arm64: cpufeature: Schedule enable() calls instead of calling them via IPI
[linux-2.6-block.git] / arch / arm64 / kernel / cpufeature.c
CommitLineData
359b7064
MZ
1/*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
9cdf8ec4 19#define pr_fmt(fmt) "CPU features: " fmt
359b7064 20
3c739b57 21#include <linux/bsearch.h>
2a6dcb2b 22#include <linux/cpumask.h>
3c739b57 23#include <linux/sort.h>
2a6dcb2b 24#include <linux/stop_machine.h>
359b7064
MZ
25#include <linux/types.h>
26#include <asm/cpu.h>
27#include <asm/cpufeature.h>
dbb4e152 28#include <asm/cpu_ops.h>
13f417f3 29#include <asm/mmu_context.h>
338d4f49 30#include <asm/processor.h>
cdcf817b 31#include <asm/sysreg.h>
d88701be 32#include <asm/virt.h>
359b7064 33
9cdf8ec4
SP
34unsigned long elf_hwcap __read_mostly;
35EXPORT_SYMBOL_GPL(elf_hwcap);
36
37#ifdef CONFIG_COMPAT
38#define COMPAT_ELF_HWCAP_DEFAULT \
39 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
40 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
41 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
42 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
43 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
44 COMPAT_HWCAP_LPAE)
45unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
46unsigned int compat_elf_hwcap2 __read_mostly;
47#endif
48
49DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
50
efd9e03f
CM
51DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
52EXPORT_SYMBOL(cpu_hwcap_keys);
53
4f0a606b 54#define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
3c739b57 55 { \
4f0a606b 56 .sign = SIGNED, \
3c739b57
SP
57 .strict = STRICT, \
58 .type = TYPE, \
59 .shift = SHIFT, \
60 .width = WIDTH, \
61 .safe_val = SAFE_VAL, \
62 }
63
0710cfdb 64/* Define a feature with unsigned values */
4f0a606b 65#define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
4f0a606b
SP
66 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
67
0710cfdb
SP
68/* Define a feature with a signed value */
69#define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71
3c739b57
SP
72#define ARM64_FTR_END \
73 { \
74 .width = 0, \
75 }
76
70544196
JM
77/* meta feature for alternatives */
78static bool __maybe_unused
92406f0c
SP
79cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
80
70544196 81
5e49d73c 82static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
3c739b57
SP
83 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
88 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
89 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
90 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
92 ARM64_FTR_END,
93};
94
5e49d73c 95static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
3c739b57
SP
96 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
97 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
0710cfdb
SP
99 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
100 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
3c739b57
SP
101 /* Linux doesn't care about the EL3 */
102 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
103 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
104 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
106 ARM64_FTR_END,
107};
108
5e49d73c 109static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
3c739b57 110 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
0710cfdb
SP
111 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
112 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
3c739b57
SP
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
114 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
115 /* Linux shouldn't care about secure memory */
116 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
117 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
118 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
119 /*
120 * Differing PARange is fine as long as all peripherals and memory are mapped
121 * within the minimum PARange of all CPUs
122 */
0710cfdb 123 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
3c739b57
SP
124 ARM64_FTR_END,
125};
126
5e49d73c 127static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
3c739b57
SP
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
135 ARM64_FTR_END,
136};
137
5e49d73c 138static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
7d7b4ae4
KW
139 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
140 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
406e3087 142 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
7d7b4ae4 143 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
406e3087
JM
144 ARM64_FTR_END,
145};
146
5e49d73c 147static const struct arm64_ftr_bits ftr_ctr[] = {
0710cfdb 148 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
3c739b57 149 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
0710cfdb
SP
150 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
151 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
152 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
3c739b57
SP
153 /*
154 * Linux can handle differing I-cache policies. Userspace JITs will
ee7bc638
SP
155 * make use of *minLine.
156 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
3c739b57 157 */
ee7bc638 158 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT), /* L1Ip */
3c739b57 159 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
0710cfdb 160 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
3c739b57
SP
161 ARM64_FTR_END,
162};
163
675b0563
AB
164struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
165 .name = "SYS_CTR_EL0",
166 .ftr_bits = ftr_ctr
167};
168
5e49d73c 169static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
0710cfdb 170 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
3c739b57
SP
171 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
172 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
173 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
0710cfdb 175 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
3c739b57
SP
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
178 ARM64_FTR_END,
179};
180
5e49d73c 181static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
3c739b57 182 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
0710cfdb
SP
183 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
186 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
3c739b57
SP
189 ARM64_FTR_END,
190};
191
5e49d73c 192static const struct arm64_ftr_bits ftr_mvfr2[] = {
3c739b57
SP
193 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
195 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
196 ARM64_FTR_END,
197};
198
5e49d73c 199static const struct arm64_ftr_bits ftr_dczid[] = {
3c739b57
SP
200 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
202 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
203 ARM64_FTR_END,
204};
205
206
5e49d73c 207static const struct arm64_ftr_bits ftr_id_isar5[] = {
3c739b57
SP
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
215 ARM64_FTR_END,
216};
217
5e49d73c 218static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
3c739b57
SP
219 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
220 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
221 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
222 ARM64_FTR_END,
223};
224
5e49d73c 225static const struct arm64_ftr_bits ftr_id_pfr0[] = {
3c739b57
SP
226 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
227 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
228 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
229 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
230 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
231 ARM64_FTR_END,
232};
233
5e49d73c 234static const struct arm64_ftr_bits ftr_id_dfr0[] = {
e5343503 235 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
0710cfdb 236 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
e5343503
SP
237 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
238 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
240 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
241 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
242 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
243 ARM64_FTR_END,
244};
245
3c739b57
SP
246/*
247 * Common ftr bits for a 32bit register with all hidden, strict
248 * attributes, with 4bit feature fields and a default safe value of
249 * 0. Covers the following 32bit registers:
250 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
251 */
5e49d73c 252static const struct arm64_ftr_bits ftr_generic_32bits[] = {
3c739b57
SP
253 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
254 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
255 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
256 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
257 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
258 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
259 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
260 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
261 ARM64_FTR_END,
262};
263
5e49d73c 264static const struct arm64_ftr_bits ftr_generic[] = {
3c739b57
SP
265 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
266 ARM64_FTR_END,
267};
268
5e49d73c 269static const struct arm64_ftr_bits ftr_generic32[] = {
3c739b57
SP
270 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
271 ARM64_FTR_END,
272};
273
5e49d73c 274static const struct arm64_ftr_bits ftr_aa64raz[] = {
3c739b57
SP
275 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
276 ARM64_FTR_END,
277};
278
6f2b7eef
AB
279#define ARM64_FTR_REG(id, table) { \
280 .sys_id = id, \
281 .reg = &(struct arm64_ftr_reg){ \
3c739b57
SP
282 .name = #id, \
283 .ftr_bits = &((table)[0]), \
6f2b7eef 284 }}
3c739b57 285
6f2b7eef
AB
286static const struct __ftr_reg_entry {
287 u32 sys_id;
288 struct arm64_ftr_reg *reg;
289} arm64_ftr_regs[] = {
3c739b57
SP
290
291 /* Op1 = 0, CRn = 0, CRm = 1 */
292 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
e5343503 294 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
3c739b57
SP
295 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
299
300 /* Op1 = 0, CRn = 0, CRm = 2 */
301 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
308
309 /* Op1 = 0, CRn = 0, CRm = 3 */
310 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
313
314 /* Op1 = 0, CRn = 0, CRm = 4 */
315 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
317
318 /* Op1 = 0, CRn = 0, CRm = 5 */
319 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
321
322 /* Op1 = 0, CRn = 0, CRm = 6 */
323 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
325
326 /* Op1 = 0, CRn = 0, CRm = 7 */
327 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
406e3087 329 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
3c739b57
SP
330
331 /* Op1 = 3, CRn = 0, CRm = 0 */
675b0563 332 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
3c739b57
SP
333 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
334
335 /* Op1 = 3, CRn = 14, CRm = 0 */
336 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
337};
338
339static int search_cmp_ftr_reg(const void *id, const void *regp)
340{
6f2b7eef 341 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
3c739b57
SP
342}
343
344/*
345 * get_arm64_ftr_reg - Lookup a feature register entry using its
346 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347 * ascending order of sys_id , we use binary search to find a matching
348 * entry.
349 *
350 * returns - Upon success, matching ftr_reg entry for id.
351 * - NULL on failure. It is upto the caller to decide
352 * the impact of a failure.
353 */
354static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
355{
6f2b7eef
AB
356 const struct __ftr_reg_entry *ret;
357
358 ret = bsearch((const void *)(unsigned long)sys_id,
3c739b57
SP
359 arm64_ftr_regs,
360 ARRAY_SIZE(arm64_ftr_regs),
361 sizeof(arm64_ftr_regs[0]),
362 search_cmp_ftr_reg);
6f2b7eef
AB
363 if (ret)
364 return ret->reg;
365 return NULL;
3c739b57
SP
366}
367
5e49d73c
AB
368static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369 s64 ftr_val)
3c739b57
SP
370{
371 u64 mask = arm64_ftr_mask(ftrp);
372
373 reg &= ~mask;
374 reg |= (ftr_val << ftrp->shift) & mask;
375 return reg;
376}
377
5e49d73c
AB
378static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379 s64 cur)
3c739b57
SP
380{
381 s64 ret = 0;
382
383 switch (ftrp->type) {
384 case FTR_EXACT:
385 ret = ftrp->safe_val;
386 break;
387 case FTR_LOWER_SAFE:
388 ret = new < cur ? new : cur;
389 break;
390 case FTR_HIGHER_SAFE:
391 ret = new > cur ? new : cur;
392 break;
393 default:
394 BUG();
395 }
396
397 return ret;
398}
399
3c739b57
SP
400static void __init sort_ftr_regs(void)
401{
6f2b7eef
AB
402 int i;
403
404 /* Check that the array is sorted so that we can do the binary search */
405 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
3c739b57
SP
407}
408
409/*
410 * Initialise the CPU feature register from Boot CPU values.
411 * Also initiliases the strict_mask for the register.
412 */
413static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
414{
415 u64 val = 0;
416 u64 strict_mask = ~0x0ULL;
5e49d73c 417 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
418 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
419
420 BUG_ON(!reg);
421
422 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
423 s64 ftr_new = arm64_ftr_value(ftrp, new);
424
425 val = arm64_ftr_set_value(ftrp, val, ftr_new);
426 if (!ftrp->strict)
427 strict_mask &= ~arm64_ftr_mask(ftrp);
428 }
429 reg->sys_val = val;
430 reg->strict_mask = strict_mask;
431}
432
433void __init init_cpu_features(struct cpuinfo_arm64 *info)
434{
435 /* Before we start using the tables, make sure it is sorted */
436 sort_ftr_regs();
437
438 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
439 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
440 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
441 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
442 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
443 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
444 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
445 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
446 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
406e3087 447 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
3c739b57
SP
448 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
449 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
a6dc3cd7
SP
450
451 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
452 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
453 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
454 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
455 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
456 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
457 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
458 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
459 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
460 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
461 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
462 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
463 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
464 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
465 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
466 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
467 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
468 }
469
3c739b57
SP
470}
471
3086d391 472static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
3c739b57 473{
5e49d73c 474 const struct arm64_ftr_bits *ftrp;
3c739b57
SP
475
476 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
477 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
478 s64 ftr_new = arm64_ftr_value(ftrp, new);
479
480 if (ftr_cur == ftr_new)
481 continue;
482 /* Find a safe value */
483 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
484 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
485 }
486
487}
488
3086d391 489static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
cdcf817b 490{
3086d391
SP
491 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
492
493 BUG_ON(!regp);
494 update_cpu_ftr_reg(regp, val);
495 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
496 return 0;
497 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
498 regp->name, boot, cpu, val);
499 return 1;
500}
501
502/*
503 * Update system wide CPU feature registers with the values from a
504 * non-boot CPU. Also performs SANITY checks to make sure that there
505 * aren't any insane variations from that of the boot CPU.
506 */
507void update_cpu_features(int cpu,
508 struct cpuinfo_arm64 *info,
509 struct cpuinfo_arm64 *boot)
510{
511 int taint = 0;
512
513 /*
514 * The kernel can handle differing I-cache policies, but otherwise
515 * caches should look identical. Userspace JITs will make use of
516 * *minLine.
517 */
518 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
519 info->reg_ctr, boot->reg_ctr);
520
521 /*
522 * Userspace may perform DC ZVA instructions. Mismatched block sizes
523 * could result in too much or too little memory being zeroed if a
524 * process is preempted and migrated between CPUs.
525 */
526 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
527 info->reg_dczid, boot->reg_dczid);
528
529 /* If different, timekeeping will be broken (especially with KVM) */
530 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
531 info->reg_cntfrq, boot->reg_cntfrq);
532
533 /*
534 * The kernel uses self-hosted debug features and expects CPUs to
535 * support identical debug features. We presently need CTX_CMPs, WRPs,
536 * and BRPs to be identical.
537 * ID_AA64DFR1 is currently RES0.
538 */
539 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
540 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
541 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
542 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
543 /*
544 * Even in big.LITTLE, processors should be identical instruction-set
545 * wise.
546 */
547 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
548 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
549 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
550 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
551
552 /*
553 * Differing PARange support is fine as long as all peripherals and
554 * memory are mapped within the minimum PARange of all CPUs.
555 * Linux should not care about secure memory.
556 */
557 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
558 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
559 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
560 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
406e3087
JM
561 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
562 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
3086d391
SP
563
564 /*
565 * EL3 is not our concern.
566 * ID_AA64PFR1 is currently RES0.
567 */
568 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
569 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
570 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
571 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
572
573 /*
a6dc3cd7
SP
574 * If we have AArch32, we care about 32-bit features for compat.
575 * If the system doesn't support AArch32, don't update them.
3086d391 576 */
a6dc3cd7
SP
577 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
578 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
579
580 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
3086d391 581 info->reg_id_dfr0, boot->reg_id_dfr0);
a6dc3cd7 582 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
3086d391 583 info->reg_id_isar0, boot->reg_id_isar0);
a6dc3cd7 584 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
3086d391 585 info->reg_id_isar1, boot->reg_id_isar1);
a6dc3cd7 586 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
3086d391 587 info->reg_id_isar2, boot->reg_id_isar2);
a6dc3cd7 588 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
3086d391 589 info->reg_id_isar3, boot->reg_id_isar3);
a6dc3cd7 590 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
3086d391 591 info->reg_id_isar4, boot->reg_id_isar4);
a6dc3cd7 592 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
3086d391
SP
593 info->reg_id_isar5, boot->reg_id_isar5);
594
a6dc3cd7
SP
595 /*
596 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
597 * ACTLR formats could differ across CPUs and therefore would have to
598 * be trapped for virtualization anyway.
599 */
600 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
3086d391 601 info->reg_id_mmfr0, boot->reg_id_mmfr0);
a6dc3cd7 602 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
3086d391 603 info->reg_id_mmfr1, boot->reg_id_mmfr1);
a6dc3cd7 604 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
3086d391 605 info->reg_id_mmfr2, boot->reg_id_mmfr2);
a6dc3cd7 606 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
3086d391 607 info->reg_id_mmfr3, boot->reg_id_mmfr3);
a6dc3cd7 608 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
3086d391 609 info->reg_id_pfr0, boot->reg_id_pfr0);
a6dc3cd7 610 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
3086d391 611 info->reg_id_pfr1, boot->reg_id_pfr1);
a6dc3cd7 612 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
3086d391 613 info->reg_mvfr0, boot->reg_mvfr0);
a6dc3cd7 614 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
3086d391 615 info->reg_mvfr1, boot->reg_mvfr1);
a6dc3cd7 616 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
3086d391 617 info->reg_mvfr2, boot->reg_mvfr2);
a6dc3cd7 618 }
3086d391
SP
619
620 /*
621 * Mismatched CPU features are a recipe for disaster. Don't even
622 * pretend to support them.
623 */
624 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
625 "Unsupported CPU feature variation.\n");
cdcf817b
SP
626}
627
b3f15378
SP
628u64 read_system_reg(u32 id)
629{
630 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
631
632 /* We shouldn't get a request for an unsupported register */
633 BUG_ON(!regp);
634 return regp->sys_val;
635}
359b7064 636
92406f0c
SP
637/*
638 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
639 * Read the system register on the current CPU
640 */
641static u64 __raw_read_system_reg(u32 sys_id)
642{
643 switch (sys_id) {
644 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
645 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
646 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
647 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
648 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
649 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
650 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
651 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
652 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
653 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
654 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
655 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
656 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
657 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
658 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
659 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
660
661 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
662 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
663 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
664 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
665 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
666 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
667 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
668 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
669 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
670
671 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
672 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
673 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
674 default:
675 BUG();
676 return 0;
677 }
678}
679
963fcd40
MZ
680#include <linux/irqchip/arm-gic-v3.h>
681
18ffa046
JM
682static bool
683feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
684{
28c5dcb2 685 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
18ffa046
JM
686
687 return val >= entry->min_field_value;
688}
689
da8d02d1 690static bool
92406f0c 691has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
da8d02d1
SP
692{
693 u64 val;
94a9e04a 694
92406f0c
SP
695 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
696 if (scope == SCOPE_SYSTEM)
697 val = read_system_reg(entry->sys_reg);
698 else
699 val = __raw_read_system_reg(entry->sys_reg);
700
da8d02d1
SP
701 return feature_matches(val, entry);
702}
338d4f49 703
92406f0c 704static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
963fcd40
MZ
705{
706 bool has_sre;
707
92406f0c 708 if (!has_cpuid_feature(entry, scope))
963fcd40
MZ
709 return false;
710
711 has_sre = gic_enable_sre();
712 if (!has_sre)
713 pr_warn_once("%s present but disabled by higher exception level\n",
714 entry->desc);
715
716 return has_sre;
717}
718
92406f0c 719static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
d5370f75
WD
720{
721 u32 midr = read_cpuid_id();
722 u32 rv_min, rv_max;
723
724 /* Cavium ThunderX pass 1.x and 2.x */
725 rv_min = 0;
726 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
727
728 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
729}
730
92406f0c 731static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
d88701be
MZ
732{
733 return is_kernel_in_hyp_mode();
734}
735
d1745910
MZ
736static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
737 int __unused)
738{
739 phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
740
741 /*
742 * Activate the lower HYP offset only if:
743 * - the idmap doesn't clash with it,
744 * - the kernel is not running at EL2.
745 */
746 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
747}
748
359b7064 749static const struct arm64_cpu_capabilities arm64_features[] = {
94a9e04a
MZ
750 {
751 .desc = "GIC system register CPU interface",
752 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
92406f0c 753 .def_scope = SCOPE_SYSTEM,
963fcd40 754 .matches = has_useable_gicv3_cpuif,
da8d02d1
SP
755 .sys_reg = SYS_ID_AA64PFR0_EL1,
756 .field_pos = ID_AA64PFR0_GIC_SHIFT,
ff96f7bc 757 .sign = FTR_UNSIGNED,
18ffa046 758 .min_field_value = 1,
94a9e04a 759 },
338d4f49
JM
760#ifdef CONFIG_ARM64_PAN
761 {
762 .desc = "Privileged Access Never",
763 .capability = ARM64_HAS_PAN,
92406f0c 764 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
765 .matches = has_cpuid_feature,
766 .sys_reg = SYS_ID_AA64MMFR1_EL1,
767 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
ff96f7bc 768 .sign = FTR_UNSIGNED,
338d4f49
JM
769 .min_field_value = 1,
770 .enable = cpu_enable_pan,
771 },
772#endif /* CONFIG_ARM64_PAN */
2e94da13
WD
773#if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
774 {
775 .desc = "LSE atomic instructions",
776 .capability = ARM64_HAS_LSE_ATOMICS,
92406f0c 777 .def_scope = SCOPE_SYSTEM,
da8d02d1
SP
778 .matches = has_cpuid_feature,
779 .sys_reg = SYS_ID_AA64ISAR0_EL1,
780 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
ff96f7bc 781 .sign = FTR_UNSIGNED,
2e94da13
WD
782 .min_field_value = 2,
783 },
784#endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
d5370f75
WD
785 {
786 .desc = "Software prefetching using PRFM",
787 .capability = ARM64_HAS_NO_HW_PREFETCH,
92406f0c 788 .def_scope = SCOPE_SYSTEM,
d5370f75
WD
789 .matches = has_no_hw_prefetch,
790 },
57f4959b
JM
791#ifdef CONFIG_ARM64_UAO
792 {
793 .desc = "User Access Override",
794 .capability = ARM64_HAS_UAO,
92406f0c 795 .def_scope = SCOPE_SYSTEM,
57f4959b
JM
796 .matches = has_cpuid_feature,
797 .sys_reg = SYS_ID_AA64MMFR2_EL1,
798 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
799 .min_field_value = 1,
800 .enable = cpu_enable_uao,
801 },
802#endif /* CONFIG_ARM64_UAO */
70544196
JM
803#ifdef CONFIG_ARM64_PAN
804 {
805 .capability = ARM64_ALT_PAN_NOT_UAO,
92406f0c 806 .def_scope = SCOPE_SYSTEM,
70544196
JM
807 .matches = cpufeature_pan_not_uao,
808 },
809#endif /* CONFIG_ARM64_PAN */
d88701be
MZ
810 {
811 .desc = "Virtualization Host Extensions",
812 .capability = ARM64_HAS_VIRT_HOST_EXTN,
92406f0c 813 .def_scope = SCOPE_SYSTEM,
d88701be
MZ
814 .matches = runs_at_el2,
815 },
042446a3
SP
816 {
817 .desc = "32-bit EL0 Support",
818 .capability = ARM64_HAS_32BIT_EL0,
92406f0c 819 .def_scope = SCOPE_SYSTEM,
042446a3
SP
820 .matches = has_cpuid_feature,
821 .sys_reg = SYS_ID_AA64PFR0_EL1,
822 .sign = FTR_UNSIGNED,
823 .field_pos = ID_AA64PFR0_EL0_SHIFT,
824 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
825 },
d1745910
MZ
826 {
827 .desc = "Reduced HYP mapping offset",
828 .capability = ARM64_HYP_OFFSET_LOW,
829 .def_scope = SCOPE_SYSTEM,
830 .matches = hyp_offset_low,
831 },
359b7064
MZ
832 {},
833};
834
ff96f7bc 835#define HWCAP_CAP(reg, field, s, min_value, type, cap) \
37b01d53
SP
836 { \
837 .desc = #cap, \
92406f0c 838 .def_scope = SCOPE_SYSTEM, \
37b01d53
SP
839 .matches = has_cpuid_feature, \
840 .sys_reg = reg, \
841 .field_pos = field, \
ff96f7bc 842 .sign = s, \
37b01d53
SP
843 .min_field_value = min_value, \
844 .hwcap_type = type, \
845 .hwcap = cap, \
846 }
847
f3efb675 848static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
ff96f7bc
SP
849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
852 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
853 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
854 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
855 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
bf500618 856 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
ff96f7bc 857 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
bf500618 858 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
75283501
SP
859 {},
860};
861
862static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
37b01d53 863#ifdef CONFIG_COMPAT
ff96f7bc
SP
864 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
865 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
866 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
867 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
868 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
37b01d53
SP
869#endif
870 {},
871};
872
f3efb675 873static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
874{
875 switch (cap->hwcap_type) {
876 case CAP_HWCAP:
877 elf_hwcap |= cap->hwcap;
878 break;
879#ifdef CONFIG_COMPAT
880 case CAP_COMPAT_HWCAP:
881 compat_elf_hwcap |= (u32)cap->hwcap;
882 break;
883 case CAP_COMPAT_HWCAP2:
884 compat_elf_hwcap2 |= (u32)cap->hwcap;
885 break;
886#endif
887 default:
888 WARN_ON(1);
889 break;
890 }
891}
892
893/* Check if we have a particular HWCAP enabled */
f3efb675 894static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
37b01d53
SP
895{
896 bool rc;
897
898 switch (cap->hwcap_type) {
899 case CAP_HWCAP:
900 rc = (elf_hwcap & cap->hwcap) != 0;
901 break;
902#ifdef CONFIG_COMPAT
903 case CAP_COMPAT_HWCAP:
904 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
905 break;
906 case CAP_COMPAT_HWCAP2:
907 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
908 break;
909#endif
910 default:
911 WARN_ON(1);
912 rc = false;
913 }
914
915 return rc;
916}
917
75283501 918static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
37b01d53 919{
75283501 920 for (; hwcaps->matches; hwcaps++)
92406f0c 921 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
75283501 922 cap_set_elf_hwcap(hwcaps);
37b01d53
SP
923}
924
ce8b602c 925void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
359b7064
MZ
926 const char *info)
927{
75283501 928 for (; caps->matches; caps++) {
92406f0c 929 if (!caps->matches(caps, caps->def_scope))
359b7064
MZ
930 continue;
931
75283501
SP
932 if (!cpus_have_cap(caps->capability) && caps->desc)
933 pr_info("%s %s\n", info, caps->desc);
934 cpus_set_cap(caps->capability);
359b7064 935 }
ce8b602c
SP
936}
937
938/*
dbb4e152
SP
939 * Run through the enabled capabilities and enable() it on all active
940 * CPUs
ce8b602c 941 */
8e231852 942void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
ce8b602c 943{
75283501
SP
944 for (; caps->matches; caps++)
945 if (caps->enable && cpus_have_cap(caps->capability))
2a6dcb2b
JM
946 /*
947 * Use stop_machine() as it schedules the work allowing
948 * us to modify PSTATE, instead of on_each_cpu() which
949 * uses an IPI, giving us a PSTATE that disappears when
950 * we return.
951 */
952 stop_machine(caps->enable, NULL, cpu_online_mask);
dbb4e152
SP
953}
954
dbb4e152
SP
955/*
956 * Flag to indicate if we have computed the system wide
957 * capabilities based on the boot time active CPUs. This
958 * will be used to determine if a new booting CPU should
959 * go through the verification process to make sure that it
960 * supports the system capabilities, without using a hotplug
961 * notifier.
962 */
963static bool sys_caps_initialised;
964
965static inline void set_sys_caps_initialised(void)
966{
967 sys_caps_initialised = true;
968}
969
970/*
13f417f3
SP
971 * Check for CPU features that are used in early boot
972 * based on the Boot CPU value.
dbb4e152 973 */
13f417f3 974static void check_early_cpu_features(void)
dbb4e152 975{
ac1ad20f 976 verify_cpu_run_el();
13f417f3 977 verify_cpu_asid_bits();
dbb4e152 978}
1c076303 979
75283501
SP
980static void
981verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
982{
983
92406f0c
SP
984 for (; caps->matches; caps++)
985 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
986 pr_crit("CPU%d: missing HWCAP: %s\n",
987 smp_processor_id(), caps->desc);
988 cpu_die_early();
989 }
75283501
SP
990}
991
992static void
993verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
994{
995 for (; caps->matches; caps++) {
92406f0c 996 if (!cpus_have_cap(caps->capability))
75283501
SP
997 continue;
998 /*
999 * If the new CPU misses an advertised feature, we cannot proceed
1000 * further, park the cpu.
1001 */
92406f0c 1002 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
75283501
SP
1003 pr_crit("CPU%d: missing feature: %s\n",
1004 smp_processor_id(), caps->desc);
1005 cpu_die_early();
1006 }
1007 if (caps->enable)
1008 caps->enable(NULL);
1009 }
1010}
1011
dbb4e152
SP
1012/*
1013 * Run through the enabled system capabilities and enable() it on this CPU.
1014 * The capabilities were decided based on the available CPUs at the boot time.
1015 * Any new CPU should match the system wide status of the capability. If the
1016 * new CPU doesn't have a capability which the system now has enabled, we
1017 * cannot do anything to fix it up and could cause unexpected failures. So
1018 * we park the CPU.
1019 */
c47a1900 1020static void verify_local_cpu_capabilities(void)
dbb4e152 1021{
c47a1900
SP
1022 verify_local_cpu_errata_workarounds();
1023 verify_local_cpu_features(arm64_features);
1024 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1025 if (system_supports_32bit_el0())
1026 verify_local_elf_hwcaps(compat_elf_hwcaps);
1027}
dbb4e152 1028
c47a1900
SP
1029void check_local_cpu_capabilities(void)
1030{
1031 /*
1032 * All secondary CPUs should conform to the early CPU features
1033 * in use by the kernel based on boot CPU.
1034 */
13f417f3
SP
1035 check_early_cpu_features();
1036
dbb4e152 1037 /*
c47a1900
SP
1038 * If we haven't finalised the system capabilities, this CPU gets
1039 * a chance to update the errata work arounds.
1040 * Otherwise, this CPU should verify that it has all the system
1041 * advertised capabilities.
dbb4e152
SP
1042 */
1043 if (!sys_caps_initialised)
c47a1900
SP
1044 update_cpu_errata_workarounds();
1045 else
1046 verify_local_cpu_capabilities();
359b7064
MZ
1047}
1048
a7c61a34 1049static void __init setup_feature_capabilities(void)
359b7064 1050{
ce8b602c
SP
1051 update_cpu_capabilities(arm64_features, "detected feature:");
1052 enable_cpu_capabilities(arm64_features);
359b7064
MZ
1053}
1054
e3661b12
MZ
1055/*
1056 * Check if the current CPU has a given feature capability.
1057 * Should be called from non-preemptible context.
1058 */
1059bool this_cpu_has_cap(unsigned int cap)
1060{
1061 const struct arm64_cpu_capabilities *caps;
1062
1063 if (WARN_ON(preemptible()))
1064 return false;
1065
1066 for (caps = arm64_features; caps->desc; caps++)
1067 if (caps->capability == cap && caps->matches)
1068 return caps->matches(caps, SCOPE_LOCAL_CPU);
1069
1070 return false;
1071}
1072
9cdf8ec4 1073void __init setup_cpu_features(void)
359b7064 1074{
9cdf8ec4
SP
1075 u32 cwg;
1076 int cls;
1077
dbb4e152
SP
1078 /* Set the CPU feature capabilies */
1079 setup_feature_capabilities();
8e231852 1080 enable_errata_workarounds();
75283501 1081 setup_elf_hwcaps(arm64_elf_hwcaps);
643d703d
SP
1082
1083 if (system_supports_32bit_el0())
1084 setup_elf_hwcaps(compat_elf_hwcaps);
dbb4e152
SP
1085
1086 /* Advertise that we have computed the system capabilities */
1087 set_sys_caps_initialised();
1088
9cdf8ec4
SP
1089 /*
1090 * Check for sane CTR_EL0.CWG value.
1091 */
1092 cwg = cache_type_cwg();
1093 cls = cache_line_size();
1094 if (!cwg)
1095 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1096 cls);
1097 if (L1_CACHE_BYTES < cls)
1098 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1099 L1_CACHE_BYTES, cls);
359b7064 1100}
70544196
JM
1101
1102static bool __maybe_unused
92406f0c 1103cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
70544196
JM
1104{
1105 return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1106}