43473b7
VG
1594}
1595
2a12f0dc
TH
1596/*
1597 * Dispatch all bios from all children tg's queued on @parent_sq. On
1598 * return, @parent_sq is guaranteed to not have any active children tg's
1599 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1600 */
1601static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1602{
1603 struct throtl_grp *tg;
1604
1605 while ((tg = throtl_rb_first(parent_sq))) {
1606 struct throtl_service_queue *sq = &tg->service_queue;
1607 struct bio *bio;
1608
1609 throtl_dequeue_tg(tg);
1610
c5cc2070 1611 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1612 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1613 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1614 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1615 }
1616}
1617
c9a929dd
TH
1618/**
1619 * blk_throtl_drain - drain throttled bios
1620 * @q: request_queue to drain throttled bios for
1621 *
1622 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1623 */
1624void blk_throtl_drain(struct request_queue *q)
1625 __releases(q->queue_lock) __acquires(q->queue_lock)
1626{
1627 struct throtl_data *td = q->td;
2a12f0dc 1628 struct blkcg_gq *blkg;
492eb21b 1629 struct cgroup_subsys_state *pos_css;
c9a929dd 1630 struct bio *bio;
651930bc 1631 int rw;
c9a929dd 1632
8bcb6c7d 1633 queue_lockdep_assert_held(q);
2a12f0dc 1634 rcu_read_lock();
c9a929dd 1635
2a12f0dc
TH
1636 /*
1637 * Drain each tg while doing post-order walk on the blkg tree, so
1638 * that all bios are propagated to td->service_queue. It'd be
1639 * better to walk service_queue tree directly but blkg walk is
1640 * easier.
1641 */
492eb21b 1642 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 1643 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1644
2a12f0dc
TH
1645 /* finally, transfer bios from top-level tg's into the td */
1646 tg_drain_bios(&td->service_queue);
1647
1648 rcu_read_unlock();
c9a929dd
TH
1649 spin_unlock_irq(q->queue_lock);
1650
2a12f0dc 1651 /* all bios now should be in td->service_queue, issue them */
651930bc 1652 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1653 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1654 NULL)))
651930bc 1655 generic_make_request(bio);
c9a929dd
TH
1656
1657 spin_lock_irq(q->queue_lock);
1658}
1659
e43473b7
VG
1660int blk_throtl_init(struct request_queue *q)
1661{
1662 struct throtl_data *td;
a2b1693b 1663 int ret;
e43473b7
VG
1664
1665 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1666 if (!td)
1667 return -ENOMEM;
1668
69df0ab0 1669 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
77216b04 1670 throtl_service_queue_init(&td->service_queue, NULL);
e43473b7 1671
cd1604fa 1672 q->td = td;
29b12589 1673 td->queue = q;
02977e4a 1674
a2b1693b 1675 /* activate policy */
3c798398 1676 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1677 if (ret)
f51b802c 1678 kfree(td);
a2b1693b 1679 return ret;
e43473b7
VG
1680}
1681
1682void blk_throtl_exit(struct request_queue *q)
1683{
c875f4d0 1684 BUG_ON(!q->td);
da527770 1685 throtl_shutdown_wq(q);
3c798398 1686 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1687 kfree(q->td);
e43473b7
VG
1688}
1689
1690static int __init throtl_init(void)
1691{
450adcbe
VG
1692 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1693 if (!kthrotld_workqueue)
1694 panic("Failed to create kthrotld\n");
1695
3c798398 1696 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1697}
1698
1699module_init(throtl_init);