Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / arch / powerpc / platforms / powernv / pci-ioda.c
CommitLineData
184cd4a3
BH
1/*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
cee72d5b 12#undef DEBUG
184cd4a3
BH
13
14#include <linux/kernel.h>
15#include <linux/pci.h>
361f2a2a 16#include <linux/crash_dump.h>
37c367f2 17#include <linux/debugfs.h>
184cd4a3
BH
18#include <linux/delay.h>
19#include <linux/string.h>
20#include <linux/init.h>
21#include <linux/bootmem.h>
22#include <linux/irq.h>
23#include <linux/io.h>
24#include <linux/msi.h>
cd15b048 25#include <linux/memblock.h>
184cd4a3
BH
26
27#include <asm/sections.h>
28#include <asm/io.h>
29#include <asm/prom.h>
30#include <asm/pci-bridge.h>
31#include <asm/machdep.h>
fb1b55d6 32#include <asm/msi_bitmap.h>
184cd4a3
BH
33#include <asm/ppc-pci.h>
34#include <asm/opal.h>
35#include <asm/iommu.h>
36#include <asm/tce.h>
137436c9 37#include <asm/xics.h>
37c367f2 38#include <asm/debug.h>
262af557 39#include <asm/firmware.h>
80c49c7e
IM
40#include <asm/pnv-pci.h>
41
42#include <misc/cxl.h>
184cd4a3
BH
43
44#include "powernv.h"
45#include "pci.h"
46
781a868f
WY
47/* 256M DMA window, 4K TCE pages, 8 bytes TCE */
48#define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
49
6d31c2fa
JP
50static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
51 const char *fmt, ...)
52{
53 struct va_format vaf;
54 va_list args;
55 char pfix[32];
56
57 va_start(args, fmt);
58
59 vaf.fmt = fmt;
60 vaf.va = &args;
61
781a868f 62 if (pe->flags & PNV_IODA_PE_DEV)
6d31c2fa 63 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
781a868f 64 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
6d31c2fa
JP
65 sprintf(pfix, "%04x:%02x ",
66 pci_domain_nr(pe->pbus), pe->pbus->number);
781a868f
WY
67#ifdef CONFIG_PCI_IOV
68 else if (pe->flags & PNV_IODA_PE_VF)
69 sprintf(pfix, "%04x:%02x:%2x.%d",
70 pci_domain_nr(pe->parent_dev->bus),
71 (pe->rid & 0xff00) >> 8,
72 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
73#endif /* CONFIG_PCI_IOV*/
6d31c2fa
JP
74
75 printk("%spci %s: [PE# %.3d] %pV",
76 level, pfix, pe->pe_number, &vaf);
77
78 va_end(args);
79}
184cd4a3 80
6d31c2fa
JP
81#define pe_err(pe, fmt, ...) \
82 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
83#define pe_warn(pe, fmt, ...) \
84 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
85#define pe_info(pe, fmt, ...) \
86 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
184cd4a3 87
4e287840
TLSC
88static bool pnv_iommu_bypass_disabled __read_mostly;
89
90static int __init iommu_setup(char *str)
91{
92 if (!str)
93 return -EINVAL;
94
95 while (*str) {
96 if (!strncmp(str, "nobypass", 8)) {
97 pnv_iommu_bypass_disabled = true;
98 pr_info("PowerNV: IOMMU bypass window disabled.\n");
99 break;
100 }
101 str += strcspn(str, ",");
102 if (*str == ',')
103 str++;
104 }
105
106 return 0;
107}
108early_param("iommu", iommu_setup);
109
8e0a1611
AK
110/*
111 * stdcix is only supposed to be used in hypervisor real mode as per
112 * the architecture spec
113 */
114static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
115{
116 __asm__ __volatile__("stdcix %0,0,%1"
117 : : "r" (val), "r" (paddr) : "memory");
118}
119
262af557
GC
120static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
121{
122 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
123 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
124}
125
4b82ab18
GS
126static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
127{
128 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
129 pr_warn("%s: Invalid PE %d on PHB#%x\n",
130 __func__, pe_no, phb->hose->global_number);
131 return;
132 }
133
134 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
135 pr_warn("%s: PE %d was assigned on PHB#%x\n",
136 __func__, pe_no, phb->hose->global_number);
137 return;
138 }
139
140 phb->ioda.pe_array[pe_no].phb = phb;
141 phb->ioda.pe_array[pe_no].pe_number = pe_no;
142}
143
cad5cef6 144static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
184cd4a3
BH
145{
146 unsigned long pe;
147
148 do {
149 pe = find_next_zero_bit(phb->ioda.pe_alloc,
150 phb->ioda.total_pe, 0);
151 if (pe >= phb->ioda.total_pe)
152 return IODA_INVALID_PE;
153 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
154
4cce9550 155 phb->ioda.pe_array[pe].phb = phb;
184cd4a3
BH
156 phb->ioda.pe_array[pe].pe_number = pe;
157 return pe;
158}
159
cad5cef6 160static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
184cd4a3
BH
161{
162 WARN_ON(phb->ioda.pe_array[pe].pdev);
163
164 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
165 clear_bit(pe, phb->ioda.pe_alloc);
166}
167
262af557
GC
168/* The default M64 BAR is shared by all PEs */
169static int pnv_ioda2_init_m64(struct pnv_phb *phb)
170{
171 const char *desc;
172 struct resource *r;
173 s64 rc;
174
175 /* Configure the default M64 BAR */
176 rc = opal_pci_set_phb_mem_window(phb->opal_id,
177 OPAL_M64_WINDOW_TYPE,
178 phb->ioda.m64_bar_idx,
179 phb->ioda.m64_base,
180 0, /* unused */
181 phb->ioda.m64_size);
182 if (rc != OPAL_SUCCESS) {
183 desc = "configuring";
184 goto fail;
185 }
186
187 /* Enable the default M64 BAR */
188 rc = opal_pci_phb_mmio_enable(phb->opal_id,
189 OPAL_M64_WINDOW_TYPE,
190 phb->ioda.m64_bar_idx,
191 OPAL_ENABLE_M64_SPLIT);
192 if (rc != OPAL_SUCCESS) {
193 desc = "enabling";
194 goto fail;
195 }
196
197 /* Mark the M64 BAR assigned */
198 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
199
200 /*
201 * Strip off the segment used by the reserved PE, which is
202 * expected to be 0 or last one of PE capabicity.
203 */
204 r = &phb->hose->mem_resources[1];
205 if (phb->ioda.reserved_pe == 0)
206 r->start += phb->ioda.m64_segsize;
207 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
208 r->end -= phb->ioda.m64_segsize;
209 else
210 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
211 phb->ioda.reserved_pe);
212
213 return 0;
214
215fail:
216 pr_warn(" Failure %lld %s M64 BAR#%d\n",
217 rc, desc, phb->ioda.m64_bar_idx);
218 opal_pci_phb_mmio_enable(phb->opal_id,
219 OPAL_M64_WINDOW_TYPE,
220 phb->ioda.m64_bar_idx,
221 OPAL_DISABLE_M64);
222 return -EIO;
223}
224
5ef73567 225static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
262af557
GC
226{
227 resource_size_t sgsz = phb->ioda.m64_segsize;
228 struct pci_dev *pdev;
229 struct resource *r;
230 int base, step, i;
231
232 /*
233 * Root bus always has full M64 range and root port has
234 * M64 range used in reality. So we're checking root port
235 * instead of root bus.
236 */
237 list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
4b82ab18
GS
238 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
239 r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
262af557
GC
240 if (!r->parent ||
241 !pnv_pci_is_mem_pref_64(r->flags))
242 continue;
243
244 base = (r->start - phb->ioda.m64_base) / sgsz;
245 for (step = 0; step < resource_size(r) / sgsz; step++)
4b82ab18 246 pnv_ioda_reserve_pe(phb, base + step);
262af557
GC
247 }
248 }
249}
250
251static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
252 struct pci_bus *bus, int all)
253{
254 resource_size_t segsz = phb->ioda.m64_segsize;
255 struct pci_dev *pdev;
256 struct resource *r;
257 struct pnv_ioda_pe *master_pe, *pe;
258 unsigned long size, *pe_alloc;
259 bool found;
260 int start, i, j;
261
262 /* Root bus shouldn't use M64 */
263 if (pci_is_root_bus(bus))
264 return IODA_INVALID_PE;
265
266 /* We support only one M64 window on each bus */
267 found = false;
268 pci_bus_for_each_resource(bus, r, i) {
269 if (r && r->parent &&
270 pnv_pci_is_mem_pref_64(r->flags)) {
271 found = true;
272 break;
273 }
274 }
275
276 /* No M64 window found ? */
277 if (!found)
278 return IODA_INVALID_PE;
279
280 /* Allocate bitmap */
281 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
282 pe_alloc = kzalloc(size, GFP_KERNEL);
283 if (!pe_alloc) {
284 pr_warn("%s: Out of memory !\n",
285 __func__);
286 return IODA_INVALID_PE;
287 }
288
289 /*
290 * Figure out reserved PE numbers by the PE
291 * the its child PEs.
292 */
293 start = (r->start - phb->ioda.m64_base) / segsz;
294 for (i = 0; i < resource_size(r) / segsz; i++)
295 set_bit(start + i, pe_alloc);
296
297 if (all)
298 goto done;
299
300 /*
301 * If the PE doesn't cover all subordinate buses,
302 * we need subtract from reserved PEs for children.
303 */
304 list_for_each_entry(pdev, &bus->devices, bus_list) {
305 if (!pdev->subordinate)
306 continue;
307
308 pci_bus_for_each_resource(pdev->subordinate, r, i) {
309 if (!r || !r->parent ||
310 !pnv_pci_is_mem_pref_64(r->flags))
311 continue;
312
313 start = (r->start - phb->ioda.m64_base) / segsz;
314 for (j = 0; j < resource_size(r) / segsz ; j++)
315 clear_bit(start + j, pe_alloc);
316 }
317 }
318
319 /*
320 * the current bus might not own M64 window and that's all
321 * contributed by its child buses. For the case, we needn't
322 * pick M64 dependent PE#.
323 */
324 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
325 kfree(pe_alloc);
326 return IODA_INVALID_PE;
327 }
328
329 /*
330 * Figure out the master PE and put all slave PEs to master
331 * PE's list to form compound PE.
332 */
333done:
334 master_pe = NULL;
335 i = -1;
336 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
337 phb->ioda.total_pe) {
338 pe = &phb->ioda.pe_array[i];
262af557
GC
339
340 if (!master_pe) {
341 pe->flags |= PNV_IODA_PE_MASTER;
342 INIT_LIST_HEAD(&pe->slaves);
343 master_pe = pe;
344 } else {
345 pe->flags |= PNV_IODA_PE_SLAVE;
346 pe->master = master_pe;
347 list_add_tail(&pe->list, &master_pe->slaves);
348 }
349 }
350
351 kfree(pe_alloc);
352 return master_pe->pe_number;
353}
354
355static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
356{
357 struct pci_controller *hose = phb->hose;
358 struct device_node *dn = hose->dn;
359 struct resource *res;
360 const u32 *r;
361 u64 pci_addr;
362
1665c4a8
GS
363 /* FIXME: Support M64 for P7IOC */
364 if (phb->type != PNV_PHB_IODA2) {
365 pr_info(" Not support M64 window\n");
366 return;
367 }
368
262af557
GC
369 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
370 pr_info(" Firmware too old to support M64 window\n");
371 return;
372 }
373
374 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
375 if (!r) {
376 pr_info(" No <ibm,opal-m64-window> on %s\n",
377 dn->full_name);
378 return;
379 }
380
262af557
GC
381 res = &hose->mem_resources[1];
382 res->start = of_translate_address(dn, r + 2);
383 res->end = res->start + of_read_number(r + 4, 2) - 1;
384 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
385 pci_addr = of_read_number(r, 2);
386 hose->mem_offset[1] = res->start - pci_addr;
387
388 phb->ioda.m64_size = resource_size(res);
389 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
390 phb->ioda.m64_base = pci_addr;
391
e9863e68
WY
392 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
393 res->start, res->end, pci_addr);
394
262af557
GC
395 /* Use last M64 BAR to cover M64 window */
396 phb->ioda.m64_bar_idx = 15;
397 phb->init_m64 = pnv_ioda2_init_m64;
5ef73567 398 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
262af557
GC
399 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
400}
401
49dec922
GS
402static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
403{
404 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
405 struct pnv_ioda_pe *slave;
406 s64 rc;
407
408 /* Fetch master PE */
409 if (pe->flags & PNV_IODA_PE_SLAVE) {
410 pe = pe->master;
ec8e4e9d
GS
411 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
412 return;
413
49dec922
GS
414 pe_no = pe->pe_number;
415 }
416
417 /* Freeze master PE */
418 rc = opal_pci_eeh_freeze_set(phb->opal_id,
419 pe_no,
420 OPAL_EEH_ACTION_SET_FREEZE_ALL);
421 if (rc != OPAL_SUCCESS) {
422 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
423 __func__, rc, phb->hose->global_number, pe_no);
424 return;
425 }
426
427 /* Freeze slave PEs */
428 if (!(pe->flags & PNV_IODA_PE_MASTER))
429 return;
430
431 list_for_each_entry(slave, &pe->slaves, list) {
432 rc = opal_pci_eeh_freeze_set(phb->opal_id,
433 slave->pe_number,
434 OPAL_EEH_ACTION_SET_FREEZE_ALL);
435 if (rc != OPAL_SUCCESS)
436 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
437 __func__, rc, phb->hose->global_number,
438 slave->pe_number);
439 }
440}
441
e51df2c1 442static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
49dec922
GS
443{
444 struct pnv_ioda_pe *pe, *slave;
445 s64 rc;
446
447 /* Find master PE */
448 pe = &phb->ioda.pe_array[pe_no];
449 if (pe->flags & PNV_IODA_PE_SLAVE) {
450 pe = pe->master;
451 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
452 pe_no = pe->pe_number;
453 }
454
455 /* Clear frozen state for master PE */
456 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
457 if (rc != OPAL_SUCCESS) {
458 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
459 __func__, rc, opt, phb->hose->global_number, pe_no);
460 return -EIO;
461 }
462
463 if (!(pe->flags & PNV_IODA_PE_MASTER))
464 return 0;
465
466 /* Clear frozen state for slave PEs */
467 list_for_each_entry(slave, &pe->slaves, list) {
468 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
469 slave->pe_number,
470 opt);
471 if (rc != OPAL_SUCCESS) {
472 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
473 __func__, rc, opt, phb->hose->global_number,
474 slave->pe_number);
475 return -EIO;
476 }
477 }
478
479 return 0;
480}
481
482static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
483{
484 struct pnv_ioda_pe *slave, *pe;
485 u8 fstate, state;
486 __be16 pcierr;
487 s64 rc;
488
489 /* Sanity check on PE number */
490 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
491 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
492
493 /*
494 * Fetch the master PE and the PE instance might be
495 * not initialized yet.
496 */
497 pe = &phb->ioda.pe_array[pe_no];
498 if (pe->flags & PNV_IODA_PE_SLAVE) {
499 pe = pe->master;
500 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
501 pe_no = pe->pe_number;
502 }
503
504 /* Check the master PE */
505 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
506 &state, &pcierr, NULL);
507 if (rc != OPAL_SUCCESS) {
508 pr_warn("%s: Failure %lld getting "
509 "PHB#%x-PE#%x state\n",
510 __func__, rc,
511 phb->hose->global_number, pe_no);
512 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
513 }
514
515 /* Check the slave PE */
516 if (!(pe->flags & PNV_IODA_PE_MASTER))
517 return state;
518
519 list_for_each_entry(slave, &pe->slaves, list) {
520 rc = opal_pci_eeh_freeze_status(phb->opal_id,
521 slave->pe_number,
522 &fstate,
523 &pcierr,
524 NULL);
525 if (rc != OPAL_SUCCESS) {
526 pr_warn("%s: Failure %lld getting "
527 "PHB#%x-PE#%x state\n",
528 __func__, rc,
529 phb->hose->global_number, slave->pe_number);
530 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
531 }
532
533 /*
534 * Override the result based on the ascending
535 * priority.
536 */
537 if (fstate > state)
538 state = fstate;
539 }
540
541 return state;
542}
543
184cd4a3
BH
544/* Currently those 2 are only used when MSIs are enabled, this will change
545 * but in the meantime, we need to protect them to avoid warnings
546 */
547#ifdef CONFIG_PCI_MSI
cad5cef6 548static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
184cd4a3
BH
549{
550 struct pci_controller *hose = pci_bus_to_host(dev->bus);
551 struct pnv_phb *phb = hose->private_data;
b72c1f65 552 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
553
554 if (!pdn)
555 return NULL;
556 if (pdn->pe_number == IODA_INVALID_PE)
557 return NULL;
558 return &phb->ioda.pe_array[pdn->pe_number];
559}
184cd4a3
BH
560#endif /* CONFIG_PCI_MSI */
561
b131a842
GS
562static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
563 struct pnv_ioda_pe *parent,
564 struct pnv_ioda_pe *child,
565 bool is_add)
566{
567 const char *desc = is_add ? "adding" : "removing";
568 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
569 OPAL_REMOVE_PE_FROM_DOMAIN;
570 struct pnv_ioda_pe *slave;
571 long rc;
572
573 /* Parent PE affects child PE */
574 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
575 child->pe_number, op);
576 if (rc != OPAL_SUCCESS) {
577 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
578 rc, desc);
579 return -ENXIO;
580 }
581
582 if (!(child->flags & PNV_IODA_PE_MASTER))
583 return 0;
584
585 /* Compound case: parent PE affects slave PEs */
586 list_for_each_entry(slave, &child->slaves, list) {
587 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
588 slave->pe_number, op);
589 if (rc != OPAL_SUCCESS) {
590 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
591 rc, desc);
592 return -ENXIO;
593 }
594 }
595
596 return 0;
597}
598
599static int pnv_ioda_set_peltv(struct pnv_phb *phb,
600 struct pnv_ioda_pe *pe,
601 bool is_add)
602{
603 struct pnv_ioda_pe *slave;
781a868f 604 struct pci_dev *pdev = NULL;
b131a842
GS
605 int ret;
606
607 /*
608 * Clear PE frozen state. If it's master PE, we need
609 * clear slave PE frozen state as well.
610 */
611 if (is_add) {
612 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
613 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
614 if (pe->flags & PNV_IODA_PE_MASTER) {
615 list_for_each_entry(slave, &pe->slaves, list)
616 opal_pci_eeh_freeze_clear(phb->opal_id,
617 slave->pe_number,
618 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
619 }
620 }
621
622 /*
623 * Associate PE in PELT. We need add the PE into the
624 * corresponding PELT-V as well. Otherwise, the error
625 * originated from the PE might contribute to other
626 * PEs.
627 */
628 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
629 if (ret)
630 return ret;
631
632 /* For compound PEs, any one affects all of them */
633 if (pe->flags & PNV_IODA_PE_MASTER) {
634 list_for_each_entry(slave, &pe->slaves, list) {
635 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
636 if (ret)
637 return ret;
638 }
639 }
640
641 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
642 pdev = pe->pbus->self;
781a868f 643 else if (pe->flags & PNV_IODA_PE_DEV)
b131a842 644 pdev = pe->pdev->bus->self;
781a868f
WY
645#ifdef CONFIG_PCI_IOV
646 else if (pe->flags & PNV_IODA_PE_VF)
647 pdev = pe->parent_dev->bus->self;
648#endif /* CONFIG_PCI_IOV */
b131a842
GS
649 while (pdev) {
650 struct pci_dn *pdn = pci_get_pdn(pdev);
651 struct pnv_ioda_pe *parent;
652
653 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
654 parent = &phb->ioda.pe_array[pdn->pe_number];
655 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
656 if (ret)
657 return ret;
658 }
659
660 pdev = pdev->bus->self;
661 }
662
663 return 0;
664}
665
781a868f
WY
666#ifdef CONFIG_PCI_IOV
667static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
668{
669 struct pci_dev *parent;
670 uint8_t bcomp, dcomp, fcomp;
671 int64_t rc;
672 long rid_end, rid;
673
674 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
675 if (pe->pbus) {
676 int count;
677
678 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
679 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
680 parent = pe->pbus->self;
681 if (pe->flags & PNV_IODA_PE_BUS_ALL)
682 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
683 else
684 count = 1;
685
686 switch(count) {
687 case 1: bcomp = OpalPciBusAll; break;
688 case 2: bcomp = OpalPciBus7Bits; break;
689 case 4: bcomp = OpalPciBus6Bits; break;
690 case 8: bcomp = OpalPciBus5Bits; break;
691 case 16: bcomp = OpalPciBus4Bits; break;
692 case 32: bcomp = OpalPciBus3Bits; break;
693 default:
694 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
695 count);
696 /* Do an exact match only */
697 bcomp = OpalPciBusAll;
698 }
699 rid_end = pe->rid + (count << 8);
700 } else {
701 if (pe->flags & PNV_IODA_PE_VF)
702 parent = pe->parent_dev;
703 else
704 parent = pe->pdev->bus->self;
705 bcomp = OpalPciBusAll;
706 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
707 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
708 rid_end = pe->rid + 1;
709 }
710
711 /* Clear the reverse map */
712 for (rid = pe->rid; rid < rid_end; rid++)
713 phb->ioda.pe_rmap[rid] = 0;
714
715 /* Release from all parents PELT-V */
716 while (parent) {
717 struct pci_dn *pdn = pci_get_pdn(parent);
718 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
719 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
720 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
721 /* XXX What to do in case of error ? */
722 }
723 parent = parent->bus->self;
724 }
725
726 opal_pci_eeh_freeze_set(phb->opal_id, pe->pe_number,
727 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728
729 /* Disassociate PE in PELT */
730 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
731 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
732 if (rc)
733 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
734 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
735 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
736 if (rc)
737 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
738
739 pe->pbus = NULL;
740 pe->pdev = NULL;
741 pe->parent_dev = NULL;
742
743 return 0;
744}
745#endif /* CONFIG_PCI_IOV */
746
cad5cef6 747static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
184cd4a3
BH
748{
749 struct pci_dev *parent;
750 uint8_t bcomp, dcomp, fcomp;
751 long rc, rid_end, rid;
752
753 /* Bus validation ? */
754 if (pe->pbus) {
755 int count;
756
757 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
758 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
759 parent = pe->pbus->self;
fb446ad0
GS
760 if (pe->flags & PNV_IODA_PE_BUS_ALL)
761 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
762 else
763 count = 1;
764
184cd4a3
BH
765 switch(count) {
766 case 1: bcomp = OpalPciBusAll; break;
767 case 2: bcomp = OpalPciBus7Bits; break;
768 case 4: bcomp = OpalPciBus6Bits; break;
769 case 8: bcomp = OpalPciBus5Bits; break;
770 case 16: bcomp = OpalPciBus4Bits; break;
771 case 32: bcomp = OpalPciBus3Bits; break;
772 default:
781a868f
WY
773 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
774 count);
184cd4a3
BH
775 /* Do an exact match only */
776 bcomp = OpalPciBusAll;
777 }
778 rid_end = pe->rid + (count << 8);
779 } else {
781a868f
WY
780#ifdef CONFIG_PCI_IOV
781 if (pe->flags & PNV_IODA_PE_VF)
782 parent = pe->parent_dev;
783 else
784#endif /* CONFIG_PCI_IOV */
785 parent = pe->pdev->bus->self;
184cd4a3
BH
786 bcomp = OpalPciBusAll;
787 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
788 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
789 rid_end = pe->rid + 1;
790 }
791
631ad691
GS
792 /*
793 * Associate PE in PELT. We need add the PE into the
794 * corresponding PELT-V as well. Otherwise, the error
795 * originated from the PE might contribute to other
796 * PEs.
797 */
184cd4a3
BH
798 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
799 bcomp, dcomp, fcomp, OPAL_MAP_PE);
800 if (rc) {
801 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
802 return -ENXIO;
803 }
631ad691 804
b131a842
GS
805 /* Configure PELTV */
806 pnv_ioda_set_peltv(phb, pe, true);
184cd4a3 807
184cd4a3
BH
808 /* Setup reverse map */
809 for (rid = pe->rid; rid < rid_end; rid++)
810 phb->ioda.pe_rmap[rid] = pe->pe_number;
811
812 /* Setup one MVTs on IODA1 */
4773f76b
GS
813 if (phb->type != PNV_PHB_IODA1) {
814 pe->mve_number = 0;
815 goto out;
816 }
817
818 pe->mve_number = pe->pe_number;
819 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
820 if (rc != OPAL_SUCCESS) {
821 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
822 rc, pe->mve_number);
823 pe->mve_number = -1;
824 } else {
825 rc = opal_pci_set_mve_enable(phb->opal_id,
826 pe->mve_number, OPAL_ENABLE_MVE);
184cd4a3 827 if (rc) {
4773f76b 828 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
184cd4a3
BH
829 rc, pe->mve_number);
830 pe->mve_number = -1;
184cd4a3 831 }
4773f76b 832 }
184cd4a3 833
4773f76b 834out:
184cd4a3
BH
835 return 0;
836}
837
cad5cef6
GKH
838static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
839 struct pnv_ioda_pe *pe)
184cd4a3
BH
840{
841 struct pnv_ioda_pe *lpe;
842
7ebdf956 843 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3 844 if (lpe->dma_weight < pe->dma_weight) {
7ebdf956 845 list_add_tail(&pe->dma_link, &lpe->dma_link);
184cd4a3
BH
846 return;
847 }
848 }
7ebdf956 849 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
184cd4a3
BH
850}
851
852static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
853{
854 /* This is quite simplistic. The "base" weight of a device
855 * is 10. 0 means no DMA is to be accounted for it.
856 */
857
858 /* If it's a bridge, no DMA */
859 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
860 return 0;
861
862 /* Reduce the weight of slow USB controllers */
863 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
864 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
865 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
866 return 3;
867
868 /* Increase the weight of RAID (includes Obsidian) */
869 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
870 return 15;
871
872 /* Default */
873 return 10;
874}
875
781a868f
WY
876#ifdef CONFIG_PCI_IOV
877static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
878{
879 struct pci_dn *pdn = pci_get_pdn(dev);
880 int i;
881 struct resource *res, res2;
882 resource_size_t size;
883 u16 num_vfs;
884
885 if (!dev->is_physfn)
886 return -EINVAL;
887
888 /*
889 * "offset" is in VFs. The M64 windows are sized so that when they
890 * are segmented, each segment is the same size as the IOV BAR.
891 * Each segment is in a separate PE, and the high order bits of the
892 * address are the PE number. Therefore, each VF's BAR is in a
893 * separate PE, and changing the IOV BAR start address changes the
894 * range of PEs the VFs are in.
895 */
896 num_vfs = pdn->num_vfs;
897 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
898 res = &dev->resource[i + PCI_IOV_RESOURCES];
899 if (!res->flags || !res->parent)
900 continue;
901
902 if (!pnv_pci_is_mem_pref_64(res->flags))
903 continue;
904
905 /*
906 * The actual IOV BAR range is determined by the start address
907 * and the actual size for num_vfs VFs BAR. This check is to
908 * make sure that after shifting, the range will not overlap
909 * with another device.
910 */
911 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
912 res2.flags = res->flags;
913 res2.start = res->start + (size * offset);
914 res2.end = res2.start + (size * num_vfs) - 1;
915
916 if (res2.end > res->end) {
917 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
918 i, &res2, res, num_vfs, offset);
919 return -EBUSY;
920 }
921 }
922
923 /*
924 * After doing so, there would be a "hole" in the /proc/iomem when
925 * offset is a positive value. It looks like the device return some
926 * mmio back to the system, which actually no one could use it.
927 */
928 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
929 res = &dev->resource[i + PCI_IOV_RESOURCES];
930 if (!res->flags || !res->parent)
931 continue;
932
933 if (!pnv_pci_is_mem_pref_64(res->flags))
934 continue;
935
936 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
937 res2 = *res;
938 res->start += size * offset;
939
940 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (enabling %d VFs shifted by %d)\n",
941 i, &res2, res, num_vfs, offset);
942 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
943 }
944 return 0;
945}
946#endif /* CONFIG_PCI_IOV */
947
fb446ad0 948#if 0
cad5cef6 949static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
184cd4a3
BH
950{
951 struct pci_controller *hose = pci_bus_to_host(dev->bus);
952 struct pnv_phb *phb = hose->private_data;
b72c1f65 953 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
954 struct pnv_ioda_pe *pe;
955 int pe_num;
956
957 if (!pdn) {
958 pr_err("%s: Device tree node not associated properly\n",
959 pci_name(dev));
960 return NULL;
961 }
962 if (pdn->pe_number != IODA_INVALID_PE)
963 return NULL;
964
965 /* PE#0 has been pre-set */
966 if (dev->bus->number == 0)
967 pe_num = 0;
968 else
969 pe_num = pnv_ioda_alloc_pe(phb);
970 if (pe_num == IODA_INVALID_PE) {
971 pr_warning("%s: Not enough PE# available, disabling device\n",
972 pci_name(dev));
973 return NULL;
974 }
975
976 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
977 * pointer in the PE data structure, both should be destroyed at the
978 * same time. However, this needs to be looked at more closely again
979 * once we actually start removing things (Hotplug, SR-IOV, ...)
980 *
981 * At some point we want to remove the PDN completely anyways
982 */
983 pe = &phb->ioda.pe_array[pe_num];
984 pci_dev_get(dev);
985 pdn->pcidev = dev;
986 pdn->pe_number = pe_num;
987 pe->pdev = dev;
988 pe->pbus = NULL;
989 pe->tce32_seg = -1;
990 pe->mve_number = -1;
991 pe->rid = dev->bus->number << 8 | pdn->devfn;
992
993 pe_info(pe, "Associated device to PE\n");
994
995 if (pnv_ioda_configure_pe(phb, pe)) {
996 /* XXX What do we do here ? */
997 if (pe_num)
998 pnv_ioda_free_pe(phb, pe_num);
999 pdn->pe_number = IODA_INVALID_PE;
1000 pe->pdev = NULL;
1001 pci_dev_put(dev);
1002 return NULL;
1003 }
1004
1005 /* Assign a DMA weight to the device */
1006 pe->dma_weight = pnv_ioda_dma_weight(dev);
1007 if (pe->dma_weight != 0) {
1008 phb->ioda.dma_weight += pe->dma_weight;
1009 phb->ioda.dma_pe_count++;
1010 }
1011
1012 /* Link the PE */
1013 pnv_ioda_link_pe_by_weight(phb, pe);
1014
1015 return pe;
1016}
fb446ad0 1017#endif /* Useful for SRIOV case */
184cd4a3
BH
1018
1019static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1020{
1021 struct pci_dev *dev;
1022
1023 list_for_each_entry(dev, &bus->devices, bus_list) {
b72c1f65 1024 struct pci_dn *pdn = pci_get_pdn(dev);
184cd4a3
BH
1025
1026 if (pdn == NULL) {
1027 pr_warn("%s: No device node associated with device !\n",
1028 pci_name(dev));
1029 continue;
1030 }
184cd4a3
BH
1031 pdn->pe_number = pe->pe_number;
1032 pe->dma_weight += pnv_ioda_dma_weight(dev);
fb446ad0 1033 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
184cd4a3
BH
1034 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1035 }
1036}
1037
fb446ad0
GS
1038/*
1039 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1040 * single PCI bus. Another one that contains the primary PCI bus and its
1041 * subordinate PCI devices and buses. The second type of PE is normally
1042 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1043 */
cad5cef6 1044static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
184cd4a3 1045{
fb446ad0 1046 struct pci_controller *hose = pci_bus_to_host(bus);
184cd4a3 1047 struct pnv_phb *phb = hose->private_data;
184cd4a3 1048 struct pnv_ioda_pe *pe;
262af557
GC
1049 int pe_num = IODA_INVALID_PE;
1050
1051 /* Check if PE is determined by M64 */
1052 if (phb->pick_m64_pe)
1053 pe_num = phb->pick_m64_pe(phb, bus, all);
1054
1055 /* The PE number isn't pinned by M64 */
1056 if (pe_num == IODA_INVALID_PE)
1057 pe_num = pnv_ioda_alloc_pe(phb);
184cd4a3 1058
184cd4a3 1059 if (pe_num == IODA_INVALID_PE) {
fb446ad0
GS
1060 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1061 __func__, pci_domain_nr(bus), bus->number);
184cd4a3
BH
1062 return;
1063 }
1064
1065 pe = &phb->ioda.pe_array[pe_num];
262af557 1066 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
184cd4a3
BH
1067 pe->pbus = bus;
1068 pe->pdev = NULL;
1069 pe->tce32_seg = -1;
1070 pe->mve_number = -1;
b918c62e 1071 pe->rid = bus->busn_res.start << 8;
184cd4a3
BH
1072 pe->dma_weight = 0;
1073
fb446ad0
GS
1074 if (all)
1075 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1076 bus->busn_res.start, bus->busn_res.end, pe_num);
1077 else
1078 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1079 bus->busn_res.start, pe_num);
184cd4a3
BH
1080
1081 if (pnv_ioda_configure_pe(phb, pe)) {
1082 /* XXX What do we do here ? */
1083 if (pe_num)
1084 pnv_ioda_free_pe(phb, pe_num);
1085 pe->pbus = NULL;
1086 return;
1087 }
1088
9e8d4a19
WY
1089 pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1090 GFP_KERNEL, hose->node);
1091 pe->tce32_table->data = pe;
1092
184cd4a3
BH
1093 /* Associate it with all child devices */
1094 pnv_ioda_setup_same_PE(bus, pe);
1095
7ebdf956
GS
1096 /* Put PE to the list */
1097 list_add_tail(&pe->list, &phb->ioda.pe_list);
1098
184cd4a3
BH
1099 /* Account for one DMA PE if at least one DMA capable device exist
1100 * below the bridge
1101 */
1102 if (pe->dma_weight != 0) {
1103 phb->ioda.dma_weight += pe->dma_weight;
1104 phb->ioda.dma_pe_count++;
1105 }
1106
1107 /* Link the PE */
1108 pnv_ioda_link_pe_by_weight(phb, pe);
1109}
1110
cad5cef6 1111static void pnv_ioda_setup_PEs(struct pci_bus *bus)
184cd4a3
BH
1112{
1113 struct pci_dev *dev;
fb446ad0
GS
1114
1115 pnv_ioda_setup_bus_PE(bus, 0);
184cd4a3
BH
1116
1117 list_for_each_entry(dev, &bus->devices, bus_list) {
fb446ad0
GS
1118 if (dev->subordinate) {
1119 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1120 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
1121 else
1122 pnv_ioda_setup_PEs(dev->subordinate);
1123 }
1124 }
1125}
1126
1127/*
1128 * Configure PEs so that the downstream PCI buses and devices
1129 * could have their associated PE#. Unfortunately, we didn't
1130 * figure out the way to identify the PLX bridge yet. So we
1131 * simply put the PCI bus and the subordinate behind the root
1132 * port to PE# here. The game rule here is expected to be changed
1133 * as soon as we can detected PLX bridge correctly.
1134 */
cad5cef6 1135static void pnv_pci_ioda_setup_PEs(void)
fb446ad0
GS
1136{
1137 struct pci_controller *hose, *tmp;
262af557 1138 struct pnv_phb *phb;
fb446ad0
GS
1139
1140 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
262af557
GC
1141 phb = hose->private_data;
1142
1143 /* M64 layout might affect PE allocation */
5ef73567
GS
1144 if (phb->reserve_m64_pe)
1145 phb->reserve_m64_pe(phb);
262af557 1146
fb446ad0 1147 pnv_ioda_setup_PEs(hose->bus);
184cd4a3
BH
1148 }
1149}
1150
a8b2f828 1151#ifdef CONFIG_PCI_IOV
781a868f
WY
1152static int pnv_pci_vf_release_m64(struct pci_dev *pdev)
1153{
1154 struct pci_bus *bus;
1155 struct pci_controller *hose;
1156 struct pnv_phb *phb;
1157 struct pci_dn *pdn;
02639b0e 1158 int i, j;
781a868f
WY
1159
1160 bus = pdev->bus;
1161 hose = pci_bus_to_host(bus);
1162 phb = hose->private_data;
1163 pdn = pci_get_pdn(pdev);
1164
02639b0e
WY
1165 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1166 for (j = 0; j < M64_PER_IOV; j++) {
1167 if (pdn->m64_wins[i][j] == IODA_INVALID_M64)
1168 continue;
1169 opal_pci_phb_mmio_enable(phb->opal_id,
1170 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 0);
1171 clear_bit(pdn->m64_wins[i][j], &phb->ioda.m64_bar_alloc);
1172 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1173 }
781a868f
WY
1174
1175 return 0;
1176}
1177
02639b0e 1178static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
781a868f
WY
1179{
1180 struct pci_bus *bus;
1181 struct pci_controller *hose;
1182 struct pnv_phb *phb;
1183 struct pci_dn *pdn;
1184 unsigned int win;
1185 struct resource *res;
02639b0e 1186 int i, j;
781a868f 1187 int64_t rc;
02639b0e
WY
1188 int total_vfs;
1189 resource_size_t size, start;
1190 int pe_num;
1191 int vf_groups;
1192 int vf_per_group;
781a868f
WY
1193
1194 bus = pdev->bus;
1195 hose = pci_bus_to_host(bus);
1196 phb = hose->private_data;
1197 pdn = pci_get_pdn(pdev);
02639b0e 1198 total_vfs = pci_sriov_get_totalvfs(pdev);
781a868f
WY
1199
1200 /* Initialize the m64_wins to IODA_INVALID_M64 */
1201 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
02639b0e
WY
1202 for (j = 0; j < M64_PER_IOV; j++)
1203 pdn->m64_wins[i][j] = IODA_INVALID_M64;
1204
1205 if (pdn->m64_per_iov == M64_PER_IOV) {
1206 vf_groups = (num_vfs <= M64_PER_IOV) ? num_vfs: M64_PER_IOV;
1207 vf_per_group = (num_vfs <= M64_PER_IOV)? 1:
1208 roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1209 } else {
1210 vf_groups = 1;
1211 vf_per_group = 1;
1212 }
781a868f
WY
1213
1214 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1215 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1216 if (!res->flags || !res->parent)
1217 continue;
1218
1219 if (!pnv_pci_is_mem_pref_64(res->flags))
1220 continue;
1221
02639b0e
WY
1222 for (j = 0; j < vf_groups; j++) {
1223 do {
1224 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1225 phb->ioda.m64_bar_idx + 1, 0);
1226
1227 if (win >= phb->ioda.m64_bar_idx + 1)
1228 goto m64_failed;
1229 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1230
1231 pdn->m64_wins[i][j] = win;
1232
1233 if (pdn->m64_per_iov == M64_PER_IOV) {
1234 size = pci_iov_resource_size(pdev,
1235 PCI_IOV_RESOURCES + i);
1236 size = size * vf_per_group;
1237 start = res->start + size * j;
1238 } else {
1239 size = resource_size(res);
1240 start = res->start;
1241 }
1242
1243 /* Map the M64 here */
1244 if (pdn->m64_per_iov == M64_PER_IOV) {
1245 pe_num = pdn->offset + j;
1246 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1247 pe_num, OPAL_M64_WINDOW_TYPE,
1248 pdn->m64_wins[i][j], 0);
1249 }
1250
1251 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1252 OPAL_M64_WINDOW_TYPE,
1253 pdn->m64_wins[i][j],
1254 start,
1255 0, /* unused */
1256 size);
781a868f 1257
781a868f 1258
02639b0e
WY
1259 if (rc != OPAL_SUCCESS) {
1260 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1261 win, rc);
1262 goto m64_failed;
1263 }
781a868f 1264
02639b0e
WY
1265 if (pdn->m64_per_iov == M64_PER_IOV)
1266 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1267 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 2);
1268 else
1269 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1270 OPAL_M64_WINDOW_TYPE, pdn->m64_wins[i][j], 1);
781a868f 1271
02639b0e
WY
1272 if (rc != OPAL_SUCCESS) {
1273 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1274 win, rc);
1275 goto m64_failed;
1276 }
781a868f
WY
1277 }
1278 }
1279 return 0;
1280
1281m64_failed:
1282 pnv_pci_vf_release_m64(pdev);
1283 return -EBUSY;
1284}
1285
1286static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1287{
1288 struct pci_bus *bus;
1289 struct pci_controller *hose;
1290 struct pnv_phb *phb;
1291 struct iommu_table *tbl;
1292 unsigned long addr;
1293 int64_t rc;
1294
1295 bus = dev->bus;
1296 hose = pci_bus_to_host(bus);
1297 phb = hose->private_data;
1298 tbl = pe->tce32_table;
1299 addr = tbl->it_base;
1300
1301 opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1302 pe->pe_number << 1, 1, __pa(addr),
1303 0, 0x1000);
1304
1305 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1306 pe->pe_number,
1307 (pe->pe_number << 1) + 1,
1308 pe->tce_bypass_base,
1309 0);
1310 if (rc)
1311 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1312
1313 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1314 free_pages(addr, get_order(TCE32_TABLE_SIZE));
1315 pe->tce32_table = NULL;
1316}
1317
02639b0e 1318static void pnv_ioda_release_vf_PE(struct pci_dev *pdev, u16 num_vfs)
781a868f
WY
1319{
1320 struct pci_bus *bus;
1321 struct pci_controller *hose;
1322 struct pnv_phb *phb;
1323 struct pnv_ioda_pe *pe, *pe_n;
1324 struct pci_dn *pdn;
02639b0e
WY
1325 u16 vf_index;
1326 int64_t rc;
781a868f
WY
1327
1328 bus = pdev->bus;
1329 hose = pci_bus_to_host(bus);
1330 phb = hose->private_data;
02639b0e 1331 pdn = pci_get_pdn(pdev);
781a868f
WY
1332
1333 if (!pdev->is_physfn)
1334 return;
1335
02639b0e
WY
1336 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1337 int vf_group;
1338 int vf_per_group;
1339 int vf_index1;
1340
1341 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1342
1343 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++)
1344 for (vf_index = vf_group * vf_per_group;
1345 vf_index < (vf_group + 1) * vf_per_group &&
1346 vf_index < num_vfs;
1347 vf_index++)
1348 for (vf_index1 = vf_group * vf_per_group;
1349 vf_index1 < (vf_group + 1) * vf_per_group &&
1350 vf_index1 < num_vfs;
1351 vf_index1++){
1352
1353 rc = opal_pci_set_peltv(phb->opal_id,
1354 pdn->offset + vf_index,
1355 pdn->offset + vf_index1,
1356 OPAL_REMOVE_PE_FROM_DOMAIN);
1357
1358 if (rc)
1359 dev_warn(&pdev->dev, "%s: Failed to unlink same group PE#%d(%lld)\n",
1360 __func__,
1361 pdn->offset + vf_index1, rc);
1362 }
1363 }
1364
781a868f
WY
1365 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1366 if (pe->parent_dev != pdev)
1367 continue;
1368
1369 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1370
1371 /* Remove from list */
1372 mutex_lock(&phb->ioda.pe_list_mutex);
1373 list_del(&pe->list);
1374 mutex_unlock(&phb->ioda.pe_list_mutex);
1375
1376 pnv_ioda_deconfigure_pe(phb, pe);
1377
1378 pnv_ioda_free_pe(phb, pe->pe_number);
1379 }
1380}
1381
1382void pnv_pci_sriov_disable(struct pci_dev *pdev)
1383{
1384 struct pci_bus *bus;
1385 struct pci_controller *hose;
1386 struct pnv_phb *phb;
1387 struct pci_dn *pdn;
1388 struct pci_sriov *iov;
1389 u16 num_vfs;
1390
1391 bus = pdev->bus;
1392 hose = pci_bus_to_host(bus);
1393 phb = hose->private_data;
1394 pdn = pci_get_pdn(pdev);
1395 iov = pdev->sriov;
1396 num_vfs = pdn->num_vfs;
1397
1398 /* Release VF PEs */
02639b0e 1399 pnv_ioda_release_vf_PE(pdev, num_vfs);
781a868f
WY
1400
1401 if (phb->type == PNV_PHB_IODA2) {
02639b0e
WY
1402 if (pdn->m64_per_iov == 1)
1403 pnv_pci_vf_resource_shift(pdev, -pdn->offset);
781a868f
WY
1404
1405 /* Release M64 windows */
1406 pnv_pci_vf_release_m64(pdev);
1407
1408 /* Release PE numbers */
1409 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1410 pdn->offset = 0;
1411 }
1412}
1413
1414static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1415 struct pnv_ioda_pe *pe);
1416static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1417{
1418 struct pci_bus *bus;
1419 struct pci_controller *hose;
1420 struct pnv_phb *phb;
1421 struct pnv_ioda_pe *pe;
1422 int pe_num;
1423 u16 vf_index;
1424 struct pci_dn *pdn;
02639b0e 1425 int64_t rc;
781a868f
WY
1426
1427 bus = pdev->bus;
1428 hose = pci_bus_to_host(bus);
1429 phb = hose->private_data;
1430 pdn = pci_get_pdn(pdev);
1431
1432 if (!pdev->is_physfn)
1433 return;
1434
1435 /* Reserve PE for each VF */
1436 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1437 pe_num = pdn->offset + vf_index;
1438
1439 pe = &phb->ioda.pe_array[pe_num];
1440 pe->pe_number = pe_num;
1441 pe->phb = phb;
1442 pe->flags = PNV_IODA_PE_VF;
1443 pe->pbus = NULL;
1444 pe->parent_dev = pdev;
1445 pe->tce32_seg = -1;
1446 pe->mve_number = -1;
1447 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1448 pci_iov_virtfn_devfn(pdev, vf_index);
1449
1450 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1451 hose->global_number, pdev->bus->number,
1452 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1453 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1454
1455 if (pnv_ioda_configure_pe(phb, pe)) {
1456 /* XXX What do we do here ? */
1457 if (pe_num)
1458 pnv_ioda_free_pe(phb, pe_num);
1459 pe->pdev = NULL;
1460 continue;
1461 }
1462
1463 pe->tce32_table = kzalloc_node(sizeof(struct iommu_table),
1464 GFP_KERNEL, hose->node);
1465 pe->tce32_table->data = pe;
1466
1467 /* Put PE to the list */
1468 mutex_lock(&phb->ioda.pe_list_mutex);
1469 list_add_tail(&pe->list, &phb->ioda.pe_list);
1470 mutex_unlock(&phb->ioda.pe_list_mutex);
1471
1472 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1473 }
02639b0e
WY
1474
1475 if (pdn->m64_per_iov == M64_PER_IOV && num_vfs > M64_PER_IOV) {
1476 int vf_group;
1477 int vf_per_group;
1478 int vf_index1;
1479
1480 vf_per_group = roundup_pow_of_two(num_vfs) / pdn->m64_per_iov;
1481
1482 for (vf_group = 0; vf_group < M64_PER_IOV; vf_group++) {
1483 for (vf_index = vf_group * vf_per_group;
1484 vf_index < (vf_group + 1) * vf_per_group &&
1485 vf_index < num_vfs;
1486 vf_index++) {
1487 for (vf_index1 = vf_group * vf_per_group;
1488 vf_index1 < (vf_group + 1) * vf_per_group &&
1489 vf_index1 < num_vfs;
1490 vf_index1++) {
1491
1492 rc = opal_pci_set_peltv(phb->opal_id,
1493 pdn->offset + vf_index,
1494 pdn->offset + vf_index1,
1495 OPAL_ADD_PE_TO_DOMAIN);
1496
1497 if (rc)
1498 dev_warn(&pdev->dev, "%s: Failed to link same group PE#%d(%lld)\n",
1499 __func__,
1500 pdn->offset + vf_index1, rc);
1501 }
1502 }
1503 }
1504 }
781a868f
WY
1505}
1506
1507int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1508{
1509 struct pci_bus *bus;
1510 struct pci_controller *hose;
1511 struct pnv_phb *phb;
1512 struct pci_dn *pdn;
1513 int ret;
1514
1515 bus = pdev->bus;
1516 hose = pci_bus_to_host(bus);
1517 phb = hose->private_data;
1518 pdn = pci_get_pdn(pdev);
1519
1520 if (phb->type == PNV_PHB_IODA2) {
1521 /* Calculate available PE for required VFs */
1522 mutex_lock(&phb->ioda.pe_alloc_mutex);
1523 pdn->offset = bitmap_find_next_zero_area(
1524 phb->ioda.pe_alloc, phb->ioda.total_pe,
1525 0, num_vfs, 0);
1526 if (pdn->offset >= phb->ioda.total_pe) {
1527 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1528 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1529 pdn->offset = 0;
1530 return -EBUSY;
1531 }
1532 bitmap_set(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1533 pdn->num_vfs = num_vfs;
1534 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1535
1536 /* Assign M64 window accordingly */
02639b0e 1537 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
781a868f
WY
1538 if (ret) {
1539 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1540 goto m64_failed;
1541 }
1542
1543 /*
1544 * When using one M64 BAR to map one IOV BAR, we need to shift
1545 * the IOV BAR according to the PE# allocated to the VFs.
1546 * Otherwise, the PE# for the VF will conflict with others.
1547 */
02639b0e
WY
1548 if (pdn->m64_per_iov == 1) {
1549 ret = pnv_pci_vf_resource_shift(pdev, pdn->offset);
1550 if (ret)
1551 goto m64_failed;
1552 }
781a868f
WY
1553 }
1554
1555 /* Setup VF PEs */
1556 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1557
1558 return 0;
1559
1560m64_failed:
1561 bitmap_clear(phb->ioda.pe_alloc, pdn->offset, num_vfs);
1562 pdn->offset = 0;
1563
1564 return ret;
1565}
1566
a8b2f828
GS
1567int pcibios_sriov_disable(struct pci_dev *pdev)
1568{
781a868f
WY
1569 pnv_pci_sriov_disable(pdev);
1570
a8b2f828
GS
1571 /* Release PCI data */
1572 remove_dev_pci_data(pdev);
1573 return 0;
1574}
1575
1576int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1577{
1578 /* Allocate PCI data */
1579 add_dev_pci_data(pdev);
781a868f
WY
1580
1581 pnv_pci_sriov_enable(pdev, num_vfs);
a8b2f828
GS
1582 return 0;
1583}
1584#endif /* CONFIG_PCI_IOV */
1585
959c9bdd 1586static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
184cd4a3 1587{
b72c1f65 1588 struct pci_dn *pdn = pci_get_pdn(pdev);
959c9bdd 1589 struct pnv_ioda_pe *pe;
184cd4a3 1590
959c9bdd
GS
1591 /*
1592 * The function can be called while the PE#
1593 * hasn't been assigned. Do nothing for the
1594 * case.
1595 */
1596 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1597 return;
184cd4a3 1598
959c9bdd 1599 pe = &phb->ioda.pe_array[pdn->pe_number];
cd15b048 1600 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
9e8d4a19 1601 set_iommu_table_base_and_group(&pdev->dev, pe->tce32_table);
184cd4a3
BH
1602}
1603
cd15b048
BH
1604static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
1605 struct pci_dev *pdev, u64 dma_mask)
1606{
1607 struct pci_dn *pdn = pci_get_pdn(pdev);
1608 struct pnv_ioda_pe *pe;
1609 uint64_t top;
1610 bool bypass = false;
1611
1612 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1613 return -ENODEV;;
1614
1615 pe = &phb->ioda.pe_array[pdn->pe_number];
1616 if (pe->tce_bypass_enabled) {
1617 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1618 bypass = (dma_mask >= top);
1619 }
1620
1621 if (bypass) {
1622 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1623 set_dma_ops(&pdev->dev, &dma_direct_ops);
1624 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1625 } else {
1626 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1627 set_dma_ops(&pdev->dev, &dma_iommu_ops);
9e8d4a19 1628 set_iommu_table_base(&pdev->dev, pe->tce32_table);
cd15b048 1629 }
a32305bf 1630 *pdev->dev.dma_mask = dma_mask;
cd15b048
BH
1631 return 0;
1632}
1633
fe7e85c6
GS
1634static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1635 struct pci_dev *pdev)
1636{
1637 struct pci_dn *pdn = pci_get_pdn(pdev);
1638 struct pnv_ioda_pe *pe;
1639 u64 end, mask;
1640
1641 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1642 return 0;
1643
1644 pe = &phb->ioda.pe_array[pdn->pe_number];
1645 if (!pe->tce_bypass_enabled)
1646 return __dma_get_required_mask(&pdev->dev);
1647
1648
1649 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1650 mask = 1ULL << (fls64(end) - 1);
1651 mask += mask - 1;
1652
1653 return mask;
1654}
1655
dff4a39e
GS
1656static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1657 struct pci_bus *bus,
1658 bool add_to_iommu_group)
74251fe2
BH
1659{
1660 struct pci_dev *dev;
1661
1662 list_for_each_entry(dev, &bus->devices, bus_list) {
dff4a39e
GS
1663 if (add_to_iommu_group)
1664 set_iommu_table_base_and_group(&dev->dev,
9e8d4a19 1665 pe->tce32_table);
dff4a39e 1666 else
9e8d4a19 1667 set_iommu_table_base(&dev->dev, pe->tce32_table);
dff4a39e 1668
74251fe2 1669 if (dev->subordinate)
dff4a39e
GS
1670 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1671 add_to_iommu_group);
74251fe2
BH
1672 }
1673}
1674
8e0a1611
AK
1675static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1676 struct iommu_table *tbl,
3ad26e5c 1677 __be64 *startp, __be64 *endp, bool rm)
4cce9550 1678{
3ad26e5c
BH
1679 __be64 __iomem *invalidate = rm ?
1680 (__be64 __iomem *)pe->tce_inval_reg_phys :
1681 (__be64 __iomem *)tbl->it_index;
4cce9550 1682 unsigned long start, end, inc;
b0376c9b 1683 const unsigned shift = tbl->it_page_shift;
4cce9550
GS
1684
1685 start = __pa(startp);
1686 end = __pa(endp);
1687
1688 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1689 if (tbl->it_busno) {
b0376c9b
AK
1690 start <<= shift;
1691 end <<= shift;
1692 inc = 128ull << shift;
4cce9550
GS
1693 start |= tbl->it_busno;
1694 end |= tbl->it_busno;
1695 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1696 /* p7ioc-style invalidation, 2 TCEs per write */
1697 start |= (1ull << 63);
1698 end |= (1ull << 63);
1699 inc = 16;
1700 } else {
1701 /* Default (older HW) */
1702 inc = 128;
1703 }
1704
1705 end |= inc - 1; /* round up end to be different than start */
1706
1707 mb(); /* Ensure above stores are visible */
1708 while (start <= end) {
8e0a1611 1709 if (rm)
3ad26e5c 1710 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 1711 else
3ad26e5c 1712 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
1713 start += inc;
1714 }
1715
1716 /*
1717 * The iommu layer will do another mb() for us on build()
1718 * and we don't care on free()
1719 */
1720}
1721
1722static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1723 struct iommu_table *tbl,
3ad26e5c 1724 __be64 *startp, __be64 *endp, bool rm)
4cce9550
GS
1725{
1726 unsigned long start, end, inc;
3ad26e5c
BH
1727 __be64 __iomem *invalidate = rm ?
1728 (__be64 __iomem *)pe->tce_inval_reg_phys :
1729 (__be64 __iomem *)tbl->it_index;
b0376c9b 1730 const unsigned shift = tbl->it_page_shift;
4cce9550
GS
1731
1732 /* We'll invalidate DMA address in PE scope */
b0376c9b 1733 start = 0x2ull << 60;
4cce9550
GS
1734 start |= (pe->pe_number & 0xFF);
1735 end = start;
1736
1737 /* Figure out the start, end and step */
1738 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
b0376c9b 1739 start |= (inc << shift);
4cce9550 1740 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
b0376c9b
AK
1741 end |= (inc << shift);
1742 inc = (0x1ull << shift);
4cce9550
GS
1743 mb();
1744
1745 while (start <= end) {
8e0a1611 1746 if (rm)
3ad26e5c 1747 __raw_rm_writeq(cpu_to_be64(start), invalidate);
8e0a1611 1748 else
3ad26e5c 1749 __raw_writeq(cpu_to_be64(start), invalidate);
4cce9550
GS
1750 start += inc;
1751 }
1752}
1753
1754void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
3ad26e5c 1755 __be64 *startp, __be64 *endp, bool rm)
4cce9550 1756{
9e8d4a19 1757 struct pnv_ioda_pe *pe = tbl->data;
4cce9550
GS
1758 struct pnv_phb *phb = pe->phb;
1759
1760 if (phb->type == PNV_PHB_IODA1)
8e0a1611 1761 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
4cce9550 1762 else
8e0a1611 1763 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
4cce9550
GS
1764}
1765
cad5cef6
GKH
1766static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1767 struct pnv_ioda_pe *pe, unsigned int base,
1768 unsigned int segs)
184cd4a3
BH
1769{
1770
1771 struct page *tce_mem = NULL;
1772 const __be64 *swinvp;
1773 struct iommu_table *tbl;
1774 unsigned int i;
1775 int64_t rc;
1776 void *addr;
1777
184cd4a3
BH
1778 /* XXX FIXME: Handle 64-bit only DMA devices */
1779 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1780 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1781
1782 /* We shouldn't already have a 32-bit DMA associated */
1783 if (WARN_ON(pe->tce32_seg >= 0))
1784 return;
1785
1786 /* Grab a 32-bit TCE table */
1787 pe->tce32_seg = base;
1788 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1789 (base << 28), ((base + segs) << 28) - 1);
1790
1791 /* XXX Currently, we allocate one big contiguous table for the
1792 * TCEs. We only really need one chunk per 256M of TCE space
1793 * (ie per segment) but that's an optimization for later, it
1794 * requires some added smarts with our get/put_tce implementation
1795 */
1796 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1797 get_order(TCE32_TABLE_SIZE * segs));
1798 if (!tce_mem) {
1799 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1800 goto fail;
1801 }
1802 addr = page_address(tce_mem);
1803 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1804
1805 /* Configure HW */
1806 for (i = 0; i < segs; i++) {
1807 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1808 pe->pe_number,
1809 base + i, 1,
1810 __pa(addr) + TCE32_TABLE_SIZE * i,
1811 TCE32_TABLE_SIZE, 0x1000);
1812 if (rc) {
1813 pe_err(pe, " Failed to configure 32-bit TCE table,"
1814 " err %ld\n", rc);
1815 goto fail;
1816 }
1817 }
1818
1819 /* Setup linux iommu table */
9e8d4a19 1820 tbl = pe->tce32_table;
184cd4a3 1821 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
8fa5d454 1822 base << 28, IOMMU_PAGE_SHIFT_4K);
184cd4a3
BH
1823
1824 /* OPAL variant of P7IOC SW invalidated TCEs */
1825 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1826 if (swinvp) {
1827 /* We need a couple more fields -- an address and a data
1828 * to or. Since the bus is only printed out on table free
1829 * errors, and on the first pass the data will be a relative
1830 * bus number, print that out instead.
1831 */
8e0a1611
AK
1832 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1833 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1834 8);
65fd766b
GS
1835 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1836 TCE_PCI_SWINV_FREE |
1837 TCE_PCI_SWINV_PAIR);
184cd4a3
BH
1838 }
1839 iommu_init_table(tbl, phb->hose->node);
1840
781a868f
WY
1841 if (pe->flags & PNV_IODA_PE_DEV) {
1842 iommu_register_group(tbl, phb->hose->global_number,
1843 pe->pe_number);
d905c5df 1844 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
781a868f
WY
1845 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) {
1846 iommu_register_group(tbl, phb->hose->global_number,
1847 pe->pe_number);
dff4a39e 1848 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
781a868f
WY
1849 } else if (pe->flags & PNV_IODA_PE_VF) {
1850 iommu_register_group(tbl, phb->hose->global_number,
1851 pe->pe_number);
1852 }
74251fe2 1853
184cd4a3
BH
1854 return;
1855 fail:
1856 /* XXX Failure: Try to fallback to 64-bit only ? */
1857 if (pe->tce32_seg >= 0)
1858 pe->tce32_seg = -1;
1859 if (tce_mem)
1860 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1861}
1862
cd15b048
BH
1863static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1864{
9e8d4a19 1865 struct pnv_ioda_pe *pe = tbl->data;
cd15b048
BH
1866 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1867 int64_t rc;
1868
1869 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1870 if (enable) {
1871 phys_addr_t top = memblock_end_of_DRAM();
1872
1873 top = roundup_pow_of_two(top);
1874 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1875 pe->pe_number,
1876 window_id,
1877 pe->tce_bypass_base,
1878 top);
1879 } else {
1880 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1881 pe->pe_number,
1882 window_id,
1883 pe->tce_bypass_base,
1884 0);
1885
1886 /*
dff4a39e
GS
1887 * EEH needs the mapping between IOMMU table and group
1888 * of those VFIO/KVM pass-through devices. We can postpone
1889 * resetting DMA ops until the DMA mask is configured in
1890 * host side.
cd15b048 1891 */
dff4a39e
GS
1892 if (pe->pdev)
1893 set_iommu_table_base(&pe->pdev->dev, tbl);
1894 else
1895 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
cd15b048
BH
1896 }
1897 if (rc)
1898 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1899 else
1900 pe->tce_bypass_enabled = enable;
1901}
1902
1903static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1904 struct pnv_ioda_pe *pe)
1905{
1906 /* TVE #1 is selected by PCI address bit 59 */
1907 pe->tce_bypass_base = 1ull << 59;
1908
1909 /* Install set_bypass callback for VFIO */
9e8d4a19 1910 pe->tce32_table->set_bypass = pnv_pci_ioda2_set_bypass;
cd15b048
BH
1911
1912 /* Enable bypass by default */
9e8d4a19 1913 pnv_pci_ioda2_set_bypass(pe->tce32_table, true);
cd15b048
BH
1914}
1915
373f5657
GS
1916static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1917 struct pnv_ioda_pe *pe)
1918{
1919 struct page *tce_mem = NULL;
1920 void *addr;
1921 const __be64 *swinvp;
1922 struct iommu_table *tbl;
1923 unsigned int tce_table_size, end;
1924 int64_t rc;
1925
1926 /* We shouldn't already have a 32-bit DMA associated */
1927 if (WARN_ON(pe->tce32_seg >= 0))
1928 return;
1929
1930 /* The PE will reserve all possible 32-bits space */
1931 pe->tce32_seg = 0;
1932 end = (1 << ilog2(phb->ioda.m32_pci_base));
1933 tce_table_size = (end / 0x1000) * 8;
1934 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1935 end);
1936
1937 /* Allocate TCE table */
1938 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1939 get_order(tce_table_size));
1940 if (!tce_mem) {
1941 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1942 goto fail;
1943 }
1944 addr = page_address(tce_mem);
1945 memset(addr, 0, tce_table_size);
1946
1947 /*
1948 * Map TCE table through TVT. The TVE index is the PE number
1949 * shifted by 1 bit for 32-bits DMA space.
1950 */
1951 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1952 pe->pe_number << 1, 1, __pa(addr),
1953 tce_table_size, 0x1000);
1954 if (rc) {
1955 pe_err(pe, "Failed to configure 32-bit TCE table,"
1956 " err %ld\n", rc);
1957 goto fail;
1958 }
1959
1960 /* Setup linux iommu table */
9e8d4a19 1961 tbl = pe->tce32_table;
8fa5d454
AK
1962 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1963 IOMMU_PAGE_SHIFT_4K);
373f5657
GS
1964
1965 /* OPAL variant of PHB3 invalidated TCEs */
1966 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1967 if (swinvp) {
1968 /* We need a couple more fields -- an address and a data
1969 * to or. Since the bus is only printed out on table free
1970 * errors, and on the first pass the data will be a relative
1971 * bus number, print that out instead.
1972 */
8e0a1611
AK
1973 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1974 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1975 8);
65fd766b 1976 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
373f5657
GS
1977 }
1978 iommu_init_table(tbl, phb->hose->node);
1979
781a868f
WY
1980 if (pe->flags & PNV_IODA_PE_DEV) {
1981 iommu_register_group(tbl, phb->hose->global_number,
1982 pe->pe_number);
d905c5df 1983 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
781a868f
WY
1984 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) {
1985 iommu_register_group(tbl, phb->hose->global_number,
1986 pe->pe_number);
dff4a39e 1987 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
781a868f
WY
1988 } else if (pe->flags & PNV_IODA_PE_VF) {
1989 iommu_register_group(tbl, phb->hose->global_number,
1990 pe->pe_number);
1991 }
74251fe2 1992
cd15b048 1993 /* Also create a bypass window */
4e287840
TLSC
1994 if (!pnv_iommu_bypass_disabled)
1995 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1996
373f5657
GS
1997 return;
1998fail:
1999 if (pe->tce32_seg >= 0)
2000 pe->tce32_seg = -1;
2001 if (tce_mem)
2002 __free_pages(tce_mem, get_order(tce_table_size));
2003}
2004
cad5cef6 2005static void pnv_ioda_setup_dma(struct pnv_phb *phb)
184cd4a3
BH
2006{
2007 struct pci_controller *hose = phb->hose;
2008 unsigned int residual, remaining, segs, tw, base;
2009 struct pnv_ioda_pe *pe;
2010
2011 /* If we have more PE# than segments available, hand out one
2012 * per PE until we run out and let the rest fail. If not,
2013 * then we assign at least one segment per PE, plus more based
2014 * on the amount of devices under that PE
2015 */
2016 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2017 residual = 0;
2018 else
2019 residual = phb->ioda.tce32_count -
2020 phb->ioda.dma_pe_count;
2021
2022 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2023 hose->global_number, phb->ioda.tce32_count);
2024 pr_info("PCI: %d PE# for a total weight of %d\n",
2025 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2026
2027 /* Walk our PE list and configure their DMA segments, hand them
2028 * out one base segment plus any residual segments based on
2029 * weight
2030 */
2031 remaining = phb->ioda.tce32_count;
2032 tw = phb->ioda.dma_weight;
2033 base = 0;
7ebdf956 2034 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
184cd4a3
BH
2035 if (!pe->dma_weight)
2036 continue;
2037 if (!remaining) {
2038 pe_warn(pe, "No DMA32 resources available\n");
2039 continue;
2040 }
2041 segs = 1;
2042 if (residual) {
2043 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
2044 if (segs > remaining)
2045 segs = remaining;
2046 }
373f5657
GS
2047
2048 /*
2049 * For IODA2 compliant PHB3, we needn't care about the weight.
2050 * The all available 32-bits DMA space will be assigned to
2051 * the specific PE.
2052 */
2053 if (phb->type == PNV_PHB_IODA1) {
2054 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2055 pe->dma_weight, segs);
2056 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2057 } else {
2058 pe_info(pe, "Assign DMA32 space\n");
2059 segs = 0;
2060 pnv_pci_ioda2_setup_dma_pe(phb, pe);
2061 }
2062
184cd4a3
BH
2063 remaining -= segs;
2064 base += segs;
2065 }
2066}
2067
2068#ifdef CONFIG_PCI_MSI
137436c9
GS
2069static void pnv_ioda2_msi_eoi(struct irq_data *d)
2070{
2071 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2072 struct irq_chip *chip = irq_data_get_irq_chip(d);
2073 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2074 ioda.irq_chip);
2075 int64_t rc;
2076
2077 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2078 WARN_ON_ONCE(rc);
2079
2080 icp_native_eoi(d);
2081}
2082
fd9a1c26
IM
2083
2084static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2085{
2086 struct irq_data *idata;
2087 struct irq_chip *ichip;
2088
2089 if (phb->type != PNV_PHB_IODA2)
2090 return;
2091
2092 if (!phb->ioda.irq_chip_init) {
2093 /*
2094 * First time we setup an MSI IRQ, we need to setup the
2095 * corresponding IRQ chip to route correctly.
2096 */
2097 idata = irq_get_irq_data(virq);
2098 ichip = irq_data_get_irq_chip(idata);
2099 phb->ioda.irq_chip_init = 1;
2100 phb->ioda.irq_chip = *ichip;
2101 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2102 }
2103 irq_set_chip(virq, &phb->ioda.irq_chip);
2104}
2105
80c49c7e
IM
2106#ifdef CONFIG_CXL_BASE
2107
6f963ec2 2108struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
80c49c7e
IM
2109{
2110 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2111
6f963ec2 2112 return of_node_get(hose->dn);
80c49c7e 2113}
6f963ec2 2114EXPORT_SYMBOL(pnv_pci_get_phb_node);
80c49c7e 2115
1212aa1c 2116int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
80c49c7e
IM
2117{
2118 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2119 struct pnv_phb *phb = hose->private_data;
2120 struct pnv_ioda_pe *pe;
2121 int rc;
2122
2123 pe = pnv_ioda_get_pe(dev);
2124 if (!pe)
2125 return -ENODEV;
2126
2127 pe_info(pe, "Switching PHB to CXL\n");
2128
1212aa1c 2129 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
80c49c7e
IM
2130 if (rc)
2131 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2132
2133 return rc;
2134}
1212aa1c 2135EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
80c49c7e
IM
2136
2137/* Find PHB for cxl dev and allocate MSI hwirqs?
2138 * Returns the absolute hardware IRQ number
2139 */
2140int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2141{
2142 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2143 struct pnv_phb *phb = hose->private_data;
2144 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2145
2146 if (hwirq < 0) {
2147 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2148 return -ENOSPC;
2149 }
2150
2151 return phb->msi_base + hwirq;
2152}
2153EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2154
2155void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2156{
2157 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2158 struct pnv_phb *phb = hose->private_data;
2159
2160 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2161}
2162EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2163
2164void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2165 struct pci_dev *dev)
2166{
2167 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2168 struct pnv_phb *phb = hose->private_data;
2169 int i, hwirq;
2170
2171 for (i = 1; i < CXL_IRQ_RANGES; i++) {
2172 if (!irqs->range[i])
2173 continue;
2174 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
2175 i, irqs->offset[i],
2176 irqs->range[i]);
2177 hwirq = irqs->offset[i] - phb->msi_base;
2178 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2179 irqs->range[i]);
2180 }
2181}
2182EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2183
2184int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2185 struct pci_dev *dev, int num)
2186{
2187 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2188 struct pnv_phb *phb = hose->private_data;
2189 int i, hwirq, try;
2190
2191 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2192
2193 /* 0 is reserved for the multiplexed PSL DSI interrupt */
2194 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2195 try = num;
2196 while (try) {
2197 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2198 if (hwirq >= 0)
2199 break;
2200 try /= 2;
2201 }
2202 if (!try)
2203 goto fail;
2204
2205 irqs->offset[i] = phb->msi_base + hwirq;
2206 irqs->range[i] = try;
2207 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
2208 i, irqs->offset[i], irqs->range[i]);
2209 num -= try;
2210 }
2211 if (num)
2212 goto fail;
2213
2214 return 0;
2215fail:
2216 pnv_cxl_release_hwirq_ranges(irqs, dev);
2217 return -ENOSPC;
2218}
2219EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2220
2221int pnv_cxl_get_irq_count(struct pci_dev *dev)
2222{
2223 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2224 struct pnv_phb *phb = hose->private_data;
2225
2226 return phb->msi_bmp.irq_count;
2227}
2228EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2229
2230int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2231 unsigned int virq)
2232{
2233 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2234 struct pnv_phb *phb = hose->private_data;
2235 unsigned int xive_num = hwirq - phb->msi_base;
2236 struct pnv_ioda_pe *pe;
2237 int rc;
2238
2239 if (!(pe = pnv_ioda_get_pe(dev)))
2240 return -ENODEV;
2241
2242 /* Assign XIVE to PE */
2243 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2244 if (rc) {
2245 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2246 "hwirq 0x%x XIVE 0x%x PE\n",
2247 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2248 return -EIO;
2249 }
2250 set_msi_irq_chip(phb, virq);
2251
2252 return 0;
2253}
2254EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2255#endif
2256
184cd4a3 2257static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
137436c9
GS
2258 unsigned int hwirq, unsigned int virq,
2259 unsigned int is_64, struct msi_msg *msg)
184cd4a3
BH
2260{
2261 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2262 unsigned int xive_num = hwirq - phb->msi_base;
3a1a4661 2263 __be32 data;
184cd4a3
BH
2264 int rc;
2265
2266 /* No PE assigned ? bail out ... no MSI for you ! */
2267 if (pe == NULL)
2268 return -ENXIO;
2269
2270 /* Check if we have an MVE */
2271 if (pe->mve_number < 0)
2272 return -ENXIO;
2273
b72c1f65 2274 /* Force 32-bit MSI on some broken devices */
36074381 2275 if (dev->no_64bit_msi)
b72c1f65
BH
2276 is_64 = 0;
2277
184cd4a3
BH
2278 /* Assign XIVE to PE */
2279 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2280 if (rc) {
2281 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2282 pci_name(dev), rc, xive_num);
2283 return -EIO;
2284 }
2285
2286 if (is_64) {
3a1a4661
BH
2287 __be64 addr64;
2288
184cd4a3
BH
2289 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2290 &addr64, &data);
2291 if (rc) {
2292 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2293 pci_name(dev), rc);
2294 return -EIO;
2295 }
3a1a4661
BH
2296 msg->address_hi = be64_to_cpu(addr64) >> 32;
2297 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
184cd4a3 2298 } else {
3a1a4661
BH
2299 __be32 addr32;
2300
184cd4a3
BH
2301 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2302 &addr32, &data);
2303 if (rc) {
2304 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2305 pci_name(dev), rc);
2306 return -EIO;
2307 }
2308 msg->address_hi = 0;
3a1a4661 2309 msg->address_lo = be32_to_cpu(addr32);
184cd4a3 2310 }
3a1a4661 2311 msg->data = be32_to_cpu(data);
184cd4a3 2312
fd9a1c26 2313 set_msi_irq_chip(phb, virq);
137436c9 2314
184cd4a3
BH
2315 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2316 " address=%x_%08x data=%x PE# %d\n",
2317 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2318 msg->address_hi, msg->address_lo, data, pe->pe_number);
2319
2320 return 0;
2321}
2322
2323static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2324{
fb1b55d6 2325 unsigned int count;
184cd4a3
BH
2326 const __be32 *prop = of_get_property(phb->hose->dn,
2327 "ibm,opal-msi-ranges", NULL);
2328 if (!prop) {
2329 /* BML Fallback */
2330 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2331 }
2332 if (!prop)
2333 return;
2334
2335 phb->msi_base = be32_to_cpup(prop);
fb1b55d6
GS
2336 count = be32_to_cpup(prop + 1);
2337 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
184cd4a3
BH
2338 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2339 phb->hose->global_number);
2340 return;
2341 }
fb1b55d6 2342
184cd4a3
BH
2343 phb->msi_setup = pnv_pci_ioda_msi_setup;
2344 phb->msi32_support = 1;
2345 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
fb1b55d6 2346 count, phb->msi_base);
184cd4a3
BH
2347}
2348#else
2349static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2350#endif /* CONFIG_PCI_MSI */
2351
6e628c7d
WY
2352#ifdef CONFIG_PCI_IOV
2353static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2354{
2355 struct pci_controller *hose;
2356 struct pnv_phb *phb;
2357 struct resource *res;
2358 int i;
2359 resource_size_t size;
2360 struct pci_dn *pdn;
5b88ec22 2361 int mul, total_vfs;
6e628c7d
WY
2362
2363 if (!pdev->is_physfn || pdev->is_added)
2364 return;
2365
2366 hose = pci_bus_to_host(pdev->bus);
2367 phb = hose->private_data;
2368
2369 pdn = pci_get_pdn(pdev);
2370 pdn->vfs_expanded = 0;
2371
5b88ec22
WY
2372 total_vfs = pci_sriov_get_totalvfs(pdev);
2373 pdn->m64_per_iov = 1;
2374 mul = phb->ioda.total_pe;
2375
2376 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2377 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2378 if (!res->flags || res->parent)
2379 continue;
2380 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2381 dev_warn(&pdev->dev, " non M64 VF BAR%d: %pR\n",
2382 i, res);
2383 continue;
2384 }
2385
2386 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2387
2388 /* bigger than 64M */
2389 if (size > (1 << 26)) {
2390 dev_info(&pdev->dev, "PowerNV: VF BAR%d: %pR IOV size is bigger than 64M, roundup power2\n",
2391 i, res);
2392 pdn->m64_per_iov = M64_PER_IOV;
2393 mul = roundup_pow_of_two(total_vfs);
2394 break;
2395 }
2396 }
2397
6e628c7d
WY
2398 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2399 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2400 if (!res->flags || res->parent)
2401 continue;
2402 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2403 dev_warn(&pdev->dev, "Skipping expanding VF BAR%d: %pR\n",
2404 i, res);
2405 continue;
2406 }
2407
2408 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2409 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
5b88ec22 2410 res->end = res->start + size * mul - 1;
6e628c7d
WY
2411 dev_dbg(&pdev->dev, " %pR\n", res);
2412 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
5b88ec22 2413 i, res, mul);
6e628c7d 2414 }
5b88ec22 2415 pdn->vfs_expanded = mul;
6e628c7d
WY
2416}
2417#endif /* CONFIG_PCI_IOV */
2418
11685bec
GS
2419/*
2420 * This function is supposed to be called on basis of PE from top
2421 * to bottom style. So the the I/O or MMIO segment assigned to
2422 * parent PE could be overrided by its child PEs if necessary.
2423 */
cad5cef6
GKH
2424static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2425 struct pnv_ioda_pe *pe)
11685bec
GS
2426{
2427 struct pnv_phb *phb = hose->private_data;
2428 struct pci_bus_region region;
2429 struct resource *res;
2430 int i, index;
2431 int rc;
2432
2433 /*
2434 * NOTE: We only care PCI bus based PE for now. For PCI
2435 * device based PE, for example SRIOV sensitive VF should
2436 * be figured out later.
2437 */
2438 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2439
2440 pci_bus_for_each_resource(pe->pbus, res, i) {
2441 if (!res || !res->flags ||
2442 res->start > res->end)
2443 continue;
2444
2445 if (res->flags & IORESOURCE_IO) {
2446 region.start = res->start - phb->ioda.io_pci_base;
2447 region.end = res->end - phb->ioda.io_pci_base;
2448 index = region.start / phb->ioda.io_segsize;
2449
2450 while (index < phb->ioda.total_pe &&
2451 region.start <= region.end) {
2452 phb->ioda.io_segmap[index] = pe->pe_number;
2453 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2454 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2455 if (rc != OPAL_SUCCESS) {
2456 pr_err("%s: OPAL error %d when mapping IO "
2457 "segment #%d to PE#%d\n",
2458 __func__, rc, index, pe->pe_number);
2459 break;
2460 }
2461
2462 region.start += phb->ioda.io_segsize;
2463 index++;
2464 }
027fa02f
GS
2465 } else if ((res->flags & IORESOURCE_MEM) &&
2466 !pnv_pci_is_mem_pref_64(res->flags)) {
11685bec 2467 region.start = res->start -
3fd47f06 2468 hose->mem_offset[0] -
11685bec
GS
2469 phb->ioda.m32_pci_base;
2470 region.end = res->end -
3fd47f06 2471 hose->mem_offset[0] -
11685bec
GS
2472 phb->ioda.m32_pci_base;
2473 index = region.start / phb->ioda.m32_segsize;
2474
2475 while (index < phb->ioda.total_pe &&
2476 region.start <= region.end) {
2477 phb->ioda.m32_segmap[index] = pe->pe_number;
2478 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2479 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2480 if (rc != OPAL_SUCCESS) {
2481 pr_err("%s: OPAL error %d when mapping M32 "
2482 "segment#%d to PE#%d",
2483 __func__, rc, index, pe->pe_number);
2484 break;
2485 }
2486
2487 region.start += phb->ioda.m32_segsize;
2488 index++;
2489 }
2490 }
2491 }
2492}
2493
cad5cef6 2494static void pnv_pci_ioda_setup_seg(void)
11685bec
GS
2495{
2496 struct pci_controller *tmp, *hose;
2497 struct pnv_phb *phb;
2498 struct pnv_ioda_pe *pe;
2499
2500 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2501 phb = hose->private_data;
2502 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2503 pnv_ioda_setup_pe_seg(hose, pe);
2504 }
2505 }
2506}
2507
cad5cef6 2508static void pnv_pci_ioda_setup_DMA(void)
13395c48
GS
2509{
2510 struct pci_controller *hose, *tmp;
db1266c8 2511 struct pnv_phb *phb;
13395c48
GS
2512
2513 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2514 pnv_ioda_setup_dma(hose->private_data);
db1266c8
GS
2515
2516 /* Mark the PHB initialization done */
2517 phb = hose->private_data;
2518 phb->initialized = 1;
13395c48
GS
2519 }
2520}
2521
37c367f2
GS
2522static void pnv_pci_ioda_create_dbgfs(void)
2523{
2524#ifdef CONFIG_DEBUG_FS
2525 struct pci_controller *hose, *tmp;
2526 struct pnv_phb *phb;
2527 char name[16];
2528
2529 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2530 phb = hose->private_data;
2531
2532 sprintf(name, "PCI%04x", hose->global_number);
2533 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2534 if (!phb->dbgfs)
2535 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
2536 __func__, hose->global_number);
2537 }
2538#endif /* CONFIG_DEBUG_FS */
2539}
2540
cad5cef6 2541static void pnv_pci_ioda_fixup(void)
fb446ad0
GS
2542{
2543 pnv_pci_ioda_setup_PEs();
11685bec 2544 pnv_pci_ioda_setup_seg();
13395c48 2545 pnv_pci_ioda_setup_DMA();
e9cc17d4 2546
37c367f2
GS
2547 pnv_pci_ioda_create_dbgfs();
2548
e9cc17d4 2549#ifdef CONFIG_EEH
e9cc17d4 2550 eeh_init();
dadcd6d6 2551 eeh_addr_cache_build();
e9cc17d4 2552#endif
fb446ad0
GS
2553}
2554
271fd03a
GS
2555/*
2556 * Returns the alignment for I/O or memory windows for P2P
2557 * bridges. That actually depends on how PEs are segmented.
2558 * For now, we return I/O or M32 segment size for PE sensitive
2559 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2560 * 1MiB for memory) will be returned.
2561 *
2562 * The current PCI bus might be put into one PE, which was
2563 * create against the parent PCI bridge. For that case, we
2564 * needn't enlarge the alignment so that we can save some
2565 * resources.
2566 */
2567static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2568 unsigned long type)
2569{
2570 struct pci_dev *bridge;
2571 struct pci_controller *hose = pci_bus_to_host(bus);
2572 struct pnv_phb *phb = hose->private_data;
2573 int num_pci_bridges = 0;
2574
2575 bridge = bus->self;
2576 while (bridge) {
2577 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2578 num_pci_bridges++;
2579 if (num_pci_bridges >= 2)
2580 return 1;
2581 }
2582
2583 bridge = bridge->bus->self;
2584 }
2585
262af557
GC
2586 /* We fail back to M32 if M64 isn't supported */
2587 if (phb->ioda.m64_segsize &&
2588 pnv_pci_is_mem_pref_64(type))
2589 return phb->ioda.m64_segsize;
271fd03a
GS
2590 if (type & IORESOURCE_MEM)
2591 return phb->ioda.m32_segsize;
2592
2593 return phb->ioda.io_segsize;
2594}
2595
5350ab3f
WY
2596#ifdef CONFIG_PCI_IOV
2597static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
2598 int resno)
2599{
2600 struct pci_dn *pdn = pci_get_pdn(pdev);
2601 resource_size_t align, iov_align;
2602
2603 iov_align = resource_size(&pdev->resource[resno]);
2604 if (iov_align)
2605 return iov_align;
2606
2607 align = pci_iov_resource_size(pdev, resno);
2608 if (pdn->vfs_expanded)
2609 return pdn->vfs_expanded * align;
2610
2611 return align;
2612}
2613#endif /* CONFIG_PCI_IOV */
2614
184cd4a3
BH
2615/* Prevent enabling devices for which we couldn't properly
2616 * assign a PE
2617 */
c88c2a18 2618static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
184cd4a3 2619{
db1266c8
GS
2620 struct pci_controller *hose = pci_bus_to_host(dev->bus);
2621 struct pnv_phb *phb = hose->private_data;
2622 struct pci_dn *pdn;
184cd4a3 2623
db1266c8
GS
2624 /* The function is probably called while the PEs have
2625 * not be created yet. For example, resource reassignment
2626 * during PCI probe period. We just skip the check if
2627 * PEs isn't ready.
2628 */
2629 if (!phb->initialized)
c88c2a18 2630 return true;
db1266c8 2631
b72c1f65 2632 pdn = pci_get_pdn(dev);
184cd4a3 2633 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
c88c2a18 2634 return false;
db1266c8 2635
c88c2a18 2636 return true;
184cd4a3
BH
2637}
2638
2639static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
2640 u32 devfn)
2641{
2642 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
2643}
2644
73ed148a
BH
2645static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
2646{
d1a85eee 2647 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
73ed148a
BH
2648 OPAL_ASSERT_RESET);
2649}
2650
e51df2c1
AB
2651static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2652 u64 hub_id, int ioda_type)
184cd4a3
BH
2653{
2654 struct pci_controller *hose;
184cd4a3 2655 struct pnv_phb *phb;
8184616f 2656 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
c681b93c 2657 const __be64 *prop64;
3a1a4661 2658 const __be32 *prop32;
f1b7cc3e 2659 int len;
184cd4a3
BH
2660 u64 phb_id;
2661 void *aux;
2662 long rc;
2663
58d714ec 2664 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
184cd4a3
BH
2665
2666 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2667 if (!prop64) {
2668 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
2669 return;
2670 }
2671 phb_id = be64_to_cpup(prop64);
2672 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
2673
e39f223f 2674 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
58d714ec
GS
2675
2676 /* Allocate PCI controller */
58d714ec
GS
2677 phb->hose = hose = pcibios_alloc_controller(np);
2678 if (!phb->hose) {
2679 pr_err(" Can't allocate PCI controller for %s\n",
184cd4a3 2680 np->full_name);
e39f223f 2681 memblock_free(__pa(phb), sizeof(struct pnv_phb));
184cd4a3
BH
2682 return;
2683 }
2684
2685 spin_lock_init(&phb->lock);
f1b7cc3e
GS
2686 prop32 = of_get_property(np, "bus-range", &len);
2687 if (prop32 && len == 8) {
3a1a4661
BH
2688 hose->first_busno = be32_to_cpu(prop32[0]);
2689 hose->last_busno = be32_to_cpu(prop32[1]);
f1b7cc3e
GS
2690 } else {
2691 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
2692 hose->first_busno = 0;
2693 hose->last_busno = 0xff;
2694 }
184cd4a3 2695 hose->private_data = phb;
e9cc17d4 2696 phb->hub_id = hub_id;
184cd4a3 2697 phb->opal_id = phb_id;
aa0c033f 2698 phb->type = ioda_type;
781a868f 2699 mutex_init(&phb->ioda.pe_alloc_mutex);
184cd4a3 2700
cee72d5b
BH
2701 /* Detect specific models for error handling */
2702 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2703 phb->model = PNV_PHB_MODEL_P7IOC;
f3d40c25 2704 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
aa0c033f 2705 phb->model = PNV_PHB_MODEL_PHB3;
cee72d5b
BH
2706 else
2707 phb->model = PNV_PHB_MODEL_UNKNOWN;
2708
aa0c033f 2709 /* Parse 32-bit and IO ranges (if any) */
2f1ec02e 2710 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
184cd4a3 2711
aa0c033f 2712 /* Get registers */
184cd4a3
BH
2713 phb->regs = of_iomap(np, 0);
2714 if (phb->regs == NULL)
2715 pr_err(" Failed to map registers !\n");
2716
184cd4a3 2717 /* Initialize more IODA stuff */
36954dc7 2718 phb->ioda.total_pe = 1;
aa0c033f 2719 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
36954dc7 2720 if (prop32)
3a1a4661 2721 phb->ioda.total_pe = be32_to_cpup(prop32);
36954dc7
GS
2722 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
2723 if (prop32)
2724 phb->ioda.reserved_pe = be32_to_cpup(prop32);
262af557
GC
2725
2726 /* Parse 64-bit MMIO range */
2727 pnv_ioda_parse_m64_window(phb);
2728
184cd4a3 2729 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
aa0c033f 2730 /* FW Has already off top 64k of M32 space (MSI space) */
184cd4a3
BH
2731 phb->ioda.m32_size += 0x10000;
2732
2733 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
3fd47f06 2734 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
184cd4a3
BH
2735 phb->ioda.io_size = hose->pci_io_size;
2736 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2737 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2738
c35d2a8c 2739 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
184cd4a3
BH
2740 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2741 m32map_off = size;
e47747f4 2742 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
c35d2a8c
GS
2743 if (phb->type == PNV_PHB_IODA1) {
2744 iomap_off = size;
2745 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2746 }
184cd4a3
BH
2747 pemap_off = size;
2748 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
e39f223f 2749 aux = memblock_virt_alloc(size, 0);
184cd4a3
BH
2750 phb->ioda.pe_alloc = aux;
2751 phb->ioda.m32_segmap = aux + m32map_off;
c35d2a8c
GS
2752 if (phb->type == PNV_PHB_IODA1)
2753 phb->ioda.io_segmap = aux + iomap_off;
184cd4a3 2754 phb->ioda.pe_array = aux + pemap_off;
36954dc7 2755 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
184cd4a3 2756
7ebdf956 2757 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
184cd4a3 2758 INIT_LIST_HEAD(&phb->ioda.pe_list);
781a868f 2759 mutex_init(&phb->ioda.pe_list_mutex);
184cd4a3
BH
2760
2761 /* Calculate how many 32-bit TCE segments we have */
2762 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2763
aa0c033f 2764#if 0 /* We should really do that ... */
184cd4a3
BH
2765 rc = opal_pci_set_phb_mem_window(opal->phb_id,
2766 window_type,
2767 window_num,
2768 starting_real_address,
2769 starting_pci_address,
2770 segment_size);
2771#endif
2772
262af557
GC
2773 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2774 phb->ioda.total_pe, phb->ioda.reserved_pe,
2775 phb->ioda.m32_size, phb->ioda.m32_segsize);
2776 if (phb->ioda.m64_size)
2777 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
2778 phb->ioda.m64_size, phb->ioda.m64_segsize);
2779 if (phb->ioda.io_size)
2780 pr_info(" IO: 0x%x [segment=0x%x]\n",
2781 phb->ioda.io_size, phb->ioda.io_segsize);
2782
184cd4a3 2783
184cd4a3 2784 phb->hose->ops = &pnv_pci_ops;
49dec922
GS
2785 phb->get_pe_state = pnv_ioda_get_pe_state;
2786 phb->freeze_pe = pnv_ioda_freeze_pe;
2787 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
184cd4a3
BH
2788
2789 /* Setup RID -> PE mapping function */
2790 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2791
2792 /* Setup TCEs */
2793 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
cd15b048 2794 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
fe7e85c6 2795 phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
184cd4a3 2796
73ed148a
BH
2797 /* Setup shutdown function for kexec */
2798 phb->shutdown = pnv_pci_ioda_shutdown;
2799
184cd4a3
BH
2800 /* Setup MSI support */
2801 pnv_pci_init_ioda_msis(phb);
2802
c40a4210
GS
2803 /*
2804 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2805 * to let the PCI core do resource assignment. It's supposed
2806 * that the PCI core will do correct I/O and MMIO alignment
2807 * for the P2P bridge bars so that each PCI bus (excluding
2808 * the child P2P bridges) can form individual PE.
184cd4a3 2809 */
fb446ad0 2810 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
65ebf4b6
DA
2811 pnv_pci_controller_ops.enable_device_hook = pnv_pci_enable_device_hook;
2812 pnv_pci_controller_ops.window_alignment = pnv_pci_window_alignment;
2813 pnv_pci_controller_ops.reset_secondary_bus = pnv_pci_reset_secondary_bus;
d33047fd 2814 hose->controller_ops = pnv_pci_controller_ops;
ad30cb99 2815
6e628c7d
WY
2816#ifdef CONFIG_PCI_IOV
2817 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
5350ab3f 2818 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
ad30cb99
ME
2819#endif
2820
c40a4210 2821 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
184cd4a3
BH
2822
2823 /* Reset IODA tables to a clean state */
d1a85eee 2824 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
184cd4a3 2825 if (rc)
f11fe552 2826 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
361f2a2a
GS
2827
2828 /* If we're running in kdump kerenl, the previous kerenl never
2829 * shutdown PCI devices correctly. We already got IODA table
2830 * cleaned out. So we have to issue PHB reset to stop all PCI
2831 * transactions from previous kerenl.
2832 */
2833 if (is_kdump_kernel()) {
2834 pr_info(" Issue PHB reset ...\n");
cadf364d
GS
2835 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2836 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
361f2a2a 2837 }
262af557 2838
9e9e8935
GS
2839 /* Remove M64 resource if we can't configure it successfully */
2840 if (!phb->init_m64 || phb->init_m64(phb))
262af557 2841 hose->mem_resources[1].flags = 0;
aa0c033f
GS
2842}
2843
67975005 2844void __init pnv_pci_init_ioda2_phb(struct device_node *np)
aa0c033f 2845{
e9cc17d4 2846 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
184cd4a3
BH
2847}
2848
2849void __init pnv_pci_init_ioda_hub(struct device_node *np)
2850{
2851 struct device_node *phbn;
c681b93c 2852 const __be64 *prop64;
184cd4a3
BH
2853 u64 hub_id;
2854
2855 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2856
2857 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2858 if (!prop64) {
2859 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2860 return;
2861 }
2862 hub_id = be64_to_cpup(prop64);
2863 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2864
2865 /* Count child PHBs */
2866 for_each_child_of_node(np, phbn) {
2867 /* Look for IODA1 PHBs */
2868 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
e9cc17d4 2869 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
184cd4a3
BH
2870 }
2871}