Merge branch 'nanosecond-2stage' of https://github.com/vincentkfu/fio into nsec
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned long long *ovals = NULL;
145         int is_last;
146
147         *minv = -1ULL;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int divisor, len, i, j = 0;
205         unsigned long long minv, maxv;
206         unsigned long long *ovals;
207         int is_last, per_line, scale_down, time_width;
208         char fmt[32];
209
210         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211         if (!len)
212                 goto out;
213
214         /*
215          * We default to nsecs, but if the value range is such that we
216          * should scale down to usecs or msecs, do that.
217          */
218         if (minv > 2000000 && maxv > 99999999ULL) {
219                 scale_down = 2;
220                 divisor = 1000000;
221                 log_buf(out, "    clat percentiles (msec):\n     |");
222         } else if (minv > 2000 && maxv > 99999) {
223                 scale_down = 1;
224                 divisor = 1000;
225                 log_buf(out, "    clat percentiles (usec):\n     |");
226         } else {
227                 scale_down = 0;
228                 divisor = 1;
229                 log_buf(out, "    clat percentiles (nsec):\n     |");
230         }
231
232
233         time_width = max(5, (int) (log10(maxv / divisor) + 1));
234         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision+3, precision, time_width);
235         // fmt will be something like " %5.2fth=[%4llu]%c"
236         per_line = (80 - 7) / (precision + 10 + time_width);
237
238         for (j = 0; j < len; j++) {
239                 /* for formatting */
240                 if (j != 0 && (j % per_line) == 0)
241                         log_buf(out, "     |");
242
243                 /* end of the list */
244                 is_last = (j == len - 1);
245
246                 for (i = 0; i < scale_down; i++)
247                         ovals[j] = (ovals[j] + 999) / 1000;
248
249                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
250
251                 if (is_last)
252                         break;
253
254                 if ((j % per_line) == per_line - 1)     /* for formatting */
255                         log_buf(out, "\n");
256         }
257
258 out:
259         if (ovals)
260                 free(ovals);
261 }
262
263 bool calc_lat(struct io_stat *is, unsigned long long *min, unsigned long long *max,
264               double *mean, double *dev)
265 {
266         double n = (double) is->samples;
267
268         if (n == 0)
269                 return false;
270
271         *min = is->min_val;
272         *max = is->max_val;
273         *mean = is->mean.u.f;
274
275         if (n > 1.0)
276                 *dev = sqrt(is->S.u.f / (n - 1.0));
277         else
278                 *dev = 0;
279
280         return true;
281 }
282
283 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
284 {
285         char *io, *agg, *min, *max;
286         char *ioalt, *aggalt, *minalt, *maxalt;
287         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
288         int i;
289
290         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
291
292         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
293                 const int i2p = is_power_of_2(rs->kb_base);
294
295                 if (!rs->max_run[i])
296                         continue;
297
298                 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
299                 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
300                 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
301                 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
302                 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
303                 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
304                 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
305                 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
306                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
307                                 rs->unified_rw_rep ? "  MIXED" : str[i],
308                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
309                                 (unsigned long long) rs->min_run[i],
310                                 (unsigned long long) rs->max_run[i]);
311
312                 free(io);
313                 free(agg);
314                 free(min);
315                 free(max);
316                 free(ioalt);
317                 free(aggalt);
318                 free(minalt);
319                 free(maxalt);
320         }
321 }
322
323 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
324 {
325         int i;
326
327         /*
328          * Do depth distribution calculations
329          */
330         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
331                 if (total) {
332                         io_u_dist[i] = (double) map[i] / (double) total;
333                         io_u_dist[i] *= 100.0;
334                         if (io_u_dist[i] < 0.1 && map[i])
335                                 io_u_dist[i] = 0.1;
336                 } else
337                         io_u_dist[i] = 0.0;
338         }
339 }
340
341 static void stat_calc_lat(struct thread_stat *ts, double *dst,
342                           unsigned int *src, int nr)
343 {
344         unsigned long total = ddir_rw_sum(ts->total_io_u);
345         int i;
346
347         /*
348          * Do latency distribution calculations
349          */
350         for (i = 0; i < nr; i++) {
351                 if (total) {
352                         dst[i] = (double) src[i] / (double) total;
353                         dst[i] *= 100.0;
354                         if (dst[i] < 0.01 && src[i])
355                                 dst[i] = 0.01;
356                 } else
357                         dst[i] = 0.0;
358         }
359 }
360
361 /*
362  * To keep the terse format unaltered, add all of the ns latency
363  * buckets to the first us latency bucket
364  */
365 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
366 {
367         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
368         int i;
369
370         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
371
372         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
373                 ntotal += ts->io_u_lat_n[i];
374
375         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
376 }
377
378 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
379 {
380         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
381 }
382
383 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
384 {
385         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
386 }
387
388 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
389 {
390         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
391 }
392
393 static void display_lat(const char *name, unsigned long long min, unsigned long long max,
394                         double mean, double dev, struct buf_output *out)
395 {
396         const char *base = "(nsec)";
397         char *minp, *maxp;
398
399         if (nsec_to_msec(&min, &max, &mean, &dev))
400                 base = "(msec)";
401         else if (nsec_to_usec(&min, &max, &mean, &dev))
402                 base = "(usec)";
403
404         minp = num2str(min, 6, 1, 0, N2S_NONE);
405         maxp = num2str(max, 6, 1, 0, N2S_NONE);
406
407         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
408                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
409
410         free(minp);
411         free(maxp);
412 }
413
414 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
415                              int ddir, struct buf_output *out)
416 {
417         const char *str[] = { " read", "write", " trim" };
418         unsigned long runt;
419         unsigned long long min, max, bw, iops;
420         double mean, dev;
421         char *io_p, *bw_p, *bw_p_alt, *iops_p;
422         int i2p;
423
424         assert(ddir_rw(ddir));
425
426         if (!ts->runtime[ddir])
427                 return;
428
429         i2p = is_power_of_2(rs->kb_base);
430         runt = ts->runtime[ddir];
431
432         bw = (1000 * ts->io_bytes[ddir]) / runt;
433         io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
434         bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
435         bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
436
437         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
438         iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
439
440         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
441                         rs->unified_rw_rep ? "mixed" : str[ddir],
442                         iops_p, bw_p, bw_p_alt, io_p,
443                         (unsigned long long) ts->runtime[ddir]);
444
445         free(io_p);
446         free(bw_p);
447         free(bw_p_alt);
448         free(iops_p);
449
450         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
451                 display_lat("slat", min, max, mean, dev, out);
452         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
453                 display_lat("clat", min, max, mean, dev, out);
454         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
455                 display_lat(" lat", min, max, mean, dev, out);
456
457         if (ts->clat_percentiles) {
458                 show_clat_percentiles(ts->io_u_plat[ddir],
459                                         ts->clat_stat[ddir].samples,
460                                         ts->percentile_list,
461                                         ts->percentile_precision, out);
462         }
463         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
464                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
465                 const char *bw_str;
466
467                 if ((rs->unit_base == 1) && i2p)
468                         bw_str = "Kibit";
469                 else if (rs->unit_base == 1)
470                         bw_str = "kbit";
471                 else if (i2p)
472                         bw_str = "KiB";
473                 else
474                         bw_str = "kB";
475
476                 if (rs->unit_base == 1) {
477                         min *= 8.0;
478                         max *= 8.0;
479                         mean *= 8.0;
480                         dev *= 8.0;
481                 }
482
483                 if (rs->agg[ddir]) {
484                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
485                         if (p_of_agg > 100.0)
486                                 p_of_agg = 100.0;
487                 }
488
489                 if (mean > fkb_base * fkb_base) {
490                         min /= fkb_base;
491                         max /= fkb_base;
492                         mean /= fkb_base;
493                         dev /= fkb_base;
494                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
495                 }
496
497                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, avg=%5.02f, stdev=%5.02f\n",
498                         bw_str, min, max, p_of_agg, mean, dev);
499         }
500 }
501
502 static int show_lat(double *io_u_lat, int nr, const char **ranges,
503                     const char *msg, struct buf_output *out)
504 {
505         int new_line = 1, i, line = 0, shown = 0;
506
507         for (i = 0; i < nr; i++) {
508                 if (io_u_lat[i] <= 0.0)
509                         continue;
510                 shown = 1;
511                 if (new_line) {
512                         if (line)
513                                 log_buf(out, "\n");
514                         log_buf(out, "    lat (%s) : ", msg);
515                         new_line = 0;
516                         line = 0;
517                 }
518                 if (line)
519                         log_buf(out, ", ");
520                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
521                 line++;
522                 if (line == 5)
523                         new_line = 1;
524         }
525
526         if (shown)
527                 log_buf(out, "\n");
528
529         return shown;
530 }
531
532 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
533 {
534         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
535                                  "250=", "500=", "750=", "1000=", };
536
537         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
538 }
539
540 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
541 {
542         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
543                                  "250=", "500=", "750=", "1000=", };
544
545         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
546 }
547
548 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
549 {
550         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
551                                  "250=", "500=", "750=", "1000=", "2000=",
552                                  ">=2000=", };
553
554         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
555 }
556
557 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
558 {
559         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
560         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
561         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
562
563         stat_calc_lat_n(ts, io_u_lat_n);
564         stat_calc_lat_u(ts, io_u_lat_u);
565         stat_calc_lat_m(ts, io_u_lat_m);
566
567         show_lat_n(io_u_lat_n, out);
568         show_lat_u(io_u_lat_u, out);
569         show_lat_m(io_u_lat_m, out);
570 }
571
572 static int block_state_category(int block_state)
573 {
574         switch (block_state) {
575         case BLOCK_STATE_UNINIT:
576                 return 0;
577         case BLOCK_STATE_TRIMMED:
578         case BLOCK_STATE_WRITTEN:
579                 return 1;
580         case BLOCK_STATE_WRITE_FAILURE:
581         case BLOCK_STATE_TRIM_FAILURE:
582                 return 2;
583         default:
584                 /* Silence compile warning on some BSDs and have a return */
585                 assert(0);
586                 return -1;
587         }
588 }
589
590 static int compare_block_infos(const void *bs1, const void *bs2)
591 {
592         uint32_t block1 = *(uint32_t *)bs1;
593         uint32_t block2 = *(uint32_t *)bs2;
594         int state1 = BLOCK_INFO_STATE(block1);
595         int state2 = BLOCK_INFO_STATE(block2);
596         int bscat1 = block_state_category(state1);
597         int bscat2 = block_state_category(state2);
598         int cycles1 = BLOCK_INFO_TRIMS(block1);
599         int cycles2 = BLOCK_INFO_TRIMS(block2);
600
601         if (bscat1 < bscat2)
602                 return -1;
603         if (bscat1 > bscat2)
604                 return 1;
605
606         if (cycles1 < cycles2)
607                 return -1;
608         if (cycles1 > cycles2)
609                 return 1;
610
611         if (state1 < state2)
612                 return -1;
613         if (state1 > state2)
614                 return 1;
615
616         assert(block1 == block2);
617         return 0;
618 }
619
620 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
621                                   fio_fp64_t *plist, unsigned int **percentiles,
622                                   unsigned int *types)
623 {
624         int len = 0;
625         int i, nr_uninit;
626
627         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
628
629         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
630                 len++;
631
632         if (!len)
633                 return 0;
634
635         /*
636          * Sort the percentile list. Note that it may already be sorted if
637          * we are using the default values, but since it's a short list this
638          * isn't a worry. Also note that this does not work for NaN values.
639          */
640         if (len > 1)
641                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
642
643         nr_uninit = 0;
644         /* Start only after the uninit entries end */
645         for (nr_uninit = 0;
646              nr_uninit < nr_block_infos
647                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
648              nr_uninit ++)
649                 ;
650
651         if (nr_uninit == nr_block_infos)
652                 return 0;
653
654         *percentiles = calloc(len, sizeof(**percentiles));
655
656         for (i = 0; i < len; i++) {
657                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
658                                 + nr_uninit;
659                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
660         }
661
662         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
663         for (i = 0; i < nr_block_infos; i++)
664                 types[BLOCK_INFO_STATE(block_infos[i])]++;
665
666         return len;
667 }
668
669 static const char *block_state_names[] = {
670         [BLOCK_STATE_UNINIT] = "unwritten",
671         [BLOCK_STATE_TRIMMED] = "trimmed",
672         [BLOCK_STATE_WRITTEN] = "written",
673         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
674         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
675 };
676
677 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
678                              fio_fp64_t *plist, struct buf_output *out)
679 {
680         int len, pos, i;
681         unsigned int *percentiles = NULL;
682         unsigned int block_state_counts[BLOCK_STATE_COUNT];
683
684         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
685                                      &percentiles, block_state_counts);
686
687         log_buf(out, "  block lifetime percentiles :\n   |");
688         pos = 0;
689         for (i = 0; i < len; i++) {
690                 uint32_t block_info = percentiles[i];
691 #define LINE_LENGTH     75
692                 char str[LINE_LENGTH];
693                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
694                                      plist[i].u.f, block_info,
695                                      i == len - 1 ? '\n' : ',');
696                 assert(strln < LINE_LENGTH);
697                 if (pos + strln > LINE_LENGTH) {
698                         pos = 0;
699                         log_buf(out, "\n   |");
700                 }
701                 log_buf(out, "%s", str);
702                 pos += strln;
703 #undef LINE_LENGTH
704         }
705         if (percentiles)
706                 free(percentiles);
707
708         log_buf(out, "        states               :");
709         for (i = 0; i < BLOCK_STATE_COUNT; i++)
710                 log_buf(out, " %s=%u%c",
711                          block_state_names[i], block_state_counts[i],
712                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
713 }
714
715 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
716 {
717         char *p1, *p1alt, *p2;
718         unsigned long long bw_mean, iops_mean;
719         const int i2p = is_power_of_2(ts->kb_base);
720
721         if (!ts->ss_dur)
722                 return;
723
724         bw_mean = steadystate_bw_mean(ts);
725         iops_mean = steadystate_iops_mean(ts);
726
727         p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
728         p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
729         p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
730
731         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
732                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
733                 p1, p1alt, p2,
734                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
735                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
736                 ts->ss_criterion.u.f,
737                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
738
739         free(p1);
740         free(p1alt);
741         free(p2);
742 }
743
744 static void show_thread_status_normal(struct thread_stat *ts,
745                                       struct group_run_stats *rs,
746                                       struct buf_output *out)
747 {
748         double usr_cpu, sys_cpu;
749         unsigned long runtime;
750         double io_u_dist[FIO_IO_U_MAP_NR];
751         time_t time_p;
752         char time_buf[32];
753
754         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
755                 return;
756                 
757         memset(time_buf, 0, sizeof(time_buf));
758
759         time(&time_p);
760         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
761
762         if (!ts->error) {
763                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
764                                         ts->name, ts->groupid, ts->members,
765                                         ts->error, (int) ts->pid, time_buf);
766         } else {
767                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
768                                         ts->name, ts->groupid, ts->members,
769                                         ts->error, ts->verror, (int) ts->pid,
770                                         time_buf);
771         }
772
773         if (strlen(ts->description))
774                 log_buf(out, "  Description  : [%s]\n", ts->description);
775
776         if (ts->io_bytes[DDIR_READ])
777                 show_ddir_status(rs, ts, DDIR_READ, out);
778         if (ts->io_bytes[DDIR_WRITE])
779                 show_ddir_status(rs, ts, DDIR_WRITE, out);
780         if (ts->io_bytes[DDIR_TRIM])
781                 show_ddir_status(rs, ts, DDIR_TRIM, out);
782
783         show_latencies(ts, out);
784
785         runtime = ts->total_run_time;
786         if (runtime) {
787                 double runt = (double) runtime;
788
789                 usr_cpu = (double) ts->usr_time * 100 / runt;
790                 sys_cpu = (double) ts->sys_time * 100 / runt;
791         } else {
792                 usr_cpu = 0;
793                 sys_cpu = 0;
794         }
795
796         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
797                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
798                         (unsigned long long) ts->ctx,
799                         (unsigned long long) ts->majf,
800                         (unsigned long long) ts->minf);
801
802         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
803         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
804                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
805                                         io_u_dist[1], io_u_dist[2],
806                                         io_u_dist[3], io_u_dist[4],
807                                         io_u_dist[5], io_u_dist[6]);
808
809         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
810         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
811                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
812                                         io_u_dist[1], io_u_dist[2],
813                                         io_u_dist[3], io_u_dist[4],
814                                         io_u_dist[5], io_u_dist[6]);
815         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
816         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
817                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
818                                         io_u_dist[1], io_u_dist[2],
819                                         io_u_dist[3], io_u_dist[4],
820                                         io_u_dist[5], io_u_dist[6]);
821         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
822                                  " short=%llu,%llu,%llu,"
823                                  " dropped=%llu,%llu,%llu\n",
824                                         (unsigned long long) ts->total_io_u[0],
825                                         (unsigned long long) ts->total_io_u[1],
826                                         (unsigned long long) ts->total_io_u[2],
827                                         (unsigned long long) ts->short_io_u[0],
828                                         (unsigned long long) ts->short_io_u[1],
829                                         (unsigned long long) ts->short_io_u[2],
830                                         (unsigned long long) ts->drop_io_u[0],
831                                         (unsigned long long) ts->drop_io_u[1],
832                                         (unsigned long long) ts->drop_io_u[2]);
833         if (ts->continue_on_error) {
834                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
835                                         (unsigned long long)ts->total_err_count,
836                                         ts->first_error,
837                                         strerror(ts->first_error));
838         }
839         if (ts->latency_depth) {
840                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
841                                         (unsigned long long)ts->latency_target,
842                                         (unsigned long long)ts->latency_window,
843                                         ts->latency_percentile.u.f,
844                                         ts->latency_depth);
845         }
846
847         if (ts->nr_block_infos)
848                 show_block_infos(ts->nr_block_infos, ts->block_infos,
849                                   ts->percentile_list, out);
850
851         if (ts->ss_dur)
852                 show_ss_normal(ts, out);
853 }
854
855 static void show_ddir_status_terse(struct thread_stat *ts,
856                                    struct group_run_stats *rs, int ddir,
857                                    struct buf_output *out)
858 {
859         unsigned long long min, max, minv, maxv, bw, iops;
860         unsigned long long *ovals = NULL;
861         double mean, dev;
862         unsigned int len;
863         int i;
864
865         assert(ddir_rw(ddir));
866
867         iops = bw = 0;
868         if (ts->runtime[ddir]) {
869                 uint64_t runt = ts->runtime[ddir];
870
871                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
872                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
873         }
874
875         log_buf(out, ";%llu;%llu;%llu;%llu",
876                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
877                                         (unsigned long long) ts->runtime[ddir]);
878
879         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
880                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
881         else
882                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
883
884         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
885                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
886         else
887                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
888
889         if (ts->clat_percentiles) {
890                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
891                                         ts->clat_stat[ddir].samples,
892                                         ts->percentile_list, &ovals, &maxv,
893                                         &minv);
894         } else
895                 len = 0;
896
897         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
898                 if (i >= len) {
899                         log_buf(out, ";0%%=0");
900                         continue;
901                 }
902                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
903         }
904
905         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
906                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
907         else
908                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
909
910         if (ovals)
911                 free(ovals);
912
913         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
914                 double p_of_agg = 100.0;
915
916                 if (rs->agg[ddir]) {
917                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
918                         if (p_of_agg > 100.0)
919                                 p_of_agg = 100.0;
920                 }
921
922                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
923         } else
924                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
925 }
926
927 static void add_ddir_status_json(struct thread_stat *ts,
928                 struct group_run_stats *rs, int ddir, struct json_object *parent)
929 {
930         unsigned long long min, max, minv, maxv;
931         unsigned long long bw;
932         unsigned long long *ovals = NULL;
933         double mean, dev, iops;
934         unsigned int len;
935         int i;
936         const char *ddirname[] = {"read", "write", "trim"};
937         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
938         char buf[120];
939         double p_of_agg = 100.0;
940
941         assert(ddir_rw(ddir));
942
943         if (ts->unified_rw_rep && ddir != DDIR_READ)
944                 return;
945
946         dir_object = json_create_object();
947         json_object_add_value_object(parent,
948                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
949
950         bw = 0;
951         iops = 0.0;
952         if (ts->runtime[ddir]) {
953                 uint64_t runt = ts->runtime[ddir];
954
955                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
956                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
957         }
958
959         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
960         json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
961         json_object_add_value_int(dir_object, "bw", bw);
962         json_object_add_value_float(dir_object, "iops", iops);
963         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
964         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
965         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
966         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
967
968         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
969                 min = max = 0;
970                 mean = dev = 0.0;
971         }
972         tmp_object = json_create_object();
973         json_object_add_value_object(dir_object, "slat_ns", tmp_object);
974         json_object_add_value_int(tmp_object, "min", min);
975         json_object_add_value_int(tmp_object, "max", max);
976         json_object_add_value_float(tmp_object, "mean", mean);
977         json_object_add_value_float(tmp_object, "stddev", dev);
978
979         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
980                 min = max = 0;
981                 mean = dev = 0.0;
982         }
983         tmp_object = json_create_object();
984         json_object_add_value_object(dir_object, "clat_ns", tmp_object);
985         json_object_add_value_int(tmp_object, "min", min);
986         json_object_add_value_int(tmp_object, "max", max);
987         json_object_add_value_float(tmp_object, "mean", mean);
988         json_object_add_value_float(tmp_object, "stddev", dev);
989
990         if (ts->clat_percentiles) {
991                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
992                                         ts->clat_stat[ddir].samples,
993                                         ts->percentile_list, &ovals, &maxv,
994                                         &minv);
995         } else
996                 len = 0;
997
998         percentile_object = json_create_object();
999         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1000         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1001                 if (i >= len) {
1002                         json_object_add_value_int(percentile_object, "0.00", 0);
1003                         continue;
1004                 }
1005                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1006                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1007         }
1008
1009         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1010                 clat_bins_object = json_create_object();
1011                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1012                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1013                         if (ts->io_u_plat[ddir][i]) {
1014                                 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1015                                 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1016                         }
1017                 }
1018         }
1019
1020         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1021                 min = max = 0;
1022                 mean = dev = 0.0;
1023         }
1024         tmp_object = json_create_object();
1025         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1026         json_object_add_value_int(tmp_object, "min", min);
1027         json_object_add_value_int(tmp_object, "max", max);
1028         json_object_add_value_float(tmp_object, "mean", mean);
1029         json_object_add_value_float(tmp_object, "stddev", dev);
1030         if (ovals)
1031                 free(ovals);
1032
1033         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1034                 if (rs->agg[ddir]) {
1035                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
1036                         if (p_of_agg > 100.0)
1037                                 p_of_agg = 100.0;
1038                 }
1039         } else {
1040                 min = max = 0;
1041                 p_of_agg = mean = dev = 0.0;
1042         }
1043         json_object_add_value_int(dir_object, "bw_min", min);
1044         json_object_add_value_int(dir_object, "bw_max", max);
1045         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1046         json_object_add_value_float(dir_object, "bw_mean", mean);
1047         json_object_add_value_float(dir_object, "bw_dev", dev);
1048 }
1049
1050 static void show_thread_status_terse_v2(struct thread_stat *ts,
1051                                         struct group_run_stats *rs,
1052                                         struct buf_output *out)
1053 {
1054         double io_u_dist[FIO_IO_U_MAP_NR];
1055         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1056         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1057         double usr_cpu, sys_cpu;
1058         int i;
1059
1060         /* General Info */
1061         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1062         /* Log Read Status */
1063         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1064         /* Log Write Status */
1065         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1066         /* Log Trim Status */
1067         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1068
1069         /* CPU Usage */
1070         if (ts->total_run_time) {
1071                 double runt = (double) ts->total_run_time;
1072
1073                 usr_cpu = (double) ts->usr_time * 100 / runt;
1074                 sys_cpu = (double) ts->sys_time * 100 / runt;
1075         } else {
1076                 usr_cpu = 0;
1077                 sys_cpu = 0;
1078         }
1079
1080         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1081                                                 (unsigned long long) ts->ctx,
1082                                                 (unsigned long long) ts->majf,
1083                                                 (unsigned long long) ts->minf);
1084
1085         /* Calc % distribution of IO depths, usecond, msecond latency */
1086         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1087         stat_calc_lat_nu(ts, io_u_lat_u);
1088         stat_calc_lat_m(ts, io_u_lat_m);
1089
1090         /* Only show fixed 7 I/O depth levels*/
1091         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1092                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1093                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1094
1095         /* Microsecond latency */
1096         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1097                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1098         /* Millisecond latency */
1099         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1100                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1101         /* Additional output if continue_on_error set - default off*/
1102         if (ts->continue_on_error)
1103                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1104         log_buf(out, "\n");
1105
1106         /* Additional output if description is set */
1107         if (strlen(ts->description))
1108                 log_buf(out, ";%s", ts->description);
1109
1110         log_buf(out, "\n");
1111 }
1112
1113 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1114                                            struct group_run_stats *rs, int ver,
1115                                            struct buf_output *out)
1116 {
1117         double io_u_dist[FIO_IO_U_MAP_NR];
1118         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1119         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1120         double usr_cpu, sys_cpu;
1121         int i;
1122
1123         /* General Info */
1124         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1125                                         ts->name, ts->groupid, ts->error);
1126         /* Log Read Status */
1127         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1128         /* Log Write Status */
1129         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1130         /* Log Trim Status */
1131         if (ver == 4)
1132                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1133
1134         /* CPU Usage */
1135         if (ts->total_run_time) {
1136                 double runt = (double) ts->total_run_time;
1137
1138                 usr_cpu = (double) ts->usr_time * 100 / runt;
1139                 sys_cpu = (double) ts->sys_time * 100 / runt;
1140         } else {
1141                 usr_cpu = 0;
1142                 sys_cpu = 0;
1143         }
1144
1145         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1146                                                 (unsigned long long) ts->ctx,
1147                                                 (unsigned long long) ts->majf,
1148                                                 (unsigned long long) ts->minf);
1149
1150         /* Calc % distribution of IO depths, usecond, msecond latency */
1151         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1152         stat_calc_lat_nu(ts, io_u_lat_u);
1153         stat_calc_lat_m(ts, io_u_lat_m);
1154
1155         /* Only show fixed 7 I/O depth levels*/
1156         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1157                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1158                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1159
1160         /* Microsecond latency */
1161         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1162                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1163         /* Millisecond latency */
1164         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1165                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1166
1167         /* disk util stats, if any */
1168         show_disk_util(1, NULL, out);
1169
1170         /* Additional output if continue_on_error set - default off*/
1171         if (ts->continue_on_error)
1172                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1173
1174         /* Additional output if description is set */
1175         if (strlen(ts->description))
1176                 log_buf(out, ";%s", ts->description);
1177
1178         log_buf(out, "\n");
1179 }
1180
1181 static void json_add_job_opts(struct json_object *root, const char *name,
1182                               struct flist_head *opt_list, bool num_jobs)
1183 {
1184         struct json_object *dir_object;
1185         struct flist_head *entry;
1186         struct print_option *p;
1187
1188         if (flist_empty(opt_list))
1189                 return;
1190
1191         dir_object = json_create_object();
1192         json_object_add_value_object(root, name, dir_object);
1193
1194         flist_for_each(entry, opt_list) {
1195                 const char *pos = "";
1196
1197                 p = flist_entry(entry, struct print_option, list);
1198                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1199                         continue;
1200                 if (p->value)
1201                         pos = p->value;
1202                 json_object_add_value_string(dir_object, p->name, pos);
1203         }
1204 }
1205
1206 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1207                                                    struct group_run_stats *rs,
1208                                                    struct flist_head *opt_list)
1209 {
1210         struct json_object *root, *tmp;
1211         struct jobs_eta *je;
1212         double io_u_dist[FIO_IO_U_MAP_NR];
1213         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1214         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1215         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1216         double usr_cpu, sys_cpu;
1217         int i;
1218         size_t size;
1219
1220         root = json_create_object();
1221         json_object_add_value_string(root, "jobname", ts->name);
1222         json_object_add_value_int(root, "groupid", ts->groupid);
1223         json_object_add_value_int(root, "error", ts->error);
1224
1225         /* ETA Info */
1226         je = get_jobs_eta(true, &size);
1227         if (je) {
1228                 json_object_add_value_int(root, "eta", je->eta_sec);
1229                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1230         }
1231
1232         if (opt_list)
1233                 json_add_job_opts(root, "job options", opt_list, true);
1234
1235         add_ddir_status_json(ts, rs, DDIR_READ, root);
1236         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1237         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1238
1239         /* CPU Usage */
1240         if (ts->total_run_time) {
1241                 double runt = (double) ts->total_run_time;
1242
1243                 usr_cpu = (double) ts->usr_time * 100 / runt;
1244                 sys_cpu = (double) ts->sys_time * 100 / runt;
1245         } else {
1246                 usr_cpu = 0;
1247                 sys_cpu = 0;
1248         }
1249         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1250         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1251         json_object_add_value_int(root, "ctx", ts->ctx);
1252         json_object_add_value_int(root, "majf", ts->majf);
1253         json_object_add_value_int(root, "minf", ts->minf);
1254
1255
1256         /* Calc % distribution of IO depths, usecond, msecond latency */
1257         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1258         stat_calc_lat_n(ts, io_u_lat_n);
1259         stat_calc_lat_u(ts, io_u_lat_u);
1260         stat_calc_lat_m(ts, io_u_lat_m);
1261
1262         tmp = json_create_object();
1263         json_object_add_value_object(root, "iodepth_level", tmp);
1264         /* Only show fixed 7 I/O depth levels*/
1265         for (i = 0; i < 7; i++) {
1266                 char name[20];
1267                 if (i < 6)
1268                         snprintf(name, 20, "%d", 1 << i);
1269                 else
1270                         snprintf(name, 20, ">=%d", 1 << i);
1271                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1272         }
1273
1274         /* Nanosecond latency */
1275         tmp = json_create_object();
1276         json_object_add_value_object(root, "latency_ns", tmp);
1277         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1278                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1279                                  "250", "500", "750", "1000", };
1280                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1281         }
1282         /* Microsecond latency */
1283         tmp = json_create_object();
1284         json_object_add_value_object(root, "latency_us", tmp);
1285         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1286                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1287                                  "250", "500", "750", "1000", };
1288                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1289         }
1290         /* Millisecond latency */
1291         tmp = json_create_object();
1292         json_object_add_value_object(root, "latency_ms", tmp);
1293         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1294                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1295                                  "250", "500", "750", "1000", "2000",
1296                                  ">=2000", };
1297                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1298         }
1299
1300         /* Additional output if continue_on_error set - default off*/
1301         if (ts->continue_on_error) {
1302                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1303                 json_object_add_value_int(root, "first_error", ts->first_error);
1304         }
1305
1306         if (ts->latency_depth) {
1307                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1308                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1309                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1310                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1311         }
1312
1313         /* Additional output if description is set */
1314         if (strlen(ts->description))
1315                 json_object_add_value_string(root, "desc", ts->description);
1316
1317         if (ts->nr_block_infos) {
1318                 /* Block error histogram and types */
1319                 int len;
1320                 unsigned int *percentiles = NULL;
1321                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1322
1323                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1324                                              ts->percentile_list,
1325                                              &percentiles, block_state_counts);
1326
1327                 if (len) {
1328                         struct json_object *block, *percentile_object, *states;
1329                         int state;
1330                         block = json_create_object();
1331                         json_object_add_value_object(root, "block", block);
1332
1333                         percentile_object = json_create_object();
1334                         json_object_add_value_object(block, "percentiles",
1335                                                      percentile_object);
1336                         for (i = 0; i < len; i++) {
1337                                 char buf[20];
1338                                 snprintf(buf, sizeof(buf), "%f",
1339                                          ts->percentile_list[i].u.f);
1340                                 json_object_add_value_int(percentile_object,
1341                                                           (const char *)buf,
1342                                                           percentiles[i]);
1343                         }
1344
1345                         states = json_create_object();
1346                         json_object_add_value_object(block, "states", states);
1347                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1348                                 json_object_add_value_int(states,
1349                                         block_state_names[state],
1350                                         block_state_counts[state]);
1351                         }
1352                         free(percentiles);
1353                 }
1354         }
1355
1356         if (ts->ss_dur) {
1357                 struct json_object *data;
1358                 struct json_array *iops, *bw;
1359                 int i, j, k;
1360                 char ss_buf[64];
1361
1362                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1363                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1364                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1365                         (float) ts->ss_limit.u.f,
1366                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1367
1368                 tmp = json_create_object();
1369                 json_object_add_value_object(root, "steadystate", tmp);
1370                 json_object_add_value_string(tmp, "ss", ss_buf);
1371                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1372                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1373
1374                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1375                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1376                 json_object_add_value_string(tmp, "criterion", ss_buf);
1377                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1378                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1379
1380                 data = json_create_object();
1381                 json_object_add_value_object(tmp, "data", data);
1382                 bw = json_create_array();
1383                 iops = json_create_array();
1384
1385                 /*
1386                 ** if ss was attained or the buffer is not full,
1387                 ** ss->head points to the first element in the list.
1388                 ** otherwise it actually points to the second element
1389                 ** in the list
1390                 */
1391                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1392                         j = ts->ss_head;
1393                 else
1394                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1395                 for (i = 0; i < ts->ss_dur; i++) {
1396                         k = (j + i) % ts->ss_dur;
1397                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1398                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1399                 }
1400                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1401                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1402                 json_object_add_value_array(data, "iops", iops);
1403                 json_object_add_value_array(data, "bw", bw);
1404         }
1405
1406         return root;
1407 }
1408
1409 static void show_thread_status_terse(struct thread_stat *ts,
1410                                      struct group_run_stats *rs,
1411                                      struct buf_output *out)
1412 {
1413         if (terse_version == 2)
1414                 show_thread_status_terse_v2(ts, rs, out);
1415         else if (terse_version == 3 || terse_version == 4)
1416                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1417         else
1418                 log_err("fio: bad terse version!? %d\n", terse_version);
1419 }
1420
1421 struct json_object *show_thread_status(struct thread_stat *ts,
1422                                        struct group_run_stats *rs,
1423                                        struct flist_head *opt_list,
1424                                        struct buf_output *out)
1425 {
1426         struct json_object *ret = NULL;
1427
1428         if (output_format & FIO_OUTPUT_TERSE)
1429                 show_thread_status_terse(ts, rs,  out);
1430         if (output_format & FIO_OUTPUT_JSON)
1431                 ret = show_thread_status_json(ts, rs, opt_list);
1432         if (output_format & FIO_OUTPUT_NORMAL)
1433                 show_thread_status_normal(ts, rs,  out);
1434
1435         return ret;
1436 }
1437
1438 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1439 {
1440         double mean, S;
1441
1442         if (src->samples == 0)
1443                 return;
1444
1445         dst->min_val = min(dst->min_val, src->min_val);
1446         dst->max_val = max(dst->max_val, src->max_val);
1447
1448         /*
1449          * Compute new mean and S after the merge
1450          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1451          *  #Parallel_algorithm>
1452          */
1453         if (first) {
1454                 mean = src->mean.u.f;
1455                 S = src->S.u.f;
1456         } else {
1457                 double delta = src->mean.u.f - dst->mean.u.f;
1458
1459                 mean = ((src->mean.u.f * src->samples) +
1460                         (dst->mean.u.f * dst->samples)) /
1461                         (dst->samples + src->samples);
1462
1463                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1464                         (dst->samples * src->samples) /
1465                         (dst->samples + src->samples);
1466         }
1467
1468         dst->samples += src->samples;
1469         dst->mean.u.f = mean;
1470         dst->S.u.f = S;
1471 }
1472
1473 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1474 {
1475         int i;
1476
1477         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1478                 if (dst->max_run[i] < src->max_run[i])
1479                         dst->max_run[i] = src->max_run[i];
1480                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1481                         dst->min_run[i] = src->min_run[i];
1482                 if (dst->max_bw[i] < src->max_bw[i])
1483                         dst->max_bw[i] = src->max_bw[i];
1484                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1485                         dst->min_bw[i] = src->min_bw[i];
1486
1487                 dst->iobytes[i] += src->iobytes[i];
1488                 dst->agg[i] += src->agg[i];
1489         }
1490
1491         if (!dst->kb_base)
1492                 dst->kb_base = src->kb_base;
1493         if (!dst->unit_base)
1494                 dst->unit_base = src->unit_base;
1495 }
1496
1497 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1498                       bool first)
1499 {
1500         int l, k;
1501
1502         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1503                 if (!dst->unified_rw_rep) {
1504                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1505                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1506                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1507                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1508
1509                         dst->io_bytes[l] += src->io_bytes[l];
1510
1511                         if (dst->runtime[l] < src->runtime[l])
1512                                 dst->runtime[l] = src->runtime[l];
1513                 } else {
1514                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1515                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1516                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1517                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1518
1519                         dst->io_bytes[0] += src->io_bytes[l];
1520
1521                         if (dst->runtime[0] < src->runtime[l])
1522                                 dst->runtime[0] = src->runtime[l];
1523
1524                         /*
1525                          * We're summing to the same destination, so override
1526                          * 'first' after the first iteration of the loop
1527                          */
1528                         first = false;
1529                 }
1530         }
1531
1532         dst->usr_time += src->usr_time;
1533         dst->sys_time += src->sys_time;
1534         dst->ctx += src->ctx;
1535         dst->majf += src->majf;
1536         dst->minf += src->minf;
1537
1538         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1539                 dst->io_u_map[k] += src->io_u_map[k];
1540         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1541                 dst->io_u_submit[k] += src->io_u_submit[k];
1542         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1543                 dst->io_u_complete[k] += src->io_u_complete[k];
1544         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1545                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1546         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1547                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1548         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1549                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1550
1551         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1552                 if (!dst->unified_rw_rep) {
1553                         dst->total_io_u[k] += src->total_io_u[k];
1554                         dst->short_io_u[k] += src->short_io_u[k];
1555                         dst->drop_io_u[k] += src->drop_io_u[k];
1556                 } else {
1557                         dst->total_io_u[0] += src->total_io_u[k];
1558                         dst->short_io_u[0] += src->short_io_u[k];
1559                         dst->drop_io_u[0] += src->drop_io_u[k];
1560                 }
1561         }
1562
1563         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1564                 int m;
1565
1566                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1567                         if (!dst->unified_rw_rep)
1568                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1569                         else
1570                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1571                 }
1572         }
1573
1574         dst->total_run_time += src->total_run_time;
1575         dst->total_submit += src->total_submit;
1576         dst->total_complete += src->total_complete;
1577 }
1578
1579 void init_group_run_stat(struct group_run_stats *gs)
1580 {
1581         int i;
1582         memset(gs, 0, sizeof(*gs));
1583
1584         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1585                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1586 }
1587
1588 void init_thread_stat(struct thread_stat *ts)
1589 {
1590         int j;
1591
1592         memset(ts, 0, sizeof(*ts));
1593
1594         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1595                 ts->lat_stat[j].min_val = -1UL;
1596                 ts->clat_stat[j].min_val = -1UL;
1597                 ts->slat_stat[j].min_val = -1UL;
1598                 ts->bw_stat[j].min_val = -1UL;
1599         }
1600         ts->groupid = -1;
1601 }
1602
1603 void __show_run_stats(void)
1604 {
1605         struct group_run_stats *runstats, *rs;
1606         struct thread_data *td;
1607         struct thread_stat *threadstats, *ts;
1608         int i, j, k, nr_ts, last_ts, idx;
1609         int kb_base_warned = 0;
1610         int unit_base_warned = 0;
1611         struct json_object *root = NULL;
1612         struct json_array *array = NULL;
1613         struct buf_output output[FIO_OUTPUT_NR];
1614         struct flist_head **opt_lists;
1615
1616         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1617
1618         for (i = 0; i < groupid + 1; i++)
1619                 init_group_run_stat(&runstats[i]);
1620
1621         /*
1622          * find out how many threads stats we need. if group reporting isn't
1623          * enabled, it's one-per-td.
1624          */
1625         nr_ts = 0;
1626         last_ts = -1;
1627         for_each_td(td, i) {
1628                 if (!td->o.group_reporting) {
1629                         nr_ts++;
1630                         continue;
1631                 }
1632                 if (last_ts == td->groupid)
1633                         continue;
1634                 if (!td->o.stats)
1635                         continue;
1636
1637                 last_ts = td->groupid;
1638                 nr_ts++;
1639         }
1640
1641         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1642         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1643
1644         for (i = 0; i < nr_ts; i++) {
1645                 init_thread_stat(&threadstats[i]);
1646                 opt_lists[i] = NULL;
1647         }
1648
1649         j = 0;
1650         last_ts = -1;
1651         idx = 0;
1652         for_each_td(td, i) {
1653                 if (!td->o.stats)
1654                         continue;
1655                 if (idx && (!td->o.group_reporting ||
1656                     (td->o.group_reporting && last_ts != td->groupid))) {
1657                         idx = 0;
1658                         j++;
1659                 }
1660
1661                 last_ts = td->groupid;
1662
1663                 ts = &threadstats[j];
1664
1665                 ts->clat_percentiles = td->o.clat_percentiles;
1666                 ts->percentile_precision = td->o.percentile_precision;
1667                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1668                 opt_lists[j] = &td->opt_list;
1669
1670                 idx++;
1671                 ts->members++;
1672
1673                 if (ts->groupid == -1) {
1674                         /*
1675                          * These are per-group shared already
1676                          */
1677                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1678                         if (td->o.description)
1679                                 strncpy(ts->description, td->o.description,
1680                                                 FIO_JOBDESC_SIZE - 1);
1681                         else
1682                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1683
1684                         /*
1685                          * If multiple entries in this group, this is
1686                          * the first member.
1687                          */
1688                         ts->thread_number = td->thread_number;
1689                         ts->groupid = td->groupid;
1690
1691                         /*
1692                          * first pid in group, not very useful...
1693                          */
1694                         ts->pid = td->pid;
1695
1696                         ts->kb_base = td->o.kb_base;
1697                         ts->unit_base = td->o.unit_base;
1698                         ts->unified_rw_rep = td->o.unified_rw_rep;
1699                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1700                         log_info("fio: kb_base differs for jobs in group, using"
1701                                  " %u as the base\n", ts->kb_base);
1702                         kb_base_warned = 1;
1703                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1704                         log_info("fio: unit_base differs for jobs in group, using"
1705                                  " %u as the base\n", ts->unit_base);
1706                         unit_base_warned = 1;
1707                 }
1708
1709                 ts->continue_on_error = td->o.continue_on_error;
1710                 ts->total_err_count += td->total_err_count;
1711                 ts->first_error = td->first_error;
1712                 if (!ts->error) {
1713                         if (!td->error && td->o.continue_on_error &&
1714                             td->first_error) {
1715                                 ts->error = td->first_error;
1716                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1717                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1718                         } else  if (td->error) {
1719                                 ts->error = td->error;
1720                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1721                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1722                         }
1723                 }
1724
1725                 ts->latency_depth = td->latency_qd;
1726                 ts->latency_target = td->o.latency_target;
1727                 ts->latency_percentile = td->o.latency_percentile;
1728                 ts->latency_window = td->o.latency_window;
1729
1730                 ts->nr_block_infos = td->ts.nr_block_infos;
1731                 for (k = 0; k < ts->nr_block_infos; k++)
1732                         ts->block_infos[k] = td->ts.block_infos[k];
1733
1734                 sum_thread_stats(ts, &td->ts, idx == 1);
1735
1736                 if (td->o.ss_dur) {
1737                         ts->ss_state = td->ss.state;
1738                         ts->ss_dur = td->ss.dur;
1739                         ts->ss_head = td->ss.head;
1740                         ts->ss_bw_data = td->ss.bw_data;
1741                         ts->ss_iops_data = td->ss.iops_data;
1742                         ts->ss_limit.u.f = td->ss.limit;
1743                         ts->ss_slope.u.f = td->ss.slope;
1744                         ts->ss_deviation.u.f = td->ss.deviation;
1745                         ts->ss_criterion.u.f = td->ss.criterion;
1746                 }
1747                 else
1748                         ts->ss_dur = ts->ss_state = 0;
1749         }
1750
1751         for (i = 0; i < nr_ts; i++) {
1752                 unsigned long long bw;
1753
1754                 ts = &threadstats[i];
1755                 if (ts->groupid == -1)
1756                         continue;
1757                 rs = &runstats[ts->groupid];
1758                 rs->kb_base = ts->kb_base;
1759                 rs->unit_base = ts->unit_base;
1760                 rs->unified_rw_rep += ts->unified_rw_rep;
1761
1762                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1763                         if (!ts->runtime[j])
1764                                 continue;
1765                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1766                                 rs->min_run[j] = ts->runtime[j];
1767                         if (ts->runtime[j] > rs->max_run[j])
1768                                 rs->max_run[j] = ts->runtime[j];
1769
1770                         bw = 0;
1771                         if (ts->runtime[j])
1772                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1773                         if (bw < rs->min_bw[j])
1774                                 rs->min_bw[j] = bw;
1775                         if (bw > rs->max_bw[j])
1776                                 rs->max_bw[j] = bw;
1777
1778                         rs->iobytes[j] += ts->io_bytes[j];
1779                 }
1780         }
1781
1782         for (i = 0; i < groupid + 1; i++) {
1783                 int ddir;
1784
1785                 rs = &runstats[i];
1786
1787                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1788                         if (rs->max_run[ddir])
1789                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1790                                                 rs->max_run[ddir];
1791                 }
1792         }
1793
1794         for (i = 0; i < FIO_OUTPUT_NR; i++)
1795                 buf_output_init(&output[i]);
1796
1797         /*
1798          * don't overwrite last signal output
1799          */
1800         if (output_format & FIO_OUTPUT_NORMAL)
1801                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1802         if (output_format & FIO_OUTPUT_JSON) {
1803                 struct thread_data *global;
1804                 char time_buf[32];
1805                 struct timeval now;
1806                 unsigned long long ms_since_epoch;
1807
1808                 gettimeofday(&now, NULL);
1809                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1810                                  (unsigned long long)(now.tv_usec) / 1000;
1811
1812                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1813                                 sizeof(time_buf));
1814                 if (time_buf[strlen(time_buf) - 1] == '\n')
1815                         time_buf[strlen(time_buf) - 1] = '\0';
1816
1817                 root = json_create_object();
1818                 json_object_add_value_string(root, "fio version", fio_version_string);
1819                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1820                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1821                 json_object_add_value_string(root, "time", time_buf);
1822                 global = get_global_options();
1823                 json_add_job_opts(root, "global options", &global->opt_list, false);
1824                 array = json_create_array();
1825                 json_object_add_value_array(root, "jobs", array);
1826         }
1827
1828         if (is_backend)
1829                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1830
1831         for (i = 0; i < nr_ts; i++) {
1832                 ts = &threadstats[i];
1833                 rs = &runstats[ts->groupid];
1834
1835                 if (is_backend) {
1836                         fio_server_send_job_options(opt_lists[i], i);
1837                         fio_server_send_ts(ts, rs);
1838                 } else {
1839                         if (output_format & FIO_OUTPUT_TERSE)
1840                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1841                         if (output_format & FIO_OUTPUT_JSON) {
1842                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1843                                 json_array_add_value_object(array, tmp);
1844                         }
1845                         if (output_format & FIO_OUTPUT_NORMAL)
1846                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1847                 }
1848         }
1849         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1850                 /* disk util stats, if any */
1851                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1852
1853                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1854
1855                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1856                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1857                 json_free_object(root);
1858         }
1859
1860         for (i = 0; i < groupid + 1; i++) {
1861                 rs = &runstats[i];
1862
1863                 rs->groupid = i;
1864                 if (is_backend)
1865                         fio_server_send_gs(rs);
1866                 else if (output_format & FIO_OUTPUT_NORMAL)
1867                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1868         }
1869
1870         if (is_backend)
1871                 fio_server_send_du();
1872         else if (output_format & FIO_OUTPUT_NORMAL) {
1873                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1874                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1875         }
1876
1877         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1878                 struct buf_output *out = &output[i];
1879
1880                 log_info_buf(out->buf, out->buflen);
1881                 buf_output_free(out);
1882         }
1883
1884         log_info_flush();
1885         free(runstats);
1886         free(threadstats);
1887         free(opt_lists);
1888 }
1889
1890 void show_run_stats(void)
1891 {
1892         fio_mutex_down(stat_mutex);
1893         __show_run_stats();
1894         fio_mutex_up(stat_mutex);
1895 }
1896
1897 void __show_running_run_stats(void)
1898 {
1899         struct thread_data *td;
1900         unsigned long long *rt;
1901         struct timespec ts;
1902         int i;
1903
1904         fio_mutex_down(stat_mutex);
1905
1906         rt = malloc(thread_number * sizeof(unsigned long long));
1907         fio_gettime(&ts, NULL);
1908
1909         for_each_td(td, i) {
1910                 td->update_rusage = 1;
1911                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1912                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1913                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1914                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1915
1916                 rt[i] = mtime_since(&td->start, &ts);
1917                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1918                         td->ts.runtime[DDIR_READ] += rt[i];
1919                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1920                         td->ts.runtime[DDIR_WRITE] += rt[i];
1921                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1922                         td->ts.runtime[DDIR_TRIM] += rt[i];
1923         }
1924
1925         for_each_td(td, i) {
1926                 if (td->runstate >= TD_EXITED)
1927                         continue;
1928                 if (td->rusage_sem) {
1929                         td->update_rusage = 1;
1930                         fio_mutex_down(td->rusage_sem);
1931                 }
1932                 td->update_rusage = 0;
1933         }
1934
1935         __show_run_stats();
1936
1937         for_each_td(td, i) {
1938                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1939                         td->ts.runtime[DDIR_READ] -= rt[i];
1940                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1941                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1942                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1943                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1944         }
1945
1946         free(rt);
1947         fio_mutex_up(stat_mutex);
1948 }
1949
1950 static int status_interval_init;
1951 static struct timespec status_time;
1952 static int status_file_disabled;
1953
1954 #define FIO_STATUS_FILE         "fio-dump-status"
1955
1956 static int check_status_file(void)
1957 {
1958         struct stat sb;
1959         const char *temp_dir;
1960         char fio_status_file_path[PATH_MAX];
1961
1962         if (status_file_disabled)
1963                 return 0;
1964
1965         temp_dir = getenv("TMPDIR");
1966         if (temp_dir == NULL) {
1967                 temp_dir = getenv("TEMP");
1968                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1969                         temp_dir = NULL;
1970         }
1971         if (temp_dir == NULL)
1972                 temp_dir = "/tmp";
1973
1974         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1975
1976         if (stat(fio_status_file_path, &sb))
1977                 return 0;
1978
1979         if (unlink(fio_status_file_path) < 0) {
1980                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1981                                                         strerror(errno));
1982                 log_err("fio: disabling status file updates\n");
1983                 status_file_disabled = 1;
1984         }
1985
1986         return 1;
1987 }
1988
1989 void check_for_running_stats(void)
1990 {
1991         if (status_interval) {
1992                 if (!status_interval_init) {
1993                         fio_gettime(&status_time, NULL);
1994                         status_interval_init = 1;
1995                 } else if (mtime_since_now(&status_time) >= status_interval) {
1996                         show_running_run_stats();
1997                         fio_gettime(&status_time, NULL);
1998                         return;
1999                 }
2000         }
2001         if (check_status_file()) {
2002                 show_running_run_stats();
2003                 return;
2004         }
2005 }
2006
2007 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2008 {
2009         double val = data;
2010         double delta;
2011
2012         if (data > is->max_val)
2013                 is->max_val = data;
2014         if (data < is->min_val)
2015                 is->min_val = data;
2016
2017         delta = val - is->mean.u.f;
2018         if (delta) {
2019                 is->mean.u.f += delta / (is->samples + 1.0);
2020                 is->S.u.f += delta * (val - is->mean.u.f);
2021         }
2022
2023         is->samples++;
2024 }
2025
2026 /*
2027  * Return a struct io_logs, which is added to the tail of the log
2028  * list for 'iolog'.
2029  */
2030 static struct io_logs *get_new_log(struct io_log *iolog)
2031 {
2032         size_t new_size, new_samples;
2033         struct io_logs *cur_log;
2034
2035         /*
2036          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2037          * forever
2038          */
2039         if (!iolog->cur_log_max)
2040                 new_samples = DEF_LOG_ENTRIES;
2041         else {
2042                 new_samples = iolog->cur_log_max * 2;
2043                 if (new_samples > MAX_LOG_ENTRIES)
2044                         new_samples = MAX_LOG_ENTRIES;
2045         }
2046
2047         new_size = new_samples * log_entry_sz(iolog);
2048
2049         cur_log = smalloc(sizeof(*cur_log));
2050         if (cur_log) {
2051                 INIT_FLIST_HEAD(&cur_log->list);
2052                 cur_log->log = malloc(new_size);
2053                 if (cur_log->log) {
2054                         cur_log->nr_samples = 0;
2055                         cur_log->max_samples = new_samples;
2056                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2057                         iolog->cur_log_max = new_samples;
2058                         return cur_log;
2059                 }
2060                 sfree(cur_log);
2061         }
2062
2063         return NULL;
2064 }
2065
2066 /*
2067  * Add and return a new log chunk, or return current log if big enough
2068  */
2069 static struct io_logs *regrow_log(struct io_log *iolog)
2070 {
2071         struct io_logs *cur_log;
2072         int i;
2073
2074         if (!iolog || iolog->disabled)
2075                 goto disable;
2076
2077         cur_log = iolog_cur_log(iolog);
2078         if (!cur_log) {
2079                 cur_log = get_new_log(iolog);
2080                 if (!cur_log)
2081                         return NULL;
2082         }
2083
2084         if (cur_log->nr_samples < cur_log->max_samples)
2085                 return cur_log;
2086
2087         /*
2088          * No room for a new sample. If we're compressing on the fly, flush
2089          * out the current chunk
2090          */
2091         if (iolog->log_gz) {
2092                 if (iolog_cur_flush(iolog, cur_log)) {
2093                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2094                         return NULL;
2095                 }
2096         }
2097
2098         /*
2099          * Get a new log array, and add to our list
2100          */
2101         cur_log = get_new_log(iolog);
2102         if (!cur_log) {
2103                 log_err("fio: failed extending iolog! Will stop logging.\n");
2104                 return NULL;
2105         }
2106
2107         if (!iolog->pending || !iolog->pending->nr_samples)
2108                 return cur_log;
2109
2110         /*
2111          * Flush pending items to new log
2112          */
2113         for (i = 0; i < iolog->pending->nr_samples; i++) {
2114                 struct io_sample *src, *dst;
2115
2116                 src = get_sample(iolog, iolog->pending, i);
2117                 dst = get_sample(iolog, cur_log, i);
2118                 memcpy(dst, src, log_entry_sz(iolog));
2119         }
2120         cur_log->nr_samples = iolog->pending->nr_samples;
2121
2122         iolog->pending->nr_samples = 0;
2123         return cur_log;
2124 disable:
2125         if (iolog)
2126                 iolog->disabled = true;
2127         return NULL;
2128 }
2129
2130 void regrow_logs(struct thread_data *td)
2131 {
2132         regrow_log(td->slat_log);
2133         regrow_log(td->clat_log);
2134         regrow_log(td->clat_hist_log);
2135         regrow_log(td->lat_log);
2136         regrow_log(td->bw_log);
2137         regrow_log(td->iops_log);
2138         td->flags &= ~TD_F_REGROW_LOGS;
2139 }
2140
2141 static struct io_logs *get_cur_log(struct io_log *iolog)
2142 {
2143         struct io_logs *cur_log;
2144
2145         cur_log = iolog_cur_log(iolog);
2146         if (!cur_log) {
2147                 cur_log = get_new_log(iolog);
2148                 if (!cur_log)
2149                         return NULL;
2150         }
2151
2152         if (cur_log->nr_samples < cur_log->max_samples)
2153                 return cur_log;
2154
2155         /*
2156          * Out of space. If we're in IO offload mode, or we're not doing
2157          * per unit logging (hence logging happens outside of the IO thread
2158          * as well), add a new log chunk inline. If we're doing inline
2159          * submissions, flag 'td' as needing a log regrow and we'll take
2160          * care of it on the submission side.
2161          */
2162         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2163             !per_unit_log(iolog))
2164                 return regrow_log(iolog);
2165
2166         iolog->td->flags |= TD_F_REGROW_LOGS;
2167         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2168         return iolog->pending;
2169 }
2170
2171 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2172                              enum fio_ddir ddir, unsigned int bs,
2173                              unsigned long t, uint64_t offset)
2174 {
2175         struct io_logs *cur_log;
2176
2177         if (iolog->disabled)
2178                 return;
2179         if (flist_empty(&iolog->io_logs))
2180                 iolog->avg_last = t;
2181
2182         cur_log = get_cur_log(iolog);
2183         if (cur_log) {
2184                 struct io_sample *s;
2185
2186                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2187
2188                 s->data = data;
2189                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2190                 io_sample_set_ddir(iolog, s, ddir);
2191                 s->bs = bs;
2192
2193                 if (iolog->log_offset) {
2194                         struct io_sample_offset *so = (void *) s;
2195
2196                         so->offset = offset;
2197                 }
2198
2199                 cur_log->nr_samples++;
2200                 return;
2201         }
2202
2203         iolog->disabled = true;
2204 }
2205
2206 static inline void reset_io_stat(struct io_stat *ios)
2207 {
2208         ios->max_val = ios->min_val = ios->samples = 0;
2209         ios->mean.u.f = ios->S.u.f = 0;
2210 }
2211
2212 void reset_io_stats(struct thread_data *td)
2213 {
2214         struct thread_stat *ts = &td->ts;
2215         int i, j;
2216
2217         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2218                 reset_io_stat(&ts->clat_stat[i]);
2219                 reset_io_stat(&ts->slat_stat[i]);
2220                 reset_io_stat(&ts->lat_stat[i]);
2221                 reset_io_stat(&ts->bw_stat[i]);
2222                 reset_io_stat(&ts->iops_stat[i]);
2223
2224                 ts->io_bytes[i] = 0;
2225                 ts->runtime[i] = 0;
2226                 ts->total_io_u[i] = 0;
2227                 ts->short_io_u[i] = 0;
2228                 ts->drop_io_u[i] = 0;
2229
2230                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2231                         ts->io_u_plat[i][j] = 0;
2232         }
2233
2234         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2235                 ts->io_u_map[i] = 0;
2236                 ts->io_u_submit[i] = 0;
2237                 ts->io_u_complete[i] = 0;
2238         }
2239
2240         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2241                 ts->io_u_lat_n[i] = 0;
2242         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2243                 ts->io_u_lat_u[i] = 0;
2244         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2245                 ts->io_u_lat_m[i] = 0;
2246
2247         ts->total_submit = 0;
2248         ts->total_complete = 0;
2249 }
2250
2251 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2252                               unsigned long elapsed, bool log_max)
2253 {
2254         /*
2255          * Note an entry in the log. Use the mean from the logged samples,
2256          * making sure to properly round up. Only write a log entry if we
2257          * had actual samples done.
2258          */
2259         if (iolog->avg_window[ddir].samples) {
2260                 union io_sample_data data;
2261
2262                 if (log_max)
2263                         data.val = iolog->avg_window[ddir].max_val;
2264                 else
2265                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2266
2267                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2268         }
2269
2270         reset_io_stat(&iolog->avg_window[ddir]);
2271 }
2272
2273 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2274                              bool log_max)
2275 {
2276         int ddir;
2277
2278         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2279                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2280 }
2281
2282 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2283                            union io_sample_data data, enum fio_ddir ddir,
2284                            unsigned int bs, uint64_t offset)
2285 {
2286         unsigned long elapsed, this_window;
2287
2288         if (!ddir_rw(ddir))
2289                 return 0;
2290
2291         elapsed = mtime_since_now(&td->epoch);
2292
2293         /*
2294          * If no time averaging, just add the log sample.
2295          */
2296         if (!iolog->avg_msec) {
2297                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2298                 return 0;
2299         }
2300
2301         /*
2302          * Add the sample. If the time period has passed, then
2303          * add that entry to the log and clear.
2304          */
2305         add_stat_sample(&iolog->avg_window[ddir], data.val);
2306
2307         /*
2308          * If period hasn't passed, adding the above sample is all we
2309          * need to do.
2310          */
2311         this_window = elapsed - iolog->avg_last;
2312         if (elapsed < iolog->avg_last)
2313                 return iolog->avg_last - elapsed;
2314         else if (this_window < iolog->avg_msec) {
2315                 int diff = iolog->avg_msec - this_window;
2316
2317                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2318                         return diff;
2319         }
2320
2321         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2322
2323         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2324         return iolog->avg_msec;
2325 }
2326
2327 void finalize_logs(struct thread_data *td, bool unit_logs)
2328 {
2329         unsigned long elapsed;
2330
2331         elapsed = mtime_since_now(&td->epoch);
2332
2333         if (td->clat_log && unit_logs)
2334                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2335         if (td->slat_log && unit_logs)
2336                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2337         if (td->lat_log && unit_logs)
2338                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2339         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2340                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2341         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2342                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2343 }
2344
2345 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2346 {
2347         struct io_log *iolog;
2348
2349         if (!ddir_rw(ddir))
2350                 return;
2351
2352         iolog = agg_io_log[ddir];
2353         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2354 }
2355
2356 static void add_clat_percentile_sample(struct thread_stat *ts,
2357                                 unsigned long long nsec, enum fio_ddir ddir)
2358 {
2359         unsigned int idx = plat_val_to_idx(nsec);
2360         assert(idx < FIO_IO_U_PLAT_NR);
2361
2362         ts->io_u_plat[ddir][idx]++;
2363 }
2364
2365 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2366                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2367 {
2368         unsigned long elapsed, this_window;
2369         struct thread_stat *ts = &td->ts;
2370         struct io_log *iolog = td->clat_hist_log;
2371
2372         td_io_u_lock(td);
2373
2374         add_stat_sample(&ts->clat_stat[ddir], nsec);
2375
2376         if (td->clat_log)
2377                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2378                                offset);
2379
2380         if (ts->clat_percentiles)
2381                 add_clat_percentile_sample(ts, nsec, ddir);
2382
2383         if (iolog && iolog->hist_msec) {
2384                 struct io_hist *hw = &iolog->hist_window[ddir];
2385
2386                 hw->samples++;
2387                 elapsed = mtime_since_now(&td->epoch);
2388                 if (!hw->hist_last)
2389                         hw->hist_last = elapsed;
2390                 this_window = elapsed - hw->hist_last;
2391                 
2392                 if (this_window >= iolog->hist_msec) {
2393                         unsigned int *io_u_plat;
2394                         struct io_u_plat_entry *dst;
2395
2396                         /*
2397                          * Make a byte-for-byte copy of the latency histogram
2398                          * stored in td->ts.io_u_plat[ddir], recording it in a
2399                          * log sample. Note that the matching call to free() is
2400                          * located in iolog.c after printing this sample to the
2401                          * log file.
2402                          */
2403                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2404                         dst = malloc(sizeof(struct io_u_plat_entry));
2405                         memcpy(&(dst->io_u_plat), io_u_plat,
2406                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2407                         flist_add(&dst->list, &hw->list);
2408                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2409                                                 elapsed, offset);
2410
2411                         /*
2412                          * Update the last time we recorded as being now, minus
2413                          * any drift in time we encountered before actually
2414                          * making the record.
2415                          */
2416                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2417                         hw->samples = 0;
2418                 }
2419         }
2420
2421         td_io_u_unlock(td);
2422 }
2423
2424 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2425                      unsigned long usec, unsigned int bs, uint64_t offset)
2426 {
2427         struct thread_stat *ts = &td->ts;
2428
2429         if (!ddir_rw(ddir))
2430                 return;
2431
2432         td_io_u_lock(td);
2433
2434         add_stat_sample(&ts->slat_stat[ddir], usec);
2435
2436         if (td->slat_log)
2437                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2438
2439         td_io_u_unlock(td);
2440 }
2441
2442 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2443                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2444 {
2445         struct thread_stat *ts = &td->ts;
2446
2447         if (!ddir_rw(ddir))
2448                 return;
2449
2450         td_io_u_lock(td);
2451
2452         add_stat_sample(&ts->lat_stat[ddir], nsec);
2453
2454         if (td->lat_log)
2455                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2456                                offset);
2457
2458         td_io_u_unlock(td);
2459 }
2460
2461 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2462                    unsigned int bytes, unsigned long long spent)
2463 {
2464         struct thread_stat *ts = &td->ts;
2465         unsigned long rate;
2466
2467         if (spent)
2468                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2469         else
2470                 rate = 0;
2471
2472         td_io_u_lock(td);
2473
2474         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2475
2476         if (td->bw_log)
2477                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2478                                bytes, io_u->offset);
2479
2480         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2481         td_io_u_unlock(td);
2482 }
2483
2484 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2485                          struct timespec *t, unsigned int avg_time,
2486                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2487                          struct io_stat *stat, struct io_log *log,
2488                          bool is_kb)
2489 {
2490         unsigned long spent, rate;
2491         enum fio_ddir ddir;
2492         unsigned int next, next_log;
2493
2494         next_log = avg_time;
2495
2496         spent = mtime_since(parent_tv, t);
2497         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2498                 return avg_time - spent;
2499
2500         td_io_u_lock(td);
2501
2502         /*
2503          * Compute both read and write rates for the interval.
2504          */
2505         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2506                 uint64_t delta;
2507
2508                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2509                 if (!delta)
2510                         continue; /* No entries for interval */
2511
2512                 if (spent) {
2513                         if (is_kb)
2514                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2515                         else
2516                                 rate = (delta * 1000) / spent;
2517                 } else
2518                         rate = 0;
2519
2520                 add_stat_sample(&stat[ddir], rate);
2521
2522                 if (log) {
2523                         unsigned int bs = 0;
2524
2525                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2526                                 bs = td->o.min_bs[ddir];
2527
2528                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2529                         next_log = min(next_log, next);
2530                 }
2531
2532                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2533         }
2534
2535         timespec_add_msec(parent_tv, avg_time);
2536
2537         td_io_u_unlock(td);
2538
2539         if (spent <= avg_time)
2540                 next = avg_time;
2541         else
2542                 next = avg_time - (1 + spent - avg_time);
2543
2544         return min(next, next_log);
2545 }
2546
2547 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2548 {
2549         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2550                                 td->this_io_bytes, td->stat_io_bytes,
2551                                 td->ts.bw_stat, td->bw_log, true);
2552 }
2553
2554 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2555                      unsigned int bytes)
2556 {
2557         struct thread_stat *ts = &td->ts;
2558
2559         td_io_u_lock(td);
2560
2561         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2562
2563         if (td->iops_log)
2564                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2565                                bytes, io_u->offset);
2566
2567         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2568         td_io_u_unlock(td);
2569 }
2570
2571 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2572 {
2573         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2574                                 td->this_io_blocks, td->stat_io_blocks,
2575                                 td->ts.iops_stat, td->iops_log, false);
2576 }
2577
2578 /*
2579  * Returns msecs to next event
2580  */
2581 int calc_log_samples(void)
2582 {
2583         struct thread_data *td;
2584         unsigned int next = ~0U, tmp;
2585         struct timespec now;
2586         int i;
2587
2588         fio_gettime(&now, NULL);
2589
2590         for_each_td(td, i) {
2591                 if (!td->o.stats)
2592                         continue;
2593                 if (in_ramp_time(td) ||
2594                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2595                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2596                         continue;
2597                 }
2598                 if (!td->bw_log ||
2599                         (td->bw_log && !per_unit_log(td->bw_log))) {
2600                         tmp = add_bw_samples(td, &now);
2601                         if (tmp < next)
2602                                 next = tmp;
2603                 }
2604                 if (!td->iops_log ||
2605                         (td->iops_log && !per_unit_log(td->iops_log))) {
2606                         tmp = add_iops_samples(td, &now);
2607                         if (tmp < next)
2608                                 next = tmp;
2609                 }
2610         }
2611
2612         return next == ~0U ? 0 : next;
2613 }
2614
2615 void stat_init(void)
2616 {
2617         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2618 }
2619
2620 void stat_exit(void)
2621 {
2622         /*
2623          * When we have the mutex, we know out-of-band access to it
2624          * have ended.
2625          */
2626         fio_mutex_down(stat_mutex);
2627         fio_mutex_remove(stat_mutex);
2628 }
2629
2630 /*
2631  * Called from signal handler. Wake up status thread.
2632  */
2633 void show_running_run_stats(void)
2634 {
2635         helper_do_stat();
2636 }
2637
2638 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2639 {
2640         /* Ignore io_u's which span multiple blocks--they will just get
2641          * inaccurate counts. */
2642         int idx = (io_u->offset - io_u->file->file_offset)
2643                         / td->o.bs[DDIR_TRIM];
2644         uint32_t *info = &td->ts.block_infos[idx];
2645         assert(idx < td->ts.nr_block_infos);
2646         return info;
2647 }