cpufreq: Call transition notifier only once for each policy
[linux-2.6-block.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533 4#include <linux/sched.h>
e6017571 5#include <linux/sched/clock.h>
0ef95533 6#include <linux/init.h>
186f4360 7#include <linux/export.h>
0ef95533 8#include <linux/timer.h>
bfc0f594 9#include <linux/acpi_pmtmr.h>
2dbe06fa 10#include <linux/cpufreq.h>
8fbbc4b4
AK
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
08604bd9 14#include <linux/timex.h>
10b033d4 15#include <linux/static_key.h>
bfc0f594
AK
16
17#include <asm/hpet.h>
8fbbc4b4
AK
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
88b094fb 22#include <asm/hypervisor.h>
08047c4f 23#include <asm/nmi.h>
2d826404 24#include <asm/x86_init.h>
03da3ff1 25#include <asm/geode.h>
6731b0d6 26#include <asm/apic.h>
655e52d2 27#include <asm/intel-family.h>
30c7e5b1 28#include <asm/i8259.h>
2647c43c 29#include <asm/uv/uv.h>
0ef95533 30
f24ade3a 31unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 32EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
33
34unsigned int __read_mostly tsc_khz;
0ef95533
AK
35EXPORT_SYMBOL(tsc_khz);
36
cf7a63ef
PT
37#define KHZ 1000
38
0ef95533
AK
39/*
40 * TSC can be unstable due to cpufreq or due to unsynced TSCs
41 */
f24ade3a 42static int __read_mostly tsc_unstable;
0ef95533 43
3bbfafb7 44static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 45
28a00184 46int tsc_clocksource_reliable;
57c67da2 47
f9677e0f
CH
48static u32 art_to_tsc_numerator;
49static u32 art_to_tsc_denominator;
50static u64 art_to_tsc_offset;
51struct clocksource *art_related_clocksource;
52
20d1c86a 53struct cyc2ns {
59eaef78
PZ
54 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
55 seqcount_t seq; /* 32 + 4 = 36 */
20d1c86a 56
59eaef78 57}; /* fits one cacheline */
20d1c86a 58
59eaef78 59static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
20d1c86a 60
4907c68a 61void __always_inline cyc2ns_read_begin(struct cyc2ns_data *data)
20d1c86a 62{
59eaef78 63 int seq, idx;
20d1c86a 64
59eaef78 65 preempt_disable_notrace();
20d1c86a 66
59eaef78
PZ
67 do {
68 seq = this_cpu_read(cyc2ns.seq.sequence);
69 idx = seq & 1;
20d1c86a 70
59eaef78
PZ
71 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
72 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
73 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
20d1c86a 74
59eaef78 75 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
20d1c86a
PZ
76}
77
4907c68a 78void __always_inline cyc2ns_read_end(void)
20d1c86a 79{
59eaef78 80 preempt_enable_notrace();
20d1c86a
PZ
81}
82
83/*
84 * Accelerators for sched_clock()
57c67da2
PZ
85 * convert from cycles(64bits) => nanoseconds (64bits)
86 * basic equation:
87 * ns = cycles / (freq / ns_per_sec)
88 * ns = cycles * (ns_per_sec / freq)
89 * ns = cycles * (10^9 / (cpu_khz * 10^3))
90 * ns = cycles * (10^6 / cpu_khz)
91 *
92 * Then we use scaling math (suggested by george@mvista.com) to get:
93 * ns = cycles * (10^6 * SC / cpu_khz) / SC
94 * ns = cycles * cyc2ns_scale / SC
95 *
96 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
97 * into a shift. The larger SC is, the more accurate the conversion, but
98 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
99 * (64-bit result) can be used.
57c67da2 100 *
b20112ed 101 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
102 * (mathieu.desnoyers@polymtl.ca)
103 *
104 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
105 */
106
4907c68a 107static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
57c67da2 108{
59eaef78 109 struct cyc2ns_data data;
20d1c86a
PZ
110 unsigned long long ns;
111
59eaef78 112 cyc2ns_read_begin(&data);
20d1c86a 113
59eaef78
PZ
114 ns = data.cyc2ns_offset;
115 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
20d1c86a 116
59eaef78 117 cyc2ns_read_end();
20d1c86a 118
57c67da2
PZ
119 return ns;
120}
121
e2a9ca29 122static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
57c67da2 123{
615cd033 124 unsigned long long ns_now;
59eaef78
PZ
125 struct cyc2ns_data data;
126 struct cyc2ns *c2n;
20d1c86a 127
57c67da2
PZ
128 ns_now = cycles_2_ns(tsc_now);
129
20d1c86a
PZ
130 /*
131 * Compute a new multiplier as per the above comment and ensure our
132 * time function is continuous; see the comment near struct
133 * cyc2ns_data.
134 */
59eaef78 135 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
b20112ed
AH
136 NSEC_PER_MSEC, 0);
137
b9511cd7
AH
138 /*
139 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
140 * not expected to be greater than 31 due to the original published
141 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
142 * value) - refer perf_event_mmap_page documentation in perf_event.h.
143 */
59eaef78
PZ
144 if (data.cyc2ns_shift == 32) {
145 data.cyc2ns_shift = 31;
146 data.cyc2ns_mul >>= 1;
b9511cd7
AH
147 }
148
59eaef78
PZ
149 data.cyc2ns_offset = ns_now -
150 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
151
152 c2n = per_cpu_ptr(&cyc2ns, cpu);
20d1c86a 153
59eaef78
PZ
154 raw_write_seqcount_latch(&c2n->seq);
155 c2n->data[0] = data;
156 raw_write_seqcount_latch(&c2n->seq);
157 c2n->data[1] = data;
e2a9ca29
PT
158}
159
160static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
161{
162 unsigned long flags;
163
164 local_irq_save(flags);
165 sched_clock_idle_sleep_event();
166
167 if (khz)
168 __set_cyc2ns_scale(khz, cpu, tsc_now);
57c67da2 169
ac1e843f 170 sched_clock_idle_wakeup_event();
57c67da2
PZ
171 local_irq_restore(flags);
172}
615cd033 173
e2a9ca29
PT
174/*
175 * Initialize cyc2ns for boot cpu
176 */
177static void __init cyc2ns_init_boot_cpu(void)
178{
179 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
180
181 seqcount_init(&c2n->seq);
182 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
183}
184
185/*
608008a4 186 * Secondary CPUs do not run through tsc_init(), so set up
e2a9ca29 187 * all the scale factors for all CPUs, assuming the same
c208ac8f 188 * speed as the bootup CPU.
e2a9ca29
PT
189 */
190static void __init cyc2ns_init_secondary_cpus(void)
191{
192 unsigned int cpu, this_cpu = smp_processor_id();
193 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
194 struct cyc2ns_data *data = c2n->data;
195
196 for_each_possible_cpu(cpu) {
197 if (cpu != this_cpu) {
198 seqcount_init(&c2n->seq);
199 c2n = per_cpu_ptr(&cyc2ns, cpu);
200 c2n->data[0] = data[0];
201 c2n->data[1] = data[1];
202 }
203 }
204}
205
0ef95533
AK
206/*
207 * Scheduler clock - returns current time in nanosec units.
208 */
209u64 native_sched_clock(void)
210{
3bbfafb7
PZ
211 if (static_branch_likely(&__use_tsc)) {
212 u64 tsc_now = rdtsc();
213
214 /* return the value in ns */
215 return cycles_2_ns(tsc_now);
216 }
0ef95533
AK
217
218 /*
219 * Fall back to jiffies if there's no TSC available:
220 * ( But note that we still use it if the TSC is marked
221 * unstable. We do this because unlike Time Of Day,
222 * the scheduler clock tolerates small errors and it's
223 * very important for it to be as fast as the platform
3ad2f3fb 224 * can achieve it. )
0ef95533 225 */
0ef95533 226
3bbfafb7
PZ
227 /* No locking but a rare wrong value is not a big deal: */
228 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
229}
230
a94cab23
AK
231/*
232 * Generate a sched_clock if you already have a TSC value.
233 */
234u64 native_sched_clock_from_tsc(u64 tsc)
235{
236 return cycles_2_ns(tsc);
237}
238
0ef95533
AK
239/* We need to define a real function for sched_clock, to override the
240 weak default version */
241#ifdef CONFIG_PARAVIRT
242unsigned long long sched_clock(void)
243{
244 return paravirt_sched_clock();
245}
f94c8d11 246
698eff63 247bool using_native_sched_clock(void)
f94c8d11 248{
5c83511b 249 return pv_ops.time.sched_clock == native_sched_clock;
f94c8d11 250}
0ef95533
AK
251#else
252unsigned long long
253sched_clock(void) __attribute__((alias("native_sched_clock")));
f94c8d11 254
698eff63 255bool using_native_sched_clock(void) { return true; }
0ef95533
AK
256#endif
257
258int check_tsc_unstable(void)
259{
260 return tsc_unstable;
261}
262EXPORT_SYMBOL_GPL(check_tsc_unstable);
263
264#ifdef CONFIG_X86_TSC
265int __init notsc_setup(char *str)
266{
fe9af81e 267 mark_tsc_unstable("boot parameter notsc");
0ef95533
AK
268 return 1;
269}
270#else
271/*
272 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
273 * in cpu/common.c
274 */
275int __init notsc_setup(char *str)
276{
277 setup_clear_cpu_cap(X86_FEATURE_TSC);
278 return 1;
279}
280#endif
281
282__setup("notsc", notsc_setup);
bfc0f594 283
e82b8e4e 284static int no_sched_irq_time;
0f0b7e1c 285static int no_tsc_watchdog;
e82b8e4e 286
395628ef
AK
287static int __init tsc_setup(char *str)
288{
289 if (!strcmp(str, "reliable"))
290 tsc_clocksource_reliable = 1;
e82b8e4e
VP
291 if (!strncmp(str, "noirqtime", 9))
292 no_sched_irq_time = 1;
8309f86c
PZ
293 if (!strcmp(str, "unstable"))
294 mark_tsc_unstable("boot parameter");
0f0b7e1c
JL
295 if (!strcmp(str, "nowatchdog"))
296 no_tsc_watchdog = 1;
395628ef
AK
297 return 1;
298}
299
300__setup("tsc=", tsc_setup);
301
a786ef15
DV
302#define MAX_RETRIES 5
303#define TSC_DEFAULT_THRESHOLD 0x20000
bfc0f594
AK
304
305/*
a786ef15 306 * Read TSC and the reference counters. Take care of any disturbances
bfc0f594 307 */
827014be 308static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
309{
310 u64 t1, t2;
a786ef15 311 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
bfc0f594
AK
312 int i;
313
314 for (i = 0; i < MAX_RETRIES; i++) {
315 t1 = get_cycles();
316 if (hpet)
827014be 317 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 318 else
827014be 319 *p = acpi_pm_read_early();
bfc0f594 320 t2 = get_cycles();
a786ef15 321 if ((t2 - t1) < thresh)
bfc0f594
AK
322 return t2;
323 }
324 return ULLONG_MAX;
325}
326
d683ef7a
TG
327/*
328 * Calculate the TSC frequency from HPET reference
bfc0f594 329 */
d683ef7a 330static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 331{
d683ef7a 332 u64 tmp;
bfc0f594 333
d683ef7a
TG
334 if (hpet2 < hpet1)
335 hpet2 += 0x100000000ULL;
336 hpet2 -= hpet1;
337 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
338 do_div(tmp, 1000000);
d3878e16 339 deltatsc = div64_u64(deltatsc, tmp);
d683ef7a
TG
340
341 return (unsigned long) deltatsc;
342}
343
344/*
345 * Calculate the TSC frequency from PMTimer reference
346 */
347static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
348{
349 u64 tmp;
bfc0f594 350
d683ef7a
TG
351 if (!pm1 && !pm2)
352 return ULONG_MAX;
353
354 if (pm2 < pm1)
355 pm2 += (u64)ACPI_PM_OVRRUN;
356 pm2 -= pm1;
357 tmp = pm2 * 1000000000LL;
358 do_div(tmp, PMTMR_TICKS_PER_SEC);
359 do_div(deltatsc, tmp);
360
361 return (unsigned long) deltatsc;
362}
363
a977c400 364#define CAL_MS 10
b7743970 365#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
366#define CAL_PIT_LOOPS 1000
367
368#define CAL2_MS 50
b7743970 369#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
370#define CAL2_PIT_LOOPS 5000
371
cce3e057 372
ec0c15af
LT
373/*
374 * Try to calibrate the TSC against the Programmable
375 * Interrupt Timer and return the frequency of the TSC
376 * in kHz.
377 *
378 * Return ULONG_MAX on failure to calibrate.
379 */
a977c400 380static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
381{
382 u64 tsc, t1, t2, delta;
383 unsigned long tscmin, tscmax;
384 int pitcnt;
385
30c7e5b1
PZ
386 if (!has_legacy_pic()) {
387 /*
388 * Relies on tsc_early_delay_calibrate() to have given us semi
389 * usable udelay(), wait for the same 50ms we would have with
390 * the PIT loop below.
391 */
392 udelay(10 * USEC_PER_MSEC);
393 udelay(10 * USEC_PER_MSEC);
394 udelay(10 * USEC_PER_MSEC);
395 udelay(10 * USEC_PER_MSEC);
396 udelay(10 * USEC_PER_MSEC);
397 return ULONG_MAX;
398 }
399
ec0c15af
LT
400 /* Set the Gate high, disable speaker */
401 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
402
403 /*
404 * Setup CTC channel 2* for mode 0, (interrupt on terminal
405 * count mode), binary count. Set the latch register to 50ms
406 * (LSB then MSB) to begin countdown.
407 */
408 outb(0xb0, 0x43);
a977c400
TG
409 outb(latch & 0xff, 0x42);
410 outb(latch >> 8, 0x42);
ec0c15af
LT
411
412 tsc = t1 = t2 = get_cycles();
413
414 pitcnt = 0;
415 tscmax = 0;
416 tscmin = ULONG_MAX;
417 while ((inb(0x61) & 0x20) == 0) {
418 t2 = get_cycles();
419 delta = t2 - tsc;
420 tsc = t2;
421 if ((unsigned long) delta < tscmin)
422 tscmin = (unsigned int) delta;
423 if ((unsigned long) delta > tscmax)
424 tscmax = (unsigned int) delta;
425 pitcnt++;
426 }
427
428 /*
429 * Sanity checks:
430 *
a977c400 431 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
432 * times, then we have been hit by a massive SMI
433 *
434 * If the maximum is 10 times larger than the minimum,
435 * then we got hit by an SMI as well.
436 */
a977c400 437 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
438 return ULONG_MAX;
439
440 /* Calculate the PIT value */
441 delta = t2 - t1;
a977c400 442 do_div(delta, ms);
ec0c15af
LT
443 return delta;
444}
445
6ac40ed0
LT
446/*
447 * This reads the current MSB of the PIT counter, and
448 * checks if we are running on sufficiently fast and
449 * non-virtualized hardware.
450 *
451 * Our expectations are:
452 *
453 * - the PIT is running at roughly 1.19MHz
454 *
455 * - each IO is going to take about 1us on real hardware,
456 * but we allow it to be much faster (by a factor of 10) or
457 * _slightly_ slower (ie we allow up to a 2us read+counter
458 * update - anything else implies a unacceptably slow CPU
459 * or PIT for the fast calibration to work.
460 *
461 * - with 256 PIT ticks to read the value, we have 214us to
462 * see the same MSB (and overhead like doing a single TSC
463 * read per MSB value etc).
464 *
465 * - We're doing 2 reads per loop (LSB, MSB), and we expect
466 * them each to take about a microsecond on real hardware.
467 * So we expect a count value of around 100. But we'll be
468 * generous, and accept anything over 50.
469 *
470 * - if the PIT is stuck, and we see *many* more reads, we
471 * return early (and the next caller of pit_expect_msb()
472 * then consider it a failure when they don't see the
473 * next expected value).
474 *
475 * These expectations mean that we know that we have seen the
476 * transition from one expected value to another with a fairly
477 * high accuracy, and we didn't miss any events. We can thus
478 * use the TSC value at the transitions to calculate a pretty
479 * good value for the TSC frequencty.
480 */
b6e61eef
LT
481static inline int pit_verify_msb(unsigned char val)
482{
483 /* Ignore LSB */
484 inb(0x42);
485 return inb(0x42) == val;
486}
487
9e8912e0 488static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 489{
9e8912e0 490 int count;
68f30fbe 491 u64 tsc = 0, prev_tsc = 0;
bfc0f594 492
6ac40ed0 493 for (count = 0; count < 50000; count++) {
b6e61eef 494 if (!pit_verify_msb(val))
6ac40ed0 495 break;
68f30fbe 496 prev_tsc = tsc;
9e8912e0 497 tsc = get_cycles();
6ac40ed0 498 }
68f30fbe 499 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
500 *tscp = tsc;
501
502 /*
503 * We require _some_ success, but the quality control
504 * will be based on the error terms on the TSC values.
505 */
506 return count > 5;
6ac40ed0
LT
507}
508
509/*
9e8912e0
LT
510 * How many MSB values do we want to see? We aim for
511 * a maximum error rate of 500ppm (in practice the
512 * real error is much smaller), but refuse to spend
68f30fbe 513 * more than 50ms on it.
6ac40ed0 514 */
68f30fbe 515#define MAX_QUICK_PIT_MS 50
9e8912e0 516#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 517
6ac40ed0
LT
518static unsigned long quick_pit_calibrate(void)
519{
9e8912e0
LT
520 int i;
521 u64 tsc, delta;
522 unsigned long d1, d2;
523
30c7e5b1
PZ
524 if (!has_legacy_pic())
525 return 0;
526
6ac40ed0 527 /* Set the Gate high, disable speaker */
bfc0f594
AK
528 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
529
6ac40ed0
LT
530 /*
531 * Counter 2, mode 0 (one-shot), binary count
532 *
533 * NOTE! Mode 2 decrements by two (and then the
534 * output is flipped each time, giving the same
535 * final output frequency as a decrement-by-one),
536 * so mode 0 is much better when looking at the
537 * individual counts.
538 */
bfc0f594 539 outb(0xb0, 0x43);
bfc0f594 540
6ac40ed0
LT
541 /* Start at 0xffff */
542 outb(0xff, 0x42);
543 outb(0xff, 0x42);
544
a6a80e1d
LT
545 /*
546 * The PIT starts counting at the next edge, so we
547 * need to delay for a microsecond. The easiest way
548 * to do that is to just read back the 16-bit counter
549 * once from the PIT.
550 */
b6e61eef 551 pit_verify_msb(0);
a6a80e1d 552
9e8912e0
LT
553 if (pit_expect_msb(0xff, &tsc, &d1)) {
554 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
555 if (!pit_expect_msb(0xff-i, &delta, &d2))
556 break;
557
5aac644a
AH
558 delta -= tsc;
559
560 /*
561 * Extrapolate the error and fail fast if the error will
562 * never be below 500 ppm.
563 */
564 if (i == 1 &&
565 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
566 return 0;
567
9e8912e0
LT
568 /*
569 * Iterate until the error is less than 500 ppm
570 */
b6e61eef
LT
571 if (d1+d2 >= delta >> 11)
572 continue;
573
574 /*
575 * Check the PIT one more time to verify that
576 * all TSC reads were stable wrt the PIT.
577 *
578 * This also guarantees serialization of the
579 * last cycle read ('d2') in pit_expect_msb.
580 */
581 if (!pit_verify_msb(0xfe - i))
582 break;
583 goto success;
6ac40ed0 584 }
6ac40ed0 585 }
52045217 586 pr_info("Fast TSC calibration failed\n");
6ac40ed0 587 return 0;
9e8912e0
LT
588
589success:
590 /*
591 * Ok, if we get here, then we've seen the
592 * MSB of the PIT decrement 'i' times, and the
593 * error has shrunk to less than 500 ppm.
594 *
595 * As a result, we can depend on there not being
596 * any odd delays anywhere, and the TSC reads are
68f30fbe 597 * reliable (within the error).
9e8912e0
LT
598 *
599 * kHz = ticks / time-in-seconds / 1000;
600 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
601 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
602 */
9e8912e0
LT
603 delta *= PIT_TICK_RATE;
604 do_div(delta, i*256*1000);
c767a54b 605 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 606 return delta;
6ac40ed0 607}
ec0c15af 608
bfc0f594 609/**
aa297292
LB
610 * native_calibrate_tsc
611 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 612 */
e93ef949 613unsigned long native_calibrate_tsc(void)
aa297292
LB
614{
615 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
616 unsigned int crystal_khz;
617
618 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
619 return 0;
620
621 if (boot_cpu_data.cpuid_level < 0x15)
622 return 0;
623
624 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
625
626 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
627 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
628
629 if (ebx_numerator == 0 || eax_denominator == 0)
630 return 0;
631
632 crystal_khz = ecx_hz / 1000;
633
634 if (crystal_khz == 0) {
635 switch (boot_cpu_data.x86_model) {
655e52d2
PB
636 case INTEL_FAM6_SKYLAKE_MOBILE:
637 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
638 case INTEL_FAM6_KABYLAKE_MOBILE:
639 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
640 crystal_khz = 24000; /* 24.0 MHz */
641 break;
f2c4db1b 642 case INTEL_FAM6_ATOM_GOLDMONT_X:
6baf3d61
PB
643 crystal_khz = 25000; /* 25.0 MHz */
644 break;
655e52d2 645 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
646 crystal_khz = 19200; /* 19.2 MHz */
647 break;
aa297292
LB
648 }
649 }
650
da4ae6c4
LB
651 if (crystal_khz == 0)
652 return 0;
4ca4df0b
BG
653 /*
654 * TSC frequency determined by CPUID is a "hardware reported"
655 * frequency and is the most accurate one so far we have. This
656 * is considered a known frequency.
657 */
658 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
659
4635fdc6
BG
660 /*
661 * For Atom SoCs TSC is the only reliable clocksource.
662 * Mark TSC reliable so no watchdog on it.
663 */
664 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
665 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
666
aa297292
LB
667 return crystal_khz * ebx_numerator / eax_denominator;
668}
669
670static unsigned long cpu_khz_from_cpuid(void)
671{
672 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
673
674 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 return 0;
676
677 if (boot_cpu_data.cpuid_level < 0x16)
678 return 0;
679
680 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
681
682 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
683
684 return eax_base_mhz * 1000;
685}
686
03821f45
PT
687/*
688 * calibrate cpu using pit, hpet, and ptimer methods. They are available
689 * later in boot after acpi is initialized.
aa297292 690 */
03821f45 691static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
bfc0f594 692{
827014be 693 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 694 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
03821f45 695 unsigned long flags, latch, ms;
a977c400 696 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 697
fbb16e24
TG
698 /*
699 * Run 5 calibration loops to get the lowest frequency value
700 * (the best estimate). We use two different calibration modes
701 * here:
702 *
703 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
704 * load a timeout of 50ms. We read the time right after we
705 * started the timer and wait until the PIT count down reaches
706 * zero. In each wait loop iteration we read the TSC and check
707 * the delta to the previous read. We keep track of the min
708 * and max values of that delta. The delta is mostly defined
a786ef15
DV
709 * by the IO time of the PIT access, so we can detect when
710 * any disturbance happened between the two reads. If the
fbb16e24
TG
711 * maximum time is significantly larger than the minimum time,
712 * then we discard the result and have another try.
713 *
714 * 2) Reference counter. If available we use the HPET or the
715 * PMTIMER as a reference to check the sanity of that value.
716 * We use separate TSC readouts and check inside of the
a786ef15 717 * reference read for any possible disturbance. We dicard
fbb16e24
TG
718 * disturbed values here as well. We do that around the PIT
719 * calibration delay loop as we have to wait for a certain
720 * amount of time anyway.
721 */
a977c400
TG
722
723 /* Preset PIT loop values */
724 latch = CAL_LATCH;
725 ms = CAL_MS;
726 loopmin = CAL_PIT_LOOPS;
727
728 for (i = 0; i < 3; i++) {
ec0c15af 729 unsigned long tsc_pit_khz;
fbb16e24
TG
730
731 /*
732 * Read the start value and the reference count of
ec0c15af
LT
733 * hpet/pmtimer when available. Then do the PIT
734 * calibration, which will take at least 50ms, and
735 * read the end value.
fbb16e24 736 */
ec0c15af 737 local_irq_save(flags);
827014be 738 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 739 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 740 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
741 local_irq_restore(flags);
742
ec0c15af
LT
743 /* Pick the lowest PIT TSC calibration so far */
744 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
745
746 /* hpet or pmtimer available ? */
62627bec 747 if (ref1 == ref2)
fbb16e24
TG
748 continue;
749
a786ef15 750 /* Check, whether the sampling was disturbed */
fbb16e24
TG
751 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
752 continue;
753
754 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 755 if (hpet)
827014be 756 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 757 else
827014be 758 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 759
fbb16e24 760 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
761
762 /* Check the reference deviation */
763 delta = ((u64) tsc_pit_min) * 100;
764 do_div(delta, tsc_ref_min);
765
766 /*
767 * If both calibration results are inside a 10% window
768 * then we can be sure, that the calibration
769 * succeeded. We break out of the loop right away. We
770 * use the reference value, as it is more precise.
771 */
772 if (delta >= 90 && delta <= 110) {
c767a54b
JP
773 pr_info("PIT calibration matches %s. %d loops\n",
774 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 775 return tsc_ref_min;
fbb16e24
TG
776 }
777
a977c400
TG
778 /*
779 * Check whether PIT failed more than once. This
780 * happens in virtualized environments. We need to
781 * give the virtual PC a slightly longer timeframe for
782 * the HPET/PMTIMER to make the result precise.
783 */
784 if (i == 1 && tsc_pit_min == ULONG_MAX) {
785 latch = CAL2_LATCH;
786 ms = CAL2_MS;
787 loopmin = CAL2_PIT_LOOPS;
788 }
fbb16e24 789 }
bfc0f594
AK
790
791 /*
fbb16e24 792 * Now check the results.
bfc0f594 793 */
fbb16e24
TG
794 if (tsc_pit_min == ULONG_MAX) {
795 /* PIT gave no useful value */
c767a54b 796 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
797
798 /* We don't have an alternative source, disable TSC */
827014be 799 if (!hpet && !ref1 && !ref2) {
c767a54b 800 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
801 return 0;
802 }
803
804 /* The alternative source failed as well, disable TSC */
805 if (tsc_ref_min == ULONG_MAX) {
c767a54b 806 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
807 return 0;
808 }
809
810 /* Use the alternative source */
c767a54b
JP
811 pr_info("using %s reference calibration\n",
812 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
813
814 return tsc_ref_min;
815 }
bfc0f594 816
fbb16e24 817 /* We don't have an alternative source, use the PIT calibration value */
827014be 818 if (!hpet && !ref1 && !ref2) {
c767a54b 819 pr_info("Using PIT calibration value\n");
fbb16e24 820 return tsc_pit_min;
bfc0f594
AK
821 }
822
fbb16e24
TG
823 /* The alternative source failed, use the PIT calibration value */
824 if (tsc_ref_min == ULONG_MAX) {
c767a54b 825 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 826 return tsc_pit_min;
bfc0f594
AK
827 }
828
fbb16e24
TG
829 /*
830 * The calibration values differ too much. In doubt, we use
831 * the PIT value as we know that there are PMTIMERs around
a977c400 832 * running at double speed. At least we let the user know:
fbb16e24 833 */
c767a54b
JP
834 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
835 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
836 pr_info("Using PIT calibration value\n");
fbb16e24 837 return tsc_pit_min;
bfc0f594
AK
838}
839
03821f45
PT
840/**
841 * native_calibrate_cpu_early - can calibrate the cpu early in boot
842 */
843unsigned long native_calibrate_cpu_early(void)
844{
845 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
846
847 if (!fast_calibrate)
848 fast_calibrate = cpu_khz_from_msr();
849 if (!fast_calibrate) {
850 local_irq_save(flags);
851 fast_calibrate = quick_pit_calibrate();
852 local_irq_restore(flags);
853 }
854 return fast_calibrate;
855}
856
857
858/**
859 * native_calibrate_cpu - calibrate the cpu
860 */
8dbe4385 861static unsigned long native_calibrate_cpu(void)
03821f45
PT
862{
863 unsigned long tsc_freq = native_calibrate_cpu_early();
864
865 if (!tsc_freq)
866 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
867
868 return tsc_freq;
869}
870
af576850 871void recalibrate_cpu_khz(void)
bfc0f594
AK
872{
873#ifndef CONFIG_SMP
874 unsigned long cpu_khz_old = cpu_khz;
875
eff4677e 876 if (!boot_cpu_has(X86_FEATURE_TSC))
af576850 877 return;
eff4677e 878
aa297292 879 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 880 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
881 if (tsc_khz == 0)
882 tsc_khz = cpu_khz;
ff4c8663
LB
883 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
884 cpu_khz = tsc_khz;
eff4677e
BP
885 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
886 cpu_khz_old, cpu_khz);
bfc0f594
AK
887#endif
888}
889
890EXPORT_SYMBOL(recalibrate_cpu_khz);
891
2dbe06fa 892
cd7240c0
SS
893static unsigned long long cyc2ns_suspend;
894
b74f05d6 895void tsc_save_sched_clock_state(void)
cd7240c0 896{
35af99e6 897 if (!sched_clock_stable())
cd7240c0
SS
898 return;
899
900 cyc2ns_suspend = sched_clock();
901}
902
903/*
904 * Even on processors with invariant TSC, TSC gets reset in some the
905 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
906 * arbitrary value (still sync'd across cpu's) during resume from such sleep
907 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
908 * that sched_clock() continues from the point where it was left off during
909 * suspend.
910 */
b74f05d6 911void tsc_restore_sched_clock_state(void)
cd7240c0
SS
912{
913 unsigned long long offset;
914 unsigned long flags;
915 int cpu;
916
35af99e6 917 if (!sched_clock_stable())
cd7240c0
SS
918 return;
919
920 local_irq_save(flags);
921
20d1c86a 922 /*
6a6256f9 923 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
924 * bother being nice about the RCU stuff, just write to both
925 * data fields.
926 */
927
928 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
929 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
930
cd7240c0
SS
931 offset = cyc2ns_suspend - sched_clock();
932
20d1c86a
PZ
933 for_each_possible_cpu(cpu) {
934 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
935 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
936 }
cd7240c0
SS
937
938 local_irq_restore(flags);
939}
940
2dbe06fa 941#ifdef CONFIG_CPU_FREQ
c208ac8f
RW
942/*
943 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
2dbe06fa
AK
944 * changes.
945 *
c208ac8f
RW
946 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
947 * as unstable and give up in those cases.
2dbe06fa
AK
948 *
949 * Should fix up last_tsc too. Currently gettimeofday in the
950 * first tick after the change will be slightly wrong.
951 */
952
953static unsigned int ref_freq;
954static unsigned long loops_per_jiffy_ref;
955static unsigned long tsc_khz_ref;
956
957static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
958 void *data)
959{
960 struct cpufreq_freqs *freq = data;
2dbe06fa 961
c208ac8f
RW
962 if (num_online_cpus() > 1) {
963 mark_tsc_unstable("cpufreq changes on SMP");
964 return 0;
965 }
2dbe06fa
AK
966
967 if (!ref_freq) {
968 ref_freq = freq->old;
c208ac8f 969 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
2dbe06fa
AK
970 tsc_khz_ref = tsc_khz;
971 }
c208ac8f 972
2dbe06fa 973 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
c208ac8f
RW
974 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
975 boot_cpu_data.loops_per_jiffy =
976 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
977
978 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
979 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
980 mark_tsc_unstable("cpufreq changes");
2dbe06fa 981
df24014a 982 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
3896c329 983 }
2dbe06fa
AK
984
985 return 0;
986}
987
988static struct notifier_block time_cpufreq_notifier_block = {
989 .notifier_call = time_cpufreq_notifier
990};
991
a841cca7 992static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 993{
59e21e3d 994 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
995 return 0;
996 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
997 return 0;
2dbe06fa
AK
998 cpufreq_register_notifier(&time_cpufreq_notifier_block,
999 CPUFREQ_TRANSITION_NOTIFIER);
1000 return 0;
1001}
1002
a841cca7 1003core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
1004
1005#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 1006
f9677e0f
CH
1007#define ART_CPUID_LEAF (0x15)
1008#define ART_MIN_DENOMINATOR (1)
1009
1010
1011/*
1012 * If ART is present detect the numerator:denominator to convert to TSC
1013 */
120fc3fb 1014static void __init detect_art(void)
f9677e0f
CH
1015{
1016 unsigned int unused[2];
1017
1018 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1019 return;
1020
6c66350d 1021 /*
1022 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1023 * and the TSC counter resets must not occur asynchronously.
1024 */
f9677e0f
CH
1025 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1026 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
6c66350d 1027 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1028 tsc_async_resets)
f9677e0f
CH
1029 return;
1030
7b3d2f6e
TG
1031 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1032 &art_to_tsc_numerator, unused, unused+1);
1033
1034 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
1035 return;
1036
7b3d2f6e
TG
1037 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1038
f9677e0f
CH
1039 /* Make this sticky over multiple CPU init calls */
1040 setup_force_cpu_cap(X86_FEATURE_ART);
1041}
1042
1043
8fbbc4b4
AK
1044/* clocksource code */
1045
6a369583
TG
1046static void tsc_resume(struct clocksource *cs)
1047{
1048 tsc_verify_tsc_adjust(true);
1049}
1050
8fbbc4b4 1051/*
09ec5442 1052 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1053 * structure to avoid a nasty time-warp. This can be observed in a
1054 * very small window right after one CPU updated cycle_last under
1055 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1056 * is smaller than the cycle_last reference value due to a TSC which
1057 * is slighty behind. This delta is nowhere else observable, but in
1058 * that case it results in a forward time jump in the range of hours
1059 * due to the unsigned delta calculation of the time keeping core
1060 * code, which is necessary to support wrapping clocksources like pm
1061 * timer.
09ec5442
TG
1062 *
1063 * This sanity check is now done in the core timekeeping code.
1064 * checking the result of read_tsc() - cycle_last for being negative.
1065 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1066 */
a5a1d1c2 1067static u64 read_tsc(struct clocksource *cs)
8fbbc4b4 1068{
a5a1d1c2 1069 return (u64)rdtsc_ordered();
1be39679
MS
1070}
1071
12907fbb
TG
1072static void tsc_cs_mark_unstable(struct clocksource *cs)
1073{
1074 if (tsc_unstable)
1075 return;
f94c8d11 1076
12907fbb 1077 tsc_unstable = 1;
f94c8d11
PZ
1078 if (using_native_sched_clock())
1079 clear_sched_clock_stable();
12907fbb
TG
1080 disable_sched_clock_irqtime();
1081 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1082}
1083
b421b22b
PZ
1084static void tsc_cs_tick_stable(struct clocksource *cs)
1085{
1086 if (tsc_unstable)
1087 return;
1088
1089 if (using_native_sched_clock())
1090 sched_clock_tick_stable();
1091}
1092
09ec5442
TG
1093/*
1094 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1095 */
aa83c457
PZ
1096static struct clocksource clocksource_tsc_early = {
1097 .name = "tsc-early",
1098 .rating = 299,
1099 .read = read_tsc,
1100 .mask = CLOCKSOURCE_MASK(64),
1101 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1102 CLOCK_SOURCE_MUST_VERIFY,
1103 .archdata = { .vclock_mode = VCLOCK_TSC },
1104 .resume = tsc_resume,
1105 .mark_unstable = tsc_cs_mark_unstable,
1106 .tick_stable = tsc_cs_tick_stable,
e3b4f790 1107 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
aa83c457
PZ
1108};
1109
1110/*
1111 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1112 * this one will immediately take over. We will only register if TSC has
1113 * been found good.
1114 */
8fbbc4b4
AK
1115static struct clocksource clocksource_tsc = {
1116 .name = "tsc",
1117 .rating = 300,
1118 .read = read_tsc,
1119 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4 1120 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
aa83c457 1121 CLOCK_SOURCE_VALID_FOR_HRES |
8fbbc4b4 1122 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1123 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1124 .resume = tsc_resume,
12907fbb 1125 .mark_unstable = tsc_cs_mark_unstable,
b421b22b 1126 .tick_stable = tsc_cs_tick_stable,
e3b4f790 1127 .list = LIST_HEAD_INIT(clocksource_tsc.list),
8fbbc4b4
AK
1128};
1129
1130void mark_tsc_unstable(char *reason)
1131{
f94c8d11
PZ
1132 if (tsc_unstable)
1133 return;
1134
1135 tsc_unstable = 1;
1136 if (using_native_sched_clock())
35af99e6 1137 clear_sched_clock_stable();
f94c8d11
PZ
1138 disable_sched_clock_irqtime();
1139 pr_info("Marking TSC unstable due to %s\n", reason);
e3b4f790
PZ
1140
1141 clocksource_mark_unstable(&clocksource_tsc_early);
1142 clocksource_mark_unstable(&clocksource_tsc);
8fbbc4b4
AK
1143}
1144
1145EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1146
395628ef
AK
1147static void __init check_system_tsc_reliable(void)
1148{
03da3ff1
DW
1149#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1150 if (is_geode_lx()) {
1151 /* RTSC counts during suspend */
8fbbc4b4 1152#define RTSC_SUSP 0x100
03da3ff1 1153 unsigned long res_low, res_high;
8fbbc4b4 1154
03da3ff1
DW
1155 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1156 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1157 if (res_low & RTSC_SUSP)
1158 tsc_clocksource_reliable = 1;
1159 }
8fbbc4b4 1160#endif
395628ef
AK
1161 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1162 tsc_clocksource_reliable = 1;
1163}
8fbbc4b4
AK
1164
1165/*
1166 * Make an educated guess if the TSC is trustworthy and synchronized
1167 * over all CPUs.
1168 */
148f9bb8 1169int unsynchronized_tsc(void)
8fbbc4b4 1170{
59e21e3d 1171 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1172 return 1;
1173
3e5095d1 1174#ifdef CONFIG_SMP
8fbbc4b4
AK
1175 if (apic_is_clustered_box())
1176 return 1;
1177#endif
1178
1179 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1180 return 0;
d3b8f889 1181
1182 if (tsc_clocksource_reliable)
1183 return 0;
8fbbc4b4
AK
1184 /*
1185 * Intel systems are normally all synchronized.
1186 * Exceptions must mark TSC as unstable:
1187 */
1188 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1189 /* assume multi socket systems are not synchronized: */
1190 if (num_possible_cpus() > 1)
d3b8f889 1191 return 1;
8fbbc4b4
AK
1192 }
1193
d3b8f889 1194 return 0;
8fbbc4b4
AK
1195}
1196
f9677e0f
CH
1197/*
1198 * Convert ART to TSC given numerator/denominator found in detect_art()
1199 */
a5a1d1c2 1200struct system_counterval_t convert_art_to_tsc(u64 art)
f9677e0f
CH
1201{
1202 u64 tmp, res, rem;
1203
1204 rem = do_div(art, art_to_tsc_denominator);
1205
1206 res = art * art_to_tsc_numerator;
1207 tmp = rem * art_to_tsc_numerator;
1208
1209 do_div(tmp, art_to_tsc_denominator);
1210 res += tmp + art_to_tsc_offset;
1211
1212 return (struct system_counterval_t) {.cs = art_related_clocksource,
1213 .cycles = res};
1214}
1215EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58 1216
fc804f65
RJ
1217/**
1218 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1219 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1220 *
1221 * PTM requires all timestamps to be in units of nanoseconds. When user
1222 * software requests a cross-timestamp, this function converts system timestamp
1223 * to TSC.
1224 *
1225 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1226 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1227 * that this flag is set before conversion to TSC is attempted.
1228 *
1229 * Return:
1230 * struct system_counterval_t - system counter value with the pointer to the
1231 * corresponding clocksource
1232 * @cycles: System counter value
1233 * @cs: Clocksource corresponding to system counter value. Used
1234 * by timekeeping code to verify comparibility of two cycle
1235 * values.
1236 */
1237
1238struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1239{
1240 u64 tmp, res, rem;
1241
1242 rem = do_div(art_ns, USEC_PER_SEC);
1243
1244 res = art_ns * tsc_khz;
1245 tmp = rem * tsc_khz;
1246
1247 do_div(tmp, USEC_PER_SEC);
1248 res += tmp;
1249
1250 return (struct system_counterval_t) { .cs = art_related_clocksource,
1251 .cycles = res};
1252}
1253EXPORT_SYMBOL(convert_art_ns_to_tsc);
1254
1255
08ec0c58
JS
1256static void tsc_refine_calibration_work(struct work_struct *work);
1257static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1258/**
1259 * tsc_refine_calibration_work - Further refine tsc freq calibration
1260 * @work - ignored.
1261 *
1262 * This functions uses delayed work over a period of a
1263 * second to further refine the TSC freq value. Since this is
1264 * timer based, instead of loop based, we don't block the boot
1265 * process while this longer calibration is done.
1266 *
0d2eb44f 1267 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1268 * or the refined calibration is off by 1% of the fast early
1269 * calibration, we throw out the new calibration and use the
1270 * early calibration.
1271 */
1272static void tsc_refine_calibration_work(struct work_struct *work)
1273{
a786ef15 1274 static u64 tsc_start = ULLONG_MAX, ref_start;
08ec0c58
JS
1275 static int hpet;
1276 u64 tsc_stop, ref_stop, delta;
1277 unsigned long freq;
aa7b630e 1278 int cpu;
08ec0c58
JS
1279
1280 /* Don't bother refining TSC on unstable systems */
aa83c457 1281 if (tsc_unstable)
e9088add 1282 goto unreg;
08ec0c58
JS
1283
1284 /*
1285 * Since the work is started early in boot, we may be
1286 * delayed the first time we expire. So set the workqueue
1287 * again once we know timers are working.
1288 */
a786ef15
DV
1289 if (tsc_start == ULLONG_MAX) {
1290restart:
08ec0c58
JS
1291 /*
1292 * Only set hpet once, to avoid mixing hardware
1293 * if the hpet becomes enabled later.
1294 */
1295 hpet = is_hpet_enabled();
08ec0c58 1296 tsc_start = tsc_read_refs(&ref_start, hpet);
a786ef15 1297 schedule_delayed_work(&tsc_irqwork, HZ);
08ec0c58
JS
1298 return;
1299 }
1300
1301 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1302
1303 /* hpet or pmtimer available ? */
62627bec 1304 if (ref_start == ref_stop)
08ec0c58
JS
1305 goto out;
1306
a786ef15
DV
1307 /* Check, whether the sampling was disturbed */
1308 if (tsc_stop == ULLONG_MAX)
1309 goto restart;
08ec0c58
JS
1310
1311 delta = tsc_stop - tsc_start;
1312 delta *= 1000000LL;
1313 if (hpet)
1314 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1315 else
1316 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1317
1318 /* Make sure we're within 1% */
1319 if (abs(tsc_khz - freq) > tsc_khz/100)
1320 goto out;
1321
1322 tsc_khz = freq;
c767a54b
JP
1323 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1324 (unsigned long)tsc_khz / 1000,
1325 (unsigned long)tsc_khz % 1000);
08ec0c58 1326
6731b0d6
NS
1327 /* Inform the TSC deadline clockevent devices about the recalibration */
1328 lapic_update_tsc_freq();
1329
aa7b630e
PZ
1330 /* Update the sched_clock() rate to match the clocksource one */
1331 for_each_possible_cpu(cpu)
5c3c2ea6 1332 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
aa7b630e 1333
08ec0c58 1334out:
aa83c457 1335 if (tsc_unstable)
e9088add 1336 goto unreg;
aa83c457 1337
f9677e0f
CH
1338 if (boot_cpu_has(X86_FEATURE_ART))
1339 art_related_clocksource = &clocksource_tsc;
08ec0c58 1340 clocksource_register_khz(&clocksource_tsc, tsc_khz);
e9088add 1341unreg:
aa83c457 1342 clocksource_unregister(&clocksource_tsc_early);
08ec0c58
JS
1343}
1344
1345
1346static int __init init_tsc_clocksource(void)
8fbbc4b4 1347{
fe9af81e 1348 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
a8760eca
TG
1349 return 0;
1350
e9088add
PZ
1351 if (tsc_unstable)
1352 goto unreg;
aa83c457 1353
0f0b7e1c 1354 if (tsc_clocksource_reliable || no_tsc_watchdog)
395628ef 1355 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
57779dc2 1356
82f9c080
FT
1357 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1358 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1359
57779dc2 1360 /*
47c95a46
BG
1361 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1362 * the refined calibration and directly register it as a clocksource.
57779dc2 1363 */
984feceb 1364 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
44fee88c
PZ
1365 if (boot_cpu_has(X86_FEATURE_ART))
1366 art_related_clocksource = &clocksource_tsc;
57779dc2 1367 clocksource_register_khz(&clocksource_tsc, tsc_khz);
e9088add 1368unreg:
aa83c457 1369 clocksource_unregister(&clocksource_tsc_early);
57779dc2
AK
1370 return 0;
1371 }
1372
08ec0c58
JS
1373 schedule_delayed_work(&tsc_irqwork, 0);
1374 return 0;
8fbbc4b4 1375}
08ec0c58
JS
1376/*
1377 * We use device_initcall here, to ensure we run after the hpet
1378 * is fully initialized, which may occur at fs_initcall time.
1379 */
1380device_initcall(init_tsc_clocksource);
8fbbc4b4 1381
8dbe4385 1382static bool __init determine_cpu_tsc_frequencies(bool early)
8fbbc4b4 1383{
cf7a63ef
PT
1384 /* Make sure that cpu and tsc are not already calibrated */
1385 WARN_ON(cpu_khz || tsc_khz);
8fbbc4b4 1386
8dbe4385
PT
1387 if (early) {
1388 cpu_khz = x86_platform.calibrate_cpu();
1389 tsc_khz = x86_platform.calibrate_tsc();
1390 } else {
1391 /* We should not be here with non-native cpu calibration */
1392 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1393 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1394 }
ff4c8663
LB
1395
1396 /*
608008a4 1397 * Trust non-zero tsc_khz as authoritative,
ff4c8663
LB
1398 * and use it to sanity check cpu_khz,
1399 * which will be off if system timer is off.
1400 */
aa297292
LB
1401 if (tsc_khz == 0)
1402 tsc_khz = cpu_khz;
ff4c8663
LB
1403 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1404 cpu_khz = tsc_khz;
8fbbc4b4 1405
cf7a63ef
PT
1406 if (tsc_khz == 0)
1407 return false;
8fbbc4b4 1408
c767a54b 1409 pr_info("Detected %lu.%03lu MHz processor\n",
cf7a63ef
PT
1410 (unsigned long)cpu_khz / KHZ,
1411 (unsigned long)cpu_khz % KHZ);
8fbbc4b4 1412
4b5b2127
LB
1413 if (cpu_khz != tsc_khz) {
1414 pr_info("Detected %lu.%03lu MHz TSC",
cf7a63ef
PT
1415 (unsigned long)tsc_khz / KHZ,
1416 (unsigned long)tsc_khz % KHZ);
1417 }
1418 return true;
1419}
1420
1421static unsigned long __init get_loops_per_jiffy(void)
1422{
17f6bac2 1423 u64 lpj = (u64)tsc_khz * KHZ;
cf7a63ef
PT
1424
1425 do_div(lpj, HZ);
1426 return lpj;
1427}
1428
608008a4
DL
1429static void __init tsc_enable_sched_clock(void)
1430{
1431 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1432 tsc_store_and_check_tsc_adjust(true);
1433 cyc2ns_init_boot_cpu();
1434 static_branch_enable(&__use_tsc);
1435}
1436
cf7a63ef
PT
1437void __init tsc_early_init(void)
1438{
1439 if (!boot_cpu_has(X86_FEATURE_TSC))
1440 return;
2647c43c
MT
1441 /* Don't change UV TSC multi-chassis synchronization */
1442 if (is_early_uv_system())
1443 return;
8dbe4385 1444 if (!determine_cpu_tsc_frequencies(true))
cf7a63ef
PT
1445 return;
1446 loops_per_jiffy = get_loops_per_jiffy();
e2a9ca29 1447
608008a4 1448 tsc_enable_sched_clock();
cf7a63ef
PT
1449}
1450
1451void __init tsc_init(void)
1452{
8dbe4385
PT
1453 /*
1454 * native_calibrate_cpu_early can only calibrate using methods that are
1455 * available early in boot.
1456 */
1457 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1458 x86_platform.calibrate_cpu = native_calibrate_cpu;
1459
cf7a63ef
PT
1460 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1461 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1462 return;
1463 }
1464
1465 if (!tsc_khz) {
1466 /* We failed to determine frequencies earlier, try again */
8dbe4385 1467 if (!determine_cpu_tsc_frequencies(false)) {
cf7a63ef
PT
1468 mark_tsc_unstable("could not calculate TSC khz");
1469 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1470 return;
1471 }
608008a4 1472 tsc_enable_sched_clock();
4b5b2127
LB
1473 }
1474
e2a9ca29 1475 cyc2ns_init_secondary_cpus();
8fbbc4b4 1476
e82b8e4e
VP
1477 if (!no_sched_irq_time)
1478 enable_sched_clock_irqtime();
1479
cf7a63ef 1480 lpj_fine = get_loops_per_jiffy();
8fbbc4b4 1481 use_tsc_delay();
8fbbc4b4 1482
a1272dd5
ZD
1483 check_system_tsc_reliable();
1484
aa83c457 1485 if (unsynchronized_tsc()) {
8fbbc4b4 1486 mark_tsc_unstable("TSCs unsynchronized");
aa83c457
PZ
1487 return;
1488 }
8fbbc4b4 1489
aa83c457 1490 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
f9677e0f 1491 detect_art();
8fbbc4b4
AK
1492}
1493
b565201c
JS
1494#ifdef CONFIG_SMP
1495/*
1496 * If we have a constant TSC and are using the TSC for the delay loop,
1497 * we can skip clock calibration if another cpu in the same socket has already
1498 * been calibrated. This assumes that CONSTANT_TSC applies to all
1499 * cpus in the socket - this should be a safe assumption.
1500 */
148f9bb8 1501unsigned long calibrate_delay_is_known(void)
b565201c 1502{
c25323c0 1503 int sibling, cpu = smp_processor_id();
76ce7cfe
PT
1504 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1505 const struct cpumask *mask = topology_core_cpumask(cpu);
b565201c 1506
fe9af81e 1507 if (!constant_tsc || !mask)
f508a5ba
TG
1508 return 0;
1509
1510 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1511 if (sibling < nr_cpu_ids)
1512 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1513 return 0;
1514}
1515#endif