Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
1234e3fd 42#include "dma.h"
022ae537
RK
43#include "mm.h"
44
b4268676
RV
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
19e6e5e5
RV
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
b4268676 71 struct arm_dma_allocator *allocator;
19e6e5e5
RV
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
15237e1f
MS
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
15237e1f 105 */
51fde349 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 107 size_t, enum dma_data_direction);
51fde349 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
109 size_t, enum dma_data_direction);
110
2dc6a016
MS
111/**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
51fde349 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128{
dd37e940 129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
132}
133
dd37e940
RH
134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137{
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139}
140
2dc6a016
MS
141/**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
51fde349 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158{
dd37e940 159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
162}
163
51fde349 164static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166{
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 169 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
170}
171
51fde349 172static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174{
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 177 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
178}
179
2dc6a016 180struct dma_map_ops arm_dma_ops = {
f99d6034
MS
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
dc2832e1 184 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193 .set_dma_mask = arm_dma_set_mask,
194};
195EXPORT_SYMBOL(arm_dma_ops);
196
dd37e940
RH
197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 dma_addr_t handle, struct dma_attrs *attrs);
55af8a91
ML
201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 struct dma_attrs *attrs);
dd37e940
RH
204
205struct dma_map_ops arm_coherent_dma_ops = {
206 .alloc = arm_coherent_dma_alloc,
207 .free = arm_coherent_dma_free,
55af8a91 208 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
209 .get_sgtable = arm_dma_get_sgtable,
210 .map_page = arm_coherent_dma_map_page,
211 .map_sg = arm_dma_map_sg,
212 .set_dma_mask = arm_dma_set_mask,
213};
214EXPORT_SYMBOL(arm_coherent_dma_ops);
215
9f28cde0
RK
216static int __dma_supported(struct device *dev, u64 mask, bool warn)
217{
218 unsigned long max_dma_pfn;
219
220 /*
221 * If the mask allows for more memory than we can address,
222 * and we actually have that much memory, then we must
223 * indicate that DMA to this device is not supported.
224 */
225 if (sizeof(mask) != sizeof(dma_addr_t) &&
226 mask > (dma_addr_t)~0 &&
8bf1268f 227 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
228 if (warn) {
229 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 mask);
231 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 }
233 return 0;
234 }
235
236 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237
238 /*
239 * Translate the device's DMA mask to a PFN limit. This
240 * PFN number includes the page which we can DMA to.
241 */
242 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 if (warn)
244 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 mask,
246 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 max_dma_pfn + 1);
248 return 0;
249 }
250
251 return 1;
252}
253
ab6494f0
CM
254static u64 get_coherent_dma_mask(struct device *dev)
255{
4dcfa600 256 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
257
258 if (dev) {
259 mask = dev->coherent_dma_mask;
260
261 /*
262 * Sanity check the DMA mask - it must be non-zero, and
263 * must be able to be satisfied by a DMA allocation.
264 */
265 if (mask == 0) {
266 dev_warn(dev, "coherent DMA mask is unset\n");
267 return 0;
268 }
269
9f28cde0 270 if (!__dma_supported(dev, mask, true))
ab6494f0 271 return 0;
ab6494f0 272 }
1da177e4 273
ab6494f0
CM
274 return mask;
275}
276
c7909509
MS
277static void __dma_clear_buffer(struct page *page, size_t size)
278{
c7909509
MS
279 /*
280 * Ensure that the allocated pages are zeroed, and that any data
281 * lurking in the kernel direct-mapped region is invalidated.
282 */
9848e48f
MS
283 if (PageHighMem(page)) {
284 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 phys_addr_t end = base + size;
286 while (size > 0) {
287 void *ptr = kmap_atomic(page);
288 memset(ptr, 0, PAGE_SIZE);
289 dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 kunmap_atomic(ptr);
291 page++;
292 size -= PAGE_SIZE;
293 }
294 outer_flush_range(base, end);
295 } else {
296 void *ptr = page_address(page);
4ce63fcd
MS
297 memset(ptr, 0, size);
298 dmac_flush_range(ptr, ptr + size);
299 outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 }
c7909509
MS
301}
302
7a9a32a9
RK
303/*
304 * Allocate a DMA buffer for 'dev' of size 'size' using the
305 * specified gfp mask. Note that 'size' must be page aligned.
306 */
307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308{
309 unsigned long order = get_order(size);
310 struct page *page, *p, *e;
7a9a32a9
RK
311
312 page = alloc_pages(gfp, order);
313 if (!page)
314 return NULL;
315
316 /*
317 * Now split the huge page and free the excess pages
318 */
319 split_page(page, order);
320 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 __free_page(p);
322
c7909509 323 __dma_clear_buffer(page, size);
7a9a32a9
RK
324
325 return page;
326}
327
328/*
329 * Free a DMA buffer. 'size' must be page aligned.
330 */
331static void __dma_free_buffer(struct page *page, size_t size)
332{
333 struct page *e = page + (size >> PAGE_SHIFT);
334
335 while (page < e) {
336 __free_page(page);
337 page++;
338 }
339}
340
ab6494f0 341#ifdef CONFIG_MMU
a5e9d38b 342
e9da6e99 343static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 344 pgprot_t prot, struct page **ret_page,
6e8266e3 345 const void *caller, bool want_vaddr);
99d1717d 346
e9da6e99
MS
347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 pgprot_t prot, struct page **ret_page,
6e8266e3 349 const void *caller, bool want_vaddr);
99d1717d 350
e9da6e99
MS
351static void *
352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 const void *caller)
99d1717d 354{
e9da6e99
MS
355 /*
356 * DMA allocation can be mapped to user space, so lets
357 * set VM_USERMAP flags too.
358 */
513510dd
LA
359 return dma_common_contiguous_remap(page, size,
360 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 prot, caller);
99d1717d 362}
1da177e4 363
e9da6e99 364static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 365{
513510dd
LA
366 dma_common_free_remap(cpu_addr, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 368}
88c58f3b 369
6e5267aa 370#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 371static struct gen_pool *atomic_pool;
6e5267aa 372
36d0fd21 373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
374
375static int __init early_coherent_pool(char *p)
376{
36d0fd21 377 atomic_pool_size = memparse(p, &p);
c7909509
MS
378 return 0;
379}
380early_param("coherent_pool", early_coherent_pool);
381
6e5267aa
MS
382void __init init_dma_coherent_pool_size(unsigned long size)
383{
384 /*
385 * Catch any attempt to set the pool size too late.
386 */
36d0fd21 387 BUG_ON(atomic_pool);
6e5267aa
MS
388
389 /*
390 * Set architecture specific coherent pool size only if
391 * it has not been changed by kernel command line parameter.
392 */
36d0fd21
LA
393 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 atomic_pool_size = size;
6e5267aa
MS
395}
396
c7909509
MS
397/*
398 * Initialise the coherent pool for atomic allocations.
399 */
e9da6e99 400static int __init atomic_pool_init(void)
c7909509 401{
71b55663 402 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 403 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
404 struct page *page;
405 void *ptr;
c7909509 406
36d0fd21
LA
407 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 if (!atomic_pool)
409 goto out;
6b3fe472 410
e464ef16 411 if (dev_get_cma_area(NULL))
36d0fd21 412 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 413 &page, atomic_pool_init, true);
e9da6e99 414 else
36d0fd21 415 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 416 &page, atomic_pool_init, true);
c7909509 417 if (ptr) {
36d0fd21
LA
418 int ret;
419
420 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 page_to_phys(page),
422 atomic_pool_size, -1);
423 if (ret)
424 goto destroy_genpool;
425
426 gen_pool_set_algo(atomic_pool,
427 gen_pool_first_fit_order_align,
428 (void *)PAGE_SHIFT);
429 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 atomic_pool_size / 1024);
c7909509
MS
431 return 0;
432 }
ec10665c 433
36d0fd21
LA
434destroy_genpool:
435 gen_pool_destroy(atomic_pool);
436 atomic_pool = NULL;
437out:
438 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 atomic_pool_size / 1024);
c7909509
MS
440 return -ENOMEM;
441}
442/*
443 * CMA is activated by core_initcall, so we must be called after it.
444 */
e9da6e99 445postcore_initcall(atomic_pool_init);
c7909509
MS
446
447struct dma_contig_early_reserve {
448 phys_addr_t base;
449 unsigned long size;
450};
451
452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453
454static int dma_mmu_remap_num __initdata;
455
456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457{
458 dma_mmu_remap[dma_mmu_remap_num].base = base;
459 dma_mmu_remap[dma_mmu_remap_num].size = size;
460 dma_mmu_remap_num++;
461}
462
463void __init dma_contiguous_remap(void)
464{
465 int i;
466 for (i = 0; i < dma_mmu_remap_num; i++) {
467 phys_addr_t start = dma_mmu_remap[i].base;
468 phys_addr_t end = start + dma_mmu_remap[i].size;
469 struct map_desc map;
470 unsigned long addr;
471
472 if (end > arm_lowmem_limit)
473 end = arm_lowmem_limit;
474 if (start >= end)
39f78e70 475 continue;
c7909509
MS
476
477 map.pfn = __phys_to_pfn(start);
478 map.virtual = __phys_to_virt(start);
479 map.length = end - start;
480 map.type = MT_MEMORY_DMA_READY;
481
482 /*
6b076991
RK
483 * Clear previous low-memory mapping to ensure that the
484 * TLB does not see any conflicting entries, then flush
485 * the TLB of the old entries before creating new mappings.
486 *
487 * This ensures that any speculatively loaded TLB entries
488 * (even though they may be rare) can not cause any problems,
489 * and ensures that this code is architecturally compliant.
c7909509
MS
490 */
491 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 492 addr += PMD_SIZE)
c7909509
MS
493 pmd_clear(pmd_off_k(addr));
494
6b076991
RK
495 flush_tlb_kernel_range(__phys_to_virt(start),
496 __phys_to_virt(end));
497
c7909509
MS
498 iotable_init(&map, 1);
499 }
500}
501
c7909509
MS
502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 void *data)
504{
505 struct page *page = virt_to_page(addr);
506 pgprot_t prot = *(pgprot_t *)data;
507
508 set_pte_ext(pte, mk_pte(page, prot), 0);
509 return 0;
510}
511
512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513{
514 unsigned long start = (unsigned long) page_address(page);
515 unsigned end = start + size;
516
517 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
518 flush_tlb_kernel_range(start, end);
519}
520
521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 pgprot_t prot, struct page **ret_page,
6e8266e3 523 const void *caller, bool want_vaddr)
c7909509
MS
524{
525 struct page *page;
6e8266e3 526 void *ptr = NULL;
c7909509
MS
527 page = __dma_alloc_buffer(dev, size, gfp);
528 if (!page)
529 return NULL;
6e8266e3
CC
530 if (!want_vaddr)
531 goto out;
c7909509
MS
532
533 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 if (!ptr) {
535 __dma_free_buffer(page, size);
536 return NULL;
537 }
538
6e8266e3 539 out:
c7909509
MS
540 *ret_page = page;
541 return ptr;
542}
543
e9da6e99 544static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 545{
36d0fd21 546 unsigned long val;
e9da6e99 547 void *ptr = NULL;
c7909509 548
36d0fd21 549 if (!atomic_pool) {
e9da6e99 550 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
551 return NULL;
552 }
553
36d0fd21
LA
554 val = gen_pool_alloc(atomic_pool, size);
555 if (val) {
556 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557
558 *ret_page = phys_to_page(phys);
559 ptr = (void *)val;
c7909509 560 }
e9da6e99
MS
561
562 return ptr;
c7909509
MS
563}
564
21d0a759
HD
565static bool __in_atomic_pool(void *start, size_t size)
566{
36d0fd21 567 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
568}
569
e9da6e99 570static int __free_from_pool(void *start, size_t size)
c7909509 571{
21d0a759 572 if (!__in_atomic_pool(start, size))
c7909509
MS
573 return 0;
574
36d0fd21 575 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 576
c7909509
MS
577 return 1;
578}
579
580static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 581 pgprot_t prot, struct page **ret_page,
6e8266e3 582 const void *caller, bool want_vaddr)
c7909509
MS
583{
584 unsigned long order = get_order(size);
585 size_t count = size >> PAGE_SHIFT;
586 struct page *page;
6e8266e3 587 void *ptr = NULL;
c7909509
MS
588
589 page = dma_alloc_from_contiguous(dev, count, order);
590 if (!page)
591 return NULL;
592
593 __dma_clear_buffer(page, size);
c7909509 594
6e8266e3
CC
595 if (!want_vaddr)
596 goto out;
597
9848e48f
MS
598 if (PageHighMem(page)) {
599 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 if (!ptr) {
601 dma_release_from_contiguous(dev, page, count);
602 return NULL;
603 }
604 } else {
605 __dma_remap(page, size, prot);
606 ptr = page_address(page);
607 }
6e8266e3
CC
608
609 out:
c7909509 610 *ret_page = page;
9848e48f 611 return ptr;
c7909509
MS
612}
613
614static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 615 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 616{
6e8266e3
CC
617 if (want_vaddr) {
618 if (PageHighMem(page))
619 __dma_free_remap(cpu_addr, size);
620 else
621 __dma_remap(page, size, PAGE_KERNEL);
622 }
c7909509
MS
623 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624}
625
f99d6034
MS
626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627{
628 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 pgprot_writecombine(prot) :
630 pgprot_dmacoherent(prot);
631 return prot;
632}
633
c7909509
MS
634#define nommu() 0
635
ab6494f0 636#else /* !CONFIG_MMU */
695ae0af 637
c7909509
MS
638#define nommu() 1
639
6e8266e3
CC
640#define __get_dma_pgprot(attrs, prot) __pgprot(0)
641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 642#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
b4268676 644#define __free_from_pool(cpu_addr, size) do { } while (0)
6e8266e3 645#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 646#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
647
648#endif /* CONFIG_MMU */
649
c7909509
MS
650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 struct page **ret_page)
ab6494f0 652{
c7909509
MS
653 struct page *page;
654 page = __dma_alloc_buffer(dev, size, gfp);
655 if (!page)
656 return NULL;
657
658 *ret_page = page;
659 return page_address(page);
660}
661
b4268676
RV
662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 struct page **ret_page)
664{
665 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 ret_page);
667}
c7909509 668
b4268676
RV
669static void simple_allocator_free(struct arm_dma_free_args *args)
670{
671 __dma_free_buffer(args->page, args->size);
672}
673
674static struct arm_dma_allocator simple_allocator = {
675 .alloc = simple_allocator_alloc,
676 .free = simple_allocator_free,
677};
678
679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681{
682 return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 ret_page, args->caller,
684 args->want_vaddr);
685}
686
687static void cma_allocator_free(struct arm_dma_free_args *args)
688{
689 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 args->size, args->want_vaddr);
691}
692
693static struct arm_dma_allocator cma_allocator = {
694 .alloc = cma_allocator_alloc,
695 .free = cma_allocator_free,
696};
697
698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 struct page **ret_page)
700{
701 return __alloc_from_pool(args->size, ret_page);
702}
703
704static void pool_allocator_free(struct arm_dma_free_args *args)
705{
706 __free_from_pool(args->cpu_addr, args->size);
707}
708
709static struct arm_dma_allocator pool_allocator = {
710 .alloc = pool_allocator_alloc,
711 .free = pool_allocator_free,
712};
713
714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716{
717 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 args->prot, ret_page, args->caller,
719 args->want_vaddr);
720}
721
722static void remap_allocator_free(struct arm_dma_free_args *args)
723{
724 if (args->want_vaddr)
725 __dma_free_remap(args->cpu_addr, args->size);
726
727 __dma_free_buffer(args->page, args->size);
728}
729
730static struct arm_dma_allocator remap_allocator = {
731 .alloc = remap_allocator_alloc,
732 .free = remap_allocator_free,
733};
c7909509
MS
734
735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
736 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 struct dma_attrs *attrs, const void *caller)
c7909509
MS
738{
739 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 740 struct page *page = NULL;
31ebf944 741 void *addr;
b4268676 742 bool allowblock, cma;
19e6e5e5 743 struct arm_dma_buffer *buf;
b4268676
RV
744 struct arm_dma_alloc_args args = {
745 .dev = dev,
746 .size = PAGE_ALIGN(size),
747 .gfp = gfp,
748 .prot = prot,
749 .caller = caller,
750 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 };
ab6494f0 752
c7909509
MS
753#ifdef CONFIG_DMA_API_DEBUG
754 u64 limit = (mask + 1) & ~mask;
755 if (limit && size >= limit) {
756 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 size, mask);
758 return NULL;
759 }
760#endif
761
762 if (!mask)
763 return NULL;
764
9c18fcf7
AC
765 buf = kzalloc(sizeof(*buf),
766 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
19e6e5e5
RV
767 if (!buf)
768 return NULL;
769
c7909509
MS
770 if (mask < 0xffffffffULL)
771 gfp |= GFP_DMA;
772
ea2e7057
SB
773 /*
774 * Following is a work-around (a.k.a. hack) to prevent pages
775 * with __GFP_COMP being passed to split_page() which cannot
776 * handle them. The real problem is that this flag probably
777 * should be 0 on ARM as it is not supported on this
778 * platform; see CONFIG_HUGETLBFS.
779 */
780 gfp &= ~(__GFP_COMP);
b4268676 781 args.gfp = gfp;
ea2e7057 782
553ac788 783 *handle = DMA_ERROR_CODE;
b4268676
RV
784 allowblock = gfpflags_allow_blocking(gfp);
785 cma = allowblock ? dev_get_cma_area(dev) : false;
786
787 if (cma)
788 buf->allocator = &cma_allocator;
789 else if (nommu() || is_coherent)
790 buf->allocator = &simple_allocator;
791 else if (allowblock)
792 buf->allocator = &remap_allocator;
31ebf944 793 else
b4268676
RV
794 buf->allocator = &pool_allocator;
795
796 addr = buf->allocator->alloc(&args, &page);
695ae0af 797
19e6e5e5
RV
798 if (page) {
799 unsigned long flags;
800
9eedd963 801 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 802 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
803
804 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
805 list_add(&buf->list, &arm_dma_bufs);
806 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
807 } else {
808 kfree(buf);
809 }
695ae0af 810
b4268676 811 return args.want_vaddr ? addr : page;
31ebf944 812}
1da177e4
LT
813
814/*
815 * Allocate DMA-coherent memory space and return both the kernel remapped
816 * virtual and bus address for that space.
817 */
f99d6034
MS
818void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
819 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 820{
0ea1ec71 821 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 822
dd37e940 823 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 824 attrs, __builtin_return_address(0));
dd37e940
RH
825}
826
827static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
828 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
829{
21caf3a7 830 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 831 attrs, __builtin_return_address(0));
1da177e4 832}
1da177e4 833
55af8a91 834static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034
MS
835 void *cpu_addr, dma_addr_t dma_addr, size_t size,
836 struct dma_attrs *attrs)
1da177e4 837{
ab6494f0
CM
838 int ret = -ENXIO;
839#ifdef CONFIG_MMU
50262a4b
MS
840 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
841 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 842 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
843 unsigned long off = vma->vm_pgoff;
844
47142f07
MS
845 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
846 return ret;
847
50262a4b
MS
848 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
849 ret = remap_pfn_range(vma, vma->vm_start,
850 pfn + off,
851 vma->vm_end - vma->vm_start,
852 vma->vm_page_prot);
853 }
ab6494f0 854#endif /* CONFIG_MMU */
1da177e4
LT
855
856 return ret;
857}
858
55af8a91
ML
859/*
860 * Create userspace mapping for the DMA-coherent memory.
861 */
862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 struct dma_attrs *attrs)
865{
866 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
867}
868
869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
870 void *cpu_addr, dma_addr_t dma_addr, size_t size,
871 struct dma_attrs *attrs)
872{
873#ifdef CONFIG_MMU
874 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
875#endif /* CONFIG_MMU */
876 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
877}
878
1da177e4 879/*
c7909509 880 * Free a buffer as defined by the above mapping.
1da177e4 881 */
dd37e940
RH
882static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
883 dma_addr_t handle, struct dma_attrs *attrs,
884 bool is_coherent)
1da177e4 885{
c7909509 886 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 887 struct arm_dma_buffer *buf;
b4268676
RV
888 struct arm_dma_free_args args = {
889 .dev = dev,
890 .size = PAGE_ALIGN(size),
891 .cpu_addr = cpu_addr,
892 .page = page,
893 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
894 };
19e6e5e5
RV
895
896 buf = arm_dma_buffer_find(cpu_addr);
897 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
898 return;
5edf71ae 899
b4268676 900 buf->allocator->free(&args);
19e6e5e5 901 kfree(buf);
1da177e4 902}
afd1a321 903
dd37e940
RH
904void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 dma_addr_t handle, struct dma_attrs *attrs)
906{
907 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
908}
909
910static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
911 dma_addr_t handle, struct dma_attrs *attrs)
912{
913 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
914}
915
dc2832e1
MS
916int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
917 void *cpu_addr, dma_addr_t handle, size_t size,
918 struct dma_attrs *attrs)
919{
920 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
921 int ret;
922
923 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
924 if (unlikely(ret))
925 return ret;
926
927 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
928 return 0;
929}
930
4ea0d737 931static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
932 size_t size, enum dma_data_direction dir,
933 void (*op)(const void *, size_t, int))
43377453 934{
15653371
RK
935 unsigned long pfn;
936 size_t left = size;
937
938 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
939 offset %= PAGE_SIZE;
940
43377453
NP
941 /*
942 * A single sg entry may refer to multiple physically contiguous
943 * pages. But we still need to process highmem pages individually.
944 * If highmem is not configured then the bulk of this loop gets
945 * optimized out.
946 */
43377453
NP
947 do {
948 size_t len = left;
93f1d629
RK
949 void *vaddr;
950
15653371
RK
951 page = pfn_to_page(pfn);
952
93f1d629 953 if (PageHighMem(page)) {
15653371 954 if (len + offset > PAGE_SIZE)
93f1d629 955 len = PAGE_SIZE - offset;
dd0f67f4
JK
956
957 if (cache_is_vipt_nonaliasing()) {
39af22a7 958 vaddr = kmap_atomic(page);
7e5a69e8 959 op(vaddr + offset, len, dir);
39af22a7 960 kunmap_atomic(vaddr);
dd0f67f4
JK
961 } else {
962 vaddr = kmap_high_get(page);
963 if (vaddr) {
964 op(vaddr + offset, len, dir);
965 kunmap_high(page);
966 }
43377453 967 }
93f1d629
RK
968 } else {
969 vaddr = page_address(page) + offset;
a9c9147e 970 op(vaddr, len, dir);
43377453 971 }
43377453 972 offset = 0;
15653371 973 pfn++;
43377453
NP
974 left -= len;
975 } while (left);
976}
4ea0d737 977
51fde349
MS
978/*
979 * Make an area consistent for devices.
980 * Note: Drivers should NOT use this function directly, as it will break
981 * platforms with CONFIG_DMABOUNCE.
982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
983 */
984static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
985 size_t size, enum dma_data_direction dir)
986{
2161c248 987 phys_addr_t paddr;
65af191a 988
a9c9147e 989 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
990
991 paddr = page_to_phys(page) + off;
2ffe2da3
RK
992 if (dir == DMA_FROM_DEVICE) {
993 outer_inv_range(paddr, paddr + size);
994 } else {
995 outer_clean_range(paddr, paddr + size);
996 }
997 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 998}
4ea0d737 999
51fde349 1000static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
1001 size_t size, enum dma_data_direction dir)
1002{
2161c248 1003 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
1004
1005 /* FIXME: non-speculating: not required */
deace4a6
RK
1006 /* in any case, don't bother invalidating if DMA to device */
1007 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
1008 outer_inv_range(paddr, paddr + size);
1009
deace4a6
RK
1010 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011 }
c0177800
CM
1012
1013 /*
b2a234ed 1014 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 1015 */
b2a234ed
ML
1016 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017 unsigned long pfn;
1018 size_t left = size;
1019
1020 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021 off %= PAGE_SIZE;
1022 if (off) {
1023 pfn++;
1024 left -= PAGE_SIZE - off;
1025 }
1026 while (left >= PAGE_SIZE) {
1027 page = pfn_to_page(pfn++);
1028 set_bit(PG_dcache_clean, &page->flags);
1029 left -= PAGE_SIZE;
1030 }
1031 }
4ea0d737 1032}
43377453 1033
afd1a321 1034/**
2a550e73 1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037 * @sg: list of buffers
1038 * @nents: number of buffers to map
1039 * @dir: DMA transfer direction
1040 *
1041 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042 * This is the scatter-gather version of the dma_map_single interface.
1043 * Here the scatter gather list elements are each tagged with the
1044 * appropriate dma address and length. They are obtained via
1045 * sg_dma_{address,length}.
1046 *
1047 * Device ownership issues as mentioned for dma_map_single are the same
1048 * here.
1049 */
2dc6a016
MS
1050int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1052{
2a550e73 1053 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1054 struct scatterlist *s;
01135d92 1055 int i, j;
afd1a321
RK
1056
1057 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1058#ifdef CONFIG_NEED_SG_DMA_LENGTH
1059 s->dma_length = s->length;
1060#endif
2a550e73
MS
1061 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062 s->length, dir, attrs);
01135d92
RK
1063 if (dma_mapping_error(dev, s->dma_address))
1064 goto bad_mapping;
afd1a321 1065 }
afd1a321 1066 return nents;
01135d92
RK
1067
1068 bad_mapping:
1069 for_each_sg(sg, s, i, j)
2a550e73 1070 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1071 return 0;
afd1a321 1072}
afd1a321
RK
1073
1074/**
2a550e73 1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
0adfca6f 1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080 *
1081 * Unmap a set of streaming mode DMA translations. Again, CPU access
1082 * rules concerning calls here are the same as for dma_unmap_single().
1083 */
2dc6a016
MS
1084void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1086{
2a550e73 1087 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1088 struct scatterlist *s;
01135d92 1089
01135d92 1090 int i;
24056f52 1091
01135d92 1092 for_each_sg(sg, s, nents, i)
2a550e73 1093 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1094}
afd1a321
RK
1095
1096/**
2a550e73 1097 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
1100 * @nents: number of buffers to map (returned from dma_map_sg)
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 */
2dc6a016 1103void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1104 int nents, enum dma_data_direction dir)
1105{
2a550e73 1106 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1107 struct scatterlist *s;
1108 int i;
1109
2a550e73
MS
1110 for_each_sg(sg, s, nents, i)
1111 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112 dir);
afd1a321 1113}
afd1a321
RK
1114
1115/**
2a550e73 1116 * arm_dma_sync_sg_for_device
afd1a321
RK
1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118 * @sg: list of buffers
1119 * @nents: number of buffers to map (returned from dma_map_sg)
1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 */
2dc6a016 1122void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1123 int nents, enum dma_data_direction dir)
1124{
2a550e73 1125 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1126 struct scatterlist *s;
1127 int i;
1128
2a550e73
MS
1129 for_each_sg(sg, s, nents, i)
1130 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131 dir);
afd1a321 1132}
24056f52 1133
022ae537
RK
1134/*
1135 * Return whether the given device DMA address mask can be supported
1136 * properly. For example, if your device can only drive the low 24-bits
1137 * during bus mastering, then you would pass 0x00ffffff as the mask
1138 * to this function.
1139 */
1140int dma_supported(struct device *dev, u64 mask)
1141{
9f28cde0 1142 return __dma_supported(dev, mask, false);
022ae537
RK
1143}
1144EXPORT_SYMBOL(dma_supported);
1145
87b54e78 1146int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1147{
1148 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149 return -EIO;
1150
022ae537 1151 *dev->dma_mask = dma_mask;
022ae537
RK
1152
1153 return 0;
1154}
022ae537 1155
24056f52
RK
1156#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1157
1158static int __init dma_debug_do_init(void)
1159{
1160 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161 return 0;
1162}
1163fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1164
1165#ifdef CONFIG_ARM_DMA_USE_IOMMU
1166
1167/* IOMMU */
1168
4d852ef8
AH
1169static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170
4ce63fcd
MS
1171static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172 size_t size)
1173{
1174 unsigned int order = get_order(size);
1175 unsigned int align = 0;
1176 unsigned int count, start;
006f841d 1177 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1178 unsigned long flags;
4d852ef8
AH
1179 dma_addr_t iova;
1180 int i;
4ce63fcd 1181
60460abf
SWK
1182 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184
68efd7d2
MS
1185 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186 align = (1 << order) - 1;
4ce63fcd
MS
1187
1188 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1189 for (i = 0; i < mapping->nr_bitmaps; i++) {
1190 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191 mapping->bits, 0, count, align);
1192
1193 if (start > mapping->bits)
1194 continue;
1195
1196 bitmap_set(mapping->bitmaps[i], start, count);
1197 break;
4ce63fcd
MS
1198 }
1199
4d852ef8
AH
1200 /*
1201 * No unused range found. Try to extend the existing mapping
1202 * and perform a second attempt to reserve an IO virtual
1203 * address range of size bytes.
1204 */
1205 if (i == mapping->nr_bitmaps) {
1206 if (extend_iommu_mapping(mapping)) {
1207 spin_unlock_irqrestore(&mapping->lock, flags);
1208 return DMA_ERROR_CODE;
1209 }
1210
1211 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212 mapping->bits, 0, count, align);
1213
1214 if (start > mapping->bits) {
1215 spin_unlock_irqrestore(&mapping->lock, flags);
1216 return DMA_ERROR_CODE;
1217 }
1218
1219 bitmap_set(mapping->bitmaps[i], start, count);
1220 }
4ce63fcd
MS
1221 spin_unlock_irqrestore(&mapping->lock, flags);
1222
006f841d 1223 iova = mapping->base + (mapping_size * i);
68efd7d2 1224 iova += start << PAGE_SHIFT;
4d852ef8
AH
1225
1226 return iova;
4ce63fcd
MS
1227}
1228
1229static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230 dma_addr_t addr, size_t size)
1231{
4d852ef8 1232 unsigned int start, count;
006f841d 1233 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1234 unsigned long flags;
4d852ef8
AH
1235 dma_addr_t bitmap_base;
1236 u32 bitmap_index;
1237
1238 if (!size)
1239 return;
1240
006f841d 1241 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1242 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243
006f841d 1244 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1245
68efd7d2 1246 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1247
006f841d 1248 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1249 /*
1250 * The address range to be freed reaches into the iova
1251 * range of the next bitmap. This should not happen as
1252 * we don't allow this in __alloc_iova (at the
1253 * moment).
1254 */
1255 BUG();
1256 } else
68efd7d2 1257 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1258
1259 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1260 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1261 spin_unlock_irqrestore(&mapping->lock, flags);
1262}
1263
33298ef6
DA
1264/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266
549a17e4
MS
1267static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1269{
1270 struct page **pages;
1271 int count = size >> PAGE_SHIFT;
1272 int array_size = count * sizeof(struct page *);
1273 int i = 0;
33298ef6 1274 int order_idx = 0;
4ce63fcd
MS
1275
1276 if (array_size <= PAGE_SIZE)
23be7fda 1277 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1278 else
1279 pages = vzalloc(array_size);
1280 if (!pages)
1281 return NULL;
1282
549a17e4
MS
1283 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284 {
1285 unsigned long order = get_order(size);
1286 struct page *page;
1287
1288 page = dma_alloc_from_contiguous(dev, count, order);
1289 if (!page)
1290 goto error;
1291
1292 __dma_clear_buffer(page, size);
1293
1294 for (i = 0; i < count; i++)
1295 pages[i] = page + i;
1296
1297 return pages;
1298 }
1299
14d3ae2e
DA
1300 /* Go straight to 4K chunks if caller says it's OK. */
1301 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303
f8669bef
MS
1304 /*
1305 * IOMMU can map any pages, so himem can also be used here
1306 */
1307 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308
4ce63fcd 1309 while (count) {
49f28aa6
TF
1310 int j, order;
1311
33298ef6
DA
1312 order = iommu_order_array[order_idx];
1313
1314 /* Drop down when we get small */
1315 if (__fls(count) < order) {
1316 order_idx++;
1317 continue;
49f28aa6 1318 }
4ce63fcd 1319
33298ef6
DA
1320 if (order) {
1321 /* See if it's easy to allocate a high-order chunk */
1322 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323
1324 /* Go down a notch at first sign of pressure */
1325 if (!pages[i]) {
1326 order_idx++;
1327 continue;
1328 }
1329 } else {
49f28aa6
TF
1330 pages[i] = alloc_pages(gfp, 0);
1331 if (!pages[i])
1332 goto error;
1333 }
4ce63fcd 1334
5a796eeb 1335 if (order) {
4ce63fcd 1336 split_page(pages[i], order);
5a796eeb
HD
1337 j = 1 << order;
1338 while (--j)
1339 pages[i + j] = pages[i] + j;
1340 }
4ce63fcd
MS
1341
1342 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343 i += 1 << order;
1344 count -= 1 << order;
1345 }
1346
1347 return pages;
1348error:
9fa8af91 1349 while (i--)
4ce63fcd
MS
1350 if (pages[i])
1351 __free_pages(pages[i], 0);
1d5cfdb0 1352 kvfree(pages);
4ce63fcd
MS
1353 return NULL;
1354}
1355
549a17e4
MS
1356static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1358{
1359 int count = size >> PAGE_SHIFT;
4ce63fcd 1360 int i;
549a17e4
MS
1361
1362 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363 dma_release_from_contiguous(dev, pages[0], count);
1364 } else {
1365 for (i = 0; i < count; i++)
1366 if (pages[i])
1367 __free_pages(pages[i], 0);
1368 }
1369
1d5cfdb0 1370 kvfree(pages);
4ce63fcd
MS
1371 return 0;
1372}
1373
1374/*
1375 * Create a CPU mapping for a specified pages
1376 */
1377static void *
e9da6e99
MS
1378__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379 const void *caller)
4ce63fcd 1380{
513510dd
LA
1381 return dma_common_pages_remap(pages, size,
1382 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1383}
1384
1385/*
1386 * Create a mapping in device IO address space for specified pages
1387 */
1388static dma_addr_t
1389__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1390{
89cfdb19 1391 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1392 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393 dma_addr_t dma_addr, iova;
90cde558 1394 int i;
4ce63fcd
MS
1395
1396 dma_addr = __alloc_iova(mapping, size);
1397 if (dma_addr == DMA_ERROR_CODE)
1398 return dma_addr;
1399
1400 iova = dma_addr;
1401 for (i = 0; i < count; ) {
90cde558
AP
1402 int ret;
1403
4ce63fcd
MS
1404 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405 phys_addr_t phys = page_to_phys(pages[i]);
1406 unsigned int len, j;
1407
1408 for (j = i + 1; j < count; j++, next_pfn++)
1409 if (page_to_pfn(pages[j]) != next_pfn)
1410 break;
1411
1412 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1413 ret = iommu_map(mapping->domain, iova, phys, len,
1414 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1415 if (ret < 0)
1416 goto fail;
1417 iova += len;
1418 i = j;
1419 }
1420 return dma_addr;
1421fail:
1422 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423 __free_iova(mapping, dma_addr, size);
1424 return DMA_ERROR_CODE;
1425}
1426
1427static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428{
89cfdb19 1429 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1430
1431 /*
1432 * add optional in-page offset from iova to size and align
1433 * result to page size
1434 */
1435 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436 iova &= PAGE_MASK;
1437
1438 iommu_unmap(mapping->domain, iova, size);
1439 __free_iova(mapping, iova, size);
1440 return 0;
1441}
1442
665bad7b
HD
1443static struct page **__atomic_get_pages(void *addr)
1444{
36d0fd21
LA
1445 struct page *page;
1446 phys_addr_t phys;
1447
1448 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449 page = phys_to_page(phys);
665bad7b 1450
36d0fd21 1451 return (struct page **)page;
665bad7b
HD
1452}
1453
955c757e 1454static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1455{
1456 struct vm_struct *area;
1457
665bad7b
HD
1458 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459 return __atomic_get_pages(cpu_addr);
1460
955c757e
MS
1461 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462 return cpu_addr;
1463
e9da6e99
MS
1464 area = find_vm_area(cpu_addr);
1465 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466 return area->pages;
1467 return NULL;
1468}
1469
479ed93a
HD
1470static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471 dma_addr_t *handle)
1472{
1473 struct page *page;
1474 void *addr;
1475
1476 addr = __alloc_from_pool(size, &page);
1477 if (!addr)
1478 return NULL;
1479
1480 *handle = __iommu_create_mapping(dev, &page, size);
1481 if (*handle == DMA_ERROR_CODE)
1482 goto err_mapping;
1483
1484 return addr;
1485
1486err_mapping:
1487 __free_from_pool(addr, size);
1488 return NULL;
1489}
1490
d5898291 1491static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1492 dma_addr_t handle, size_t size)
1493{
1494 __iommu_remove_mapping(dev, handle, size);
d5898291 1495 __free_from_pool(cpu_addr, size);
479ed93a
HD
1496}
1497
4ce63fcd
MS
1498static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1500{
71b55663 1501 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1502 struct page **pages;
1503 void *addr = NULL;
1504
1505 *handle = DMA_ERROR_CODE;
1506 size = PAGE_ALIGN(size);
1507
d0164adc 1508 if (!gfpflags_allow_blocking(gfp))
479ed93a
HD
1509 return __iommu_alloc_atomic(dev, size, handle);
1510
5b91a98c
RZ
1511 /*
1512 * Following is a work-around (a.k.a. hack) to prevent pages
1513 * with __GFP_COMP being passed to split_page() which cannot
1514 * handle them. The real problem is that this flag probably
1515 * should be 0 on ARM as it is not supported on this
1516 * platform; see CONFIG_HUGETLBFS.
1517 */
1518 gfp &= ~(__GFP_COMP);
1519
549a17e4 1520 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1521 if (!pages)
1522 return NULL;
1523
1524 *handle = __iommu_create_mapping(dev, pages, size);
1525 if (*handle == DMA_ERROR_CODE)
1526 goto err_buffer;
1527
955c757e
MS
1528 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529 return pages;
1530
e9da6e99
MS
1531 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532 __builtin_return_address(0));
4ce63fcd
MS
1533 if (!addr)
1534 goto err_mapping;
1535
1536 return addr;
1537
1538err_mapping:
1539 __iommu_remove_mapping(dev, *handle, size);
1540err_buffer:
549a17e4 1541 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1542 return NULL;
1543}
1544
1545static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1546 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547 struct dma_attrs *attrs)
1548{
e9da6e99
MS
1549 unsigned long uaddr = vma->vm_start;
1550 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1551 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1552 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553 unsigned long off = vma->vm_pgoff;
4ce63fcd
MS
1554
1555 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1556
e9da6e99
MS
1557 if (!pages)
1558 return -ENXIO;
4ce63fcd 1559
371f0f08
MS
1560 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561 return -ENXIO;
1562
7e312103
MS
1563 pages += off;
1564
e9da6e99
MS
1565 do {
1566 int ret = vm_insert_page(vma, uaddr, *pages++);
1567 if (ret) {
1568 pr_err("Remapping memory failed: %d\n", ret);
1569 return ret;
1570 }
1571 uaddr += PAGE_SIZE;
1572 usize -= PAGE_SIZE;
1573 } while (usize > 0);
4ce63fcd 1574
4ce63fcd
MS
1575 return 0;
1576}
1577
1578/*
1579 * free a page as defined by the above mapping.
1580 * Must not be called with IRQs disabled.
1581 */
1582void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583 dma_addr_t handle, struct dma_attrs *attrs)
1584{
836bfa0d 1585 struct page **pages;
4ce63fcd
MS
1586 size = PAGE_ALIGN(size);
1587
836bfa0d
YC
1588 if (__in_atomic_pool(cpu_addr, size)) {
1589 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1590 return;
4ce63fcd 1591 }
e9da6e99 1592
836bfa0d
YC
1593 pages = __iommu_get_pages(cpu_addr, attrs);
1594 if (!pages) {
1595 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1596 return;
1597 }
1598
955c757e 1599 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1600 dma_common_free_remap(cpu_addr, size,
1601 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1602 }
e9da6e99
MS
1603
1604 __iommu_remove_mapping(dev, handle, size);
549a17e4 1605 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1606}
1607
dc2832e1
MS
1608static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609 void *cpu_addr, dma_addr_t dma_addr,
1610 size_t size, struct dma_attrs *attrs)
1611{
1612 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614
1615 if (!pages)
1616 return -ENXIO;
1617
1618 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619 GFP_KERNEL);
4ce63fcd
MS
1620}
1621
c9b24996
AH
1622static int __dma_direction_to_prot(enum dma_data_direction dir)
1623{
1624 int prot;
1625
1626 switch (dir) {
1627 case DMA_BIDIRECTIONAL:
1628 prot = IOMMU_READ | IOMMU_WRITE;
1629 break;
1630 case DMA_TO_DEVICE:
1631 prot = IOMMU_READ;
1632 break;
1633 case DMA_FROM_DEVICE:
1634 prot = IOMMU_WRITE;
1635 break;
1636 default:
1637 prot = 0;
1638 }
1639
1640 return prot;
1641}
1642
4ce63fcd
MS
1643/*
1644 * Map a part of the scatter-gather list into contiguous io address space
1645 */
1646static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647 size_t size, dma_addr_t *handle,
0fa478df
RH
1648 enum dma_data_direction dir, struct dma_attrs *attrs,
1649 bool is_coherent)
4ce63fcd 1650{
89cfdb19 1651 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1652 dma_addr_t iova, iova_base;
1653 int ret = 0;
1654 unsigned int count;
1655 struct scatterlist *s;
c9b24996 1656 int prot;
4ce63fcd
MS
1657
1658 size = PAGE_ALIGN(size);
1659 *handle = DMA_ERROR_CODE;
1660
1661 iova_base = iova = __alloc_iova(mapping, size);
1662 if (iova == DMA_ERROR_CODE)
1663 return -ENOMEM;
1664
1665 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1666 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1667 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668
0fa478df
RH
1669 if (!is_coherent &&
1670 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1671 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672
c9b24996
AH
1673 prot = __dma_direction_to_prot(dir);
1674
1675 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1676 if (ret < 0)
1677 goto fail;
1678 count += len >> PAGE_SHIFT;
1679 iova += len;
1680 }
1681 *handle = iova_base;
1682
1683 return 0;
1684fail:
1685 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686 __free_iova(mapping, iova_base, size);
1687 return ret;
1688}
1689
0fa478df
RH
1690static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691 enum dma_data_direction dir, struct dma_attrs *attrs,
1692 bool is_coherent)
4ce63fcd
MS
1693{
1694 struct scatterlist *s = sg, *dma = sg, *start = sg;
1695 int i, count = 0;
1696 unsigned int offset = s->offset;
1697 unsigned int size = s->offset + s->length;
1698 unsigned int max = dma_get_max_seg_size(dev);
1699
1700 for (i = 1; i < nents; i++) {
1701 s = sg_next(s);
1702
1703 s->dma_address = DMA_ERROR_CODE;
1704 s->dma_length = 0;
1705
1706 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1708 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1709 goto bad_mapping;
1710
1711 dma->dma_address += offset;
1712 dma->dma_length = size - offset;
1713
1714 size = offset = s->offset;
1715 start = s;
1716 dma = sg_next(dma);
1717 count += 1;
1718 }
1719 size += s->length;
1720 }
0fa478df
RH
1721 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722 is_coherent) < 0)
4ce63fcd
MS
1723 goto bad_mapping;
1724
1725 dma->dma_address += offset;
1726 dma->dma_length = size - offset;
1727
1728 return count+1;
1729
1730bad_mapping:
1731 for_each_sg(sg, s, count, i)
1732 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733 return 0;
1734}
1735
1736/**
0fa478df 1737 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
0fa478df
RH
1740 * @nents: number of buffers to map
1741 * @dir: DMA transfer direction
4ce63fcd 1742 *
0fa478df
RH
1743 * Map a set of i/o coherent buffers described by scatterlist in streaming
1744 * mode for DMA. The scatter gather list elements are merged together (if
1745 * possible) and tagged with the appropriate dma address and length. They are
1746 * obtained via sg_dma_{address,length}.
4ce63fcd 1747 */
0fa478df
RH
1748int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750{
1751 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752}
1753
1754/**
1755 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map
1759 * @dir: DMA transfer direction
1760 *
1761 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762 * The scatter gather list elements are merged together (if possible) and
1763 * tagged with the appropriate dma address and length. They are obtained via
1764 * sg_dma_{address,length}.
1765 */
1766int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768{
1769 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770}
1771
1772static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774 bool is_coherent)
4ce63fcd
MS
1775{
1776 struct scatterlist *s;
1777 int i;
1778
1779 for_each_sg(sg, s, nents, i) {
1780 if (sg_dma_len(s))
1781 __iommu_remove_mapping(dev, sg_dma_address(s),
1782 sg_dma_len(s));
0fa478df 1783 if (!is_coherent &&
97ef952a 1784 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1785 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1786 s->length, dir);
1787 }
1788}
1789
0fa478df
RH
1790/**
1791 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792 * @dev: valid struct device pointer
1793 * @sg: list of buffers
1794 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796 *
1797 * Unmap a set of streaming mode DMA translations. Again, CPU access
1798 * rules concerning calls here are the same as for dma_unmap_single().
1799 */
1800void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1802{
1803 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812 *
1813 * Unmap a set of streaming mode DMA translations. Again, CPU access
1814 * rules concerning calls here are the same as for dma_unmap_single().
1815 */
1816void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817 enum dma_data_direction dir, struct dma_attrs *attrs)
1818{
1819 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820}
1821
4ce63fcd
MS
1822/**
1823 * arm_iommu_sync_sg_for_cpu
1824 * @dev: valid struct device pointer
1825 * @sg: list of buffers
1826 * @nents: number of buffers to map (returned from dma_map_sg)
1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828 */
1829void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1830 int nents, enum dma_data_direction dir)
1831{
1832 struct scatterlist *s;
1833 int i;
1834
1835 for_each_sg(sg, s, nents, i)
0fa478df 1836 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1837
1838}
1839
1840/**
1841 * arm_iommu_sync_sg_for_device
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to map (returned from dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 */
1847void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1848 int nents, enum dma_data_direction dir)
1849{
1850 struct scatterlist *s;
1851 int i;
1852
1853 for_each_sg(sg, s, nents, i)
0fa478df 1854 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1855}
1856
1857
1858/**
0fa478df 1859 * arm_coherent_iommu_map_page
4ce63fcd
MS
1860 * @dev: valid struct device pointer
1861 * @page: page that buffer resides in
1862 * @offset: offset into page for start of buffer
1863 * @size: size of buffer to map
1864 * @dir: DMA transfer direction
1865 *
0fa478df 1866 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1867 */
0fa478df 1868static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1869 unsigned long offset, size_t size, enum dma_data_direction dir,
1870 struct dma_attrs *attrs)
1871{
89cfdb19 1872 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1873 dma_addr_t dma_addr;
13987d68 1874 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1875
4ce63fcd
MS
1876 dma_addr = __alloc_iova(mapping, len);
1877 if (dma_addr == DMA_ERROR_CODE)
1878 return dma_addr;
1879
c9b24996 1880 prot = __dma_direction_to_prot(dir);
13987d68
WD
1881
1882 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1883 if (ret < 0)
1884 goto fail;
1885
1886 return dma_addr + offset;
1887fail:
1888 __free_iova(mapping, dma_addr, len);
1889 return DMA_ERROR_CODE;
1890}
1891
0fa478df
RH
1892/**
1893 * arm_iommu_map_page
1894 * @dev: valid struct device pointer
1895 * @page: page that buffer resides in
1896 * @offset: offset into page for start of buffer
1897 * @size: size of buffer to map
1898 * @dir: DMA transfer direction
1899 *
1900 * IOMMU aware version of arm_dma_map_page()
1901 */
1902static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903 unsigned long offset, size_t size, enum dma_data_direction dir,
1904 struct dma_attrs *attrs)
1905{
1906 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907 __dma_page_cpu_to_dev(page, offset, size, dir);
1908
1909 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910}
1911
1912/**
1913 * arm_coherent_iommu_unmap_page
1914 * @dev: valid struct device pointer
1915 * @handle: DMA address of buffer
1916 * @size: size of buffer (same as passed to dma_map_page)
1917 * @dir: DMA transfer direction (same as passed to dma_map_page)
1918 *
1919 * Coherent IOMMU aware version of arm_dma_unmap_page()
1920 */
1921static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922 size_t size, enum dma_data_direction dir,
1923 struct dma_attrs *attrs)
1924{
89cfdb19 1925 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1926 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1927 int offset = handle & ~PAGE_MASK;
1928 int len = PAGE_ALIGN(size + offset);
1929
1930 if (!iova)
1931 return;
1932
1933 iommu_unmap(mapping->domain, iova, len);
1934 __free_iova(mapping, iova, len);
1935}
1936
4ce63fcd
MS
1937/**
1938 * arm_iommu_unmap_page
1939 * @dev: valid struct device pointer
1940 * @handle: DMA address of buffer
1941 * @size: size of buffer (same as passed to dma_map_page)
1942 * @dir: DMA transfer direction (same as passed to dma_map_page)
1943 *
1944 * IOMMU aware version of arm_dma_unmap_page()
1945 */
1946static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947 size_t size, enum dma_data_direction dir,
1948 struct dma_attrs *attrs)
1949{
89cfdb19 1950 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1951 dma_addr_t iova = handle & PAGE_MASK;
1952 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953 int offset = handle & ~PAGE_MASK;
1954 int len = PAGE_ALIGN(size + offset);
1955
1956 if (!iova)
1957 return;
1958
0fa478df 1959 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1960 __dma_page_dev_to_cpu(page, offset, size, dir);
1961
1962 iommu_unmap(mapping->domain, iova, len);
1963 __free_iova(mapping, iova, len);
1964}
1965
1966static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968{
89cfdb19 1969 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1970 dma_addr_t iova = handle & PAGE_MASK;
1971 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972 unsigned int offset = handle & ~PAGE_MASK;
1973
1974 if (!iova)
1975 return;
1976
0fa478df 1977 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1978}
1979
1980static void arm_iommu_sync_single_for_device(struct device *dev,
1981 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982{
89cfdb19 1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1984 dma_addr_t iova = handle & PAGE_MASK;
1985 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986 unsigned int offset = handle & ~PAGE_MASK;
1987
1988 if (!iova)
1989 return;
1990
1991 __dma_page_cpu_to_dev(page, offset, size, dir);
1992}
1993
1994struct dma_map_ops iommu_ops = {
1995 .alloc = arm_iommu_alloc_attrs,
1996 .free = arm_iommu_free_attrs,
1997 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1998 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1999
2000 .map_page = arm_iommu_map_page,
2001 .unmap_page = arm_iommu_unmap_page,
2002 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2003 .sync_single_for_device = arm_iommu_sync_single_for_device,
2004
2005 .map_sg = arm_iommu_map_sg,
2006 .unmap_sg = arm_iommu_unmap_sg,
2007 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2008 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
2009
2010 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
2011};
2012
0fa478df
RH
2013struct dma_map_ops iommu_coherent_ops = {
2014 .alloc = arm_iommu_alloc_attrs,
2015 .free = arm_iommu_free_attrs,
2016 .mmap = arm_iommu_mmap_attrs,
2017 .get_sgtable = arm_iommu_get_sgtable,
2018
2019 .map_page = arm_coherent_iommu_map_page,
2020 .unmap_page = arm_coherent_iommu_unmap_page,
2021
2022 .map_sg = arm_coherent_iommu_map_sg,
2023 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
2024
2025 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
2026};
2027
4ce63fcd
MS
2028/**
2029 * arm_iommu_create_mapping
2030 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031 * @base: start address of the valid IO address space
68efd7d2 2032 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2033 *
2034 * Creates a mapping structure which holds information about used/unused
2035 * IO address ranges, which is required to perform memory allocation and
2036 * mapping with IOMMU aware functions.
2037 *
2038 * The client device need to be attached to the mapping with
2039 * arm_iommu_attach_device function.
2040 */
2041struct dma_iommu_mapping *
1424532b 2042arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2043{
68efd7d2
MS
2044 unsigned int bits = size >> PAGE_SHIFT;
2045 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2046 struct dma_iommu_mapping *mapping;
68efd7d2 2047 int extensions = 1;
4ce63fcd
MS
2048 int err = -ENOMEM;
2049
1424532b
MS
2050 /* currently only 32-bit DMA address space is supported */
2051 if (size > DMA_BIT_MASK(32) + 1)
2052 return ERR_PTR(-ERANGE);
2053
68efd7d2 2054 if (!bitmap_size)
4ce63fcd
MS
2055 return ERR_PTR(-EINVAL);
2056
68efd7d2
MS
2057 if (bitmap_size > PAGE_SIZE) {
2058 extensions = bitmap_size / PAGE_SIZE;
2059 bitmap_size = PAGE_SIZE;
2060 }
2061
4ce63fcd
MS
2062 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063 if (!mapping)
2064 goto err;
2065
68efd7d2
MS
2066 mapping->bitmap_size = bitmap_size;
2067 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
2068 GFP_KERNEL);
2069 if (!mapping->bitmaps)
4ce63fcd
MS
2070 goto err2;
2071
68efd7d2 2072 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2073 if (!mapping->bitmaps[0])
2074 goto err3;
2075
2076 mapping->nr_bitmaps = 1;
2077 mapping->extensions = extensions;
4ce63fcd 2078 mapping->base = base;
68efd7d2 2079 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2080
4ce63fcd
MS
2081 spin_lock_init(&mapping->lock);
2082
2083 mapping->domain = iommu_domain_alloc(bus);
2084 if (!mapping->domain)
4d852ef8 2085 goto err4;
4ce63fcd
MS
2086
2087 kref_init(&mapping->kref);
2088 return mapping;
4d852ef8
AH
2089err4:
2090 kfree(mapping->bitmaps[0]);
4ce63fcd 2091err3:
4d852ef8 2092 kfree(mapping->bitmaps);
4ce63fcd
MS
2093err2:
2094 kfree(mapping);
2095err:
2096 return ERR_PTR(err);
2097}
18177d12 2098EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2099
2100static void release_iommu_mapping(struct kref *kref)
2101{
4d852ef8 2102 int i;
4ce63fcd
MS
2103 struct dma_iommu_mapping *mapping =
2104 container_of(kref, struct dma_iommu_mapping, kref);
2105
2106 iommu_domain_free(mapping->domain);
4d852ef8
AH
2107 for (i = 0; i < mapping->nr_bitmaps; i++)
2108 kfree(mapping->bitmaps[i]);
2109 kfree(mapping->bitmaps);
4ce63fcd
MS
2110 kfree(mapping);
2111}
2112
4d852ef8
AH
2113static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114{
2115 int next_bitmap;
2116
462859aa 2117 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2118 return -EINVAL;
2119
2120 next_bitmap = mapping->nr_bitmaps;
2121 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122 GFP_ATOMIC);
2123 if (!mapping->bitmaps[next_bitmap])
2124 return -ENOMEM;
2125
2126 mapping->nr_bitmaps++;
2127
2128 return 0;
2129}
2130
4ce63fcd
MS
2131void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132{
2133 if (mapping)
2134 kref_put(&mapping->kref, release_iommu_mapping);
2135}
18177d12 2136EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2137
eab8d653
LP
2138static int __arm_iommu_attach_device(struct device *dev,
2139 struct dma_iommu_mapping *mapping)
2140{
2141 int err;
2142
2143 err = iommu_attach_device(mapping->domain, dev);
2144 if (err)
2145 return err;
2146
2147 kref_get(&mapping->kref);
89cfdb19 2148 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2149
2150 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151 return 0;
2152}
2153
4ce63fcd
MS
2154/**
2155 * arm_iommu_attach_device
2156 * @dev: valid struct device pointer
2157 * @mapping: io address space mapping structure (returned from
2158 * arm_iommu_create_mapping)
2159 *
eab8d653
LP
2160 * Attaches specified io address space mapping to the provided device.
2161 * This replaces the dma operations (dma_map_ops pointer) with the
2162 * IOMMU aware version.
2163 *
4bb25789
WD
2164 * More than one client might be attached to the same io address space
2165 * mapping.
4ce63fcd
MS
2166 */
2167int arm_iommu_attach_device(struct device *dev,
2168 struct dma_iommu_mapping *mapping)
2169{
2170 int err;
2171
eab8d653 2172 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2173 if (err)
2174 return err;
2175
eab8d653 2176 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2177 return 0;
2178}
18177d12 2179EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2180
eab8d653 2181static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2182{
2183 struct dma_iommu_mapping *mapping;
2184
2185 mapping = to_dma_iommu_mapping(dev);
2186 if (!mapping) {
2187 dev_warn(dev, "Not attached\n");
2188 return;
2189 }
2190
2191 iommu_detach_device(mapping->domain, dev);
2192 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2193 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2194
2195 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196}
eab8d653
LP
2197
2198/**
2199 * arm_iommu_detach_device
2200 * @dev: valid struct device pointer
2201 *
2202 * Detaches the provided device from a previously attached map.
2203 * This voids the dma operations (dma_map_ops pointer)
2204 */
2205void arm_iommu_detach_device(struct device *dev)
2206{
2207 __arm_iommu_detach_device(dev);
2208 set_dma_ops(dev, NULL);
2209}
18177d12 2210EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2211
4bb25789
WD
2212static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213{
2214 return coherent ? &iommu_coherent_ops : &iommu_ops;
2215}
2216
2217static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218 struct iommu_ops *iommu)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 if (!iommu)
2223 return false;
2224
2225 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226 if (IS_ERR(mapping)) {
2227 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228 size, dev_name(dev));
2229 return false;
2230 }
2231
eab8d653 2232 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2233 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234 dev_name(dev));
2235 arm_iommu_release_mapping(mapping);
2236 return false;
2237 }
2238
2239 return true;
2240}
2241
2242static void arm_teardown_iommu_dma_ops(struct device *dev)
2243{
89cfdb19 2244 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2245
c2273a18
WD
2246 if (!mapping)
2247 return;
2248
eab8d653 2249 __arm_iommu_detach_device(dev);
4bb25789
WD
2250 arm_iommu_release_mapping(mapping);
2251}
2252
2253#else
2254
2255static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256 struct iommu_ops *iommu)
2257{
2258 return false;
2259}
2260
2261static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262
2263#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264
2265#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2266
2267static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2268{
2269 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2270}
2271
2272void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273 struct iommu_ops *iommu, bool coherent)
2274{
2275 struct dma_map_ops *dma_ops;
2276
6f51ee70 2277 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2278 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280 else
2281 dma_ops = arm_get_dma_map_ops(coherent);
2282
2283 set_dma_ops(dev, dma_ops);
2284}
2285
2286void arch_teardown_dma_ops(struct device *dev)
2287{
2288 arm_teardown_iommu_dma_ops(dev);
2289}