microblaze: Provide pgprot_device/writecombine macros for nommu
[linux-2.6-block.git] / arch / microblaze / include / asm / pgtable.h
CommitLineData
6a3cece5 1/*
15902bf6
MS
2 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
3 * Copyright (C) 2008-2009 PetaLogix
6a3cece5
MS
4 * Copyright (C) 2006 Atmark Techno, Inc.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _ASM_MICROBLAZE_PGTABLE_H
12#define _ASM_MICROBLAZE_PGTABLE_H
13
14#include <asm/setup.h>
15
79bf3a13
MS
16#ifndef __ASSEMBLY__
17extern int mem_init_done;
18#endif
19
15902bf6
MS
20#ifndef CONFIG_MMU
21
6a3cece5
MS
22#define pgd_present(pgd) (1) /* pages are always present on non MMU */
23#define pgd_none(pgd) (0)
24#define pgd_bad(pgd) (0)
25#define pgd_clear(pgdp)
26#define kern_addr_valid(addr) (1)
27#define pmd_offset(a, b) ((void *) 0)
28
29#define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */
30#define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */
31#define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */
32#define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */
33#define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */
34
0c60155e 35#define pgprot_noncached(x) (x)
97ccedd7
MS
36#define pgprot_writecombine pgprot_noncached
37#define pgprot_device pgprot_noncached
0c60155e 38
6a3cece5
MS
39#define __swp_type(x) (0)
40#define __swp_offset(x) (0)
41#define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
42#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
43#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
44
6a3cece5
MS
45#define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
46
47#define swapper_pg_dir ((pgd_t *) NULL)
48
49#define pgtable_cache_init() do {} while (0)
50
51#define arch_enter_lazy_cpu_mode() do {} while (0)
52
79bf3a13
MS
53#define pgprot_noncached_wc(prot) prot
54
099a2f42
MS
55/*
56 * All 32bit addresses are effectively valid for vmalloc...
57 * Sort of meaningless for non-VM targets.
58 */
59#define VMALLOC_START 0
60#define VMALLOC_END 0xffffffff
61
15902bf6
MS
62#else /* CONFIG_MMU */
63
64#include <asm-generic/4level-fixup.h>
65
3ae3ad4e
KS
66#define __PAGETABLE_PMD_FOLDED
67
15902bf6
MS
68#ifdef __KERNEL__
69#ifndef __ASSEMBLY__
70
71#include <linux/sched.h>
72#include <linux/threads.h>
73#include <asm/processor.h> /* For TASK_SIZE */
74#include <asm/mmu.h>
75#include <asm/page.h>
76
d016bf7e 77#define FIRST_USER_ADDRESS 0UL
15902bf6
MS
78
79extern unsigned long va_to_phys(unsigned long address);
80extern pte_t *va_to_pte(unsigned long address);
15902bf6
MS
81
82/*
83 * The following only work if pte_present() is true.
84 * Undefined behaviour if not..
85 */
86
87static inline int pte_special(pte_t pte) { return 0; }
88
89static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
90
91/* Start and end of the vmalloc area. */
92/* Make sure to map the vmalloc area above the pinned kernel memory area
93 of 32Mb. */
83a92529 94#define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
15902bf6 95#define VMALLOC_END ioremap_bot
15902bf6
MS
96
97#endif /* __ASSEMBLY__ */
98
a6475c13
MS
99/*
100 * Macro to mark a page protection value as "uncacheable".
101 */
102
103#define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
104 _PAGE_WRITETHRU)
105
106#define pgprot_noncached(prot) \
107 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
108 _PAGE_NO_CACHE | _PAGE_GUARDED))
109
110#define pgprot_noncached_wc(prot) \
111 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
112 _PAGE_NO_CACHE))
113
15902bf6
MS
114/*
115 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
116 * table containing PTEs, together with a set of 16 segment registers, to
117 * define the virtual to physical address mapping.
118 *
119 * We use the hash table as an extended TLB, i.e. a cache of currently
120 * active mappings. We maintain a two-level page table tree, much
121 * like that used by the i386, for the sake of the Linux memory
122 * management code. Low-level assembler code in hashtable.S
123 * (procedure hash_page) is responsible for extracting ptes from the
124 * tree and putting them into the hash table when necessary, and
125 * updating the accessed and modified bits in the page table tree.
126 */
127
128/*
129 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
130 * instruction and data sides share a unified, 64-entry, semi-associative
131 * TLB which is maintained totally under software control. In addition, the
132 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
133 * TLB which serves as a first level to the shared TLB. These two TLBs are
134 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
135 */
136
137/*
138 * The normal case is that PTEs are 32-bits and we have a 1-page
139 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
140 *
141 */
142
143/* PMD_SHIFT determines the size of the area mapped by the PTE pages */
144#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT)
145#define PMD_SIZE (1UL << PMD_SHIFT)
146#define PMD_MASK (~(PMD_SIZE-1))
147
148/* PGDIR_SHIFT determines what a top-level page table entry can map */
149#define PGDIR_SHIFT PMD_SHIFT
150#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
151#define PGDIR_MASK (~(PGDIR_SIZE-1))
152
153/*
154 * entries per page directory level: our page-table tree is two-level, so
155 * we don't really have any PMD directory.
156 */
157#define PTRS_PER_PTE (1 << PTE_SHIFT)
158#define PTRS_PER_PMD 1
159#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
160
161#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
162#define FIRST_USER_PGD_NR 0
163
164#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
165#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
166
167#define pte_ERROR(e) \
168 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
169 __FILE__, __LINE__, pte_val(e))
170#define pmd_ERROR(e) \
171 printk(KERN_ERR "%s:%d: bad pmd %08lx.\n", \
172 __FILE__, __LINE__, pmd_val(e))
173#define pgd_ERROR(e) \
174 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
175 __FILE__, __LINE__, pgd_val(e))
176
177/*
178 * Bits in a linux-style PTE. These match the bits in the
179 * (hardware-defined) PTE as closely as possible.
180 */
181
182/* There are several potential gotchas here. The hardware TLBLO
183 * field looks like this:
184 *
185 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
186 * RPN..................... 0 0 EX WR ZSEL....... W I M G
187 *
188 * Where possible we make the Linux PTE bits match up with this
189 *
190 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
191 * support down to 1k pages), this is done in the TLBMiss exception
192 * handler.
193 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
194 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
195 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct
196 * zone.
197 * - PRESENT *must* be in the bottom two bits because swap cache
198 * entries use the top 30 bits. Because 4xx doesn't support SMP
199 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
200 * is cleared in the TLB miss handler before the TLB entry is loaded.
201 * - All other bits of the PTE are loaded into TLBLO without
202 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
203 * software PTE bits. We actually use use bits 21, 24, 25, and
204 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
205 * PRESENT.
206 */
207
208/* Definitions for MicroBlaze. */
209#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
210#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
211#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
212#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
213#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
214#define _PAGE_RW 0x040 /* software: Writes permitted */
215#define _PAGE_DIRTY 0x080 /* software: dirty page */
216#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
217#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
218#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
219#define _PMD_PRESENT PAGE_MASK
220
221/*
222 * Some bits are unused...
223 */
224#ifndef _PAGE_HASHPTE
225#define _PAGE_HASHPTE 0
226#endif
227#ifndef _PTE_NONE_MASK
228#define _PTE_NONE_MASK 0
229#endif
230#ifndef _PAGE_SHARED
231#define _PAGE_SHARED 0
232#endif
15902bf6
MS
233#ifndef _PAGE_EXEC
234#define _PAGE_EXEC 0
235#endif
236
237#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
238
239/*
240 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
241 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
242 * to have it in the Linux PTE, and in fact the bit could be reused for
243 * another purpose. -- paulus.
244 */
245#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
246#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
247
248#define _PAGE_KERNEL \
249 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
250
251#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
252
253#define PAGE_NONE __pgprot(_PAGE_BASE)
254#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
255#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
256#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
257#define PAGE_SHARED_X \
258 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
259#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
260#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
261
262#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
263#define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
264#define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
265
266/*
267 * We consider execute permission the same as read.
268 * Also, write permissions imply read permissions.
269 */
270#define __P000 PAGE_NONE
271#define __P001 PAGE_READONLY_X
272#define __P010 PAGE_COPY
273#define __P011 PAGE_COPY_X
274#define __P100 PAGE_READONLY
275#define __P101 PAGE_READONLY_X
276#define __P110 PAGE_COPY
277#define __P111 PAGE_COPY_X
278
279#define __S000 PAGE_NONE
280#define __S001 PAGE_READONLY_X
281#define __S010 PAGE_SHARED
282#define __S011 PAGE_SHARED_X
283#define __S100 PAGE_READONLY
284#define __S101 PAGE_READONLY_X
285#define __S110 PAGE_SHARED
286#define __S111 PAGE_SHARED_X
287
288#ifndef __ASSEMBLY__
289/*
290 * ZERO_PAGE is a global shared page that is always zero: used
291 * for zero-mapped memory areas etc..
292 */
293extern unsigned long empty_zero_page[1024];
294#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
295
296#endif /* __ASSEMBLY__ */
297
298#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
299#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
300#define pte_clear(mm, addr, ptep) \
301 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
302
303#define pmd_none(pmd) (!pmd_val(pmd))
304#define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
305#define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
306#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
307
308#define pte_page(x) (mem_map + (unsigned long) \
309 ((pte_val(x) - memory_start) >> PAGE_SHIFT))
310#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
311
312#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
313
314#define pfn_pte(pfn, prot) \
315 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
316
317#ifndef __ASSEMBLY__
318/*
319 * The "pgd_xxx()" functions here are trivial for a folded two-level
320 * setup: the pgd is never bad, and a pmd always exists (as it's folded
321 * into the pgd entry)
322 */
323static inline int pgd_none(pgd_t pgd) { return 0; }
324static inline int pgd_bad(pgd_t pgd) { return 0; }
325static inline int pgd_present(pgd_t pgd) { return 1; }
326#define pgd_clear(xp) do { } while (0)
327#define pgd_page(pgd) \
328 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK))
329
330/*
331 * The following only work if pte_present() is true.
332 * Undefined behaviour if not..
333 */
334static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
335static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
336static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
337static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
338static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
15902bf6
MS
339
340static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
341static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
342
343static inline pte_t pte_rdprotect(pte_t pte) \
344 { pte_val(pte) &= ~_PAGE_USER; return pte; }
345static inline pte_t pte_wrprotect(pte_t pte) \
346 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
347static inline pte_t pte_exprotect(pte_t pte) \
348 { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
349static inline pte_t pte_mkclean(pte_t pte) \
350 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
351static inline pte_t pte_mkold(pte_t pte) \
352 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
353
354static inline pte_t pte_mkread(pte_t pte) \
355 { pte_val(pte) |= _PAGE_USER; return pte; }
356static inline pte_t pte_mkexec(pte_t pte) \
357 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
358static inline pte_t pte_mkwrite(pte_t pte) \
359 { pte_val(pte) |= _PAGE_RW; return pte; }
360static inline pte_t pte_mkdirty(pte_t pte) \
361 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
362static inline pte_t pte_mkyoung(pte_t pte) \
363 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
364
365/*
366 * Conversion functions: convert a page and protection to a page entry,
367 * and a page entry and page directory to the page they refer to.
368 */
369
370static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
371{
372 pte_t pte;
373 pte_val(pte) = physpage | pgprot_val(pgprot);
374 return pte;
375}
376
377#define mk_pte(page, pgprot) \
378({ \
379 pte_t pte; \
380 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
381 pgprot_val(pgprot); \
382 pte; \
383})
384
385static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
386{
387 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
388 return pte;
389}
390
391/*
392 * Atomic PTE updates.
393 *
394 * pte_update clears and sets bit atomically, and returns
395 * the old pte value.
396 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
397 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
398 */
399static inline unsigned long pte_update(pte_t *p, unsigned long clr,
400 unsigned long set)
401{
1f80a67d
MS
402 unsigned long flags, old, tmp;
403
404 raw_local_irq_save(flags);
405
406 __asm__ __volatile__( "lw %0, %2, r0 \n"
407 "andn %1, %0, %3 \n"
408 "or %1, %1, %4 \n"
409 "sw %1, %2, r0 \n"
410 : "=&r" (old), "=&r" (tmp)
411 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
412 : "cc");
413
414 raw_local_irq_restore(flags);
15902bf6
MS
415
416 return old;
417}
418
419/*
420 * set_pte stores a linux PTE into the linux page table.
421 */
422static inline void set_pte(struct mm_struct *mm, unsigned long addr,
423 pte_t *ptep, pte_t pte)
424{
425 *ptep = pte;
426}
427
428static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
429 pte_t *ptep, pte_t pte)
430{
431 *ptep = pte;
432}
433
658b368d
MS
434#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
435static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
436 unsigned long address, pte_t *ptep)
15902bf6
MS
437{
438 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
439}
440
441static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
442 unsigned long addr, pte_t *ptep)
443{
444 return (pte_update(ptep, \
445 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
446}
447
658b368d 448#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
15902bf6
MS
449static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
450 unsigned long addr, pte_t *ptep)
451{
452 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
453}
454
455/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
456 unsigned long addr, pte_t *ptep)
457{
458 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
459}*/
460
461static inline void ptep_mkdirty(struct mm_struct *mm,
462 unsigned long addr, pte_t *ptep)
463{
464 pte_update(ptep, 0, _PAGE_DIRTY);
465}
466
467/*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
468
469/* Convert pmd entry to page */
470/* our pmd entry is an effective address of pte table*/
471/* returns effective address of the pmd entry*/
472#define pmd_page_kernel(pmd) ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
473
474/* returns struct *page of the pmd entry*/
475#define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
476
477/* to find an entry in a kernel page-table-directory */
478#define pgd_offset_k(address) pgd_offset(&init_mm, address)
479
480/* to find an entry in a page-table-directory */
481#define pgd_index(address) ((address) >> PGDIR_SHIFT)
482#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
483
484/* Find an entry in the second-level page table.. */
485static inline pmd_t *pmd_offset(pgd_t *dir, unsigned long address)
486{
487 return (pmd_t *) dir;
488}
489
490/* Find an entry in the third-level page table.. */
491#define pte_index(address) \
492 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
493#define pte_offset_kernel(dir, addr) \
494 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr))
495#define pte_offset_map(dir, addr) \
ece0e2b6 496 ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
15902bf6 497
ece0e2b6 498#define pte_unmap(pte) kunmap_atomic(pte)
15902bf6 499
15902bf6
MS
500extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
501
15902bf6
MS
502/*
503 * Encode and decode a swap entry.
504 * Note that the bits we use in a PTE for representing a swap entry
505 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
506 * (if used). -- paulus
507 */
508#define __swp_type(entry) ((entry).val & 0x3f)
509#define __swp_offset(entry) ((entry).val >> 6)
510#define __swp_entry(type, offset) \
511 ((swp_entry_t) { (type) | ((offset) << 6) })
512#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
513#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
514
15902bf6 515extern unsigned long iopa(unsigned long addr);
15902bf6
MS
516
517/* Values for nocacheflag and cmode */
518/* These are not used by the APUS kernel_map, but prevents
519 * compilation errors.
520 */
521#define IOMAP_FULL_CACHING 0
522#define IOMAP_NOCACHE_SER 1
523#define IOMAP_NOCACHE_NONSER 2
524#define IOMAP_NO_COPYBACK 3
525
15902bf6
MS
526/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
527#define kern_addr_valid(addr) (1)
528
15902bf6
MS
529/*
530 * No page table caches to initialise
531 */
532#define pgtable_cache_init() do { } while (0)
533
534void do_page_fault(struct pt_regs *regs, unsigned long address,
535 unsigned long error_code);
536
15902bf6
MS
537void mapin_ram(void);
538int map_page(unsigned long va, phys_addr_t pa, int flags);
539
540extern int mem_init_done;
15902bf6
MS
541
542asmlinkage void __init mmu_init(void);
543
544void __init *early_get_page(void);
545
15902bf6
MS
546#endif /* __ASSEMBLY__ */
547#endif /* __KERNEL__ */
548
549#endif /* CONFIG_MMU */
550
6a3cece5
MS
551#ifndef __ASSEMBLY__
552#include <asm-generic/pgtable.h>
553
ae8ee150
MS
554extern unsigned long ioremap_bot, ioremap_base;
555
cd44da15 556void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle);
f1525765 557void consistent_free(size_t size, void *vaddr);
ae8ee150
MS
558void consistent_sync(void *vaddr, size_t size, int direction);
559void consistent_sync_page(struct page *page, unsigned long offset,
560 size_t size, int direction);
3a8e3265 561unsigned long consistent_virt_to_pfn(void *vaddr);
ae8ee150 562
6a3cece5
MS
563void setup_memory(void);
564#endif /* __ASSEMBLY__ */
565
566#endif /* _ASM_MICROBLAZE_PGTABLE_H */