Merge branches 'acpi-resources', 'acpi-battery', 'acpi-doc' and 'acpi-pnp'
[linux-2.6-block.git] / arch / arm64 / kernel / perf_event.c
CommitLineData
03089688
WD
1/*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21#define pr_fmt(fmt) "hw perfevents: " fmt
22
23#include <linux/bitmap.h>
24#include <linux/interrupt.h>
66aa8d6a 25#include <linux/irq.h>
03089688
WD
26#include <linux/kernel.h>
27#include <linux/export.h>
d5efd9cc 28#include <linux/of.h>
03089688
WD
29#include <linux/perf_event.h>
30#include <linux/platform_device.h>
d5efd9cc 31#include <linux/slab.h>
03089688
WD
32#include <linux/spinlock.h>
33#include <linux/uaccess.h>
34
35#include <asm/cputype.h>
36#include <asm/irq.h>
37#include <asm/irq_regs.h>
38#include <asm/pmu.h>
39#include <asm/stacktrace.h>
40
41/*
42 * ARMv8 supports a maximum of 32 events.
43 * The cycle counter is included in this total.
44 */
45#define ARMPMU_MAX_HWEVENTS 32
46
47static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
48static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
49static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
50
51#define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
52
53/* Set at runtime when we know what CPU type we are. */
54static struct arm_pmu *cpu_pmu;
55
56int
57armpmu_get_max_events(void)
58{
59 int max_events = 0;
60
61 if (cpu_pmu != NULL)
62 max_events = cpu_pmu->num_events;
63
64 return max_events;
65}
66EXPORT_SYMBOL_GPL(armpmu_get_max_events);
67
68int perf_num_counters(void)
69{
70 return armpmu_get_max_events();
71}
72EXPORT_SYMBOL_GPL(perf_num_counters);
73
74#define HW_OP_UNSUPPORTED 0xFFFF
75
76#define C(_x) \
77 PERF_COUNT_HW_CACHE_##_x
78
79#define CACHE_OP_UNSUPPORTED 0xFFFF
80
81static int
82armpmu_map_cache_event(const unsigned (*cache_map)
83 [PERF_COUNT_HW_CACHE_MAX]
84 [PERF_COUNT_HW_CACHE_OP_MAX]
85 [PERF_COUNT_HW_CACHE_RESULT_MAX],
86 u64 config)
87{
88 unsigned int cache_type, cache_op, cache_result, ret;
89
90 cache_type = (config >> 0) & 0xff;
91 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
92 return -EINVAL;
93
94 cache_op = (config >> 8) & 0xff;
95 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
96 return -EINVAL;
97
98 cache_result = (config >> 16) & 0xff;
99 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
100 return -EINVAL;
101
102 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
103
104 if (ret == CACHE_OP_UNSUPPORTED)
105 return -ENOENT;
106
107 return ret;
108}
109
110static int
111armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
112{
868f6fea
WD
113 int mapping;
114
115 if (config >= PERF_COUNT_HW_MAX)
116 return -EINVAL;
117
118 mapping = (*event_map)[config];
03089688
WD
119 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
120}
121
122static int
123armpmu_map_raw_event(u32 raw_event_mask, u64 config)
124{
125 return (int)(config & raw_event_mask);
126}
127
128static int map_cpu_event(struct perf_event *event,
129 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
130 const unsigned (*cache_map)
131 [PERF_COUNT_HW_CACHE_MAX]
132 [PERF_COUNT_HW_CACHE_OP_MAX]
133 [PERF_COUNT_HW_CACHE_RESULT_MAX],
134 u32 raw_event_mask)
135{
136 u64 config = event->attr.config;
137
138 switch (event->attr.type) {
139 case PERF_TYPE_HARDWARE:
140 return armpmu_map_event(event_map, config);
141 case PERF_TYPE_HW_CACHE:
142 return armpmu_map_cache_event(cache_map, config);
143 case PERF_TYPE_RAW:
144 return armpmu_map_raw_event(raw_event_mask, config);
145 }
146
147 return -ENOENT;
148}
149
150int
151armpmu_event_set_period(struct perf_event *event,
152 struct hw_perf_event *hwc,
153 int idx)
154{
155 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
156 s64 left = local64_read(&hwc->period_left);
157 s64 period = hwc->sample_period;
158 int ret = 0;
159
160 if (unlikely(left <= -period)) {
161 left = period;
162 local64_set(&hwc->period_left, left);
163 hwc->last_period = period;
164 ret = 1;
165 }
166
167 if (unlikely(left <= 0)) {
168 left += period;
169 local64_set(&hwc->period_left, left);
170 hwc->last_period = period;
171 ret = 1;
172 }
173
cbbf2e6e
DT
174 /*
175 * Limit the maximum period to prevent the counter value
176 * from overtaking the one we are about to program. In
177 * effect we are reducing max_period to account for
178 * interrupt latency (and we are being very conservative).
179 */
180 if (left > (armpmu->max_period >> 1))
181 left = armpmu->max_period >> 1;
03089688
WD
182
183 local64_set(&hwc->prev_count, (u64)-left);
184
185 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
186
187 perf_event_update_userpage(event);
188
189 return ret;
190}
191
192u64
193armpmu_event_update(struct perf_event *event,
194 struct hw_perf_event *hwc,
195 int idx)
196{
197 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
198 u64 delta, prev_raw_count, new_raw_count;
199
200again:
201 prev_raw_count = local64_read(&hwc->prev_count);
202 new_raw_count = armpmu->read_counter(idx);
203
204 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
205 new_raw_count) != prev_raw_count)
206 goto again;
207
208 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
209
210 local64_add(delta, &event->count);
211 local64_sub(delta, &hwc->period_left);
212
213 return new_raw_count;
214}
215
216static void
217armpmu_read(struct perf_event *event)
218{
219 struct hw_perf_event *hwc = &event->hw;
220
221 /* Don't read disabled counters! */
222 if (hwc->idx < 0)
223 return;
224
225 armpmu_event_update(event, hwc, hwc->idx);
226}
227
228static void
229armpmu_stop(struct perf_event *event, int flags)
230{
231 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
232 struct hw_perf_event *hwc = &event->hw;
233
234 /*
235 * ARM pmu always has to update the counter, so ignore
236 * PERF_EF_UPDATE, see comments in armpmu_start().
237 */
238 if (!(hwc->state & PERF_HES_STOPPED)) {
239 armpmu->disable(hwc, hwc->idx);
240 barrier(); /* why? */
241 armpmu_event_update(event, hwc, hwc->idx);
242 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
243 }
244}
245
246static void
247armpmu_start(struct perf_event *event, int flags)
248{
249 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
250 struct hw_perf_event *hwc = &event->hw;
251
252 /*
253 * ARM pmu always has to reprogram the period, so ignore
254 * PERF_EF_RELOAD, see the comment below.
255 */
256 if (flags & PERF_EF_RELOAD)
257 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
258
259 hwc->state = 0;
260 /*
261 * Set the period again. Some counters can't be stopped, so when we
262 * were stopped we simply disabled the IRQ source and the counter
263 * may have been left counting. If we don't do this step then we may
264 * get an interrupt too soon or *way* too late if the overflow has
265 * happened since disabling.
266 */
267 armpmu_event_set_period(event, hwc, hwc->idx);
268 armpmu->enable(hwc, hwc->idx);
269}
270
271static void
272armpmu_del(struct perf_event *event, int flags)
273{
274 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
276 struct hw_perf_event *hwc = &event->hw;
277 int idx = hwc->idx;
278
279 WARN_ON(idx < 0);
280
281 armpmu_stop(event, PERF_EF_UPDATE);
282 hw_events->events[idx] = NULL;
283 clear_bit(idx, hw_events->used_mask);
284
285 perf_event_update_userpage(event);
286}
287
288static int
289armpmu_add(struct perf_event *event, int flags)
290{
291 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
292 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
293 struct hw_perf_event *hwc = &event->hw;
294 int idx;
295 int err = 0;
296
297 perf_pmu_disable(event->pmu);
298
299 /* If we don't have a space for the counter then finish early. */
300 idx = armpmu->get_event_idx(hw_events, hwc);
301 if (idx < 0) {
302 err = idx;
303 goto out;
304 }
305
306 /*
307 * If there is an event in the counter we are going to use then make
308 * sure it is disabled.
309 */
310 event->hw.idx = idx;
311 armpmu->disable(hwc, idx);
312 hw_events->events[idx] = event;
313
314 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
315 if (flags & PERF_EF_START)
316 armpmu_start(event, PERF_EF_RELOAD);
317
318 /* Propagate our changes to the userspace mapping. */
319 perf_event_update_userpage(event);
320
321out:
322 perf_pmu_enable(event->pmu);
323 return err;
324}
325
326static int
8fff105e
SP
327validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
328 struct perf_event *event)
03089688 329{
8fff105e 330 struct arm_pmu *armpmu;
03089688
WD
331 struct hw_perf_event fake_event = event->hw;
332 struct pmu *leader_pmu = event->group_leader->pmu;
333
ee7538a0
WD
334 if (is_software_event(event))
335 return 1;
336
8fff105e
SP
337 /*
338 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
339 * core perf code won't check that the pmu->ctx == leader->ctx
340 * until after pmu->event_init(event).
341 */
342 if (event->pmu != pmu)
343 return 0;
344
8455e6ec
WD
345 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
346 return 1;
347
348 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
03089688
WD
349 return 1;
350
8fff105e 351 armpmu = to_arm_pmu(event->pmu);
03089688
WD
352 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
353}
354
355static int
356validate_group(struct perf_event *event)
357{
358 struct perf_event *sibling, *leader = event->group_leader;
359 struct pmu_hw_events fake_pmu;
360 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
361
362 /*
363 * Initialise the fake PMU. We only need to populate the
364 * used_mask for the purposes of validation.
365 */
366 memset(fake_used_mask, 0, sizeof(fake_used_mask));
367 fake_pmu.used_mask = fake_used_mask;
368
8fff105e 369 if (!validate_event(event->pmu, &fake_pmu, leader))
03089688
WD
370 return -EINVAL;
371
372 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
8fff105e 373 if (!validate_event(event->pmu, &fake_pmu, sibling))
03089688
WD
374 return -EINVAL;
375 }
376
8fff105e 377 if (!validate_event(event->pmu, &fake_pmu, event))
03089688
WD
378 return -EINVAL;
379
380 return 0;
381}
382
66aa8d6a
VK
383static void
384armpmu_disable_percpu_irq(void *data)
385{
386 unsigned int irq = *(unsigned int *)data;
387 disable_percpu_irq(irq);
388}
389
03089688
WD
390static void
391armpmu_release_hardware(struct arm_pmu *armpmu)
392{
66aa8d6a
VK
393 int irq;
394 unsigned int i, irqs;
03089688
WD
395 struct platform_device *pmu_device = armpmu->plat_device;
396
397 irqs = min(pmu_device->num_resources, num_possible_cpus());
66aa8d6a
VK
398 if (!irqs)
399 return;
03089688 400
66aa8d6a
VK
401 irq = platform_get_irq(pmu_device, 0);
402 if (irq <= 0)
403 return;
404
405 if (irq_is_percpu(irq)) {
406 on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
407 free_percpu_irq(irq, &cpu_hw_events);
408 } else {
409 for (i = 0; i < irqs; ++i) {
d5efd9cc
WD
410 int cpu = i;
411
412 if (armpmu->irq_affinity)
413 cpu = armpmu->irq_affinity[i];
414
415 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
66aa8d6a
VK
416 continue;
417 irq = platform_get_irq(pmu_device, i);
418 if (irq > 0)
419 free_irq(irq, armpmu);
420 }
03089688
WD
421 }
422}
423
66aa8d6a
VK
424static void
425armpmu_enable_percpu_irq(void *data)
426{
427 unsigned int irq = *(unsigned int *)data;
428 enable_percpu_irq(irq, IRQ_TYPE_NONE);
429}
430
03089688
WD
431static int
432armpmu_reserve_hardware(struct arm_pmu *armpmu)
433{
66aa8d6a
VK
434 int err, irq;
435 unsigned int i, irqs;
03089688
WD
436 struct platform_device *pmu_device = armpmu->plat_device;
437
438 if (!pmu_device) {
439 pr_err("no PMU device registered\n");
440 return -ENODEV;
441 }
442
443 irqs = min(pmu_device->num_resources, num_possible_cpus());
66aa8d6a 444 if (!irqs) {
03089688
WD
445 pr_err("no irqs for PMUs defined\n");
446 return -ENODEV;
447 }
448
66aa8d6a
VK
449 irq = platform_get_irq(pmu_device, 0);
450 if (irq <= 0) {
451 pr_err("failed to get valid irq for PMU device\n");
452 return -ENODEV;
453 }
454
455 if (irq_is_percpu(irq)) {
456 err = request_percpu_irq(irq, armpmu->handle_irq,
457 "arm-pmu", &cpu_hw_events);
03089688 458
03089688 459 if (err) {
66aa8d6a
VK
460 pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
461 irq);
03089688
WD
462 armpmu_release_hardware(armpmu);
463 return err;
464 }
465
66aa8d6a
VK
466 on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
467 } else {
468 for (i = 0; i < irqs; ++i) {
d5efd9cc
WD
469 int cpu = i;
470
66aa8d6a
VK
471 err = 0;
472 irq = platform_get_irq(pmu_device, i);
473 if (irq <= 0)
474 continue;
475
d5efd9cc
WD
476 if (armpmu->irq_affinity)
477 cpu = armpmu->irq_affinity[i];
478
66aa8d6a
VK
479 /*
480 * If we have a single PMU interrupt that we can't shift,
481 * assume that we're running on a uniprocessor machine and
482 * continue. Otherwise, continue without this interrupt.
483 */
d5efd9cc 484 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
66aa8d6a 485 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
d5efd9cc 486 irq, cpu);
66aa8d6a
VK
487 continue;
488 }
489
490 err = request_irq(irq, armpmu->handle_irq,
491 IRQF_NOBALANCING,
492 "arm-pmu", armpmu);
493 if (err) {
494 pr_err("unable to request IRQ%d for ARM PMU counters\n",
495 irq);
496 armpmu_release_hardware(armpmu);
497 return err;
498 }
499
d5efd9cc 500 cpumask_set_cpu(cpu, &armpmu->active_irqs);
66aa8d6a 501 }
03089688
WD
502 }
503
504 return 0;
505}
506
507static void
508hw_perf_event_destroy(struct perf_event *event)
509{
510 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
511 atomic_t *active_events = &armpmu->active_events;
512 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
513
514 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
515 armpmu_release_hardware(armpmu);
516 mutex_unlock(pmu_reserve_mutex);
517 }
518}
519
520static int
521event_requires_mode_exclusion(struct perf_event_attr *attr)
522{
523 return attr->exclude_idle || attr->exclude_user ||
524 attr->exclude_kernel || attr->exclude_hv;
525}
526
527static int
528__hw_perf_event_init(struct perf_event *event)
529{
530 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
531 struct hw_perf_event *hwc = &event->hw;
532 int mapping, err;
533
534 mapping = armpmu->map_event(event);
535
536 if (mapping < 0) {
537 pr_debug("event %x:%llx not supported\n", event->attr.type,
538 event->attr.config);
539 return mapping;
540 }
541
542 /*
543 * We don't assign an index until we actually place the event onto
544 * hardware. Use -1 to signify that we haven't decided where to put it
545 * yet. For SMP systems, each core has it's own PMU so we can't do any
546 * clever allocation or constraints checking at this point.
547 */
548 hwc->idx = -1;
549 hwc->config_base = 0;
550 hwc->config = 0;
551 hwc->event_base = 0;
552
553 /*
554 * Check whether we need to exclude the counter from certain modes.
555 */
556 if ((!armpmu->set_event_filter ||
557 armpmu->set_event_filter(hwc, &event->attr)) &&
558 event_requires_mode_exclusion(&event->attr)) {
559 pr_debug("ARM performance counters do not support mode exclusion\n");
560 return -EPERM;
561 }
562
563 /*
564 * Store the event encoding into the config_base field.
565 */
566 hwc->config_base |= (unsigned long)mapping;
567
568 if (!hwc->sample_period) {
569 /*
570 * For non-sampling runs, limit the sample_period to half
571 * of the counter width. That way, the new counter value
572 * is far less likely to overtake the previous one unless
573 * you have some serious IRQ latency issues.
574 */
575 hwc->sample_period = armpmu->max_period >> 1;
576 hwc->last_period = hwc->sample_period;
577 local64_set(&hwc->period_left, hwc->sample_period);
578 }
579
580 err = 0;
581 if (event->group_leader != event) {
582 err = validate_group(event);
583 if (err)
584 return -EINVAL;
585 }
586
587 return err;
588}
589
590static int armpmu_event_init(struct perf_event *event)
591{
592 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
593 int err = 0;
594 atomic_t *active_events = &armpmu->active_events;
595
596 if (armpmu->map_event(event) == -ENOENT)
597 return -ENOENT;
598
599 event->destroy = hw_perf_event_destroy;
600
601 if (!atomic_inc_not_zero(active_events)) {
602 mutex_lock(&armpmu->reserve_mutex);
603 if (atomic_read(active_events) == 0)
604 err = armpmu_reserve_hardware(armpmu);
605
606 if (!err)
607 atomic_inc(active_events);
608 mutex_unlock(&armpmu->reserve_mutex);
609 }
610
611 if (err)
612 return err;
613
614 err = __hw_perf_event_init(event);
615 if (err)
616 hw_perf_event_destroy(event);
617
618 return err;
619}
620
621static void armpmu_enable(struct pmu *pmu)
622{
623 struct arm_pmu *armpmu = to_arm_pmu(pmu);
624 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
625 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
626
627 if (enabled)
628 armpmu->start();
629}
630
631static void armpmu_disable(struct pmu *pmu)
632{
633 struct arm_pmu *armpmu = to_arm_pmu(pmu);
634 armpmu->stop();
635}
636
637static void __init armpmu_init(struct arm_pmu *armpmu)
638{
639 atomic_set(&armpmu->active_events, 0);
640 mutex_init(&armpmu->reserve_mutex);
641
642 armpmu->pmu = (struct pmu) {
643 .pmu_enable = armpmu_enable,
644 .pmu_disable = armpmu_disable,
645 .event_init = armpmu_event_init,
646 .add = armpmu_add,
647 .del = armpmu_del,
648 .start = armpmu_start,
649 .stop = armpmu_stop,
650 .read = armpmu_read,
651 };
652}
653
654int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
655{
656 armpmu_init(armpmu);
657 return perf_pmu_register(&armpmu->pmu, name, type);
658}
659
660/*
661 * ARMv8 PMUv3 Performance Events handling code.
662 * Common event types.
663 */
664enum armv8_pmuv3_perf_types {
665 /* Required events. */
666 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
667 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
668 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
669 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
670 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
671 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
672
673 /* At least one of the following is required. */
674 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
675 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
676
677 /* Common architectural events. */
678 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
679 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
680 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
681 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
682 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
683 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
684 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
685 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
686 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
687 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
688
689 /* Common microarchitectural events. */
690 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
691 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
692 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
693 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
694 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
695 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
696 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
697 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
698 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
699 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
700 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
701 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
03089688
WD
702};
703
704/* PMUv3 HW events mapping. */
705static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
f46f979f 706 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
03089688
WD
707 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
708 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
709 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
710 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = HW_OP_UNSUPPORTED,
711 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
712 [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
713 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = HW_OP_UNSUPPORTED,
714 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = HW_OP_UNSUPPORTED,
715};
716
717static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
718 [PERF_COUNT_HW_CACHE_OP_MAX]
719 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
720 [C(L1D)] = {
721 [C(OP_READ)] = {
722 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
723 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
724 },
725 [C(OP_WRITE)] = {
726 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
727 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
728 },
729 [C(OP_PREFETCH)] = {
730 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
731 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
732 },
733 },
734 [C(L1I)] = {
735 [C(OP_READ)] = {
736 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
737 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
738 },
739 [C(OP_WRITE)] = {
740 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
741 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
742 },
743 [C(OP_PREFETCH)] = {
744 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
745 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
746 },
747 },
748 [C(LL)] = {
749 [C(OP_READ)] = {
750 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
751 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
752 },
753 [C(OP_WRITE)] = {
754 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
755 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
756 },
757 [C(OP_PREFETCH)] = {
758 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
759 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
760 },
761 },
762 [C(DTLB)] = {
763 [C(OP_READ)] = {
764 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
765 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
766 },
767 [C(OP_WRITE)] = {
768 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
769 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
770 },
771 [C(OP_PREFETCH)] = {
772 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
773 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
774 },
775 },
776 [C(ITLB)] = {
777 [C(OP_READ)] = {
778 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
779 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
780 },
781 [C(OP_WRITE)] = {
782 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
783 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
784 },
785 [C(OP_PREFETCH)] = {
786 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
787 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
788 },
789 },
790 [C(BPU)] = {
791 [C(OP_READ)] = {
792 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
793 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
794 },
795 [C(OP_WRITE)] = {
796 [C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
797 [C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
798 },
799 [C(OP_PREFETCH)] = {
800 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
801 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
802 },
803 },
804 [C(NODE)] = {
805 [C(OP_READ)] = {
806 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
807 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
808 },
809 [C(OP_WRITE)] = {
810 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
811 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
812 },
813 [C(OP_PREFETCH)] = {
814 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
815 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
816 },
817 },
818};
819
820/*
821 * Perf Events' indices
822 */
823#define ARMV8_IDX_CYCLE_COUNTER 0
824#define ARMV8_IDX_COUNTER0 1
825#define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
826
827#define ARMV8_MAX_COUNTERS 32
828#define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
829
830/*
831 * ARMv8 low level PMU access
832 */
833
834/*
835 * Perf Event to low level counters mapping
836 */
837#define ARMV8_IDX_TO_COUNTER(x) \
838 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
839
840/*
841 * Per-CPU PMCR: config reg
842 */
843#define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
844#define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
845#define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
846#define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
847#define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
848#define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
849#define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
850#define ARMV8_PMCR_N_MASK 0x1f
851#define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
852
853/*
854 * PMOVSR: counters overflow flag status reg
855 */
856#define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
857#define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
858
859/*
860 * PMXEVTYPER: Event selection reg
861 */
c019de3d
VK
862#define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */
863#define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */
03089688
WD
864
865/*
866 * Event filters for PMUv3
867 */
868#define ARMV8_EXCLUDE_EL1 (1 << 31)
869#define ARMV8_EXCLUDE_EL0 (1 << 30)
870#define ARMV8_INCLUDE_EL2 (1 << 27)
871
872static inline u32 armv8pmu_pmcr_read(void)
873{
874 u32 val;
875 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
876 return val;
877}
878
879static inline void armv8pmu_pmcr_write(u32 val)
880{
881 val &= ARMV8_PMCR_MASK;
882 isb();
883 asm volatile("msr pmcr_el0, %0" :: "r" (val));
884}
885
886static inline int armv8pmu_has_overflowed(u32 pmovsr)
887{
888 return pmovsr & ARMV8_OVERFLOWED_MASK;
889}
890
891static inline int armv8pmu_counter_valid(int idx)
892{
893 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
894}
895
896static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
897{
898 int ret = 0;
899 u32 counter;
900
901 if (!armv8pmu_counter_valid(idx)) {
902 pr_err("CPU%u checking wrong counter %d overflow status\n",
903 smp_processor_id(), idx);
904 } else {
905 counter = ARMV8_IDX_TO_COUNTER(idx);
906 ret = pmnc & BIT(counter);
907 }
908
909 return ret;
910}
911
912static inline int armv8pmu_select_counter(int idx)
913{
914 u32 counter;
915
916 if (!armv8pmu_counter_valid(idx)) {
917 pr_err("CPU%u selecting wrong PMNC counter %d\n",
918 smp_processor_id(), idx);
919 return -EINVAL;
920 }
921
922 counter = ARMV8_IDX_TO_COUNTER(idx);
923 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
924 isb();
925
926 return idx;
927}
928
929static inline u32 armv8pmu_read_counter(int idx)
930{
931 u32 value = 0;
932
933 if (!armv8pmu_counter_valid(idx))
934 pr_err("CPU%u reading wrong counter %d\n",
935 smp_processor_id(), idx);
936 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
937 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
938 else if (armv8pmu_select_counter(idx) == idx)
939 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
940
941 return value;
942}
943
944static inline void armv8pmu_write_counter(int idx, u32 value)
945{
946 if (!armv8pmu_counter_valid(idx))
947 pr_err("CPU%u writing wrong counter %d\n",
948 smp_processor_id(), idx);
949 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
950 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
951 else if (armv8pmu_select_counter(idx) == idx)
952 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
953}
954
955static inline void armv8pmu_write_evtype(int idx, u32 val)
956{
957 if (armv8pmu_select_counter(idx) == idx) {
958 val &= ARMV8_EVTYPE_MASK;
959 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
960 }
961}
962
963static inline int armv8pmu_enable_counter(int idx)
964{
965 u32 counter;
966
967 if (!armv8pmu_counter_valid(idx)) {
968 pr_err("CPU%u enabling wrong PMNC counter %d\n",
969 smp_processor_id(), idx);
970 return -EINVAL;
971 }
972
973 counter = ARMV8_IDX_TO_COUNTER(idx);
974 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
975 return idx;
976}
977
978static inline int armv8pmu_disable_counter(int idx)
979{
980 u32 counter;
981
982 if (!armv8pmu_counter_valid(idx)) {
983 pr_err("CPU%u disabling wrong PMNC counter %d\n",
984 smp_processor_id(), idx);
985 return -EINVAL;
986 }
987
988 counter = ARMV8_IDX_TO_COUNTER(idx);
989 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
990 return idx;
991}
992
993static inline int armv8pmu_enable_intens(int idx)
994{
995 u32 counter;
996
997 if (!armv8pmu_counter_valid(idx)) {
998 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
999 smp_processor_id(), idx);
1000 return -EINVAL;
1001 }
1002
1003 counter = ARMV8_IDX_TO_COUNTER(idx);
1004 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
1005 return idx;
1006}
1007
1008static inline int armv8pmu_disable_intens(int idx)
1009{
1010 u32 counter;
1011
1012 if (!armv8pmu_counter_valid(idx)) {
1013 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
1014 smp_processor_id(), idx);
1015 return -EINVAL;
1016 }
1017
1018 counter = ARMV8_IDX_TO_COUNTER(idx);
1019 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
1020 isb();
1021 /* Clear the overflow flag in case an interrupt is pending. */
1022 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
1023 isb();
1024 return idx;
1025}
1026
1027static inline u32 armv8pmu_getreset_flags(void)
1028{
1029 u32 value;
1030
1031 /* Read */
1032 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
1033
1034 /* Write to clear flags */
1035 value &= ARMV8_OVSR_MASK;
1036 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
1037
1038 return value;
1039}
1040
1041static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
1042{
1043 unsigned long flags;
1044 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1045
1046 /*
1047 * Enable counter and interrupt, and set the counter to count
1048 * the event that we're interested in.
1049 */
1050 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1051
1052 /*
1053 * Disable counter
1054 */
1055 armv8pmu_disable_counter(idx);
1056
1057 /*
1058 * Set event (if destined for PMNx counters).
1059 */
1060 armv8pmu_write_evtype(idx, hwc->config_base);
1061
1062 /*
1063 * Enable interrupt for this counter
1064 */
1065 armv8pmu_enable_intens(idx);
1066
1067 /*
1068 * Enable counter
1069 */
1070 armv8pmu_enable_counter(idx);
1071
1072 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1073}
1074
1075static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
1076{
1077 unsigned long flags;
1078 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1079
1080 /*
1081 * Disable counter and interrupt
1082 */
1083 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1084
1085 /*
1086 * Disable counter
1087 */
1088 armv8pmu_disable_counter(idx);
1089
1090 /*
1091 * Disable interrupt for this counter
1092 */
1093 armv8pmu_disable_intens(idx);
1094
1095 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1096}
1097
1098static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1099{
1100 u32 pmovsr;
1101 struct perf_sample_data data;
1102 struct pmu_hw_events *cpuc;
1103 struct pt_regs *regs;
1104 int idx;
1105
1106 /*
1107 * Get and reset the IRQ flags
1108 */
1109 pmovsr = armv8pmu_getreset_flags();
1110
1111 /*
1112 * Did an overflow occur?
1113 */
1114 if (!armv8pmu_has_overflowed(pmovsr))
1115 return IRQ_NONE;
1116
1117 /*
1118 * Handle the counter(s) overflow(s)
1119 */
1120 regs = get_irq_regs();
1121
1436c1aa 1122 cpuc = this_cpu_ptr(&cpu_hw_events);
03089688
WD
1123 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1124 struct perf_event *event = cpuc->events[idx];
1125 struct hw_perf_event *hwc;
1126
1127 /* Ignore if we don't have an event. */
1128 if (!event)
1129 continue;
1130
1131 /*
1132 * We have a single interrupt for all counters. Check that
1133 * each counter has overflowed before we process it.
1134 */
1135 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1136 continue;
1137
1138 hwc = &event->hw;
1139 armpmu_event_update(event, hwc, idx);
1140 perf_sample_data_init(&data, 0, hwc->last_period);
1141 if (!armpmu_event_set_period(event, hwc, idx))
1142 continue;
1143
1144 if (perf_event_overflow(event, &data, regs))
1145 cpu_pmu->disable(hwc, idx);
1146 }
1147
1148 /*
1149 * Handle the pending perf events.
1150 *
1151 * Note: this call *must* be run with interrupts disabled. For
1152 * platforms that can have the PMU interrupts raised as an NMI, this
1153 * will not work.
1154 */
1155 irq_work_run();
1156
1157 return IRQ_HANDLED;
1158}
1159
1160static void armv8pmu_start(void)
1161{
1162 unsigned long flags;
1163 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1164
1165 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1166 /* Enable all counters */
1167 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1168 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1169}
1170
1171static void armv8pmu_stop(void)
1172{
1173 unsigned long flags;
1174 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1175
1176 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1177 /* Disable all counters */
1178 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1179 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1180}
1181
1182static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1183 struct hw_perf_event *event)
1184{
1185 int idx;
1186 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1187
1188 /* Always place a cycle counter into the cycle counter. */
f46f979f 1189 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
03089688
WD
1190 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1191 return -EAGAIN;
1192
1193 return ARMV8_IDX_CYCLE_COUNTER;
1194 }
1195
1196 /*
1197 * For anything other than a cycle counter, try and use
1198 * the events counters
1199 */
1200 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1201 if (!test_and_set_bit(idx, cpuc->used_mask))
1202 return idx;
1203 }
1204
1205 /* The counters are all in use. */
1206 return -EAGAIN;
1207}
1208
1209/*
1210 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1211 */
1212static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1213 struct perf_event_attr *attr)
1214{
1215 unsigned long config_base = 0;
1216
1217 if (attr->exclude_idle)
1218 return -EPERM;
1219 if (attr->exclude_user)
1220 config_base |= ARMV8_EXCLUDE_EL0;
1221 if (attr->exclude_kernel)
1222 config_base |= ARMV8_EXCLUDE_EL1;
1223 if (!attr->exclude_hv)
1224 config_base |= ARMV8_INCLUDE_EL2;
1225
1226 /*
1227 * Install the filter into config_base as this is used to
1228 * construct the event type.
1229 */
1230 event->config_base = config_base;
1231
1232 return 0;
1233}
1234
1235static void armv8pmu_reset(void *info)
1236{
1237 u32 idx, nb_cnt = cpu_pmu->num_events;
1238
1239 /* The counter and interrupt enable registers are unknown at reset. */
1240 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1241 armv8pmu_disable_event(NULL, idx);
1242
1243 /* Initialize & Reset PMNC: C and P bits. */
1244 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1245
1246 /* Disable access from userspace. */
1247 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1248}
1249
1250static int armv8_pmuv3_map_event(struct perf_event *event)
1251{
1252 return map_cpu_event(event, &armv8_pmuv3_perf_map,
c019de3d
VK
1253 &armv8_pmuv3_perf_cache_map,
1254 ARMV8_EVTYPE_EVENT);
03089688
WD
1255}
1256
1257static struct arm_pmu armv8pmu = {
1258 .handle_irq = armv8pmu_handle_irq,
1259 .enable = armv8pmu_enable_event,
1260 .disable = armv8pmu_disable_event,
1261 .read_counter = armv8pmu_read_counter,
1262 .write_counter = armv8pmu_write_counter,
1263 .get_event_idx = armv8pmu_get_event_idx,
1264 .start = armv8pmu_start,
1265 .stop = armv8pmu_stop,
1266 .reset = armv8pmu_reset,
1267 .max_period = (1LLU << 32) - 1,
1268};
1269
1270static u32 __init armv8pmu_read_num_pmnc_events(void)
1271{
1272 u32 nb_cnt;
1273
1274 /* Read the nb of CNTx counters supported from PMNC */
1275 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1276
1277 /* Add the CPU cycles counter and return */
1278 return nb_cnt + 1;
1279}
1280
1281static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1282{
1283 armv8pmu.name = "arm/armv8-pmuv3";
1284 armv8pmu.map_event = armv8_pmuv3_map_event;
1285 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1286 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1287 return &armv8pmu;
1288}
1289
1290/*
1291 * Ensure the PMU has sane values out of reset.
1292 * This requires SMP to be available, so exists as a separate initcall.
1293 */
1294static int __init
1295cpu_pmu_reset(void)
1296{
1297 if (cpu_pmu && cpu_pmu->reset)
1298 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1299 return 0;
1300}
1301arch_initcall(cpu_pmu_reset);
1302
1303/*
1304 * PMU platform driver and devicetree bindings.
1305 */
c8fdd497 1306static const struct of_device_id armpmu_of_device_ids[] = {
03089688
WD
1307 {.compatible = "arm,armv8-pmuv3"},
1308 {},
1309};
1310
b881bc46 1311static int armpmu_device_probe(struct platform_device *pdev)
03089688 1312{
d795ef9a 1313 int i, irq, *irqs;
d5efd9cc 1314
03089688
WD
1315 if (!cpu_pmu)
1316 return -ENODEV;
1317
d5efd9cc
WD
1318 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
1319 if (!irqs)
1320 return -ENOMEM;
1321
d795ef9a
WD
1322 /* Don't bother with PPIs; they're already affine */
1323 irq = platform_get_irq(pdev, 0);
1324 if (irq >= 0 && irq_is_percpu(irq))
1325 return 0;
1326
d5efd9cc
WD
1327 for (i = 0; i < pdev->num_resources; ++i) {
1328 struct device_node *dn;
1329 int cpu;
1330
1331 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
1332 i);
1333 if (!dn) {
1334 pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
8291fd04 1335 of_node_full_name(pdev->dev.of_node), i);
d5efd9cc
WD
1336 break;
1337 }
1338
1339 for_each_possible_cpu(cpu)
1340 if (arch_find_n_match_cpu_physical_id(dn, cpu, NULL))
1341 break;
1342
1343 of_node_put(dn);
1344 if (cpu >= nr_cpu_ids) {
1345 pr_warn("Failed to find logical CPU for %s\n",
1346 dn->name);
1347 break;
1348 }
1349
1350 irqs[i] = cpu;
1351 }
1352
1353 if (i == pdev->num_resources)
1354 cpu_pmu->irq_affinity = irqs;
1355 else
1356 kfree(irqs);
1357
03089688
WD
1358 cpu_pmu->plat_device = pdev;
1359 return 0;
1360}
1361
1362static struct platform_driver armpmu_driver = {
1363 .driver = {
1364 .name = "arm-pmu",
1365 .of_match_table = armpmu_of_device_ids,
1366 },
1367 .probe = armpmu_device_probe,
1368};
1369
1370static int __init register_pmu_driver(void)
1371{
1372 return platform_driver_register(&armpmu_driver);
1373}
1374device_initcall(register_pmu_driver);
1375
1376static struct pmu_hw_events *armpmu_get_cpu_events(void)
1377{
1436c1aa 1378 return this_cpu_ptr(&cpu_hw_events);
03089688
WD
1379}
1380
1381static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1382{
1383 int cpu;
1384 for_each_possible_cpu(cpu) {
1385 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1386 events->events = per_cpu(hw_events, cpu);
1387 events->used_mask = per_cpu(used_mask, cpu);
1388 raw_spin_lock_init(&events->pmu_lock);
1389 }
1390 armpmu->get_hw_events = armpmu_get_cpu_events;
1391}
1392
1393static int __init init_hw_perf_events(void)
1394{
1395 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1396
1397 switch ((dfr >> 8) & 0xf) {
1398 case 0x1: /* PMUv3 */
1399 cpu_pmu = armv8_pmuv3_pmu_init();
1400 break;
1401 }
1402
1403 if (cpu_pmu) {
1404 pr_info("enabled with %s PMU driver, %d counters available\n",
1405 cpu_pmu->name, cpu_pmu->num_events);
1406 cpu_pmu_init(cpu_pmu);
1407 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1408 } else {
1409 pr_info("no hardware support available\n");
1410 }
1411
1412 return 0;
1413}
1414early_initcall(init_hw_perf_events);
1415
1416/*
1417 * Callchain handling code.
1418 */
1419struct frame_tail {
23c7d70d
JP
1420 struct frame_tail __user *fp;
1421 unsigned long lr;
03089688
WD
1422} __attribute__((packed));
1423
1424/*
1425 * Get the return address for a single stackframe and return a pointer to the
1426 * next frame tail.
1427 */
1428static struct frame_tail __user *
1429user_backtrace(struct frame_tail __user *tail,
1430 struct perf_callchain_entry *entry)
1431{
1432 struct frame_tail buftail;
1433 unsigned long err;
1434
1435 /* Also check accessibility of one struct frame_tail beyond */
1436 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1437 return NULL;
1438
1439 pagefault_disable();
1440 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1441 pagefault_enable();
1442
1443 if (err)
1444 return NULL;
1445
1446 perf_callchain_store(entry, buftail.lr);
1447
1448 /*
1449 * Frame pointers should strictly progress back up the stack
1450 * (towards higher addresses).
1451 */
1452 if (tail >= buftail.fp)
1453 return NULL;
1454
1455 return buftail.fp;
1456}
1457
ff268ff7 1458#ifdef CONFIG_COMPAT
23c7d70d
JP
1459/*
1460 * The registers we're interested in are at the end of the variable
1461 * length saved register structure. The fp points at the end of this
1462 * structure so the address of this struct is:
1463 * (struct compat_frame_tail *)(xxx->fp)-1
1464 *
1465 * This code has been adapted from the ARM OProfile support.
1466 */
1467struct compat_frame_tail {
1468 compat_uptr_t fp; /* a (struct compat_frame_tail *) in compat mode */
1469 u32 sp;
1470 u32 lr;
1471} __attribute__((packed));
1472
1473static struct compat_frame_tail __user *
1474compat_user_backtrace(struct compat_frame_tail __user *tail,
1475 struct perf_callchain_entry *entry)
1476{
1477 struct compat_frame_tail buftail;
1478 unsigned long err;
1479
1480 /* Also check accessibility of one struct frame_tail beyond */
1481 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
1482 return NULL;
1483
1484 pagefault_disable();
1485 err = __copy_from_user_inatomic(&buftail, tail, sizeof(buftail));
1486 pagefault_enable();
1487
1488 if (err)
1489 return NULL;
1490
1491 perf_callchain_store(entry, buftail.lr);
1492
1493 /*
1494 * Frame pointers should strictly progress back up the stack
1495 * (towards higher addresses).
1496 */
1497 if (tail + 1 >= (struct compat_frame_tail __user *)
1498 compat_ptr(buftail.fp))
1499 return NULL;
1500
1501 return (struct compat_frame_tail __user *)compat_ptr(buftail.fp) - 1;
1502}
ff268ff7 1503#endif /* CONFIG_COMPAT */
23c7d70d 1504
03089688
WD
1505void perf_callchain_user(struct perf_callchain_entry *entry,
1506 struct pt_regs *regs)
1507{
75e42462
MZ
1508 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1509 /* We don't support guest os callchain now */
1510 return;
1511 }
1512
abc41254 1513 perf_callchain_store(entry, regs->pc);
03089688 1514
23c7d70d
JP
1515 if (!compat_user_mode(regs)) {
1516 /* AARCH64 mode */
1517 struct frame_tail __user *tail;
1518
1519 tail = (struct frame_tail __user *)regs->regs[29];
1520
1521 while (entry->nr < PERF_MAX_STACK_DEPTH &&
1522 tail && !((unsigned long)tail & 0xf))
1523 tail = user_backtrace(tail, entry);
1524 } else {
ff268ff7 1525#ifdef CONFIG_COMPAT
23c7d70d
JP
1526 /* AARCH32 compat mode */
1527 struct compat_frame_tail __user *tail;
1528
1529 tail = (struct compat_frame_tail __user *)regs->compat_fp - 1;
1530
1531 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
1532 tail && !((unsigned long)tail & 0x3))
1533 tail = compat_user_backtrace(tail, entry);
ff268ff7 1534#endif
23c7d70d 1535 }
03089688
WD
1536}
1537
1538/*
1539 * Gets called by walk_stackframe() for every stackframe. This will be called
1540 * whist unwinding the stackframe and is like a subroutine return so we use
1541 * the PC.
1542 */
1543static int callchain_trace(struct stackframe *frame, void *data)
1544{
1545 struct perf_callchain_entry *entry = data;
1546 perf_callchain_store(entry, frame->pc);
1547 return 0;
1548}
1549
1550void perf_callchain_kernel(struct perf_callchain_entry *entry,
1551 struct pt_regs *regs)
1552{
1553 struct stackframe frame;
1554
75e42462
MZ
1555 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1556 /* We don't support guest os callchain now */
1557 return;
1558 }
1559
03089688
WD
1560 frame.fp = regs->regs[29];
1561 frame.sp = regs->sp;
1562 frame.pc = regs->pc;
23c7d70d 1563
03089688
WD
1564 walk_stackframe(&frame, callchain_trace, entry);
1565}
75e42462
MZ
1566
1567unsigned long perf_instruction_pointer(struct pt_regs *regs)
1568{
1569 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1570 return perf_guest_cbs->get_guest_ip();
1571
1572 return instruction_pointer(regs);
1573}
1574
1575unsigned long perf_misc_flags(struct pt_regs *regs)
1576{
1577 int misc = 0;
1578
1579 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1580 if (perf_guest_cbs->is_user_mode())
1581 misc |= PERF_RECORD_MISC_GUEST_USER;
1582 else
1583 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1584 } else {
1585 if (user_mode(regs))
1586 misc |= PERF_RECORD_MISC_USER;
1587 else
1588 misc |= PERF_RECORD_MISC_KERNEL;
1589 }
1590
1591 return misc;
1592}