Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / arch / x86 / kernel / hpet.c
CommitLineData
5d0cf410 1#include <linux/clocksource.h>
e9e2cdb4 2#include <linux/clockchips.h>
4588c1f0 3#include <linux/interrupt.h>
69c60c88 4#include <linux/export.h>
28769149 5#include <linux/delay.h>
5d0cf410 6#include <linux/errno.h>
334955ef 7#include <linux/i8253.h>
5a0e3ad6 8#include <linux/slab.h>
5d0cf410 9#include <linux/hpet.h>
10#include <linux/init.h>
58ac1e76 11#include <linux/cpu.h>
4588c1f0
IM
12#include <linux/pm.h>
13#include <linux/io.h>
5d0cf410 14
cd4d09ec 15#include <asm/cpufeature.h>
d746d1eb 16#include <asm/irqdomain.h>
28769149 17#include <asm/fixmap.h>
4588c1f0 18#include <asm/hpet.h>
16f871bc 19#include <asm/time.h>
5d0cf410 20
4588c1f0 21#define HPET_MASK CLOCKSOURCE_MASK(32)
5d0cf410 22
b10db7f0
PM
23/* FSEC = 10^-15
24 NSEC = 10^-9 */
4588c1f0 25#define FSEC_PER_NSEC 1000000L
5d0cf410 26
26afe5f2 27#define HPET_DEV_USED_BIT 2
28#define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
29#define HPET_DEV_VALID 0x8
30#define HPET_DEV_FSB_CAP 0x1000
31#define HPET_DEV_PERI_CAP 0x2000
32
f1c18071
TG
33#define HPET_MIN_CYCLES 128
34#define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
35
e9e2cdb4
TG
36/*
37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
38 */
4588c1f0 39unsigned long hpet_address;
c8bc6f3c 40u8 hpet_blockid; /* OS timer block num */
3d45ac4b 41bool hpet_msi_disable;
73472a46 42
e951e4af 43#ifdef CONFIG_PCI_MSI
3d45ac4b 44static unsigned int hpet_num_timers;
e951e4af 45#endif
4588c1f0 46static void __iomem *hpet_virt_address;
e9e2cdb4 47
58ac1e76 48struct hpet_dev {
4588c1f0
IM
49 struct clock_event_device evt;
50 unsigned int num;
51 int cpu;
52 unsigned int irq;
53 unsigned int flags;
54 char name[10];
58ac1e76 55};
56
a3819e3e 57static inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
3f7787b3
FW
58{
59 return container_of(evtdev, struct hpet_dev, evt);
60}
61
5946fa3d 62inline unsigned int hpet_readl(unsigned int a)
e9e2cdb4
TG
63{
64 return readl(hpet_virt_address + a);
65}
66
5946fa3d 67static inline void hpet_writel(unsigned int d, unsigned int a)
e9e2cdb4
TG
68{
69 writel(d, hpet_virt_address + a);
70}
71
28769149 72#ifdef CONFIG_X86_64
28769149 73#include <asm/pgtable.h>
2387ce57 74#endif
28769149 75
06a24dec
TG
76static inline void hpet_set_mapping(void)
77{
78 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
79}
80
81static inline void hpet_clear_mapping(void)
82{
83 iounmap(hpet_virt_address);
84 hpet_virt_address = NULL;
85}
86
e9e2cdb4
TG
87/*
88 * HPET command line enable / disable
89 */
3d45ac4b
JB
90bool boot_hpet_disable;
91bool hpet_force_user;
92static bool hpet_verbose;
e9e2cdb4 93
4588c1f0 94static int __init hpet_setup(char *str)
e9e2cdb4 95{
b2d6aba9
JB
96 while (str) {
97 char *next = strchr(str, ',');
98
99 if (next)
100 *next++ = 0;
e9e2cdb4 101 if (!strncmp("disable", str, 7))
3d45ac4b 102 boot_hpet_disable = true;
b17530bd 103 if (!strncmp("force", str, 5))
3d45ac4b 104 hpet_force_user = true;
b98103a5 105 if (!strncmp("verbose", str, 7))
3d45ac4b 106 hpet_verbose = true;
b2d6aba9 107 str = next;
e9e2cdb4
TG
108 }
109 return 1;
110}
111__setup("hpet=", hpet_setup);
112
28769149
TG
113static int __init disable_hpet(char *str)
114{
3d45ac4b 115 boot_hpet_disable = true;
28769149
TG
116 return 1;
117}
118__setup("nohpet", disable_hpet);
119
e9e2cdb4
TG
120static inline int is_hpet_capable(void)
121{
4588c1f0 122 return !boot_hpet_disable && hpet_address;
e9e2cdb4
TG
123}
124
125/*
126 * HPET timer interrupt enable / disable
127 */
3d45ac4b 128static bool hpet_legacy_int_enabled;
e9e2cdb4
TG
129
130/**
131 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
132 */
133int is_hpet_enabled(void)
134{
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136}
1bdbdaac 137EXPORT_SYMBOL_GPL(is_hpet_enabled);
e9e2cdb4 138
b98103a5
AH
139static void _hpet_print_config(const char *function, int line)
140{
141 u32 i, timers, l, h;
142 printk(KERN_INFO "hpet: %s(%d):\n", function, line);
143 l = hpet_readl(HPET_ID);
144 h = hpet_readl(HPET_PERIOD);
145 timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
146 printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
147 l = hpet_readl(HPET_CFG);
148 h = hpet_readl(HPET_STATUS);
149 printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
150 l = hpet_readl(HPET_COUNTER);
151 h = hpet_readl(HPET_COUNTER+4);
152 printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
153
154 for (i = 0; i < timers; i++) {
155 l = hpet_readl(HPET_Tn_CFG(i));
156 h = hpet_readl(HPET_Tn_CFG(i)+4);
157 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
158 i, l, h);
159 l = hpet_readl(HPET_Tn_CMP(i));
160 h = hpet_readl(HPET_Tn_CMP(i)+4);
161 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
162 i, l, h);
163 l = hpet_readl(HPET_Tn_ROUTE(i));
164 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
165 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
166 i, l, h);
167 }
168}
169
170#define hpet_print_config() \
171do { \
172 if (hpet_verbose) \
02f1f217 173 _hpet_print_config(__func__, __LINE__); \
b98103a5
AH
174} while (0)
175
e9e2cdb4
TG
176/*
177 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
178 * timer 0 and timer 1 in case of RTC emulation.
179 */
180#ifdef CONFIG_HPET
f0ed4e69 181
5f79f2f2 182static void hpet_reserve_msi_timers(struct hpet_data *hd);
f0ed4e69 183
5946fa3d 184static void hpet_reserve_platform_timers(unsigned int id)
e9e2cdb4
TG
185{
186 struct hpet __iomem *hpet = hpet_virt_address;
37a47db8
BR
187 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
188 unsigned int nrtimers, i;
e9e2cdb4
TG
189 struct hpet_data hd;
190
191 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
192
4588c1f0
IM
193 memset(&hd, 0, sizeof(hd));
194 hd.hd_phys_address = hpet_address;
195 hd.hd_address = hpet;
196 hd.hd_nirqs = nrtimers;
e9e2cdb4
TG
197 hpet_reserve_timer(&hd, 0);
198
199#ifdef CONFIG_HPET_EMULATE_RTC
200 hpet_reserve_timer(&hd, 1);
201#endif
5761d64b 202
64a76f66
DB
203 /*
204 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
205 * is wrong for i8259!) not the output IRQ. Many BIOS writers
206 * don't bother configuring *any* comparator interrupts.
207 */
e9e2cdb4
TG
208 hd.hd_irq[0] = HPET_LEGACY_8254;
209 hd.hd_irq[1] = HPET_LEGACY_RTC;
210
fc3fbc45 211 for (i = 2; i < nrtimers; timer++, i++) {
4588c1f0
IM
212 hd.hd_irq[i] = (readl(&timer->hpet_config) &
213 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
fc3fbc45 214 }
5761d64b 215
f0ed4e69 216 hpet_reserve_msi_timers(&hd);
26afe5f2 217
e9e2cdb4 218 hpet_alloc(&hd);
5761d64b 219
e9e2cdb4
TG
220}
221#else
5946fa3d 222static void hpet_reserve_platform_timers(unsigned int id) { }
e9e2cdb4
TG
223#endif
224
225/*
226 * Common hpet info
227 */
ab0e08f1 228static unsigned long hpet_freq;
e9e2cdb4 229
c8b5db7d 230static struct clock_event_device hpet_clockevent;
e9e2cdb4 231
8d6f0c82 232static void hpet_stop_counter(void)
e9e2cdb4 233{
3d45ac4b 234 u32 cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
235 cfg &= ~HPET_CFG_ENABLE;
236 hpet_writel(cfg, HPET_CFG);
7a6f9cbb
AH
237}
238
239static void hpet_reset_counter(void)
240{
e9e2cdb4
TG
241 hpet_writel(0, HPET_COUNTER);
242 hpet_writel(0, HPET_COUNTER + 4);
8d6f0c82
AH
243}
244
245static void hpet_start_counter(void)
246{
5946fa3d 247 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
248 cfg |= HPET_CFG_ENABLE;
249 hpet_writel(cfg, HPET_CFG);
250}
251
8d6f0c82
AH
252static void hpet_restart_counter(void)
253{
254 hpet_stop_counter();
7a6f9cbb 255 hpet_reset_counter();
8d6f0c82
AH
256 hpet_start_counter();
257}
258
59c69f2a
VP
259static void hpet_resume_device(void)
260{
bfe0c1cc 261 force_hpet_resume();
59c69f2a
VP
262}
263
17622339 264static void hpet_resume_counter(struct clocksource *cs)
59c69f2a
VP
265{
266 hpet_resume_device();
8d6f0c82 267 hpet_restart_counter();
59c69f2a
VP
268}
269
610bf2f1 270static void hpet_enable_legacy_int(void)
e9e2cdb4 271{
5946fa3d 272 unsigned int cfg = hpet_readl(HPET_CFG);
e9e2cdb4
TG
273
274 cfg |= HPET_CFG_LEGACY;
275 hpet_writel(cfg, HPET_CFG);
3d45ac4b 276 hpet_legacy_int_enabled = true;
e9e2cdb4
TG
277}
278
610bf2f1
VP
279static void hpet_legacy_clockevent_register(void)
280{
610bf2f1
VP
281 /* Start HPET legacy interrupts */
282 hpet_enable_legacy_int();
283
610bf2f1
VP
284 /*
285 * Start hpet with the boot cpu mask and make it
286 * global after the IO_APIC has been initialized.
287 */
320ab2b0 288 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
ab0e08f1
TG
289 clockevents_config_and_register(&hpet_clockevent, hpet_freq,
290 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
610bf2f1
VP
291 global_clock_event = &hpet_clockevent;
292 printk(KERN_DEBUG "hpet clockevent registered\n");
293}
294
c8b5db7d 295static int hpet_set_periodic(struct clock_event_device *evt, int timer)
e9e2cdb4 296{
5946fa3d 297 unsigned int cfg, cmp, now;
e9e2cdb4
TG
298 uint64_t delta;
299
c8b5db7d
VK
300 hpet_stop_counter();
301 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
302 delta >>= evt->shift;
303 now = hpet_readl(HPET_COUNTER);
304 cmp = now + (unsigned int)delta;
305 cfg = hpet_readl(HPET_Tn_CFG(timer));
306 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
307 HPET_TN_32BIT;
308 hpet_writel(cfg, HPET_Tn_CFG(timer));
309 hpet_writel(cmp, HPET_Tn_CMP(timer));
310 udelay(1);
311 /*
312 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
313 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
314 * bit is automatically cleared after the first write.
315 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
316 * Publication # 24674)
317 */
318 hpet_writel((unsigned int)delta, HPET_Tn_CMP(timer));
319 hpet_start_counter();
320 hpet_print_config();
321
322 return 0;
323}
324
325static int hpet_set_oneshot(struct clock_event_device *evt, int timer)
326{
327 unsigned int cfg;
328
329 cfg = hpet_readl(HPET_Tn_CFG(timer));
330 cfg &= ~HPET_TN_PERIODIC;
331 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
332 hpet_writel(cfg, HPET_Tn_CFG(timer));
333
334 return 0;
335}
336
337static int hpet_shutdown(struct clock_event_device *evt, int timer)
338{
339 unsigned int cfg;
340
341 cfg = hpet_readl(HPET_Tn_CFG(timer));
342 cfg &= ~HPET_TN_ENABLE;
343 hpet_writel(cfg, HPET_Tn_CFG(timer));
344
345 return 0;
346}
347
348static int hpet_resume(struct clock_event_device *evt, int timer)
349{
350 if (!timer) {
351 hpet_enable_legacy_int();
352 } else {
353 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
354
355 irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
356 disable_irq(hdev->irq);
357 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
358 enable_irq(hdev->irq);
e9e2cdb4 359 }
c8b5db7d
VK
360 hpet_print_config();
361
362 return 0;
e9e2cdb4
TG
363}
364
b40d575b 365static int hpet_next_event(unsigned long delta,
366 struct clock_event_device *evt, int timer)
e9e2cdb4 367{
f7676254 368 u32 cnt;
995bd3bb 369 s32 res;
e9e2cdb4
TG
370
371 cnt = hpet_readl(HPET_COUNTER);
f7676254 372 cnt += (u32) delta;
b40d575b 373 hpet_writel(cnt, HPET_Tn_CMP(timer));
e9e2cdb4 374
72d43d9b 375 /*
995bd3bb
TG
376 * HPETs are a complete disaster. The compare register is
377 * based on a equal comparison and neither provides a less
378 * than or equal functionality (which would require to take
379 * the wraparound into account) nor a simple count down event
380 * mode. Further the write to the comparator register is
381 * delayed internally up to two HPET clock cycles in certain
f1c18071
TG
382 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
383 * longer delays. We worked around that by reading back the
384 * compare register, but that required another workaround for
385 * ICH9,10 chips where the first readout after write can
386 * return the old stale value. We already had a minimum
387 * programming delta of 5us enforced, but a NMI or SMI hitting
995bd3bb
TG
388 * between the counter readout and the comparator write can
389 * move us behind that point easily. Now instead of reading
390 * the compare register back several times, we make the ETIME
391 * decision based on the following: Return ETIME if the
f1c18071 392 * counter value after the write is less than HPET_MIN_CYCLES
995bd3bb 393 * away from the event or if the counter is already ahead of
f1c18071
TG
394 * the event. The minimum programming delta for the generic
395 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
72d43d9b 396 */
995bd3bb 397 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
72d43d9b 398
f1c18071 399 return res < HPET_MIN_CYCLES ? -ETIME : 0;
e9e2cdb4
TG
400}
401
c8b5db7d 402static int hpet_legacy_shutdown(struct clock_event_device *evt)
b40d575b 403{
c8b5db7d
VK
404 return hpet_shutdown(evt, 0);
405}
406
407static int hpet_legacy_set_oneshot(struct clock_event_device *evt)
408{
409 return hpet_set_oneshot(evt, 0);
410}
411
412static int hpet_legacy_set_periodic(struct clock_event_device *evt)
413{
414 return hpet_set_periodic(evt, 0);
415}
416
417static int hpet_legacy_resume(struct clock_event_device *evt)
418{
419 return hpet_resume(evt, 0);
b40d575b 420}
421
422static int hpet_legacy_next_event(unsigned long delta,
423 struct clock_event_device *evt)
424{
425 return hpet_next_event(delta, evt, 0);
426}
427
c8b5db7d
VK
428/*
429 * The hpet clock event device
430 */
431static struct clock_event_device hpet_clockevent = {
432 .name = "hpet",
433 .features = CLOCK_EVT_FEAT_PERIODIC |
434 CLOCK_EVT_FEAT_ONESHOT,
435 .set_state_periodic = hpet_legacy_set_periodic,
436 .set_state_oneshot = hpet_legacy_set_oneshot,
437 .set_state_shutdown = hpet_legacy_shutdown,
438 .tick_resume = hpet_legacy_resume,
439 .set_next_event = hpet_legacy_next_event,
440 .irq = 0,
441 .rating = 50,
442};
443
58ac1e76 444/*
445 * HPET MSI Support
446 */
26afe5f2 447#ifdef CONFIG_PCI_MSI
5f79f2f2
VP
448
449static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
450static struct hpet_dev *hpet_devs;
3cb96f0c 451static struct irq_domain *hpet_domain;
5f79f2f2 452
d0fbca8f 453void hpet_msi_unmask(struct irq_data *data)
58ac1e76 454{
ff96b4d0 455 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 456 unsigned int cfg;
58ac1e76 457
458 /* unmask it */
459 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 460 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
58ac1e76 461 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
462}
463
d0fbca8f 464void hpet_msi_mask(struct irq_data *data)
58ac1e76 465{
ff96b4d0 466 struct hpet_dev *hdev = irq_data_get_irq_handler_data(data);
5946fa3d 467 unsigned int cfg;
58ac1e76 468
469 /* mask it */
470 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
6acf5a8c 471 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
58ac1e76 472 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
473}
474
d0fbca8f 475void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 476{
58ac1e76 477 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
478 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
479}
480
d0fbca8f 481void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
58ac1e76 482{
58ac1e76 483 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
484 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
485 msg->address_hi = 0;
486}
487
c8b5db7d 488static int hpet_msi_shutdown(struct clock_event_device *evt)
26afe5f2 489{
490 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
c8b5db7d
VK
491
492 return hpet_shutdown(evt, hdev->num);
493}
494
495static int hpet_msi_set_oneshot(struct clock_event_device *evt)
496{
497 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
498
499 return hpet_set_oneshot(evt, hdev->num);
500}
501
502static int hpet_msi_set_periodic(struct clock_event_device *evt)
503{
504 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
505
506 return hpet_set_periodic(evt, hdev->num);
507}
508
509static int hpet_msi_resume(struct clock_event_device *evt)
510{
511 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
512
513 return hpet_resume(evt, hdev->num);
26afe5f2 514}
515
516static int hpet_msi_next_event(unsigned long delta,
517 struct clock_event_device *evt)
518{
519 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
520 return hpet_next_event(delta, evt, hdev->num);
521}
522
26afe5f2 523static irqreturn_t hpet_interrupt_handler(int irq, void *data)
524{
525 struct hpet_dev *dev = (struct hpet_dev *)data;
526 struct clock_event_device *hevt = &dev->evt;
527
528 if (!hevt->event_handler) {
529 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
530 dev->num);
531 return IRQ_HANDLED;
532 }
533
534 hevt->event_handler(hevt);
535 return IRQ_HANDLED;
536}
537
538static int hpet_setup_irq(struct hpet_dev *dev)
539{
540
541 if (request_irq(dev->irq, hpet_interrupt_handler,
d20d2efb 542 IRQF_TIMER | IRQF_NOBALANCING,
507fa3a3 543 dev->name, dev))
26afe5f2 544 return -1;
545
546 disable_irq(dev->irq);
0de26520 547 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
26afe5f2 548 enable_irq(dev->irq);
549
c81bba49
YL
550 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
551 dev->name, dev->irq);
552
26afe5f2 553 return 0;
554}
555
556/* This should be called in specific @cpu */
557static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
558{
559 struct clock_event_device *evt = &hdev->evt;
26afe5f2 560
561 WARN_ON(cpu != smp_processor_id());
562 if (!(hdev->flags & HPET_DEV_VALID))
563 return;
564
26afe5f2 565 hdev->cpu = cpu;
566 per_cpu(cpu_hpet_dev, cpu) = hdev;
567 evt->name = hdev->name;
568 hpet_setup_irq(hdev);
569 evt->irq = hdev->irq;
570
571 evt->rating = 110;
572 evt->features = CLOCK_EVT_FEAT_ONESHOT;
c8b5db7d 573 if (hdev->flags & HPET_DEV_PERI_CAP) {
26afe5f2 574 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
c8b5db7d
VK
575 evt->set_state_periodic = hpet_msi_set_periodic;
576 }
26afe5f2 577
c8b5db7d
VK
578 evt->set_state_shutdown = hpet_msi_shutdown;
579 evt->set_state_oneshot = hpet_msi_set_oneshot;
580 evt->tick_resume = hpet_msi_resume;
26afe5f2 581 evt->set_next_event = hpet_msi_next_event;
320ab2b0 582 evt->cpumask = cpumask_of(hdev->cpu);
ab0e08f1
TG
583
584 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
585 0x7FFFFFFF);
26afe5f2 586}
587
588#ifdef CONFIG_HPET
589/* Reserve at least one timer for userspace (/dev/hpet) */
590#define RESERVE_TIMERS 1
591#else
592#define RESERVE_TIMERS 0
593#endif
5f79f2f2
VP
594
595static void hpet_msi_capability_lookup(unsigned int start_timer)
26afe5f2 596{
597 unsigned int id;
598 unsigned int num_timers;
599 unsigned int num_timers_used = 0;
3cb96f0c 600 int i, irq;
26afe5f2 601
73472a46
PV
602 if (hpet_msi_disable)
603 return;
604
39fe05e5
SL
605 if (boot_cpu_has(X86_FEATURE_ARAT))
606 return;
26afe5f2 607 id = hpet_readl(HPET_ID);
608
609 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
610 num_timers++; /* Value read out starts from 0 */
b98103a5 611 hpet_print_config();
26afe5f2 612
3cb96f0c
JL
613 hpet_domain = hpet_create_irq_domain(hpet_blockid);
614 if (!hpet_domain)
615 return;
616
26afe5f2 617 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
618 if (!hpet_devs)
619 return;
620
621 hpet_num_timers = num_timers;
622
623 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
624 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
5946fa3d 625 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
26afe5f2 626
627 /* Only consider HPET timer with MSI support */
628 if (!(cfg & HPET_TN_FSB_CAP))
629 continue;
630
cb17b2a6
TG
631 hdev->flags = 0;
632 if (cfg & HPET_TN_PERIODIC_CAP)
633 hdev->flags |= HPET_DEV_PERI_CAP;
634 sprintf(hdev->name, "hpet%d", i);
635 hdev->num = i;
636
3cb96f0c 637 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
bafac298 638 if (irq <= 0)
3cb96f0c
JL
639 continue;
640
3cb96f0c 641 hdev->irq = irq;
26afe5f2 642 hdev->flags |= HPET_DEV_FSB_CAP;
643 hdev->flags |= HPET_DEV_VALID;
644 num_timers_used++;
645 if (num_timers_used == num_possible_cpus())
646 break;
647 }
648
649 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
650 num_timers, num_timers_used);
651}
652
5f79f2f2
VP
653#ifdef CONFIG_HPET
654static void hpet_reserve_msi_timers(struct hpet_data *hd)
655{
656 int i;
657
658 if (!hpet_devs)
659 return;
660
661 for (i = 0; i < hpet_num_timers; i++) {
662 struct hpet_dev *hdev = &hpet_devs[i];
663
664 if (!(hdev->flags & HPET_DEV_VALID))
665 continue;
666
667 hd->hd_irq[hdev->num] = hdev->irq;
668 hpet_reserve_timer(hd, hdev->num);
669 }
670}
671#endif
672
26afe5f2 673static struct hpet_dev *hpet_get_unused_timer(void)
674{
675 int i;
676
677 if (!hpet_devs)
678 return NULL;
679
680 for (i = 0; i < hpet_num_timers; i++) {
681 struct hpet_dev *hdev = &hpet_devs[i];
682
683 if (!(hdev->flags & HPET_DEV_VALID))
684 continue;
685 if (test_and_set_bit(HPET_DEV_USED_BIT,
686 (unsigned long *)&hdev->flags))
687 continue;
688 return hdev;
689 }
690 return NULL;
691}
692
693struct hpet_work_struct {
694 struct delayed_work work;
695 struct completion complete;
696};
697
698static void hpet_work(struct work_struct *w)
699{
700 struct hpet_dev *hdev;
701 int cpu = smp_processor_id();
702 struct hpet_work_struct *hpet_work;
703
704 hpet_work = container_of(w, struct hpet_work_struct, work.work);
705
706 hdev = hpet_get_unused_timer();
707 if (hdev)
708 init_one_hpet_msi_clockevent(hdev, cpu);
709
710 complete(&hpet_work->complete);
711}
712
713static int hpet_cpuhp_notify(struct notifier_block *n,
714 unsigned long action, void *hcpu)
715{
716 unsigned long cpu = (unsigned long)hcpu;
717 struct hpet_work_struct work;
718 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
719
f80be5e3 720 switch (action & ~CPU_TASKS_FROZEN) {
26afe5f2 721 case CPU_ONLINE:
ca1cab37 722 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
26afe5f2 723 init_completion(&work.complete);
724 /* FIXME: add schedule_work_on() */
725 schedule_delayed_work_on(cpu, &work.work, 0);
726 wait_for_completion(&work.complete);
b712c8da 727 destroy_delayed_work_on_stack(&work.work);
26afe5f2 728 break;
729 case CPU_DEAD:
730 if (hdev) {
731 free_irq(hdev->irq, hdev);
732 hdev->flags &= ~HPET_DEV_USED;
733 per_cpu(cpu_hpet_dev, cpu) = NULL;
734 }
735 break;
736 }
737 return NOTIFY_OK;
738}
739#else
740
5f79f2f2
VP
741static void hpet_msi_capability_lookup(unsigned int start_timer)
742{
743 return;
744}
745
746#ifdef CONFIG_HPET
747static void hpet_reserve_msi_timers(struct hpet_data *hd)
26afe5f2 748{
749 return;
750}
5f79f2f2 751#endif
26afe5f2 752
753static int hpet_cpuhp_notify(struct notifier_block *n,
754 unsigned long action, void *hcpu)
755{
756 return NOTIFY_OK;
757}
758
759#endif
760
6bb74df4 761/*
762 * Clock source related code
763 */
8e19608e 764static cycle_t read_hpet(struct clocksource *cs)
6bb74df4 765{
766 return (cycle_t)hpet_readl(HPET_COUNTER);
767}
768
769static struct clocksource clocksource_hpet = {
770 .name = "hpet",
771 .rating = 250,
772 .read = read_hpet,
773 .mask = HPET_MASK,
6bb74df4 774 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
8d6f0c82 775 .resume = hpet_resume_counter,
6bb74df4 776};
777
610bf2f1 778static int hpet_clocksource_register(void)
e9e2cdb4 779{
6fd592da 780 u64 start, now;
075bcd1f 781 cycle_t t1;
e9e2cdb4 782
e9e2cdb4 783 /* Start the counter */
8d6f0c82 784 hpet_restart_counter();
e9e2cdb4 785
075bcd1f 786 /* Verify whether hpet counter works */
8e19608e 787 t1 = hpet_readl(HPET_COUNTER);
4ea1636b 788 start = rdtsc();
075bcd1f
TG
789
790 /*
791 * We don't know the TSC frequency yet, but waiting for
792 * 200000 TSC cycles is safe:
793 * 4 GHz == 50us
794 * 1 GHz == 200us
795 */
796 do {
797 rep_nop();
4ea1636b 798 now = rdtsc();
075bcd1f
TG
799 } while ((now - start) < 200000UL);
800
8e19608e 801 if (t1 == hpet_readl(HPET_COUNTER)) {
075bcd1f
TG
802 printk(KERN_WARNING
803 "HPET counter not counting. HPET disabled\n");
610bf2f1 804 return -ENODEV;
075bcd1f
TG
805 }
806
f12a15be 807 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
610bf2f1
VP
808 return 0;
809}
810
396e2c6f
JB
811static u32 *hpet_boot_cfg;
812
b02a7f22
PM
813/**
814 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
610bf2f1
VP
815 */
816int __init hpet_enable(void)
817{
396e2c6f 818 u32 hpet_period, cfg, id;
ab0e08f1 819 u64 freq;
396e2c6f 820 unsigned int i, last;
610bf2f1
VP
821
822 if (!is_hpet_capable())
823 return 0;
824
825 hpet_set_mapping();
826
827 /*
828 * Read the period and check for a sane value:
829 */
830 hpet_period = hpet_readl(HPET_PERIOD);
a6825f1c
TG
831
832 /*
833 * AMD SB700 based systems with spread spectrum enabled use a
834 * SMM based HPET emulation to provide proper frequency
835 * setting. The SMM code is initialized with the first HPET
836 * register access and takes some time to complete. During
837 * this time the config register reads 0xffffffff. We check
838 * for max. 1000 loops whether the config register reads a non
839 * 0xffffffff value to make sure that HPET is up and running
840 * before we go further. A counting loop is safe, as the HPET
841 * access takes thousands of CPU cycles. On non SB700 based
842 * machines this check is only done once and has no side
843 * effects.
844 */
845 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
846 if (i == 1000) {
847 printk(KERN_WARNING
848 "HPET config register value = 0xFFFFFFFF. "
849 "Disabling HPET\n");
850 goto out_nohpet;
851 }
852 }
853
610bf2f1
VP
854 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
855 goto out_nohpet;
856
ab0e08f1
TG
857 /*
858 * The period is a femto seconds value. Convert it to a
859 * frequency.
860 */
861 freq = FSEC_PER_SEC;
862 do_div(freq, hpet_period);
863 hpet_freq = freq;
864
610bf2f1
VP
865 /*
866 * Read the HPET ID register to retrieve the IRQ routing
867 * information and the number of channels
868 */
869 id = hpet_readl(HPET_ID);
b98103a5 870 hpet_print_config();
610bf2f1 871
396e2c6f
JB
872 last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
873
610bf2f1
VP
874#ifdef CONFIG_HPET_EMULATE_RTC
875 /*
876 * The legacy routing mode needs at least two channels, tick timer
877 * and the rtc emulation channel.
878 */
396e2c6f 879 if (!last)
610bf2f1
VP
880 goto out_nohpet;
881#endif
882
396e2c6f
JB
883 cfg = hpet_readl(HPET_CFG);
884 hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
885 GFP_KERNEL);
886 if (hpet_boot_cfg)
887 *hpet_boot_cfg = cfg;
888 else
889 pr_warn("HPET initial state will not be saved\n");
890 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1b38a3a1 891 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
892 if (cfg)
893 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
894 cfg);
895
896 for (i = 0; i <= last; ++i) {
897 cfg = hpet_readl(HPET_Tn_CFG(i));
898 if (hpet_boot_cfg)
899 hpet_boot_cfg[i + 1] = cfg;
900 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
901 hpet_writel(cfg, HPET_Tn_CFG(i));
902 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
903 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
904 | HPET_TN_FSB | HPET_TN_FSB_CAP);
905 if (cfg)
906 pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
907 cfg, i);
908 }
909 hpet_print_config();
910
610bf2f1
VP
911 if (hpet_clocksource_register())
912 goto out_nohpet;
913
e9e2cdb4 914 if (id & HPET_ID_LEGSUP) {
610bf2f1 915 hpet_legacy_clockevent_register();
e9e2cdb4
TG
916 return 1;
917 }
918 return 0;
5d0cf410 919
e9e2cdb4 920out_nohpet:
06a24dec 921 hpet_clear_mapping();
bacbe999 922 hpet_address = 0;
e9e2cdb4
TG
923 return 0;
924}
925
28769149
TG
926/*
927 * Needs to be late, as the reserve_timer code calls kalloc !
928 *
929 * Not a problem on i386 as hpet_enable is called from late_time_init,
930 * but on x86_64 it is necessary !
931 */
932static __init int hpet_late_init(void)
933{
26afe5f2 934 int cpu;
935
59c69f2a 936 if (boot_hpet_disable)
28769149
TG
937 return -ENODEV;
938
59c69f2a
VP
939 if (!hpet_address) {
940 if (!force_hpet_address)
941 return -ENODEV;
942
943 hpet_address = force_hpet_address;
944 hpet_enable();
59c69f2a
VP
945 }
946
39c04b55
JF
947 if (!hpet_virt_address)
948 return -ENODEV;
949
39fe05e5
SL
950 if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
951 hpet_msi_capability_lookup(2);
952 else
953 hpet_msi_capability_lookup(0);
954
28769149 955 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
b98103a5 956 hpet_print_config();
59c69f2a 957
73472a46
PV
958 if (hpet_msi_disable)
959 return 0;
960
39fe05e5
SL
961 if (boot_cpu_has(X86_FEATURE_ARAT))
962 return 0;
963
9014ad2a 964 cpu_notifier_register_begin();
26afe5f2 965 for_each_online_cpu(cpu) {
966 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
967 }
968
969 /* This notifier should be called after workqueue is ready */
9014ad2a
SB
970 __hotcpu_notifier(hpet_cpuhp_notify, -20);
971 cpu_notifier_register_done();
26afe5f2 972
28769149
TG
973 return 0;
974}
975fs_initcall(hpet_late_init);
976
c86c7fbc
OH
977void hpet_disable(void)
978{
ff487808 979 if (is_hpet_capable() && hpet_virt_address) {
396e2c6f 980 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
c86c7fbc 981
396e2c6f
JB
982 if (hpet_boot_cfg)
983 cfg = *hpet_boot_cfg;
984 else if (hpet_legacy_int_enabled) {
c86c7fbc 985 cfg &= ~HPET_CFG_LEGACY;
3d45ac4b 986 hpet_legacy_int_enabled = false;
c86c7fbc
OH
987 }
988 cfg &= ~HPET_CFG_ENABLE;
989 hpet_writel(cfg, HPET_CFG);
396e2c6f
JB
990
991 if (!hpet_boot_cfg)
992 return;
993
994 id = hpet_readl(HPET_ID);
995 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
996
997 for (id = 0; id <= last; ++id)
998 hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
999
1000 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
1001 hpet_writel(*hpet_boot_cfg, HPET_CFG);
c86c7fbc
OH
1002 }
1003}
1004
e9e2cdb4
TG
1005#ifdef CONFIG_HPET_EMULATE_RTC
1006
1007/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1008 * is enabled, we support RTC interrupt functionality in software.
1009 * RTC has 3 kinds of interrupts:
1010 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1011 * is updated
1012 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1013 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1014 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1015 * (1) and (2) above are implemented using polling at a frequency of
1016 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1017 * overhead. (DEFAULT_RTC_INT_FREQ)
1018 * For (3), we use interrupts at 64Hz or user specified periodic
1019 * frequency, whichever is higher.
1020 */
1021#include <linux/mc146818rtc.h>
1022#include <linux/rtc.h>
1bdbdaac 1023#include <asm/rtc.h>
e9e2cdb4
TG
1024
1025#define DEFAULT_RTC_INT_FREQ 64
1026#define DEFAULT_RTC_SHIFT 6
1027#define RTC_NUM_INTS 1
1028
1029static unsigned long hpet_rtc_flags;
7e2a31da 1030static int hpet_prev_update_sec;
e9e2cdb4
TG
1031static struct rtc_time hpet_alarm_time;
1032static unsigned long hpet_pie_count;
ff08f76d 1033static u32 hpet_t1_cmp;
5946fa3d
JB
1034static u32 hpet_default_delta;
1035static u32 hpet_pie_delta;
e9e2cdb4
TG
1036static unsigned long hpet_pie_limit;
1037
1bdbdaac
BW
1038static rtc_irq_handler irq_handler;
1039
ff08f76d
PE
1040/*
1041 * Check that the hpet counter c1 is ahead of the c2
1042 */
1043static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1044{
1045 return (s32)(c2 - c1) < 0;
1046}
1047
1bdbdaac
BW
1048/*
1049 * Registers a IRQ handler.
1050 */
1051int hpet_register_irq_handler(rtc_irq_handler handler)
1052{
1053 if (!is_hpet_enabled())
1054 return -ENODEV;
1055 if (irq_handler)
1056 return -EBUSY;
1057
1058 irq_handler = handler;
1059
1060 return 0;
1061}
1062EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1063
1064/*
1065 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1066 * and does cleanup.
1067 */
1068void hpet_unregister_irq_handler(rtc_irq_handler handler)
1069{
1070 if (!is_hpet_enabled())
1071 return;
1072
1073 irq_handler = NULL;
1074 hpet_rtc_flags = 0;
1075}
1076EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1077
e9e2cdb4
TG
1078/*
1079 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1080 * is not supported by all HPET implementations for timer 1.
1081 *
1082 * hpet_rtc_timer_init() is called when the rtc is initialized.
1083 */
1084int hpet_rtc_timer_init(void)
1085{
5946fa3d
JB
1086 unsigned int cfg, cnt, delta;
1087 unsigned long flags;
e9e2cdb4
TG
1088
1089 if (!is_hpet_enabled())
1090 return 0;
1091
1092 if (!hpet_default_delta) {
1093 uint64_t clc;
1094
1095 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1096 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
5946fa3d 1097 hpet_default_delta = clc;
e9e2cdb4
TG
1098 }
1099
1100 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1101 delta = hpet_default_delta;
1102 else
1103 delta = hpet_pie_delta;
1104
1105 local_irq_save(flags);
1106
1107 cnt = delta + hpet_readl(HPET_COUNTER);
1108 hpet_writel(cnt, HPET_T1_CMP);
1109 hpet_t1_cmp = cnt;
1110
1111 cfg = hpet_readl(HPET_T1_CFG);
1112 cfg &= ~HPET_TN_PERIODIC;
1113 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1114 hpet_writel(cfg, HPET_T1_CFG);
1115
1116 local_irq_restore(flags);
1117
1118 return 1;
1119}
1bdbdaac 1120EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
e9e2cdb4 1121
2ded6e6a
ML
1122static void hpet_disable_rtc_channel(void)
1123{
3d45ac4b 1124 u32 cfg = hpet_readl(HPET_T1_CFG);
2ded6e6a
ML
1125 cfg &= ~HPET_TN_ENABLE;
1126 hpet_writel(cfg, HPET_T1_CFG);
1127}
1128
e9e2cdb4
TG
1129/*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
1134int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135{
1136 if (!is_hpet_enabled())
1137 return 0;
1138
1139 hpet_rtc_flags &= ~bit_mask;
2ded6e6a
ML
1140 if (unlikely(!hpet_rtc_flags))
1141 hpet_disable_rtc_channel();
1142
e9e2cdb4
TG
1143 return 1;
1144}
1bdbdaac 1145EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
e9e2cdb4
TG
1146
1147int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148{
1149 unsigned long oldbits = hpet_rtc_flags;
1150
1151 if (!is_hpet_enabled())
1152 return 0;
1153
1154 hpet_rtc_flags |= bit_mask;
1155
7e2a31da
DB
1156 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157 hpet_prev_update_sec = -1;
1158
e9e2cdb4
TG
1159 if (!oldbits)
1160 hpet_rtc_timer_init();
1161
1162 return 1;
1163}
1bdbdaac 1164EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
e9e2cdb4
TG
1165
1166int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1167 unsigned char sec)
1168{
1169 if (!is_hpet_enabled())
1170 return 0;
1171
1172 hpet_alarm_time.tm_hour = hrs;
1173 hpet_alarm_time.tm_min = min;
1174 hpet_alarm_time.tm_sec = sec;
1175
1176 return 1;
1177}
1bdbdaac 1178EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
e9e2cdb4
TG
1179
1180int hpet_set_periodic_freq(unsigned long freq)
1181{
1182 uint64_t clc;
1183
1184 if (!is_hpet_enabled())
1185 return 0;
1186
1187 if (freq <= DEFAULT_RTC_INT_FREQ)
1188 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1189 else {
1190 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1191 do_div(clc, freq);
1192 clc >>= hpet_clockevent.shift;
5946fa3d 1193 hpet_pie_delta = clc;
b4a5e8a1 1194 hpet_pie_limit = 0;
e9e2cdb4
TG
1195 }
1196 return 1;
1197}
1bdbdaac 1198EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
e9e2cdb4
TG
1199
1200int hpet_rtc_dropped_irq(void)
1201{
1202 return is_hpet_enabled();
1203}
1bdbdaac 1204EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
e9e2cdb4
TG
1205
1206static void hpet_rtc_timer_reinit(void)
1207{
2ded6e6a 1208 unsigned int delta;
e9e2cdb4
TG
1209 int lost_ints = -1;
1210
2ded6e6a
ML
1211 if (unlikely(!hpet_rtc_flags))
1212 hpet_disable_rtc_channel();
e9e2cdb4
TG
1213
1214 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1215 delta = hpet_default_delta;
1216 else
1217 delta = hpet_pie_delta;
1218
1219 /*
1220 * Increment the comparator value until we are ahead of the
1221 * current count.
1222 */
1223 do {
1224 hpet_t1_cmp += delta;
1225 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1226 lost_ints++;
ff08f76d 1227 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
e9e2cdb4
TG
1228
1229 if (lost_ints) {
1230 if (hpet_rtc_flags & RTC_PIE)
1231 hpet_pie_count += lost_ints;
1232 if (printk_ratelimit())
7e2a31da 1233 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
e9e2cdb4
TG
1234 lost_ints);
1235 }
1236}
1237
1238irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1239{
1240 struct rtc_time curr_time;
1241 unsigned long rtc_int_flag = 0;
1242
1243 hpet_rtc_timer_reinit();
1bdbdaac 1244 memset(&curr_time, 0, sizeof(struct rtc_time));
e9e2cdb4
TG
1245
1246 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1bdbdaac 1247 get_rtc_time(&curr_time);
e9e2cdb4
TG
1248
1249 if (hpet_rtc_flags & RTC_UIE &&
1250 curr_time.tm_sec != hpet_prev_update_sec) {
7e2a31da
DB
1251 if (hpet_prev_update_sec >= 0)
1252 rtc_int_flag = RTC_UF;
e9e2cdb4
TG
1253 hpet_prev_update_sec = curr_time.tm_sec;
1254 }
1255
1256 if (hpet_rtc_flags & RTC_PIE &&
1257 ++hpet_pie_count >= hpet_pie_limit) {
1258 rtc_int_flag |= RTC_PF;
1259 hpet_pie_count = 0;
1260 }
1261
8ee291f8 1262 if (hpet_rtc_flags & RTC_AIE &&
e9e2cdb4
TG
1263 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266 rtc_int_flag |= RTC_AF;
1267
1268 if (rtc_int_flag) {
1269 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1bdbdaac
BW
1270 if (irq_handler)
1271 irq_handler(rtc_int_flag, dev_id);
e9e2cdb4
TG
1272 }
1273 return IRQ_HANDLED;
1274}
1bdbdaac 1275EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
e9e2cdb4 1276#endif