ARM: RX1950: Add suspend/resume support for RX1950
[linux-2.6-block.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17
0ba8b9b2 18#include <asm/cputype.h>
d111e8f9 19#include <asm/mach-types.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
9ef79635 249 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
250 .domain = DOMAIN_KERNEL,
251 },
252 [MT_ROM] = {
9ef79635 253 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
254 .domain = DOMAIN_KERNEL,
255 },
e4707dd3
PW
256 [MT_MEMORY_NONCACHED] = {
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
ae8f1541
RK
260};
261
b29e9f5e
RK
262const struct mem_type *get_mem_type(unsigned int type)
263{
264 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
265}
69d3a84a 266EXPORT_SYMBOL(get_mem_type);
b29e9f5e 267
ae8f1541
RK
268/*
269 * Adjust the PMD section entries according to the CPU in use.
270 */
271static void __init build_mem_type_table(void)
272{
273 struct cachepolicy *cp;
274 unsigned int cr = get_cr();
bb30f36f 275 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
276 int cpu_arch = cpu_architecture();
277 int i;
278
11179d8c 279 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 280#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
281 if (cachepolicy > CPOLICY_BUFFERED)
282 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 283#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
284 if (cachepolicy > CPOLICY_WRITETHROUGH)
285 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 286#endif
11179d8c 287 }
ae8f1541
RK
288 if (cpu_arch < CPU_ARCH_ARMv5) {
289 if (cachepolicy >= CPOLICY_WRITEALLOC)
290 cachepolicy = CPOLICY_WRITEBACK;
291 ecc_mask = 0;
292 }
bb30f36f
RK
293#ifdef CONFIG_SMP
294 cachepolicy = CPOLICY_WRITEALLOC;
295#endif
ae8f1541 296
1ad77a87 297 /*
b1cce6b1
RK
298 * Strip out features not present on earlier architectures.
299 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
300 * without extended page tables don't have the 'Shared' bit.
1ad77a87 301 */
b1cce6b1
RK
302 if (cpu_arch < CPU_ARCH_ARMv5)
303 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
304 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
305 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
307 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
308
309 /*
b1cce6b1
RK
310 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
311 * "update-able on write" bit on ARM610). However, Xscale and
312 * Xscale3 require this bit to be cleared.
ae8f1541 313 */
b1cce6b1 314 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 315 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 316 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
317 mem_types[i].prot_l1 &= ~PMD_BIT4;
318 }
319 } else if (cpu_arch < CPU_ARCH_ARMv6) {
320 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
321 if (mem_types[i].prot_l1)
322 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
323 if (mem_types[i].prot_sect)
324 mem_types[i].prot_sect |= PMD_BIT4;
325 }
326 }
ae8f1541 327
b1cce6b1
RK
328 /*
329 * Mark the device areas according to the CPU/architecture.
330 */
331 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
332 if (!cpu_is_xsc3()) {
333 /*
334 * Mark device regions on ARMv6+ as execute-never
335 * to prevent speculative instruction fetches.
336 */
337 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
338 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
339 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
340 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
341 }
342 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
343 /*
344 * For ARMv7 with TEX remapping,
345 * - shared device is SXCB=1100
346 * - nonshared device is SXCB=0100
347 * - write combine device mem is SXCB=0001
348 * (Uncached Normal memory)
349 */
350 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
351 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
352 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
353 } else if (cpu_is_xsc3()) {
354 /*
355 * For Xscale3,
356 * - shared device is TEXCB=00101
357 * - nonshared device is TEXCB=01000
358 * - write combine device mem is TEXCB=00100
359 * (Inner/Outer Uncacheable in xsc3 parlance)
360 */
361 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
362 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
363 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
364 } else {
365 /*
366 * For ARMv6 and ARMv7 without TEX remapping,
367 * - shared device is TEXCB=00001
368 * - nonshared device is TEXCB=01000
369 * - write combine device mem is TEXCB=00100
370 * (Uncached Normal in ARMv6 parlance).
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
374 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
375 }
376 } else {
377 /*
378 * On others, write combining is "Uncached/Buffered"
379 */
380 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
381 }
382
383 /*
384 * Now deal with the memory-type mappings
385 */
ae8f1541 386 cp = &cache_policies[cachepolicy];
bb30f36f
RK
387 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
388
389#ifndef CONFIG_SMP
390 /*
391 * Only use write-through for non-SMP systems
392 */
393 if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
394 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
395#endif
ae8f1541
RK
396
397 /*
398 * Enable CPU-specific coherency if supported.
399 * (Only available on XSC3 at the moment.)
400 */
b1cce6b1
RK
401 if (arch_is_coherent() && cpu_is_xsc3())
402 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
ae8f1541
RK
403
404 /*
405 * ARMv6 and above have extended page tables.
406 */
407 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
408 /*
409 * Mark cache clean areas and XIP ROM read only
410 * from SVC mode and no access from userspace.
411 */
412 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
413 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
414 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
415
ae8f1541
RK
416#ifdef CONFIG_SMP
417 /*
418 * Mark memory with the "shared" attribute for SMP systems
419 */
420 user_pgprot |= L_PTE_SHARED;
421 kern_pgprot |= L_PTE_SHARED;
bb30f36f 422 vecs_pgprot |= L_PTE_SHARED;
85b3cce8
RK
423 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
424 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
425 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
426 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
ae8f1541 427 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
e4707dd3 428 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
ae8f1541
RK
429#endif
430 }
431
e4707dd3
PW
432 /*
433 * Non-cacheable Normal - intended for memory areas that must
434 * not cause dirty cache line writebacks when used
435 */
436 if (cpu_arch >= CPU_ARCH_ARMv6) {
437 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
438 /* Non-cacheable Normal is XCB = 001 */
439 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
440 PMD_SECT_BUFFERED;
441 } else {
442 /* For both ARMv6 and non-TEX-remapping ARMv7 */
443 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
444 PMD_SECT_TEX(1);
445 }
446 } else {
447 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
448 }
449
ae8f1541
RK
450 for (i = 0; i < 16; i++) {
451 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 452 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
453 }
454
bb30f36f
RK
455 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
456 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 457
44b18693 458 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 459 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 460 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
461
462 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
463 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
464 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
465 mem_types[MT_ROM].prot_sect |= cp->pmd;
466
467 switch (cp->pmd) {
468 case PMD_SECT_WT:
469 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
470 break;
471 case PMD_SECT_WB:
472 case PMD_SECT_WBWA:
473 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
474 break;
475 }
476 printk("Memory policy: ECC %sabled, Data cache %s\n",
477 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
478
479 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
480 struct mem_type *t = &mem_types[i];
481 if (t->prot_l1)
482 t->prot_l1 |= PMD_DOMAIN(t->domain);
483 if (t->prot_sect)
484 t->prot_sect |= PMD_DOMAIN(t->domain);
485 }
ae8f1541
RK
486}
487
488#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
489
24e6c699
RK
490static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
491 unsigned long end, unsigned long pfn,
492 const struct mem_type *type)
ae8f1541 493{
24e6c699 494 pte_t *pte;
ae8f1541 495
24e6c699
RK
496 if (pmd_none(*pmd)) {
497 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
498 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
499 }
ae8f1541 500
24e6c699
RK
501 pte = pte_offset_kernel(pmd, addr);
502 do {
40d192b6 503 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
504 pfn++;
505 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
506}
507
24e6c699
RK
508static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
509 unsigned long end, unsigned long phys,
510 const struct mem_type *type)
ae8f1541 511{
24e6c699 512 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 513
24e6c699
RK
514 /*
515 * Try a section mapping - end, addr and phys must all be aligned
516 * to a section boundary. Note that PMDs refer to the individual
517 * L1 entries, whereas PGDs refer to a group of L1 entries making
518 * up one logical pointer to an L2 table.
519 */
520 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
521 pmd_t *p = pmd;
ae8f1541 522
24e6c699
RK
523 if (addr & SECTION_SIZE)
524 pmd++;
525
526 do {
527 *pmd = __pmd(phys | type->prot_sect);
528 phys += SECTION_SIZE;
529 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 530
24e6c699
RK
531 flush_pmd_entry(p);
532 } else {
533 /*
534 * No need to loop; pte's aren't interested in the
535 * individual L1 entries.
536 */
537 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
538 }
ae8f1541
RK
539}
540
4a56c1e4
RK
541static void __init create_36bit_mapping(struct map_desc *md,
542 const struct mem_type *type)
543{
544 unsigned long phys, addr, length, end;
545 pgd_t *pgd;
546
547 addr = md->virtual;
548 phys = (unsigned long)__pfn_to_phys(md->pfn);
549 length = PAGE_ALIGN(md->length);
550
551 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
552 printk(KERN_ERR "MM: CPU does not support supersection "
553 "mapping for 0x%08llx at 0x%08lx\n",
554 __pfn_to_phys((u64)md->pfn), addr);
555 return;
556 }
557
558 /* N.B. ARMv6 supersections are only defined to work with domain 0.
559 * Since domain assignments can in fact be arbitrary, the
560 * 'domain == 0' check below is required to insure that ARMv6
561 * supersections are only allocated for domain 0 regardless
562 * of the actual domain assignments in use.
563 */
564 if (type->domain) {
565 printk(KERN_ERR "MM: invalid domain in supersection "
566 "mapping for 0x%08llx at 0x%08lx\n",
567 __pfn_to_phys((u64)md->pfn), addr);
568 return;
569 }
570
571 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
572 printk(KERN_ERR "MM: cannot create mapping for "
573 "0x%08llx at 0x%08lx invalid alignment\n",
574 __pfn_to_phys((u64)md->pfn), addr);
575 return;
576 }
577
578 /*
579 * Shift bits [35:32] of address into bits [23:20] of PMD
580 * (See ARMv6 spec).
581 */
582 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
583
584 pgd = pgd_offset_k(addr);
585 end = addr + length;
586 do {
587 pmd_t *pmd = pmd_offset(pgd, addr);
588 int i;
589
590 for (i = 0; i < 16; i++)
591 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
592
593 addr += SUPERSECTION_SIZE;
594 phys += SUPERSECTION_SIZE;
595 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
596 } while (addr != end);
597}
598
ae8f1541
RK
599/*
600 * Create the page directory entries and any necessary
601 * page tables for the mapping specified by `md'. We
602 * are able to cope here with varying sizes and address
603 * offsets, and we take full advantage of sections and
604 * supersections.
605 */
606void __init create_mapping(struct map_desc *md)
607{
24e6c699 608 unsigned long phys, addr, length, end;
d5c98176 609 const struct mem_type *type;
24e6c699 610 pgd_t *pgd;
ae8f1541
RK
611
612 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
613 printk(KERN_WARNING "BUG: not creating mapping for "
614 "0x%08llx at 0x%08lx in user region\n",
615 __pfn_to_phys((u64)md->pfn), md->virtual);
616 return;
617 }
618
619 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
620 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
621 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
622 "overlaps vmalloc space\n",
623 __pfn_to_phys((u64)md->pfn), md->virtual);
624 }
625
d5c98176 626 type = &mem_types[md->type];
ae8f1541
RK
627
628 /*
629 * Catch 36-bit addresses
630 */
4a56c1e4
RK
631 if (md->pfn >= 0x100000) {
632 create_36bit_mapping(md, type);
633 return;
ae8f1541
RK
634 }
635
7b9c7b4d 636 addr = md->virtual & PAGE_MASK;
24e6c699 637 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 638 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 639
24e6c699 640 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
641 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
642 "be mapped using pages, ignoring.\n",
24e6c699 643 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
644 return;
645 }
646
24e6c699
RK
647 pgd = pgd_offset_k(addr);
648 end = addr + length;
649 do {
650 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 651
24e6c699 652 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 653
24e6c699
RK
654 phys += next - addr;
655 addr = next;
656 } while (pgd++, addr != end);
ae8f1541
RK
657}
658
659/*
660 * Create the architecture specific mappings
661 */
662void __init iotable_init(struct map_desc *io_desc, int nr)
663{
664 int i;
665
666 for (i = 0; i < nr; i++)
667 create_mapping(io_desc + i);
668}
669
6c5da7ac
RK
670static unsigned long __initdata vmalloc_reserve = SZ_128M;
671
672/*
673 * vmalloc=size forces the vmalloc area to be exactly 'size'
674 * bytes. This can be used to increase (or decrease) the vmalloc
675 * area - the default is 128m.
676 */
2b0d8c25 677static int __init early_vmalloc(char *arg)
6c5da7ac 678{
2b0d8c25 679 vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
680
681 if (vmalloc_reserve < SZ_16M) {
682 vmalloc_reserve = SZ_16M;
683 printk(KERN_WARNING
684 "vmalloc area too small, limiting to %luMB\n",
685 vmalloc_reserve >> 20);
686 }
9210807c
NP
687
688 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
689 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
690 printk(KERN_WARNING
691 "vmalloc area is too big, limiting to %luMB\n",
692 vmalloc_reserve >> 20);
693 }
2b0d8c25 694 return 0;
6c5da7ac 695}
2b0d8c25 696early_param("vmalloc", early_vmalloc);
6c5da7ac
RK
697
698#define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
699
4b5f32ce 700static void __init sanity_check_meminfo(void)
60296c71 701{
dde5828f 702 int i, j, highmem = 0;
60296c71 703
4b5f32ce 704 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
705 struct membank *bank = &meminfo.bank[j];
706 *bank = meminfo.bank[i];
60296c71 707
a1bbaec0 708#ifdef CONFIG_HIGHMEM
dde5828f
RK
709 if (__va(bank->start) > VMALLOC_MIN ||
710 __va(bank->start) < (void *)PAGE_OFFSET)
711 highmem = 1;
712
713 bank->highmem = highmem;
714
a1bbaec0
NP
715 /*
716 * Split those memory banks which are partially overlapping
717 * the vmalloc area greatly simplifying things later.
718 */
719 if (__va(bank->start) < VMALLOC_MIN &&
720 bank->size > VMALLOC_MIN - __va(bank->start)) {
721 if (meminfo.nr_banks >= NR_BANKS) {
722 printk(KERN_CRIT "NR_BANKS too low, "
723 "ignoring high memory\n");
724 } else {
725 memmove(bank + 1, bank,
726 (meminfo.nr_banks - i) * sizeof(*bank));
727 meminfo.nr_banks++;
728 i++;
729 bank[1].size -= VMALLOC_MIN - __va(bank->start);
730 bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
dde5828f 731 bank[1].highmem = highmem = 1;
a1bbaec0
NP
732 j++;
733 }
734 bank->size = VMALLOC_MIN - __va(bank->start);
735 }
736#else
041d785f
RK
737 bank->highmem = highmem;
738
a1bbaec0
NP
739 /*
740 * Check whether this memory bank would entirely overlap
741 * the vmalloc area.
742 */
3fd9825c 743 if (__va(bank->start) >= VMALLOC_MIN ||
f0bba9f9 744 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
745 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
746 "(vmalloc region overlap).\n",
747 bank->start, bank->start + bank->size - 1);
748 continue;
749 }
60296c71 750
a1bbaec0
NP
751 /*
752 * Check whether this memory bank would partially overlap
753 * the vmalloc area.
754 */
755 if (__va(bank->start + bank->size) > VMALLOC_MIN ||
756 __va(bank->start + bank->size) < __va(bank->start)) {
757 unsigned long newsize = VMALLOC_MIN - __va(bank->start);
758 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
759 "to -%.8lx (vmalloc region overlap).\n",
760 bank->start, bank->start + bank->size - 1,
761 bank->start + newsize - 1);
762 bank->size = newsize;
763 }
764#endif
765 j++;
60296c71 766 }
e616c591
RK
767#ifdef CONFIG_HIGHMEM
768 if (highmem) {
769 const char *reason = NULL;
770
771 if (cache_is_vipt_aliasing()) {
772 /*
773 * Interactions between kmap and other mappings
774 * make highmem support with aliasing VIPT caches
775 * rather difficult.
776 */
777 reason = "with VIPT aliasing cache";
778#ifdef CONFIG_SMP
779 } else if (tlb_ops_need_broadcast()) {
780 /*
781 * kmap_high needs to occasionally flush TLB entries,
782 * however, if the TLB entries need to be broadcast
783 * we may deadlock:
784 * kmap_high(irqs off)->flush_all_zero_pkmaps->
785 * flush_tlb_kernel_range->smp_call_function_many
786 * (must not be called with irqs off)
787 */
788 reason = "without hardware TLB ops broadcasting";
789#endif
790 }
791 if (reason) {
792 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
793 reason);
794 while (j > 0 && meminfo.bank[j - 1].highmem)
795 j--;
796 }
797 }
798#endif
4b5f32ce 799 meminfo.nr_banks = j;
60296c71
LB
800}
801
4b5f32ce 802static inline void prepare_page_table(void)
d111e8f9
RK
803{
804 unsigned long addr;
805
806 /*
807 * Clear out all the mappings below the kernel image.
808 */
ab4f2ee1 809 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
810 pmd_clear(pmd_off_k(addr));
811
812#ifdef CONFIG_XIP_KERNEL
813 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 814 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
815#endif
816 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
817 pmd_clear(pmd_off_k(addr));
818
819 /*
820 * Clear out all the kernel space mappings, except for the first
821 * memory bank, up to the end of the vmalloc region.
822 */
4b5f32ce 823 for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
d111e8f9
RK
824 addr < VMALLOC_END; addr += PGDIR_SIZE)
825 pmd_clear(pmd_off_k(addr));
826}
827
828/*
829 * Reserve the various regions of node 0
830 */
831void __init reserve_node_zero(pg_data_t *pgdat)
832{
833 unsigned long res_size = 0;
834
835 /*
836 * Register the kernel text and data with bootmem.
837 * Note that this can only be in node 0.
838 */
839#ifdef CONFIG_XIP_KERNEL
37efe642 840 reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
72a7fe39 841 BOOTMEM_DEFAULT);
d111e8f9 842#else
37efe642 843 reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
72a7fe39 844 BOOTMEM_DEFAULT);
d111e8f9
RK
845#endif
846
847 /*
848 * Reserve the page tables. These are already in use,
849 * and can only be in node 0.
850 */
851 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
72a7fe39 852 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9
RK
853
854 /*
855 * Hmm... This should go elsewhere, but we really really need to
856 * stop things allocating the low memory; ideally we need a better
857 * implementation of GFP_DMA which does not assume that DMA-able
858 * memory starts at zero.
859 */
860 if (machine_is_integrator() || machine_is_cintegrator())
861 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
862
863 /*
864 * These should likewise go elsewhere. They pre-reserve the
865 * screen memory region at the start of main system memory.
866 */
867 if (machine_is_edb7211())
868 res_size = 0x00020000;
869 if (machine_is_p720t())
870 res_size = 0x00014000;
871
0741b7d2 872 /* H1940, RX3715 and RX1950 need to reserve this for suspend */
bbf6f280 873
0741b7d2
VK
874 if (machine_is_h1940() || machine_is_rx3715()
875 || machine_is_rx1950()) {
72a7fe39
BW
876 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
877 BOOTMEM_DEFAULT);
878 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
879 BOOTMEM_DEFAULT);
9073341c
BD
880 }
881
81854f82
MV
882 if (machine_is_palmld() || machine_is_palmtx()) {
883 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
884 BOOTMEM_EXCLUSIVE);
885 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
886 BOOTMEM_EXCLUSIVE);
887 }
888
d0a92fd3 889 if (machine_is_treo680() || machine_is_centro()) {
e6c3f4b8
TSC
890 reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
891 BOOTMEM_EXCLUSIVE);
892 reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
893 BOOTMEM_EXCLUSIVE);
894 }
895
81854f82
MV
896 if (machine_is_palmt5())
897 reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
898 BOOTMEM_EXCLUSIVE);
899
d98aac75
LW
900 /*
901 * U300 - This platform family can share physical memory
902 * between two ARM cpus, one running Linux and the other
903 * running another OS.
904 */
905 if (machine_is_u300()) {
906#ifdef CONFIG_MACH_U300_SINGLE_RAM
907#if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
908 CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
909 res_size = 0x00100000;
910#endif
911#endif
912 }
913
d111e8f9
RK
914#ifdef CONFIG_SA1111
915 /*
916 * Because of the SA1111 DMA bug, we want to preserve our
917 * precious DMA-able memory...
918 */
919 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
920#endif
921 if (res_size)
72a7fe39
BW
922 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
923 BOOTMEM_DEFAULT);
d111e8f9
RK
924}
925
926/*
927 * Set up device the mappings. Since we clear out the page tables for all
928 * mappings above VMALLOC_END, we will remove any debug device mappings.
929 * This means you have to be careful how you debug this function, or any
930 * called function. This means you can't use any function or debugging
931 * method which may touch any device, otherwise the kernel _will_ crash.
932 */
933static void __init devicemaps_init(struct machine_desc *mdesc)
934{
935 struct map_desc map;
936 unsigned long addr;
937 void *vectors;
938
939 /*
940 * Allocate the vector page early.
941 */
942 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9
RK
943
944 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
945 pmd_clear(pmd_off_k(addr));
946
947 /*
948 * Map the kernel if it is XIP.
949 * It is always first in the modulearea.
950 */
951#ifdef CONFIG_XIP_KERNEL
952 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 953 map.virtual = MODULES_VADDR;
37efe642 954 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
955 map.type = MT_ROM;
956 create_mapping(&map);
957#endif
958
959 /*
960 * Map the cache flushing regions.
961 */
962#ifdef FLUSH_BASE
963 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
964 map.virtual = FLUSH_BASE;
965 map.length = SZ_1M;
966 map.type = MT_CACHECLEAN;
967 create_mapping(&map);
968#endif
969#ifdef FLUSH_BASE_MINICACHE
970 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
971 map.virtual = FLUSH_BASE_MINICACHE;
972 map.length = SZ_1M;
973 map.type = MT_MINICLEAN;
974 create_mapping(&map);
975#endif
976
977 /*
978 * Create a mapping for the machine vectors at the high-vectors
979 * location (0xffff0000). If we aren't using high-vectors, also
980 * create a mapping at the low-vectors virtual address.
981 */
982 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
983 map.virtual = 0xffff0000;
984 map.length = PAGE_SIZE;
985 map.type = MT_HIGH_VECTORS;
986 create_mapping(&map);
987
988 if (!vectors_high()) {
989 map.virtual = 0;
990 map.type = MT_LOW_VECTORS;
991 create_mapping(&map);
992 }
993
994 /*
995 * Ask the machine support to map in the statically mapped devices.
996 */
997 if (mdesc->map_io)
998 mdesc->map_io();
999
1000 /*
1001 * Finally flush the caches and tlb to ensure that we're in a
1002 * consistent state wrt the writebuffer. This also ensures that
1003 * any write-allocated cache lines in the vector page are written
1004 * back. After this point, we can start to touch devices again.
1005 */
1006 local_flush_tlb_all();
1007 flush_cache_all();
1008}
1009
d73cd428
NP
1010static void __init kmap_init(void)
1011{
1012#ifdef CONFIG_HIGHMEM
1013 pmd_t *pmd = pmd_off_k(PKMAP_BASE);
1014 pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
1015 BUG_ON(!pmd_none(*pmd) || !pte);
1016 __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
1017 pkmap_page_table = pte + PTRS_PER_PTE;
1018#endif
1019}
1020
d111e8f9
RK
1021/*
1022 * paging_init() sets up the page tables, initialises the zone memory
1023 * maps, and sets up the zero page, bad page and bad page tables.
1024 */
4b5f32ce 1025void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1026{
1027 void *zero_page;
1028
1029 build_mem_type_table();
4b5f32ce
NP
1030 sanity_check_meminfo();
1031 prepare_page_table();
1032 bootmem_init();
d111e8f9 1033 devicemaps_init(mdesc);
d73cd428 1034 kmap_init();
d111e8f9
RK
1035
1036 top_pmd = pmd_off_k(0xffff0000);
1037
1038 /*
6ce1b871
JL
1039 * allocate the zero page. Note that this always succeeds and
1040 * returns a zeroed result.
d111e8f9
RK
1041 */
1042 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
d111e8f9 1043 empty_zero_page = virt_to_page(zero_page);
421fe93c 1044 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1045}
ae8f1541
RK
1046
1047/*
1048 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1049 * the user-mode pages. This will then ensure that we have predictable
1050 * results when turning the mmu off
1051 */
1052void setup_mm_for_reboot(char mode)
1053{
1054 unsigned long base_pmdval;
1055 pgd_t *pgd;
1056 int i;
1057
3f2d4f56
MW
1058 /*
1059 * We need to access to user-mode page tables here. For kernel threads
1060 * we don't have any user-mode mappings so we use the context that we
1061 * "borrowed".
1062 */
1063 pgd = current->active_mm->pgd;
ae8f1541
RK
1064
1065 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1066 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1067 base_pmdval |= PMD_BIT4;
1068
1069 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1070 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1071 pmd_t *pmd;
1072
1073 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1074 pmd[0] = __pmd(pmdval);
1075 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1076 flush_pmd_entry(pmd);
1077 }
ad3e6c0b
TL
1078
1079 local_flush_tlb_all();
ae8f1541 1080}