Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / arch / x86 / include / asm / uv / uv_hub.h
CommitLineData
952cf6d7
JS
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
5f40f7d9 8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
952cf6d7
JS
9 */
10
05e4d316
PA
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
952cf6d7 13
bc5d9940 14#ifdef CONFIG_X86_64
952cf6d7
JS
15#include <linux/numa.h>
16#include <linux/percpu.h>
c08b6acc 17#include <linux/timer.h>
8dc579e8 18#include <linux/io.h>
906f3b20 19#include <linux/topology.h>
952cf6d7
JS
20#include <asm/types.h>
21#include <asm/percpu.h>
66666e50 22#include <asm/uv/uv_mmrs.h>
c85375cd 23#include <asm/uv/bios.h>
02dd0a06
RH
24#include <asm/irq_vectors.h>
25#include <asm/io_apic.h>
952cf6d7
JS
26
27
28/*
29 * Addressing Terminology
30 *
9f5314fb
JS
31 * M - The low M bits of a physical address represent the offset
32 * into the blade local memory. RAM memory on a blade is physically
33 * contiguous (although various IO spaces may punch holes in
34 * it)..
952cf6d7 35 *
39d30770
MT
36 * N - Number of bits in the node portion of a socket physical
37 * address.
9f5314fb 38 *
39d30770
MT
39 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
40 * routers always have low bit of 1, C/MBricks have low bit
41 * equal to 0. Most addressing macros that target UV hub chips
42 * right shift the NASID by 1 to exclude the always-zero bit.
43 * NASIDs contain up to 15 bits.
9f5314fb
JS
44 *
45 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46 * of nasids.
47 *
39d30770
MT
48 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
49 * of the nasid for socket usage.
9f5314fb 50 *
6a469e46
JS
51 * GPA - (global physical address) a socket physical address converted
52 * so that it can be used by the GRU as a global address. Socket
53 * physical addresses 1) need additional NASID (node) bits added
54 * to the high end of the address, and 2) unaliased if the
55 * partition does not have a physical address 0. In addition, on
56 * UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57 *
9f5314fb
JS
58 *
59 * NumaLink Global Physical Address Format:
60 * +--------------------------------+---------------------+
61 * |00..000| GNODE | NodeOffset |
62 * +--------------------------------+---------------------+
63 * |<-------53 - M bits --->|<--------M bits ----->
64 *
65 * M - number of node offset bits (35 .. 40)
952cf6d7
JS
66 *
67 *
68 * Memory/UV-HUB Processor Socket Address Format:
9f5314fb
JS
69 * +----------------+---------------+---------------------+
70 * |00..000000000000| PNODE | NodeOffset |
71 * +----------------+---------------+---------------------+
72 * <--- N bits --->|<--------M bits ----->
952cf6d7 73 *
9f5314fb
JS
74 * M - number of node offset bits (35 .. 40)
75 * N - number of PNODE bits (0 .. 10)
952cf6d7
JS
76 *
77 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78 * The actual values are configuration dependent and are set at
9f5314fb
JS
79 * boot time. M & N values are set by the hardware/BIOS at boot.
80 *
952cf6d7
JS
81 *
82 * APICID format
39d30770
MT
83 * NOTE!!!!!! This is the current format of the APICID. However, code
84 * should assume that this will change in the future. Use functions
85 * in this file for all APICID bit manipulations and conversion.
952cf6d7 86 *
39d30770
MT
87 * 1111110000000000
88 * 5432109876543210
2a919596
JS
89 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
90 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
91 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
952cf6d7
JS
92 * sssssssssss
93 *
9f5314fb 94 * p = pnode bits
952cf6d7
JS
95 * l = socket number on board
96 * c = core
97 * h = hyperthread
9f5314fb 98 * s = bits that are in the SOCKET_ID CSR
952cf6d7 99 *
2a919596 100 * Note: Processor may support fewer bits in the APICID register. The ACPI
952cf6d7
JS
101 * tables hold all 16 bits. Software needs to be aware of this.
102 *
39d30770
MT
103 * Unless otherwise specified, all references to APICID refer to
104 * the FULL value contained in ACPI tables, not the subset in the
105 * processor APICID register.
952cf6d7
JS
106 */
107
952cf6d7
JS
108/*
109 * Maximum number of bricks in all partitions and in all coherency domains.
110 * This is the total number of bricks accessible in the numalink fabric. It
111 * includes all C & M bricks. Routers are NOT included.
112 *
113 * This value is also the value of the maximum number of non-router NASIDs
114 * in the numalink fabric.
115 *
9f5314fb 116 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
952cf6d7
JS
117 */
118#define UV_MAX_NUMALINK_BLADES 16384
119
120/*
121 * Maximum number of C/Mbricks within a software SSI (hardware may support
122 * more).
123 */
124#define UV_MAX_SSI_BLADES 256
125
126/*
127 * The largest possible NASID of a C or M brick (+ 2)
128 */
1d21e6e3 129#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
952cf6d7 130
d38bb135 131/* System Controller Interface Reg info */
7f1baa06
MT
132struct uv_scir_s {
133 struct timer_list timer;
134 unsigned long offset;
135 unsigned long last;
136 unsigned long idle_on;
137 unsigned long idle_off;
138 unsigned char state;
139 unsigned char enabled;
140};
141
c85375cd
MT
142/* GAM (globally addressed memory) range table */
143struct uv_gam_range_s {
144 u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
145 u16 nasid; /* node's global physical address */
146 s8 base; /* entry index of node's base addr */
147 u8 reserved;
148};
149
952cf6d7
JS
150/*
151 * The following defines attributes of the HUB chip. These attributes are
0045ddd2
MT
152 * frequently referenced and are kept in a common per hub struct.
153 * After setup, the struct is read only, so it should be readily
154 * available in the L3 cache on the cpu socket for the node.
952cf6d7
JS
155 */
156struct uv_hub_info_s {
69a72a0e 157 unsigned long global_mmr_base;
1de329c1 158 unsigned long global_mmr_shift;
69a72a0e 159 unsigned long gpa_mask;
6e27b91c
MT
160 unsigned short *socket_to_node;
161 unsigned short *socket_to_pnode;
162 unsigned short *pnode_to_socket;
c85375cd 163 struct uv_gam_range_s *gr_table;
1de329c1
MT
164 unsigned short min_socket;
165 unsigned short min_pnode;
c85375cd
MT
166 unsigned char m_val;
167 unsigned char n_val;
168 unsigned char gr_table_len;
2a919596
JS
169 unsigned char hub_revision;
170 unsigned char apic_pnode_shift;
1de329c1 171 unsigned char gpa_shift;
6a469e46
JS
172 unsigned char m_shift;
173 unsigned char n_lshift;
1de329c1 174 unsigned int gnode_extra;
69a72a0e
MT
175 unsigned long gnode_upper;
176 unsigned long lowmem_remap_top;
177 unsigned long lowmem_remap_base;
1de329c1
MT
178 unsigned long global_gru_base;
179 unsigned long global_gru_shift;
69a72a0e
MT
180 unsigned short pnode;
181 unsigned short pnode_mask;
182 unsigned short coherency_domain_number;
183 unsigned short numa_blade_id;
906f3b20
MT
184 unsigned short nr_possible_cpus;
185 unsigned short nr_online_cpus;
186 short memory_nid;
952cf6d7 187};
7f1baa06 188
0045ddd2
MT
189/* CPU specific info with a pointer to the hub common info struct */
190struct uv_cpu_info_s {
191 void *p_uv_hub_info;
192 unsigned char blade_cpu_id;
193 struct uv_scir_s scir;
194};
195DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
196
197#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
198#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
199
d38bb135
MT
200#define uv_scir_info (&uv_cpu_info->scir)
201#define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
202
3edcf2ff
MT
203/* Node specific hub common info struct */
204extern void **__uv_hub_info_list;
205static inline struct uv_hub_info_s *uv_hub_info_list(int node)
206{
207 return (struct uv_hub_info_s *)__uv_hub_info_list[node];
208}
209
210static inline struct uv_hub_info_s *_uv_hub_info(void)
211{
212 return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
213}
214#define uv_hub_info _uv_hub_info()
215
216static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
217{
218 return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
219}
220
221#define UV_HUB_INFO_VERSION 0x7150
222extern int uv_hub_info_version(void);
223static inline int uv_hub_info_check(int version)
224{
225 if (uv_hub_info_version() == version)
226 return 0;
227
228 pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 uv_hub_info_version(), version);
230
231 BUG(); /* Catastrophic - cannot continue on unknown UV system */
232}
233#define _uv_hub_info_check() uv_hub_info_check(UV_HUB_INFO_VERSION)
234
2a919596 235/*
0045ddd2 236 * HUB revision ranges for each UV HUB architecture.
2a919596
JS
237 * This is a software convention - NOT the hardware revision numbers in
238 * the hub chip.
239 */
240#define UV1_HUB_REVISION_BASE 1
241#define UV2_HUB_REVISION_BASE 3
6edbd471 242#define UV3_HUB_REVISION_BASE 5
eb1e3461 243#define UV4_HUB_REVISION_BASE 7
2a919596 244
e0ee1c97 245#ifdef UV1_HUB_IS_SUPPORTED
2a919596
JS
246static inline int is_uv1_hub(void)
247{
248 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
249}
e0ee1c97
MT
250#else
251static inline int is_uv1_hub(void)
252{
253 return 0;
254}
255#endif
2a919596 256
e0ee1c97 257#ifdef UV2_HUB_IS_SUPPORTED
2a919596 258static inline int is_uv2_hub(void)
6edbd471
MT
259{
260 return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
261 (uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
262}
e0ee1c97
MT
263#else
264static inline int is_uv2_hub(void)
265{
266 return 0;
267}
268#endif
6edbd471 269
e0ee1c97 270#ifdef UV3_HUB_IS_SUPPORTED
6edbd471
MT
271static inline int is_uv3_hub(void)
272{
eb1e3461
MT
273 return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
274 (uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
6edbd471 275}
e0ee1c97
MT
276#else
277static inline int is_uv3_hub(void)
278{
279 return 0;
280}
281#endif
6edbd471 282
eb1e3461
MT
283#ifdef UV4_HUB_IS_SUPPORTED
284static inline int is_uv4_hub(void)
285{
286 return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
287}
288#else
289static inline int is_uv4_hub(void)
290{
291 return 0;
292}
293#endif
294
e0ee1c97 295static inline int is_uvx_hub(void)
6edbd471 296{
e0ee1c97
MT
297 if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
298 return uv_hub_info->hub_revision;
299
300 return 0;
6edbd471
MT
301}
302
e0ee1c97 303static inline int is_uv_hub(void)
2a919596 304{
e0ee1c97
MT
305#ifdef UV1_HUB_IS_SUPPORTED
306 return uv_hub_info->hub_revision;
307#endif
308 return is_uvx_hub();
2a919596
JS
309}
310
c8f730b1
RA
311union uvh_apicid {
312 unsigned long v;
313 struct uvh_apicid_s {
314 unsigned long local_apic_mask : 24;
315 unsigned long local_apic_shift : 5;
316 unsigned long unused1 : 3;
317 unsigned long pnode_mask : 24;
318 unsigned long pnode_shift : 5;
319 unsigned long unused2 : 3;
320 } s;
321};
322
952cf6d7
JS
323/*
324 * Local & Global MMR space macros.
39d30770
MT
325 * Note: macros are intended to be used ONLY by inline functions
326 * in this file - not by other kernel code.
327 * n - NASID (full 15-bit global nasid)
328 * g - GNODE (full 15-bit global nasid, right shifted 1)
329 * p - PNODE (local part of nsids, right shifted 1)
952cf6d7 330 */
9f5314fb 331#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
c4ed3f04
JS
332#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
333#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
952cf6d7 334
2a919596
JS
335#define UV1_LOCAL_MMR_BASE 0xf4000000UL
336#define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
337#define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
338#define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
339
340#define UV2_LOCAL_MMR_BASE 0xfa000000UL
341#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
342#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
343#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
344
6edbd471
MT
345#define UV3_LOCAL_MMR_BASE 0xfa000000UL
346#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
347#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
348#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
349
eb1e3461
MT
350#define UV4_LOCAL_MMR_BASE 0xfa000000UL
351#define UV4_GLOBAL_MMR32_BASE 0xfc000000UL
352#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
353#define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024)
354
355#define UV_LOCAL_MMR_BASE ( \
356 is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
357 is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
358 is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
359 /*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
360
361#define UV_GLOBAL_MMR32_BASE ( \
362 is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
363 is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
364 is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
365 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
366
367#define UV_LOCAL_MMR_SIZE ( \
368 is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
369 is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
370 is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
371 /*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
372
373#define UV_GLOBAL_MMR32_SIZE ( \
374 is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
375 is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
376 is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
377 /*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
378
952cf6d7
JS
379#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
380
56abcf24
JS
381#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
382
9f5314fb 383#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
1de329c1
MT
384#define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
385#define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
952cf6d7 386
9f5314fb 387#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
952cf6d7 388
9f5314fb 389#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
67e83f30 390 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
9f5314fb 391
c8f730b1 392#define UVH_APICID 0x002D0E00L
9f5314fb
JS
393#define UV_APIC_PNODE_SHIFT 6
394
8191c9f6
DS
395#define UV_APICID_HIBIT_MASK 0xffff0000
396
7f1baa06
MT
397/* Local Bus from cpu's perspective */
398#define LOCAL_BUS_BASE 0x1c00000
399#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
400
401/*
402 * System Controller Interface Reg
403 *
404 * Note there are NO leds on a UV system. This register is only
405 * used by the system controller to monitor system-wide operation.
406 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
407 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
408 * a node.
409 *
410 * The window is located at top of ACPI MMR space
411 */
412#define SCIR_WINDOW_COUNT 64
413#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
414 LOCAL_BUS_SIZE - \
415 SCIR_WINDOW_COUNT)
416
417#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
418#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
419#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
420
8661984f
DS
421/* Loop through all installed blades */
422#define for_each_possible_blade(bid) \
423 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
424
9f5314fb
JS
425/*
426 * Macros for converting between kernel virtual addresses, socket local physical
427 * addresses, and UV global physical addresses.
39d30770
MT
428 * Note: use the standard __pa() & __va() macros for converting
429 * between socket virtual and socket physical addresses.
9f5314fb
JS
430 */
431
c85375cd
MT
432/* global bits offset - number of local address bits in gpa for this UV arch */
433static inline unsigned int uv_gpa_shift(void)
434{
435 return uv_hub_info->gpa_shift;
436}
437#define _uv_gpa_shift
438
439/* Find node that has the address range that contains global address */
440static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
441{
442 struct uv_gam_range_s *gr = uv_hub_info->gr_table;
443 unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
444 int i, num = uv_hub_info->gr_table_len;
445
446 if (gr) {
447 for (i = 0; i < num; i++, gr++) {
448 if (pal < gr->limit)
449 return gr;
450 }
451 }
452 pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
453 BUG();
454}
455
456/* Return base address of node that contains global address */
457static inline unsigned long uv_gam_range_base(unsigned long pa)
458{
459 struct uv_gam_range_s *gr = uv_gam_range(pa);
460 int base = gr->base;
461
462 if (base < 0)
463 return 0UL;
464
465 return uv_hub_info->gr_table[base].limit;
466}
467
468/* socket phys RAM --> UV global NASID (UV4+) */
469static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
470{
471 return uv_gam_range(paddr)->nasid;
472}
473#define _uv_soc_phys_ram_to_nasid
474
475/* socket virtual --> UV global NASID (UV4+) */
476static inline unsigned long uv_gpa_nasid(void *v)
477{
478 return uv_soc_phys_ram_to_nasid(__pa(v));
479}
480
9f5314fb
JS
481/* socket phys RAM --> UV global physical address */
482static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
483{
c85375cd
MT
484 unsigned int m_val = uv_hub_info->m_val;
485
9f5314fb 486 if (paddr < uv_hub_info->lowmem_remap_top)
189f67c4 487 paddr |= uv_hub_info->lowmem_remap_base;
6a469e46 488 paddr |= uv_hub_info->gnode_upper;
c85375cd
MT
489 if (m_val)
490 paddr = ((paddr << uv_hub_info->m_shift)
491 >> uv_hub_info->m_shift) |
492 ((paddr >> uv_hub_info->m_val)
493 << uv_hub_info->n_lshift);
494 else
495 paddr |= uv_soc_phys_ram_to_nasid(paddr)
496 << uv_hub_info->gpa_shift;
6a469e46 497 return paddr;
9f5314fb
JS
498}
499
9f5314fb
JS
500/* socket virtual --> UV global physical address */
501static inline unsigned long uv_gpa(void *v)
502{
189f67c4 503 return uv_soc_phys_ram_to_gpa(__pa(v));
9f5314fb 504}
1d21e6e3 505
fae419f2
RH
506/* Top two bits indicate the requested address is in MMR space. */
507static inline int
508uv_gpa_in_mmr_space(unsigned long gpa)
509{
510 return (gpa >> 62) == 0x3UL;
511}
512
729d69e6
RH
513/* UV global physical address --> socket phys RAM */
514static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
515{
5a51467b 516 unsigned long paddr;
729d69e6
RH
517 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
518 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
c85375cd
MT
519 unsigned int m_val = uv_hub_info->m_val;
520
521 if (m_val)
522 gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
523 ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
729d69e6 524
5a51467b 525 paddr = gpa & uv_hub_info->gpa_mask;
729d69e6
RH
526 if (paddr >= remap_base && paddr < remap_base + remap_top)
527 paddr -= remap_base;
528 return paddr;
529}
530
906f3b20 531/* gpa -> gnode */
1d21e6e3
RH
532static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
533{
c85375cd
MT
534 unsigned int n_lshift = uv_hub_info->n_lshift;
535
536 if (n_lshift)
537 return gpa >> n_lshift;
538
539 return uv_gam_range(gpa)->nasid >> 1;
1d21e6e3
RH
540}
541
542/* gpa -> pnode */
543static inline int uv_gpa_to_pnode(unsigned long gpa)
544{
906f3b20 545 return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
1d21e6e3 546}
9f5314fb 547
906f3b20 548/* gpa -> node offset */
6a469e46
JS
549static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
550{
c85375cd
MT
551 unsigned int m_shift = uv_hub_info->m_shift;
552
553 if (m_shift)
554 return (gpa << m_shift) >> m_shift;
555
556 return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
6a469e46
JS
557}
558
c85375cd
MT
559/* Convert socket to node */
560static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
9f5314fb 561{
c85375cd 562 return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
9f5314fb 563}
952cf6d7 564
6e27b91c
MT
565static inline int uv_socket_to_node(int socket)
566{
c85375cd
MT
567 return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
568}
6e27b91c 569
c85375cd
MT
570/* pnode, offset --> socket virtual */
571static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
572{
573 unsigned int m_val = uv_hub_info->m_val;
574 unsigned long base;
575 unsigned short sockid, node, *p2s;
576
577 if (m_val)
578 return __va(((unsigned long)pnode << m_val) | offset);
579
580 p2s = uv_hub_info->pnode_to_socket;
581 sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
582 node = uv_socket_to_node(sockid);
583
584 /* limit address of previous socket is our base, except node 0 is 0 */
585 if (!node)
586 return __va((unsigned long)offset);
587
588 base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
589 return __va(base << UV_GAM_RANGE_SHFT | offset);
6e27b91c
MT
590}
591
592/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
9f5314fb 593static inline int uv_apicid_to_pnode(int apicid)
952cf6d7 594{
6e27b91c
MT
595 int pnode = apicid >> uv_hub_info->apic_pnode_shift;
596 unsigned short *s2pn = uv_hub_info->socket_to_pnode;
597
598 return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
952cf6d7
JS
599}
600
906f3b20 601/* Convert an apicid to the socket number on the blade */
2a919596
JS
602static inline int uv_apicid_to_socket(int apicid)
603{
604 if (is_uv1_hub())
605 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
606 else
607 return 0;
608}
609
952cf6d7
JS
610/*
611 * Access global MMRs using the low memory MMR32 space. This region supports
612 * faster MMR access but not all MMRs are accessible in this space.
613 */
39d30770 614static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
952cf6d7
JS
615{
616 return __va(UV_GLOBAL_MMR32_BASE |
9f5314fb 617 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
952cf6d7
JS
618}
619
39d30770 620static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
952cf6d7 621{
8dc579e8 622 writeq(val, uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
623}
624
39d30770 625static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
952cf6d7 626{
8dc579e8 627 return readq(uv_global_mmr32_address(pnode, offset));
952cf6d7
JS
628}
629
630/*
631 * Access Global MMR space using the MMR space located at the top of physical
632 * memory.
633 */
a289cc7c 634static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
952cf6d7
JS
635{
636 return __va(UV_GLOBAL_MMR64_BASE |
9f5314fb 637 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
952cf6d7
JS
638}
639
39d30770 640static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
952cf6d7 641{
8dc579e8 642 writeq(val, uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
643}
644
39d30770 645static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
952cf6d7 646{
8dc579e8 647 return readq(uv_global_mmr64_address(pnode, offset));
952cf6d7
JS
648}
649
39d30770
MT
650static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
651{
652 writeb(val, uv_global_mmr64_address(pnode, offset));
653}
654
655static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
656{
657 return readb(uv_global_mmr64_address(pnode, offset));
658}
659
952cf6d7 660/*
9f5314fb 661 * Access hub local MMRs. Faster than using global space but only local MMRs
952cf6d7
JS
662 * are accessible.
663 */
664static inline unsigned long *uv_local_mmr_address(unsigned long offset)
665{
666 return __va(UV_LOCAL_MMR_BASE | offset);
667}
668
669static inline unsigned long uv_read_local_mmr(unsigned long offset)
670{
8dc579e8 671 return readq(uv_local_mmr_address(offset));
952cf6d7
JS
672}
673
674static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
675{
8dc579e8 676 writeq(val, uv_local_mmr_address(offset));
952cf6d7
JS
677}
678
7f1baa06
MT
679static inline unsigned char uv_read_local_mmr8(unsigned long offset)
680{
8dc579e8 681 return readb(uv_local_mmr_address(offset));
7f1baa06
MT
682}
683
684static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
685{
8dc579e8 686 writeb(val, uv_local_mmr_address(offset));
7f1baa06
MT
687}
688
8400def8
JS
689/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
690static inline int uv_blade_processor_id(void)
691{
5627a825 692 return uv_cpu_info->blade_cpu_id;
8400def8
JS
693}
694
5627a825
MT
695/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
696static inline int uv_cpu_blade_processor_id(int cpu)
697{
698 return uv_cpu_info_per(cpu)->blade_cpu_id;
699}
700#define _uv_cpu_blade_processor_id 1 /* indicate function available */
701
906f3b20
MT
702/* Blade number to Node number (UV1..UV4 is 1:1) */
703static inline int uv_blade_to_node(int blade)
704{
705 return blade;
706}
707
8400def8
JS
708/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
709static inline int uv_numa_blade_id(void)
710{
711 return uv_hub_info->numa_blade_id;
712}
713
906f3b20
MT
714/*
715 * Convert linux node number to the UV blade number.
716 * .. Currently for UV1 thru UV4 the node and the blade are identical.
717 * .. If this changes then you MUST check references to this function!
718 */
719static inline int uv_node_to_blade_id(int nid)
8400def8 720{
906f3b20 721 return nid;
8400def8
JS
722}
723
906f3b20
MT
724/* Convert a cpu number to the the UV blade number */
725static inline int uv_cpu_to_blade_id(int cpu)
8400def8 726{
906f3b20 727 return uv_node_to_blade_id(cpu_to_node(cpu));
8400def8
JS
728}
729
9f5314fb
JS
730/* Convert a blade id to the PNODE of the blade */
731static inline int uv_blade_to_pnode(int bid)
8400def8 732{
906f3b20 733 return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
8400def8
JS
734}
735
6c7184b7
JS
736/* Nid of memory node on blade. -1 if no blade-local memory */
737static inline int uv_blade_to_memory_nid(int bid)
738{
906f3b20 739 return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
6c7184b7
JS
740}
741
8400def8
JS
742/* Determine the number of possible cpus on a blade */
743static inline int uv_blade_nr_possible_cpus(int bid)
744{
906f3b20 745 return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
8400def8
JS
746}
747
748/* Determine the number of online cpus on a blade */
749static inline int uv_blade_nr_online_cpus(int bid)
750{
906f3b20 751 return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
8400def8
JS
752}
753
9f5314fb
JS
754/* Convert a cpu id to the PNODE of the blade containing the cpu */
755static inline int uv_cpu_to_pnode(int cpu)
8400def8 756{
906f3b20 757 return uv_cpu_hub_info(cpu)->pnode;
8400def8
JS
758}
759
9f5314fb
JS
760/* Convert a linux node number to the PNODE of the blade */
761static inline int uv_node_to_pnode(int nid)
8400def8 762{
906f3b20 763 return uv_hub_info_list(nid)->pnode;
8400def8
JS
764}
765
766/* Maximum possible number of blades */
906f3b20 767extern short uv_possible_blades;
8400def8
JS
768static inline int uv_num_possible_blades(void)
769{
770 return uv_possible_blades;
771}
772
0d12ef0c
MT
773/* Per Hub NMI support */
774extern void uv_nmi_setup(void);
775
776/* BMC sets a bit this MMR non-zero before sending an NMI */
777#define UVH_NMI_MMR UVH_SCRATCH5
778#define UVH_NMI_MMR_CLEAR UVH_SCRATCH5_ALIAS
779#define UVH_NMI_MMR_SHIFT 63
780#define UVH_NMI_MMR_TYPE "SCRATCH5"
781
782/* Newer SMM NMI handler, not present in all systems */
783#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
784#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
c443c03d 785#define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
0d12ef0c
MT
786#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
787
788/* Non-zero indicates newer SMM NMI handler present */
789#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
790
791/* Indicates to BIOS that we want to use the newer SMM NMI handler */
792#define UVH_NMI_MMRX_REQ UVH_SCRATCH5_ALIAS_2
793#define UVH_NMI_MMRX_REQ_SHIFT 62
794
795struct uv_hub_nmi_s {
796 raw_spinlock_t nmi_lock;
797 atomic_t in_nmi; /* flag this node in UV NMI IRQ */
798 atomic_t cpu_owner; /* last locker of this struct */
799 atomic_t read_mmr_count; /* count of MMR reads */
800 atomic_t nmi_count; /* count of true UV NMIs */
801 unsigned long nmi_value; /* last value read from NMI MMR */
802};
803
804struct uv_cpu_nmi_s {
805 struct uv_hub_nmi_s *hub;
e1632170
CL
806 int state;
807 int pinging;
0d12ef0c
MT
808 int queries;
809 int pings;
810};
811
e1632170
CL
812DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
813
7c52198b 814#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
e1632170 815#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
0d12ef0c
MT
816#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
817
818/* uv_cpu_nmi_states */
819#define UV_NMI_STATE_OUT 0
820#define UV_NMI_STATE_IN 1
821#define UV_NMI_STATE_DUMP 2
822#define UV_NMI_STATE_DUMP_DONE 3
823
7f1baa06
MT
824/* Update SCIR state */
825static inline void uv_set_scir_bits(unsigned char value)
826{
d38bb135
MT
827 if (uv_scir_info->state != value) {
828 uv_scir_info->state = value;
829 uv_write_local_mmr8(uv_scir_info->offset, value);
7f1baa06
MT
830 }
831}
66666e50 832
39d30770
MT
833static inline unsigned long uv_scir_offset(int apicid)
834{
835 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
836}
837
7f1baa06
MT
838static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
839{
d38bb135 840 if (uv_cpu_scir_info(cpu)->state != value) {
39d30770 841 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
d38bb135
MT
842 uv_cpu_scir_info(cpu)->offset, value);
843 uv_cpu_scir_info(cpu)->state = value;
7f1baa06
MT
844 }
845}
952cf6d7 846
8191c9f6 847extern unsigned int uv_apicid_hibits;
56abcf24
JS
848static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
849{
8191c9f6 850 apicid |= uv_apicid_hibits;
56abcf24
JS
851 return (1UL << UVH_IPI_INT_SEND_SHFT) |
852 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
853 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
854 (vector << UVH_IPI_INT_VECTOR_SHFT);
855}
856
66666e50
JS
857static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
858{
859 unsigned long val;
02dd0a06
RH
860 unsigned long dmode = dest_Fixed;
861
862 if (vector == NMI_VECTOR)
863 dmode = dest_NMI;
66666e50 864
56abcf24 865 val = uv_hub_ipi_value(apicid, vector, dmode);
66666e50
JS
866 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
867}
868
7a1110e8
JS
869/*
870 * Get the minimum revision number of the hub chips within the partition.
eb1e3461 871 * (See UVx_HUB_REVISION_BASE above for specific values.)
7a1110e8
JS
872 */
873static inline int uv_get_min_hub_revision_id(void)
874{
2a919596 875 return uv_hub_info->hub_revision;
7a1110e8
JS
876}
877
bc5d9940 878#endif /* CONFIG_X86_64 */
7f1baa06 879#endif /* _ASM_X86_UV_UV_HUB_H */