Reduce LOG_MSEC_SLACK
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  1
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits;
104         unsigned long long k, base;
105
106         assert(idx < FIO_IO_U_PLAT_NR);
107
108         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
109          * all bits of the sample as index */
110         if (idx < (FIO_IO_U_PLAT_VAL << 1))
111                 return idx;
112
113         /* Find the group and compute the minimum value of that group */
114         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
115         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116
117         /* Find its bucket number of the group */
118         k = idx % FIO_IO_U_PLAT_VAL;
119
120         /* Return the mean of the range of the bucket */
121         return base + ((k + 0.5) * (1 << error_bits));
122 }
123
124 static int double_cmp(const void *a, const void *b)
125 {
126         const fio_fp64_t fa = *(const fio_fp64_t *) a;
127         const fio_fp64_t fb = *(const fio_fp64_t *) b;
128         int cmp = 0;
129
130         if (fa.u.f > fb.u.f)
131                 cmp = 1;
132         else if (fa.u.f < fb.u.f)
133                 cmp = -1;
134
135         return cmp;
136 }
137
138 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
139                                    fio_fp64_t *plist, unsigned long long **output,
140                                    unsigned long long *maxv, unsigned long long *minv)
141 {
142         unsigned long long sum = 0;
143         unsigned int len, i, j = 0;
144         unsigned int oval_len = 0;
145         unsigned long long *ovals = NULL;
146         bool is_last;
147
148         *minv = -1ULL;
149         *maxv = 0;
150
151         len = 0;
152         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
153                 len++;
154
155         if (!len)
156                 return 0;
157
158         /*
159          * Sort the percentile list. Note that it may already be sorted if
160          * we are using the default values, but since it's a short list this
161          * isn't a worry. Also note that this does not work for NaN values.
162          */
163         if (len > 1)
164                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
165
166         /*
167          * Calculate bucket values, note down max and min values
168          */
169         is_last = false;
170         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
171                 sum += io_u_plat[i];
172                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
173                         assert(plist[j].u.f <= 100.0);
174
175                         if (j == oval_len) {
176                                 oval_len += 100;
177                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
178                         }
179
180                         ovals[j] = plat_idx_to_val(i);
181                         if (ovals[j] < *minv)
182                                 *minv = ovals[j];
183                         if (ovals[j] > *maxv)
184                                 *maxv = ovals[j];
185
186                         is_last = (j == len - 1) != 0;
187                         if (is_last)
188                                 break;
189
190                         j++;
191                 }
192         }
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   const char *pre, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         bool is_last;
210         char fmt[32];
211
212         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
213         if (!len || !ovals)
214                 goto out;
215
216         /*
217          * We default to nsecs, but if the value range is such that we
218          * should scale down to usecs or msecs, do that.
219          */
220         if (minv > 2000000 && maxv > 99999999ULL) {
221                 scale_down = 2;
222                 divisor = 1000000;
223                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
224         } else if (minv > 2000 && maxv > 99999) {
225                 scale_down = 1;
226                 divisor = 1000;
227                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
228         } else {
229                 scale_down = 0;
230                 divisor = 1;
231                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
232         }
233
234
235         time_width = max(5, (int) (log10(maxv / divisor) + 1));
236         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237                         precision, time_width);
238         /* fmt will be something like " %5.2fth=[%4llu]%c" */
239         per_line = (80 - 7) / (precision + 10 + time_width);
240
241         for (j = 0; j < len; j++) {
242                 /* for formatting */
243                 if (j != 0 && (j % per_line) == 0)
244                         log_buf(out, "     |");
245
246                 /* end of the list */
247                 is_last = (j == len - 1) != 0;
248
249                 for (i = 0; i < scale_down; i++)
250                         ovals[j] = (ovals[j] + 999) / 1000;
251
252                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
253
254                 if (is_last)
255                         break;
256
257                 if ((j % per_line) == per_line - 1)     /* for formatting */
258                         log_buf(out, "\n");
259         }
260
261 out:
262         if (ovals)
263                 free(ovals);
264 }
265
266 bool calc_lat(struct io_stat *is, unsigned long long *min,
267               unsigned long long *max, double *mean, double *dev)
268 {
269         double n = (double) is->samples;
270
271         if (n == 0)
272                 return false;
273
274         *min = is->min_val;
275         *max = is->max_val;
276         *mean = is->mean.u.f;
277
278         if (n > 1.0)
279                 *dev = sqrt(is->S.u.f / (n - 1.0));
280         else
281                 *dev = 0;
282
283         return true;
284 }
285
286 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
287 {
288         char *io, *agg, *min, *max;
289         char *ioalt, *aggalt, *minalt, *maxalt;
290         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
291         int i;
292
293         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
294
295         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
296                 const int i2p = is_power_of_2(rs->kb_base);
297
298                 if (!rs->max_run[i])
299                         continue;
300
301                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
302                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
303                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
304                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
308                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
309                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
310                                 rs->unified_rw_rep ? "  MIXED" : str[i],
311                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
312                                 (unsigned long long) rs->min_run[i],
313                                 (unsigned long long) rs->max_run[i]);
314
315                 free(io);
316                 free(agg);
317                 free(min);
318                 free(max);
319                 free(ioalt);
320                 free(aggalt);
321                 free(minalt);
322                 free(maxalt);
323         }
324 }
325
326 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
327 {
328         int i;
329
330         /*
331          * Do depth distribution calculations
332          */
333         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
334                 if (total) {
335                         io_u_dist[i] = (double) map[i] / (double) total;
336                         io_u_dist[i] *= 100.0;
337                         if (io_u_dist[i] < 0.1 && map[i])
338                                 io_u_dist[i] = 0.1;
339                 } else
340                         io_u_dist[i] = 0.0;
341         }
342 }
343
344 static void stat_calc_lat(struct thread_stat *ts, double *dst,
345                           uint64_t *src, int nr)
346 {
347         unsigned long total = ddir_rw_sum(ts->total_io_u);
348         int i;
349
350         /*
351          * Do latency distribution calculations
352          */
353         for (i = 0; i < nr; i++) {
354                 if (total) {
355                         dst[i] = (double) src[i] / (double) total;
356                         dst[i] *= 100.0;
357                         if (dst[i] < 0.01 && src[i])
358                                 dst[i] = 0.01;
359                 } else
360                         dst[i] = 0.0;
361         }
362 }
363
364 /*
365  * To keep the terse format unaltered, add all of the ns latency
366  * buckets to the first us latency bucket
367  */
368 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
369 {
370         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
371         int i;
372
373         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
374
375         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
376                 ntotal += ts->io_u_lat_n[i];
377
378         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
379 }
380
381 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
382 {
383         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
384 }
385
386 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
387 {
388         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
389 }
390
391 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
392 {
393         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
394 }
395
396 static void display_lat(const char *name, unsigned long long min,
397                         unsigned long long max, double mean, double dev,
398                         struct buf_output *out)
399 {
400         const char *base = "(nsec)";
401         char *minp, *maxp;
402
403         if (nsec_to_msec(&min, &max, &mean, &dev))
404                 base = "(msec)";
405         else if (nsec_to_usec(&min, &max, &mean, &dev))
406                 base = "(usec)";
407
408         minp = num2str(min, 6, 1, 0, N2S_NONE);
409         maxp = num2str(max, 6, 1, 0, N2S_NONE);
410
411         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
412                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
413
414         free(minp);
415         free(maxp);
416 }
417
418 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
419                              int ddir, struct buf_output *out)
420 {
421         const char *str[] = { " read", "write", " trim", "sync" };
422         unsigned long runt;
423         unsigned long long min, max, bw, iops;
424         double mean, dev;
425         char *io_p, *bw_p, *bw_p_alt, *iops_p;
426         int i2p;
427
428         if (ddir_sync(ddir)) {
429                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
430                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
431                         display_lat(str[ddir], min, max, mean, dev, out);
432                         show_clat_percentiles(ts->io_u_sync_plat,
433                                                 ts->sync_stat.samples,
434                                                 ts->percentile_list,
435                                                 ts->percentile_precision,
436                                                 str[ddir], out);
437                 }
438                 return;
439         }
440
441         assert(ddir_rw(ddir));
442
443         if (!ts->runtime[ddir])
444                 return;
445
446         i2p = is_power_of_2(rs->kb_base);
447         runt = ts->runtime[ddir];
448
449         bw = (1000 * ts->io_bytes[ddir]) / runt;
450         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
451         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
452         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
453
454         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
455         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
456
457         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
458                         rs->unified_rw_rep ? "mixed" : str[ddir],
459                         iops_p, bw_p, bw_p_alt, io_p,
460                         (unsigned long long) ts->runtime[ddir]);
461
462         free(io_p);
463         free(bw_p);
464         free(bw_p_alt);
465         free(iops_p);
466
467         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
468                 display_lat("slat", min, max, mean, dev, out);
469         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
470                 display_lat("clat", min, max, mean, dev, out);
471         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
472                 display_lat(" lat", min, max, mean, dev, out);
473
474         if (ts->clat_percentiles || ts->lat_percentiles) {
475                 const char *name = ts->clat_percentiles ? "clat" : " lat";
476                 uint64_t samples;
477
478                 if (ts->clat_percentiles)
479                         samples = ts->clat_stat[ddir].samples;
480                 else
481                         samples = ts->lat_stat[ddir].samples;
482
483                 show_clat_percentiles(ts->io_u_plat[ddir],
484                                         samples,
485                                         ts->percentile_list,
486                                         ts->percentile_precision, name, out);
487         }
488         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
489                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
490                 const char *bw_str;
491
492                 if ((rs->unit_base == 1) && i2p)
493                         bw_str = "Kibit";
494                 else if (rs->unit_base == 1)
495                         bw_str = "kbit";
496                 else if (i2p)
497                         bw_str = "KiB";
498                 else
499                         bw_str = "kB";
500
501                 if (rs->agg[ddir]) {
502                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
503                         if (p_of_agg > 100.0)
504                                 p_of_agg = 100.0;
505                 }
506
507                 if (rs->unit_base == 1) {
508                         min *= 8.0;
509                         max *= 8.0;
510                         mean *= 8.0;
511                         dev *= 8.0;
512                 }
513
514                 if (mean > fkb_base * fkb_base) {
515                         min /= fkb_base;
516                         max /= fkb_base;
517                         mean /= fkb_base;
518                         dev /= fkb_base;
519                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
520                 }
521
522                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
523                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
524                         bw_str, min, max, p_of_agg, mean, dev,
525                         (&ts->bw_stat[ddir])->samples);
526         }
527         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
528                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
529                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
530                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
531         }
532 }
533
534 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
535                      const char *msg, struct buf_output *out)
536 {
537         bool new_line = true, shown = false;
538         int i, line = 0;
539
540         for (i = 0; i < nr; i++) {
541                 if (io_u_lat[i] <= 0.0)
542                         continue;
543                 shown = true;
544                 if (new_line) {
545                         if (line)
546                                 log_buf(out, "\n");
547                         log_buf(out, "  lat (%s)   : ", msg);
548                         new_line = false;
549                         line = 0;
550                 }
551                 if (line)
552                         log_buf(out, ", ");
553                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
554                 line++;
555                 if (line == 5)
556                         new_line = true;
557         }
558
559         if (shown)
560                 log_buf(out, "\n");
561
562         return true;
563 }
564
565 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
566 {
567         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
568                                  "250=", "500=", "750=", "1000=", };
569
570         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
571 }
572
573 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
574 {
575         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
576                                  "250=", "500=", "750=", "1000=", };
577
578         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
579 }
580
581 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
582 {
583         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
584                                  "250=", "500=", "750=", "1000=", "2000=",
585                                  ">=2000=", };
586
587         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
588 }
589
590 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
591 {
592         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
593         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
594         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
595
596         stat_calc_lat_n(ts, io_u_lat_n);
597         stat_calc_lat_u(ts, io_u_lat_u);
598         stat_calc_lat_m(ts, io_u_lat_m);
599
600         show_lat_n(io_u_lat_n, out);
601         show_lat_u(io_u_lat_u, out);
602         show_lat_m(io_u_lat_m, out);
603 }
604
605 static int block_state_category(int block_state)
606 {
607         switch (block_state) {
608         case BLOCK_STATE_UNINIT:
609                 return 0;
610         case BLOCK_STATE_TRIMMED:
611         case BLOCK_STATE_WRITTEN:
612                 return 1;
613         case BLOCK_STATE_WRITE_FAILURE:
614         case BLOCK_STATE_TRIM_FAILURE:
615                 return 2;
616         default:
617                 /* Silence compile warning on some BSDs and have a return */
618                 assert(0);
619                 return -1;
620         }
621 }
622
623 static int compare_block_infos(const void *bs1, const void *bs2)
624 {
625         uint32_t block1 = *(uint32_t *)bs1;
626         uint32_t block2 = *(uint32_t *)bs2;
627         int state1 = BLOCK_INFO_STATE(block1);
628         int state2 = BLOCK_INFO_STATE(block2);
629         int bscat1 = block_state_category(state1);
630         int bscat2 = block_state_category(state2);
631         int cycles1 = BLOCK_INFO_TRIMS(block1);
632         int cycles2 = BLOCK_INFO_TRIMS(block2);
633
634         if (bscat1 < bscat2)
635                 return -1;
636         if (bscat1 > bscat2)
637                 return 1;
638
639         if (cycles1 < cycles2)
640                 return -1;
641         if (cycles1 > cycles2)
642                 return 1;
643
644         if (state1 < state2)
645                 return -1;
646         if (state1 > state2)
647                 return 1;
648
649         assert(block1 == block2);
650         return 0;
651 }
652
653 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
654                                   fio_fp64_t *plist, unsigned int **percentiles,
655                                   unsigned int *types)
656 {
657         int len = 0;
658         int i, nr_uninit;
659
660         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
661
662         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
663                 len++;
664
665         if (!len)
666                 return 0;
667
668         /*
669          * Sort the percentile list. Note that it may already be sorted if
670          * we are using the default values, but since it's a short list this
671          * isn't a worry. Also note that this does not work for NaN values.
672          */
673         if (len > 1)
674                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
675
676         nr_uninit = 0;
677         /* Start only after the uninit entries end */
678         for (nr_uninit = 0;
679              nr_uninit < nr_block_infos
680                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
681              nr_uninit ++)
682                 ;
683
684         if (nr_uninit == nr_block_infos)
685                 return 0;
686
687         *percentiles = calloc(len, sizeof(**percentiles));
688
689         for (i = 0; i < len; i++) {
690                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
691                                 + nr_uninit;
692                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
693         }
694
695         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
696         for (i = 0; i < nr_block_infos; i++)
697                 types[BLOCK_INFO_STATE(block_infos[i])]++;
698
699         return len;
700 }
701
702 static const char *block_state_names[] = {
703         [BLOCK_STATE_UNINIT] = "unwritten",
704         [BLOCK_STATE_TRIMMED] = "trimmed",
705         [BLOCK_STATE_WRITTEN] = "written",
706         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
707         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
708 };
709
710 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
711                              fio_fp64_t *plist, struct buf_output *out)
712 {
713         int len, pos, i;
714         unsigned int *percentiles = NULL;
715         unsigned int block_state_counts[BLOCK_STATE_COUNT];
716
717         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
718                                      &percentiles, block_state_counts);
719
720         log_buf(out, "  block lifetime percentiles :\n   |");
721         pos = 0;
722         for (i = 0; i < len; i++) {
723                 uint32_t block_info = percentiles[i];
724 #define LINE_LENGTH     75
725                 char str[LINE_LENGTH];
726                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
727                                      plist[i].u.f, block_info,
728                                      i == len - 1 ? '\n' : ',');
729                 assert(strln < LINE_LENGTH);
730                 if (pos + strln > LINE_LENGTH) {
731                         pos = 0;
732                         log_buf(out, "\n   |");
733                 }
734                 log_buf(out, "%s", str);
735                 pos += strln;
736 #undef LINE_LENGTH
737         }
738         if (percentiles)
739                 free(percentiles);
740
741         log_buf(out, "        states               :");
742         for (i = 0; i < BLOCK_STATE_COUNT; i++)
743                 log_buf(out, " %s=%u%c",
744                          block_state_names[i], block_state_counts[i],
745                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
746 }
747
748 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
749 {
750         char *p1, *p1alt, *p2;
751         unsigned long long bw_mean, iops_mean;
752         const int i2p = is_power_of_2(ts->kb_base);
753
754         if (!ts->ss_dur)
755                 return;
756
757         bw_mean = steadystate_bw_mean(ts);
758         iops_mean = steadystate_iops_mean(ts);
759
760         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
761         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
762         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
763
764         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
765                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
766                 p1, p1alt, p2,
767                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
768                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
769                 ts->ss_criterion.u.f,
770                 ts->ss_state & FIO_SS_PCT ? "%" : "");
771
772         free(p1);
773         free(p1alt);
774         free(p2);
775 }
776
777 static void show_thread_status_normal(struct thread_stat *ts,
778                                       struct group_run_stats *rs,
779                                       struct buf_output *out)
780 {
781         double usr_cpu, sys_cpu;
782         unsigned long runtime;
783         double io_u_dist[FIO_IO_U_MAP_NR];
784         time_t time_p;
785         char time_buf[32];
786
787         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
788                 return;
789                 
790         memset(time_buf, 0, sizeof(time_buf));
791
792         time(&time_p);
793         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
794
795         if (!ts->error) {
796                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
797                                         ts->name, ts->groupid, ts->members,
798                                         ts->error, (int) ts->pid, time_buf);
799         } else {
800                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
801                                         ts->name, ts->groupid, ts->members,
802                                         ts->error, ts->verror, (int) ts->pid,
803                                         time_buf);
804         }
805
806         if (strlen(ts->description))
807                 log_buf(out, "  Description  : [%s]\n", ts->description);
808
809         if (ts->io_bytes[DDIR_READ])
810                 show_ddir_status(rs, ts, DDIR_READ, out);
811         if (ts->io_bytes[DDIR_WRITE])
812                 show_ddir_status(rs, ts, DDIR_WRITE, out);
813         if (ts->io_bytes[DDIR_TRIM])
814                 show_ddir_status(rs, ts, DDIR_TRIM, out);
815
816         show_latencies(ts, out);
817
818         if (ts->sync_stat.samples)
819                 show_ddir_status(rs, ts, DDIR_SYNC, out);
820
821         runtime = ts->total_run_time;
822         if (runtime) {
823                 double runt = (double) runtime;
824
825                 usr_cpu = (double) ts->usr_time * 100 / runt;
826                 sys_cpu = (double) ts->sys_time * 100 / runt;
827         } else {
828                 usr_cpu = 0;
829                 sys_cpu = 0;
830         }
831
832         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
833                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
834                         (unsigned long long) ts->ctx,
835                         (unsigned long long) ts->majf,
836                         (unsigned long long) ts->minf);
837
838         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
839         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
840                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
841                                         io_u_dist[1], io_u_dist[2],
842                                         io_u_dist[3], io_u_dist[4],
843                                         io_u_dist[5], io_u_dist[6]);
844
845         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
846         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
847                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
848                                         io_u_dist[1], io_u_dist[2],
849                                         io_u_dist[3], io_u_dist[4],
850                                         io_u_dist[5], io_u_dist[6]);
851         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
852         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
853                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
854                                         io_u_dist[1], io_u_dist[2],
855                                         io_u_dist[3], io_u_dist[4],
856                                         io_u_dist[5], io_u_dist[6]);
857         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
858                                  " short=%llu,%llu,%llu,0"
859                                  " dropped=%llu,%llu,%llu,0\n",
860                                         (unsigned long long) ts->total_io_u[0],
861                                         (unsigned long long) ts->total_io_u[1],
862                                         (unsigned long long) ts->total_io_u[2],
863                                         (unsigned long long) ts->total_io_u[3],
864                                         (unsigned long long) ts->short_io_u[0],
865                                         (unsigned long long) ts->short_io_u[1],
866                                         (unsigned long long) ts->short_io_u[2],
867                                         (unsigned long long) ts->drop_io_u[0],
868                                         (unsigned long long) ts->drop_io_u[1],
869                                         (unsigned long long) ts->drop_io_u[2]);
870         if (ts->continue_on_error) {
871                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
872                                         (unsigned long long)ts->total_err_count,
873                                         ts->first_error,
874                                         strerror(ts->first_error));
875         }
876         if (ts->latency_depth) {
877                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
878                                         (unsigned long long)ts->latency_target,
879                                         (unsigned long long)ts->latency_window,
880                                         ts->latency_percentile.u.f,
881                                         ts->latency_depth);
882         }
883
884         if (ts->nr_block_infos)
885                 show_block_infos(ts->nr_block_infos, ts->block_infos,
886                                   ts->percentile_list, out);
887
888         if (ts->ss_dur)
889                 show_ss_normal(ts, out);
890 }
891
892 static void show_ddir_status_terse(struct thread_stat *ts,
893                                    struct group_run_stats *rs, int ddir,
894                                    int ver, struct buf_output *out)
895 {
896         unsigned long long min, max, minv, maxv, bw, iops;
897         unsigned long long *ovals = NULL;
898         double mean, dev;
899         unsigned int len;
900         int i, bw_stat;
901
902         assert(ddir_rw(ddir));
903
904         iops = bw = 0;
905         if (ts->runtime[ddir]) {
906                 uint64_t runt = ts->runtime[ddir];
907
908                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
909                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
910         }
911
912         log_buf(out, ";%llu;%llu;%llu;%llu",
913                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
914                                         (unsigned long long) ts->runtime[ddir]);
915
916         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
917                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
918         else
919                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
920
921         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
922                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
923         else
924                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
925
926         if (ts->clat_percentiles || ts->lat_percentiles) {
927                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
928                                         ts->clat_stat[ddir].samples,
929                                         ts->percentile_list, &ovals, &maxv,
930                                         &minv);
931         } else
932                 len = 0;
933
934         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
935                 if (i >= len) {
936                         log_buf(out, ";0%%=0");
937                         continue;
938                 }
939                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
940         }
941
942         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
943                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
944         else
945                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
946
947         if (ovals)
948                 free(ovals);
949
950         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
951         if (bw_stat) {
952                 double p_of_agg = 100.0;
953
954                 if (rs->agg[ddir]) {
955                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
956                         if (p_of_agg > 100.0)
957                                 p_of_agg = 100.0;
958                 }
959
960                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
961         } else
962                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
963
964         if (ver == 5) {
965                 if (bw_stat)
966                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
967                 else
968                         log_buf(out, ";%lu", 0UL);
969
970                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
971                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
972                                 mean, dev, (&ts->iops_stat[ddir])->samples);
973                 else
974                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
975         }
976 }
977
978 static void add_ddir_status_json(struct thread_stat *ts,
979                 struct group_run_stats *rs, int ddir, struct json_object *parent)
980 {
981         unsigned long long min, max, minv, maxv;
982         unsigned long long bw_bytes, bw;
983         unsigned long long *ovals = NULL;
984         double mean, dev, iops;
985         unsigned int len;
986         int i;
987         const char *ddirname[] = { "read", "write", "trim", "sync" };
988         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
989         char buf[120];
990         double p_of_agg = 100.0;
991
992         assert(ddir_rw(ddir) || ddir_sync(ddir));
993
994         if (ts->unified_rw_rep && ddir != DDIR_READ)
995                 return;
996
997         dir_object = json_create_object();
998         json_object_add_value_object(parent,
999                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
1000
1001         if (ddir_rw(ddir)) {
1002                 bw_bytes = 0;
1003                 bw = 0;
1004                 iops = 0.0;
1005                 if (ts->runtime[ddir]) {
1006                         uint64_t runt = ts->runtime[ddir];
1007
1008                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1009                         bw = bw_bytes / 1024; /* KiB/s */
1010                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1011                 }
1012
1013                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1014                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1015                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1016                 json_object_add_value_int(dir_object, "bw", bw);
1017                 json_object_add_value_float(dir_object, "iops", iops);
1018                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1019                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1020                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1021                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1022
1023                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1024                         min = max = 0;
1025                         mean = dev = 0.0;
1026                 }
1027                 tmp_object = json_create_object();
1028                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1029                 json_object_add_value_int(tmp_object, "min", min);
1030                 json_object_add_value_int(tmp_object, "max", max);
1031                 json_object_add_value_float(tmp_object, "mean", mean);
1032                 json_object_add_value_float(tmp_object, "stddev", dev);
1033
1034                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1035                         min = max = 0;
1036                         mean = dev = 0.0;
1037                 }
1038                 tmp_object = json_create_object();
1039                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1040                 json_object_add_value_int(tmp_object, "min", min);
1041                 json_object_add_value_int(tmp_object, "max", max);
1042                 json_object_add_value_float(tmp_object, "mean", mean);
1043                 json_object_add_value_float(tmp_object, "stddev", dev);
1044         } else {
1045                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1046                         min = max = 0;
1047                         mean = dev = 0.0;
1048                 }
1049
1050                 tmp_object = json_create_object();
1051                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1052                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1053                 json_object_add_value_int(tmp_object, "min", min);
1054                 json_object_add_value_int(tmp_object, "max", max);
1055                 json_object_add_value_float(tmp_object, "mean", mean);
1056                 json_object_add_value_float(tmp_object, "stddev", dev);
1057         }
1058
1059         if (ts->clat_percentiles || ts->lat_percentiles) {
1060                 if (ddir_rw(ddir)) {
1061                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1062                                         ts->clat_stat[ddir].samples,
1063                                         ts->percentile_list, &ovals, &maxv,
1064                                         &minv);
1065                 } else {
1066                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1067                                         ts->sync_stat.samples,
1068                                         ts->percentile_list, &ovals, &maxv,
1069                                         &minv);
1070                 }
1071
1072                 if (len > FIO_IO_U_LIST_MAX_LEN)
1073                         len = FIO_IO_U_LIST_MAX_LEN;
1074         } else
1075                 len = 0;
1076
1077         percentile_object = json_create_object();
1078         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1079         for (i = 0; i < len; i++) {
1080                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1081                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1082         }
1083
1084         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1085                 clat_bins_object = json_create_object();
1086                 if (ts->clat_percentiles)
1087                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1088
1089                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1090                         if (ddir_rw(ddir)) {
1091                                 if (ts->io_u_plat[ddir][i]) {
1092                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1093                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1094                                 }
1095                         } else {
1096                                 if (ts->io_u_sync_plat[i]) {
1097                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1098                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1099                                 }
1100                         }
1101                 }
1102         }
1103
1104         if (!ddir_rw(ddir))
1105                 return;
1106
1107         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1108                 min = max = 0;
1109                 mean = dev = 0.0;
1110         }
1111         tmp_object = json_create_object();
1112         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1113         json_object_add_value_int(tmp_object, "min", min);
1114         json_object_add_value_int(tmp_object, "max", max);
1115         json_object_add_value_float(tmp_object, "mean", mean);
1116         json_object_add_value_float(tmp_object, "stddev", dev);
1117         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1118                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1119
1120         if (ovals)
1121                 free(ovals);
1122
1123         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1124                 if (rs->agg[ddir]) {
1125                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1126                         if (p_of_agg > 100.0)
1127                                 p_of_agg = 100.0;
1128                 }
1129         } else {
1130                 min = max = 0;
1131                 p_of_agg = mean = dev = 0.0;
1132         }
1133         json_object_add_value_int(dir_object, "bw_min", min);
1134         json_object_add_value_int(dir_object, "bw_max", max);
1135         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1136         json_object_add_value_float(dir_object, "bw_mean", mean);
1137         json_object_add_value_float(dir_object, "bw_dev", dev);
1138         json_object_add_value_int(dir_object, "bw_samples",
1139                                 (&ts->bw_stat[ddir])->samples);
1140
1141         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1142                 min = max = 0;
1143                 mean = dev = 0.0;
1144         }
1145         json_object_add_value_int(dir_object, "iops_min", min);
1146         json_object_add_value_int(dir_object, "iops_max", max);
1147         json_object_add_value_float(dir_object, "iops_mean", mean);
1148         json_object_add_value_float(dir_object, "iops_stddev", dev);
1149         json_object_add_value_int(dir_object, "iops_samples",
1150                                 (&ts->iops_stat[ddir])->samples);
1151 }
1152
1153 static void show_thread_status_terse_all(struct thread_stat *ts,
1154                                          struct group_run_stats *rs, int ver,
1155                                          struct buf_output *out)
1156 {
1157         double io_u_dist[FIO_IO_U_MAP_NR];
1158         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1159         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1160         double usr_cpu, sys_cpu;
1161         int i;
1162
1163         /* General Info */
1164         if (ver == 2)
1165                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1166         else
1167                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1168                         ts->name, ts->groupid, ts->error);
1169
1170         /* Log Read Status */
1171         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1172         /* Log Write Status */
1173         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1174         /* Log Trim Status */
1175         if (ver == 2 || ver == 4 || ver == 5)
1176                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1177
1178         /* CPU Usage */
1179         if (ts->total_run_time) {
1180                 double runt = (double) ts->total_run_time;
1181
1182                 usr_cpu = (double) ts->usr_time * 100 / runt;
1183                 sys_cpu = (double) ts->sys_time * 100 / runt;
1184         } else {
1185                 usr_cpu = 0;
1186                 sys_cpu = 0;
1187         }
1188
1189         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1190                                                 (unsigned long long) ts->ctx,
1191                                                 (unsigned long long) ts->majf,
1192                                                 (unsigned long long) ts->minf);
1193
1194         /* Calc % distribution of IO depths, usecond, msecond latency */
1195         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1196         stat_calc_lat_nu(ts, io_u_lat_u);
1197         stat_calc_lat_m(ts, io_u_lat_m);
1198
1199         /* Only show fixed 7 I/O depth levels*/
1200         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1201                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1202                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1203
1204         /* Microsecond latency */
1205         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1206                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1207         /* Millisecond latency */
1208         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1209                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1210
1211         /* disk util stats, if any */
1212         if (ver >= 3)
1213                 show_disk_util(1, NULL, out);
1214
1215         /* Additional output if continue_on_error set - default off*/
1216         if (ts->continue_on_error)
1217                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1218         if (ver == 2)
1219                 log_buf(out, "\n");
1220
1221         /* Additional output if description is set */
1222         if (strlen(ts->description))
1223                 log_buf(out, ";%s", ts->description);
1224
1225         log_buf(out, "\n");
1226 }
1227
1228 static void json_add_job_opts(struct json_object *root, const char *name,
1229                               struct flist_head *opt_list)
1230 {
1231         struct json_object *dir_object;
1232         struct flist_head *entry;
1233         struct print_option *p;
1234
1235         if (flist_empty(opt_list))
1236                 return;
1237
1238         dir_object = json_create_object();
1239         json_object_add_value_object(root, name, dir_object);
1240
1241         flist_for_each(entry, opt_list) {
1242                 const char *pos = "";
1243
1244                 p = flist_entry(entry, struct print_option, list);
1245                 if (p->value)
1246                         pos = p->value;
1247                 json_object_add_value_string(dir_object, p->name, pos);
1248         }
1249 }
1250
1251 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1252                                                    struct group_run_stats *rs,
1253                                                    struct flist_head *opt_list)
1254 {
1255         struct json_object *root, *tmp;
1256         struct jobs_eta *je;
1257         double io_u_dist[FIO_IO_U_MAP_NR];
1258         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1259         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1260         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1261         double usr_cpu, sys_cpu;
1262         int i;
1263         size_t size;
1264
1265         root = json_create_object();
1266         json_object_add_value_string(root, "jobname", ts->name);
1267         json_object_add_value_int(root, "groupid", ts->groupid);
1268         json_object_add_value_int(root, "error", ts->error);
1269
1270         /* ETA Info */
1271         je = get_jobs_eta(true, &size);
1272         if (je) {
1273                 json_object_add_value_int(root, "eta", je->eta_sec);
1274                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1275         }
1276
1277         if (opt_list)
1278                 json_add_job_opts(root, "job options", opt_list);
1279
1280         add_ddir_status_json(ts, rs, DDIR_READ, root);
1281         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1282         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1283         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1284
1285         /* CPU Usage */
1286         if (ts->total_run_time) {
1287                 double runt = (double) ts->total_run_time;
1288
1289                 usr_cpu = (double) ts->usr_time * 100 / runt;
1290                 sys_cpu = (double) ts->sys_time * 100 / runt;
1291         } else {
1292                 usr_cpu = 0;
1293                 sys_cpu = 0;
1294         }
1295         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1296         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1297         json_object_add_value_int(root, "ctx", ts->ctx);
1298         json_object_add_value_int(root, "majf", ts->majf);
1299         json_object_add_value_int(root, "minf", ts->minf);
1300
1301
1302         /* Calc % distribution of IO depths, usecond, msecond latency */
1303         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1304         stat_calc_lat_n(ts, io_u_lat_n);
1305         stat_calc_lat_u(ts, io_u_lat_u);
1306         stat_calc_lat_m(ts, io_u_lat_m);
1307
1308         tmp = json_create_object();
1309         json_object_add_value_object(root, "iodepth_level", tmp);
1310         /* Only show fixed 7 I/O depth levels*/
1311         for (i = 0; i < 7; i++) {
1312                 char name[20];
1313                 if (i < 6)
1314                         snprintf(name, 20, "%d", 1 << i);
1315                 else
1316                         snprintf(name, 20, ">=%d", 1 << i);
1317                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1318         }
1319
1320         /* Nanosecond latency */
1321         tmp = json_create_object();
1322         json_object_add_value_object(root, "latency_ns", tmp);
1323         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1324                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1325                                  "250", "500", "750", "1000", };
1326                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1327         }
1328         /* Microsecond latency */
1329         tmp = json_create_object();
1330         json_object_add_value_object(root, "latency_us", tmp);
1331         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1332                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1333                                  "250", "500", "750", "1000", };
1334                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1335         }
1336         /* Millisecond latency */
1337         tmp = json_create_object();
1338         json_object_add_value_object(root, "latency_ms", tmp);
1339         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1340                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1341                                  "250", "500", "750", "1000", "2000",
1342                                  ">=2000", };
1343                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1344         }
1345
1346         /* Additional output if continue_on_error set - default off*/
1347         if (ts->continue_on_error) {
1348                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1349                 json_object_add_value_int(root, "first_error", ts->first_error);
1350         }
1351
1352         if (ts->latency_depth) {
1353                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1354                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1355                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1356                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1357         }
1358
1359         /* Additional output if description is set */
1360         if (strlen(ts->description))
1361                 json_object_add_value_string(root, "desc", ts->description);
1362
1363         if (ts->nr_block_infos) {
1364                 /* Block error histogram and types */
1365                 int len;
1366                 unsigned int *percentiles = NULL;
1367                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1368
1369                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1370                                              ts->percentile_list,
1371                                              &percentiles, block_state_counts);
1372
1373                 if (len) {
1374                         struct json_object *block, *percentile_object, *states;
1375                         int state;
1376                         block = json_create_object();
1377                         json_object_add_value_object(root, "block", block);
1378
1379                         percentile_object = json_create_object();
1380                         json_object_add_value_object(block, "percentiles",
1381                                                      percentile_object);
1382                         for (i = 0; i < len; i++) {
1383                                 char buf[20];
1384                                 snprintf(buf, sizeof(buf), "%f",
1385                                          ts->percentile_list[i].u.f);
1386                                 json_object_add_value_int(percentile_object,
1387                                                           (const char *)buf,
1388                                                           percentiles[i]);
1389                         }
1390
1391                         states = json_create_object();
1392                         json_object_add_value_object(block, "states", states);
1393                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1394                                 json_object_add_value_int(states,
1395                                         block_state_names[state],
1396                                         block_state_counts[state]);
1397                         }
1398                         free(percentiles);
1399                 }
1400         }
1401
1402         if (ts->ss_dur) {
1403                 struct json_object *data;
1404                 struct json_array *iops, *bw;
1405                 int i, j, k;
1406                 char ss_buf[64];
1407
1408                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1409                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1410                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1411                         (float) ts->ss_limit.u.f,
1412                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1413
1414                 tmp = json_create_object();
1415                 json_object_add_value_object(root, "steadystate", tmp);
1416                 json_object_add_value_string(tmp, "ss", ss_buf);
1417                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1418                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1419
1420                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1421                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1422                 json_object_add_value_string(tmp, "criterion", ss_buf);
1423                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1424                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1425
1426                 data = json_create_object();
1427                 json_object_add_value_object(tmp, "data", data);
1428                 bw = json_create_array();
1429                 iops = json_create_array();
1430
1431                 /*
1432                 ** if ss was attained or the buffer is not full,
1433                 ** ss->head points to the first element in the list.
1434                 ** otherwise it actually points to the second element
1435                 ** in the list
1436                 */
1437                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1438                         j = ts->ss_head;
1439                 else
1440                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1441                 for (i = 0; i < ts->ss_dur; i++) {
1442                         k = (j + i) % ts->ss_dur;
1443                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1444                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1445                 }
1446                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1447                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1448                 json_object_add_value_array(data, "iops", iops);
1449                 json_object_add_value_array(data, "bw", bw);
1450         }
1451
1452         return root;
1453 }
1454
1455 static void show_thread_status_terse(struct thread_stat *ts,
1456                                      struct group_run_stats *rs,
1457                                      struct buf_output *out)
1458 {
1459         if (terse_version >= 2 && terse_version <= 5)
1460                 show_thread_status_terse_all(ts, rs, terse_version, out);
1461         else
1462                 log_err("fio: bad terse version!? %d\n", terse_version);
1463 }
1464
1465 struct json_object *show_thread_status(struct thread_stat *ts,
1466                                        struct group_run_stats *rs,
1467                                        struct flist_head *opt_list,
1468                                        struct buf_output *out)
1469 {
1470         struct json_object *ret = NULL;
1471
1472         if (output_format & FIO_OUTPUT_TERSE)
1473                 show_thread_status_terse(ts, rs,  out);
1474         if (output_format & FIO_OUTPUT_JSON)
1475                 ret = show_thread_status_json(ts, rs, opt_list);
1476         if (output_format & FIO_OUTPUT_NORMAL)
1477                 show_thread_status_normal(ts, rs,  out);
1478
1479         return ret;
1480 }
1481
1482 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1483 {
1484         double mean, S;
1485
1486         if (src->samples == 0)
1487                 return;
1488
1489         dst->min_val = min(dst->min_val, src->min_val);
1490         dst->max_val = max(dst->max_val, src->max_val);
1491
1492         /*
1493          * Compute new mean and S after the merge
1494          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1495          *  #Parallel_algorithm>
1496          */
1497         if (first) {
1498                 mean = src->mean.u.f;
1499                 S = src->S.u.f;
1500         } else {
1501                 double delta = src->mean.u.f - dst->mean.u.f;
1502
1503                 mean = ((src->mean.u.f * src->samples) +
1504                         (dst->mean.u.f * dst->samples)) /
1505                         (dst->samples + src->samples);
1506
1507                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1508                         (dst->samples * src->samples) /
1509                         (dst->samples + src->samples);
1510         }
1511
1512         dst->samples += src->samples;
1513         dst->mean.u.f = mean;
1514         dst->S.u.f = S;
1515 }
1516
1517 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1518 {
1519         int i;
1520
1521         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1522                 if (dst->max_run[i] < src->max_run[i])
1523                         dst->max_run[i] = src->max_run[i];
1524                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1525                         dst->min_run[i] = src->min_run[i];
1526                 if (dst->max_bw[i] < src->max_bw[i])
1527                         dst->max_bw[i] = src->max_bw[i];
1528                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1529                         dst->min_bw[i] = src->min_bw[i];
1530
1531                 dst->iobytes[i] += src->iobytes[i];
1532                 dst->agg[i] += src->agg[i];
1533         }
1534
1535         if (!dst->kb_base)
1536                 dst->kb_base = src->kb_base;
1537         if (!dst->unit_base)
1538                 dst->unit_base = src->unit_base;
1539         if (!dst->sig_figs)
1540                 dst->sig_figs = src->sig_figs;
1541 }
1542
1543 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1544                       bool first)
1545 {
1546         int l, k;
1547
1548         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1549                 if (!dst->unified_rw_rep) {
1550                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1551                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1552                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1553                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1554                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1555
1556                         dst->io_bytes[l] += src->io_bytes[l];
1557
1558                         if (dst->runtime[l] < src->runtime[l])
1559                                 dst->runtime[l] = src->runtime[l];
1560                 } else {
1561                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1562                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1563                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1564                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1565                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1566
1567                         dst->io_bytes[0] += src->io_bytes[l];
1568
1569                         if (dst->runtime[0] < src->runtime[l])
1570                                 dst->runtime[0] = src->runtime[l];
1571
1572                         /*
1573                          * We're summing to the same destination, so override
1574                          * 'first' after the first iteration of the loop
1575                          */
1576                         first = false;
1577                 }
1578         }
1579
1580         sum_stat(&dst->sync_stat, &src->sync_stat, first);
1581         dst->usr_time += src->usr_time;
1582         dst->sys_time += src->sys_time;
1583         dst->ctx += src->ctx;
1584         dst->majf += src->majf;
1585         dst->minf += src->minf;
1586
1587         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1588                 dst->io_u_map[k] += src->io_u_map[k];
1589                 dst->io_u_submit[k] += src->io_u_submit[k];
1590                 dst->io_u_complete[k] += src->io_u_complete[k];
1591         }
1592         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1593                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1594                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1595                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1596         }
1597         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1598                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1599
1600         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1601                 if (!dst->unified_rw_rep) {
1602                         dst->total_io_u[k] += src->total_io_u[k];
1603                         dst->short_io_u[k] += src->short_io_u[k];
1604                         dst->drop_io_u[k] += src->drop_io_u[k];
1605                 } else {
1606                         dst->total_io_u[0] += src->total_io_u[k];
1607                         dst->short_io_u[0] += src->short_io_u[k];
1608                         dst->drop_io_u[0] += src->drop_io_u[k];
1609                 }
1610         }
1611
1612         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1613
1614         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1615                 int m;
1616
1617                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1618                         if (!dst->unified_rw_rep)
1619                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1620                         else
1621                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1622                 }
1623         }
1624
1625         dst->total_run_time += src->total_run_time;
1626         dst->total_submit += src->total_submit;
1627         dst->total_complete += src->total_complete;
1628 }
1629
1630 void init_group_run_stat(struct group_run_stats *gs)
1631 {
1632         int i;
1633         memset(gs, 0, sizeof(*gs));
1634
1635         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1636                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1637 }
1638
1639 void init_thread_stat(struct thread_stat *ts)
1640 {
1641         int j;
1642
1643         memset(ts, 0, sizeof(*ts));
1644
1645         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1646                 ts->lat_stat[j].min_val = -1UL;
1647                 ts->clat_stat[j].min_val = -1UL;
1648                 ts->slat_stat[j].min_val = -1UL;
1649                 ts->bw_stat[j].min_val = -1UL;
1650                 ts->iops_stat[j].min_val = -1UL;
1651         }
1652         ts->sync_stat.min_val = -1UL;
1653         ts->groupid = -1;
1654 }
1655
1656 void __show_run_stats(void)
1657 {
1658         struct group_run_stats *runstats, *rs;
1659         struct thread_data *td;
1660         struct thread_stat *threadstats, *ts;
1661         int i, j, k, nr_ts, last_ts, idx;
1662         bool kb_base_warned = false;
1663         bool unit_base_warned = false;
1664         struct json_object *root = NULL;
1665         struct json_array *array = NULL;
1666         struct buf_output output[FIO_OUTPUT_NR];
1667         struct flist_head **opt_lists;
1668
1669         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1670
1671         for (i = 0; i < groupid + 1; i++)
1672                 init_group_run_stat(&runstats[i]);
1673
1674         /*
1675          * find out how many threads stats we need. if group reporting isn't
1676          * enabled, it's one-per-td.
1677          */
1678         nr_ts = 0;
1679         last_ts = -1;
1680         for_each_td(td, i) {
1681                 if (!td->o.group_reporting) {
1682                         nr_ts++;
1683                         continue;
1684                 }
1685                 if (last_ts == td->groupid)
1686                         continue;
1687                 if (!td->o.stats)
1688                         continue;
1689
1690                 last_ts = td->groupid;
1691                 nr_ts++;
1692         }
1693
1694         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1695         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1696
1697         for (i = 0; i < nr_ts; i++) {
1698                 init_thread_stat(&threadstats[i]);
1699                 opt_lists[i] = NULL;
1700         }
1701
1702         j = 0;
1703         last_ts = -1;
1704         idx = 0;
1705         for_each_td(td, i) {
1706                 if (!td->o.stats)
1707                         continue;
1708                 if (idx && (!td->o.group_reporting ||
1709                     (td->o.group_reporting && last_ts != td->groupid))) {
1710                         idx = 0;
1711                         j++;
1712                 }
1713
1714                 last_ts = td->groupid;
1715
1716                 ts = &threadstats[j];
1717
1718                 ts->clat_percentiles = td->o.clat_percentiles;
1719                 ts->lat_percentiles = td->o.lat_percentiles;
1720                 ts->percentile_precision = td->o.percentile_precision;
1721                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1722                 opt_lists[j] = &td->opt_list;
1723
1724                 idx++;
1725                 ts->members++;
1726
1727                 if (ts->groupid == -1) {
1728                         /*
1729                          * These are per-group shared already
1730                          */
1731                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1732                         if (td->o.description)
1733                                 strncpy(ts->description, td->o.description,
1734                                                 FIO_JOBDESC_SIZE - 1);
1735                         else
1736                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1737
1738                         /*
1739                          * If multiple entries in this group, this is
1740                          * the first member.
1741                          */
1742                         ts->thread_number = td->thread_number;
1743                         ts->groupid = td->groupid;
1744
1745                         /*
1746                          * first pid in group, not very useful...
1747                          */
1748                         ts->pid = td->pid;
1749
1750                         ts->kb_base = td->o.kb_base;
1751                         ts->unit_base = td->o.unit_base;
1752                         ts->sig_figs = td->o.sig_figs;
1753                         ts->unified_rw_rep = td->o.unified_rw_rep;
1754                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1755                         log_info("fio: kb_base differs for jobs in group, using"
1756                                  " %u as the base\n", ts->kb_base);
1757                         kb_base_warned = true;
1758                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1759                         log_info("fio: unit_base differs for jobs in group, using"
1760                                  " %u as the base\n", ts->unit_base);
1761                         unit_base_warned = true;
1762                 }
1763
1764                 ts->continue_on_error = td->o.continue_on_error;
1765                 ts->total_err_count += td->total_err_count;
1766                 ts->first_error = td->first_error;
1767                 if (!ts->error) {
1768                         if (!td->error && td->o.continue_on_error &&
1769                             td->first_error) {
1770                                 ts->error = td->first_error;
1771                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1772                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1773                         } else  if (td->error) {
1774                                 ts->error = td->error;
1775                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1776                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1777                         }
1778                 }
1779
1780                 ts->latency_depth = td->latency_qd;
1781                 ts->latency_target = td->o.latency_target;
1782                 ts->latency_percentile = td->o.latency_percentile;
1783                 ts->latency_window = td->o.latency_window;
1784
1785                 ts->nr_block_infos = td->ts.nr_block_infos;
1786                 for (k = 0; k < ts->nr_block_infos; k++)
1787                         ts->block_infos[k] = td->ts.block_infos[k];
1788
1789                 sum_thread_stats(ts, &td->ts, idx == 1);
1790
1791                 if (td->o.ss_dur) {
1792                         ts->ss_state = td->ss.state;
1793                         ts->ss_dur = td->ss.dur;
1794                         ts->ss_head = td->ss.head;
1795                         ts->ss_bw_data = td->ss.bw_data;
1796                         ts->ss_iops_data = td->ss.iops_data;
1797                         ts->ss_limit.u.f = td->ss.limit;
1798                         ts->ss_slope.u.f = td->ss.slope;
1799                         ts->ss_deviation.u.f = td->ss.deviation;
1800                         ts->ss_criterion.u.f = td->ss.criterion;
1801                 }
1802                 else
1803                         ts->ss_dur = ts->ss_state = 0;
1804         }
1805
1806         for (i = 0; i < nr_ts; i++) {
1807                 unsigned long long bw;
1808
1809                 ts = &threadstats[i];
1810                 if (ts->groupid == -1)
1811                         continue;
1812                 rs = &runstats[ts->groupid];
1813                 rs->kb_base = ts->kb_base;
1814                 rs->unit_base = ts->unit_base;
1815                 rs->sig_figs = ts->sig_figs;
1816                 rs->unified_rw_rep += ts->unified_rw_rep;
1817
1818                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1819                         if (!ts->runtime[j])
1820                                 continue;
1821                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1822                                 rs->min_run[j] = ts->runtime[j];
1823                         if (ts->runtime[j] > rs->max_run[j])
1824                                 rs->max_run[j] = ts->runtime[j];
1825
1826                         bw = 0;
1827                         if (ts->runtime[j])
1828                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1829                         if (bw < rs->min_bw[j])
1830                                 rs->min_bw[j] = bw;
1831                         if (bw > rs->max_bw[j])
1832                                 rs->max_bw[j] = bw;
1833
1834                         rs->iobytes[j] += ts->io_bytes[j];
1835                 }
1836         }
1837
1838         for (i = 0; i < groupid + 1; i++) {
1839                 int ddir;
1840
1841                 rs = &runstats[i];
1842
1843                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1844                         if (rs->max_run[ddir])
1845                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1846                                                 rs->max_run[ddir];
1847                 }
1848         }
1849
1850         for (i = 0; i < FIO_OUTPUT_NR; i++)
1851                 buf_output_init(&output[i]);
1852
1853         /*
1854          * don't overwrite last signal output
1855          */
1856         if (output_format & FIO_OUTPUT_NORMAL)
1857                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1858         if (output_format & FIO_OUTPUT_JSON) {
1859                 struct thread_data *global;
1860                 char time_buf[32];
1861                 struct timeval now;
1862                 unsigned long long ms_since_epoch;
1863
1864                 gettimeofday(&now, NULL);
1865                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1866                                  (unsigned long long)(now.tv_usec) / 1000;
1867
1868                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1869                                 sizeof(time_buf));
1870                 if (time_buf[strlen(time_buf) - 1] == '\n')
1871                         time_buf[strlen(time_buf) - 1] = '\0';
1872
1873                 root = json_create_object();
1874                 json_object_add_value_string(root, "fio version", fio_version_string);
1875                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1876                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1877                 json_object_add_value_string(root, "time", time_buf);
1878                 global = get_global_options();
1879                 json_add_job_opts(root, "global options", &global->opt_list);
1880                 array = json_create_array();
1881                 json_object_add_value_array(root, "jobs", array);
1882         }
1883
1884         if (is_backend)
1885                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1886
1887         for (i = 0; i < nr_ts; i++) {
1888                 ts = &threadstats[i];
1889                 rs = &runstats[ts->groupid];
1890
1891                 if (is_backend) {
1892                         fio_server_send_job_options(opt_lists[i], i);
1893                         fio_server_send_ts(ts, rs);
1894                 } else {
1895                         if (output_format & FIO_OUTPUT_TERSE)
1896                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1897                         if (output_format & FIO_OUTPUT_JSON) {
1898                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1899                                 json_array_add_value_object(array, tmp);
1900                         }
1901                         if (output_format & FIO_OUTPUT_NORMAL)
1902                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1903                 }
1904         }
1905         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1906                 /* disk util stats, if any */
1907                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1908
1909                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1910
1911                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1912                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1913                 json_free_object(root);
1914         }
1915
1916         for (i = 0; i < groupid + 1; i++) {
1917                 rs = &runstats[i];
1918
1919                 rs->groupid = i;
1920                 if (is_backend)
1921                         fio_server_send_gs(rs);
1922                 else if (output_format & FIO_OUTPUT_NORMAL)
1923                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1924         }
1925
1926         if (is_backend)
1927                 fio_server_send_du();
1928         else if (output_format & FIO_OUTPUT_NORMAL) {
1929                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1930                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1931         }
1932
1933         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1934                 struct buf_output *out = &output[i];
1935
1936                 log_info_buf(out->buf, out->buflen);
1937                 buf_output_free(out);
1938         }
1939
1940         log_info_flush();
1941         free(runstats);
1942         free(threadstats);
1943         free(opt_lists);
1944 }
1945
1946 void show_run_stats(void)
1947 {
1948         fio_mutex_down(stat_mutex);
1949         __show_run_stats();
1950         fio_mutex_up(stat_mutex);
1951 }
1952
1953 void __show_running_run_stats(void)
1954 {
1955         struct thread_data *td;
1956         unsigned long long *rt;
1957         struct timespec ts;
1958         int i;
1959
1960         fio_mutex_down(stat_mutex);
1961
1962         rt = malloc(thread_number * sizeof(unsigned long long));
1963         fio_gettime(&ts, NULL);
1964
1965         for_each_td(td, i) {
1966                 td->update_rusage = 1;
1967                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1968                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1969                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1970                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1971
1972                 rt[i] = mtime_since(&td->start, &ts);
1973                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1974                         td->ts.runtime[DDIR_READ] += rt[i];
1975                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1976                         td->ts.runtime[DDIR_WRITE] += rt[i];
1977                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1978                         td->ts.runtime[DDIR_TRIM] += rt[i];
1979         }
1980
1981         for_each_td(td, i) {
1982                 if (td->runstate >= TD_EXITED)
1983                         continue;
1984                 if (td->rusage_sem) {
1985                         td->update_rusage = 1;
1986                         fio_mutex_down(td->rusage_sem);
1987                 }
1988                 td->update_rusage = 0;
1989         }
1990
1991         __show_run_stats();
1992
1993         for_each_td(td, i) {
1994                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1995                         td->ts.runtime[DDIR_READ] -= rt[i];
1996                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1997                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1998                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1999                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2000         }
2001
2002         free(rt);
2003         fio_mutex_up(stat_mutex);
2004 }
2005
2006 static bool status_interval_init;
2007 static struct timespec status_time;
2008 static bool status_file_disabled;
2009
2010 #define FIO_STATUS_FILE         "fio-dump-status"
2011
2012 static int check_status_file(void)
2013 {
2014         struct stat sb;
2015         const char *temp_dir;
2016         char fio_status_file_path[PATH_MAX];
2017
2018         if (status_file_disabled)
2019                 return 0;
2020
2021         temp_dir = getenv("TMPDIR");
2022         if (temp_dir == NULL) {
2023                 temp_dir = getenv("TEMP");
2024                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2025                         temp_dir = NULL;
2026         }
2027         if (temp_dir == NULL)
2028                 temp_dir = "/tmp";
2029
2030         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2031
2032         if (stat(fio_status_file_path, &sb))
2033                 return 0;
2034
2035         if (unlink(fio_status_file_path) < 0) {
2036                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2037                                                         strerror(errno));
2038                 log_err("fio: disabling status file updates\n");
2039                 status_file_disabled = true;
2040         }
2041
2042         return 1;
2043 }
2044
2045 void check_for_running_stats(void)
2046 {
2047         if (status_interval) {
2048                 if (!status_interval_init) {
2049                         fio_gettime(&status_time, NULL);
2050                         status_interval_init = true;
2051                 } else if (mtime_since_now(&status_time) >= status_interval) {
2052                         show_running_run_stats();
2053                         fio_gettime(&status_time, NULL);
2054                         return;
2055                 }
2056         }
2057         if (check_status_file()) {
2058                 show_running_run_stats();
2059                 return;
2060         }
2061 }
2062
2063 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2064 {
2065         double val = data;
2066         double delta;
2067
2068         if (data > is->max_val)
2069                 is->max_val = data;
2070         if (data < is->min_val)
2071                 is->min_val = data;
2072
2073         delta = val - is->mean.u.f;
2074         if (delta) {
2075                 is->mean.u.f += delta / (is->samples + 1.0);
2076                 is->S.u.f += delta * (val - is->mean.u.f);
2077         }
2078
2079         is->samples++;
2080 }
2081
2082 /*
2083  * Return a struct io_logs, which is added to the tail of the log
2084  * list for 'iolog'.
2085  */
2086 static struct io_logs *get_new_log(struct io_log *iolog)
2087 {
2088         size_t new_size, new_samples;
2089         struct io_logs *cur_log;
2090
2091         /*
2092          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2093          * forever
2094          */
2095         if (!iolog->cur_log_max)
2096                 new_samples = DEF_LOG_ENTRIES;
2097         else {
2098                 new_samples = iolog->cur_log_max * 2;
2099                 if (new_samples > MAX_LOG_ENTRIES)
2100                         new_samples = MAX_LOG_ENTRIES;
2101         }
2102
2103         new_size = new_samples * log_entry_sz(iolog);
2104
2105         cur_log = smalloc(sizeof(*cur_log));
2106         if (cur_log) {
2107                 INIT_FLIST_HEAD(&cur_log->list);
2108                 cur_log->log = malloc(new_size);
2109                 if (cur_log->log) {
2110                         cur_log->nr_samples = 0;
2111                         cur_log->max_samples = new_samples;
2112                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2113                         iolog->cur_log_max = new_samples;
2114                         return cur_log;
2115                 }
2116                 sfree(cur_log);
2117         }
2118
2119         return NULL;
2120 }
2121
2122 /*
2123  * Add and return a new log chunk, or return current log if big enough
2124  */
2125 static struct io_logs *regrow_log(struct io_log *iolog)
2126 {
2127         struct io_logs *cur_log;
2128         int i;
2129
2130         if (!iolog || iolog->disabled)
2131                 goto disable;
2132
2133         cur_log = iolog_cur_log(iolog);
2134         if (!cur_log) {
2135                 cur_log = get_new_log(iolog);
2136                 if (!cur_log)
2137                         return NULL;
2138         }
2139
2140         if (cur_log->nr_samples < cur_log->max_samples)
2141                 return cur_log;
2142
2143         /*
2144          * No room for a new sample. If we're compressing on the fly, flush
2145          * out the current chunk
2146          */
2147         if (iolog->log_gz) {
2148                 if (iolog_cur_flush(iolog, cur_log)) {
2149                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2150                         return NULL;
2151                 }
2152         }
2153
2154         /*
2155          * Get a new log array, and add to our list
2156          */
2157         cur_log = get_new_log(iolog);
2158         if (!cur_log) {
2159                 log_err("fio: failed extending iolog! Will stop logging.\n");
2160                 return NULL;
2161         }
2162
2163         if (!iolog->pending || !iolog->pending->nr_samples)
2164                 return cur_log;
2165
2166         /*
2167          * Flush pending items to new log
2168          */
2169         for (i = 0; i < iolog->pending->nr_samples; i++) {
2170                 struct io_sample *src, *dst;
2171
2172                 src = get_sample(iolog, iolog->pending, i);
2173                 dst = get_sample(iolog, cur_log, i);
2174                 memcpy(dst, src, log_entry_sz(iolog));
2175         }
2176         cur_log->nr_samples = iolog->pending->nr_samples;
2177
2178         iolog->pending->nr_samples = 0;
2179         return cur_log;
2180 disable:
2181         if (iolog)
2182                 iolog->disabled = true;
2183         return NULL;
2184 }
2185
2186 void regrow_logs(struct thread_data *td)
2187 {
2188         regrow_log(td->slat_log);
2189         regrow_log(td->clat_log);
2190         regrow_log(td->clat_hist_log);
2191         regrow_log(td->lat_log);
2192         regrow_log(td->bw_log);
2193         regrow_log(td->iops_log);
2194         td->flags &= ~TD_F_REGROW_LOGS;
2195 }
2196
2197 static struct io_logs *get_cur_log(struct io_log *iolog)
2198 {
2199         struct io_logs *cur_log;
2200
2201         cur_log = iolog_cur_log(iolog);
2202         if (!cur_log) {
2203                 cur_log = get_new_log(iolog);
2204                 if (!cur_log)
2205                         return NULL;
2206         }
2207
2208         if (cur_log->nr_samples < cur_log->max_samples)
2209                 return cur_log;
2210
2211         /*
2212          * Out of space. If we're in IO offload mode, or we're not doing
2213          * per unit logging (hence logging happens outside of the IO thread
2214          * as well), add a new log chunk inline. If we're doing inline
2215          * submissions, flag 'td' as needing a log regrow and we'll take
2216          * care of it on the submission side.
2217          */
2218         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2219             !per_unit_log(iolog))
2220                 return regrow_log(iolog);
2221
2222         iolog->td->flags |= TD_F_REGROW_LOGS;
2223         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2224         return iolog->pending;
2225 }
2226
2227 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2228                              enum fio_ddir ddir, unsigned int bs,
2229                              unsigned long t, uint64_t offset)
2230 {
2231         struct io_logs *cur_log;
2232
2233         if (iolog->disabled)
2234                 return;
2235         if (flist_empty(&iolog->io_logs))
2236                 iolog->avg_last[ddir] = t;
2237
2238         cur_log = get_cur_log(iolog);
2239         if (cur_log) {
2240                 struct io_sample *s;
2241
2242                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2243
2244                 s->data = data;
2245                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2246                 io_sample_set_ddir(iolog, s, ddir);
2247                 s->bs = bs;
2248
2249                 if (iolog->log_offset) {
2250                         struct io_sample_offset *so = (void *) s;
2251
2252                         so->offset = offset;
2253                 }
2254
2255                 cur_log->nr_samples++;
2256                 return;
2257         }
2258
2259         iolog->disabled = true;
2260 }
2261
2262 static inline void reset_io_stat(struct io_stat *ios)
2263 {
2264         ios->max_val = ios->min_val = ios->samples = 0;
2265         ios->mean.u.f = ios->S.u.f = 0;
2266 }
2267
2268 void reset_io_stats(struct thread_data *td)
2269 {
2270         struct thread_stat *ts = &td->ts;
2271         int i, j;
2272
2273         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2274                 reset_io_stat(&ts->clat_stat[i]);
2275                 reset_io_stat(&ts->slat_stat[i]);
2276                 reset_io_stat(&ts->lat_stat[i]);
2277                 reset_io_stat(&ts->bw_stat[i]);
2278                 reset_io_stat(&ts->iops_stat[i]);
2279
2280                 ts->io_bytes[i] = 0;
2281                 ts->runtime[i] = 0;
2282                 ts->total_io_u[i] = 0;
2283                 ts->short_io_u[i] = 0;
2284                 ts->drop_io_u[i] = 0;
2285
2286                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2287                         ts->io_u_plat[i][j] = 0;
2288                         if (!i)
2289                                 ts->io_u_sync_plat[j] = 0;
2290                 }
2291         }
2292
2293         ts->total_io_u[DDIR_SYNC] = 0;
2294
2295         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2296                 ts->io_u_map[i] = 0;
2297                 ts->io_u_submit[i] = 0;
2298                 ts->io_u_complete[i] = 0;
2299         }
2300
2301         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2302                 ts->io_u_lat_n[i] = 0;
2303         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2304                 ts->io_u_lat_u[i] = 0;
2305         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2306                 ts->io_u_lat_m[i] = 0;
2307
2308         ts->total_submit = 0;
2309         ts->total_complete = 0;
2310 }
2311
2312 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2313                               unsigned long elapsed, bool log_max)
2314 {
2315         /*
2316          * Note an entry in the log. Use the mean from the logged samples,
2317          * making sure to properly round up. Only write a log entry if we
2318          * had actual samples done.
2319          */
2320         if (iolog->avg_window[ddir].samples) {
2321                 union io_sample_data data;
2322
2323                 if (log_max)
2324                         data.val = iolog->avg_window[ddir].max_val;
2325                 else
2326                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2327
2328                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2329         }
2330
2331         reset_io_stat(&iolog->avg_window[ddir]);
2332 }
2333
2334 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2335                              bool log_max)
2336 {
2337         int ddir;
2338
2339         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2340                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2341 }
2342
2343 static unsigned long add_log_sample(struct thread_data *td,
2344                                     struct io_log *iolog,
2345                                     union io_sample_data data,
2346                                     enum fio_ddir ddir, unsigned int bs,
2347                                     uint64_t offset)
2348 {
2349         unsigned long elapsed, this_window;
2350
2351         if (!ddir_rw(ddir))
2352                 return 0;
2353
2354         elapsed = mtime_since_now(&td->epoch);
2355
2356         /*
2357          * If no time averaging, just add the log sample.
2358          */
2359         if (!iolog->avg_msec) {
2360                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2361                 return 0;
2362         }
2363
2364         /*
2365          * Add the sample. If the time period has passed, then
2366          * add that entry to the log and clear.
2367          */
2368         add_stat_sample(&iolog->avg_window[ddir], data.val);
2369
2370         /*
2371          * If period hasn't passed, adding the above sample is all we
2372          * need to do.
2373          */
2374         this_window = elapsed - iolog->avg_last[ddir];
2375         if (elapsed < iolog->avg_last[ddir])
2376                 return iolog->avg_last[ddir] - elapsed;
2377         else if (this_window < iolog->avg_msec) {
2378                 unsigned long diff = iolog->avg_msec - this_window;
2379
2380                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2381                         return diff;
2382         }
2383
2384         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2385
2386         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2387         return iolog->avg_msec;
2388 }
2389
2390 void finalize_logs(struct thread_data *td, bool unit_logs)
2391 {
2392         unsigned long elapsed;
2393
2394         elapsed = mtime_since_now(&td->epoch);
2395
2396         if (td->clat_log && unit_logs)
2397                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2398         if (td->slat_log && unit_logs)
2399                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2400         if (td->lat_log && unit_logs)
2401                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2402         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2403                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2404         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2405                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2406 }
2407
2408 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2409 {
2410         struct io_log *iolog;
2411
2412         if (!ddir_rw(ddir))
2413                 return;
2414
2415         iolog = agg_io_log[ddir];
2416         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2417 }
2418
2419 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2420 {
2421         unsigned int idx = plat_val_to_idx(nsec);
2422         assert(idx < FIO_IO_U_PLAT_NR);
2423
2424         ts->io_u_sync_plat[idx]++;
2425         add_stat_sample(&ts->sync_stat, nsec);
2426 }
2427
2428 static void add_clat_percentile_sample(struct thread_stat *ts,
2429                                 unsigned long long nsec, enum fio_ddir ddir)
2430 {
2431         unsigned int idx = plat_val_to_idx(nsec);
2432         assert(idx < FIO_IO_U_PLAT_NR);
2433
2434         ts->io_u_plat[ddir][idx]++;
2435 }
2436
2437 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2438                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2439 {
2440         unsigned long elapsed, this_window;
2441         struct thread_stat *ts = &td->ts;
2442         struct io_log *iolog = td->clat_hist_log;
2443
2444         td_io_u_lock(td);
2445
2446         add_stat_sample(&ts->clat_stat[ddir], nsec);
2447
2448         if (td->clat_log)
2449                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2450                                offset);
2451
2452         if (ts->clat_percentiles)
2453                 add_clat_percentile_sample(ts, nsec, ddir);
2454
2455         if (iolog && iolog->hist_msec) {
2456                 struct io_hist *hw = &iolog->hist_window[ddir];
2457
2458                 hw->samples++;
2459                 elapsed = mtime_since_now(&td->epoch);
2460                 if (!hw->hist_last)
2461                         hw->hist_last = elapsed;
2462                 this_window = elapsed - hw->hist_last;
2463                 
2464                 if (this_window >= iolog->hist_msec) {
2465                         uint64_t *io_u_plat;
2466                         struct io_u_plat_entry *dst;
2467
2468                         /*
2469                          * Make a byte-for-byte copy of the latency histogram
2470                          * stored in td->ts.io_u_plat[ddir], recording it in a
2471                          * log sample. Note that the matching call to free() is
2472                          * located in iolog.c after printing this sample to the
2473                          * log file.
2474                          */
2475                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2476                         dst = malloc(sizeof(struct io_u_plat_entry));
2477                         memcpy(&(dst->io_u_plat), io_u_plat,
2478                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2479                         flist_add(&dst->list, &hw->list);
2480                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2481                                                 elapsed, offset);
2482
2483                         /*
2484                          * Update the last time we recorded as being now, minus
2485                          * any drift in time we encountered before actually
2486                          * making the record.
2487                          */
2488                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2489                         hw->samples = 0;
2490                 }
2491         }
2492
2493         td_io_u_unlock(td);
2494 }
2495
2496 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2497                      unsigned long usec, unsigned int bs, uint64_t offset)
2498 {
2499         struct thread_stat *ts = &td->ts;
2500
2501         if (!ddir_rw(ddir))
2502                 return;
2503
2504         td_io_u_lock(td);
2505
2506         add_stat_sample(&ts->slat_stat[ddir], usec);
2507
2508         if (td->slat_log)
2509                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2510
2511         td_io_u_unlock(td);
2512 }
2513
2514 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2515                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2516 {
2517         struct thread_stat *ts = &td->ts;
2518
2519         if (!ddir_rw(ddir))
2520                 return;
2521
2522         td_io_u_lock(td);
2523
2524         add_stat_sample(&ts->lat_stat[ddir], nsec);
2525
2526         if (td->lat_log)
2527                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2528                                offset);
2529
2530         if (ts->lat_percentiles)
2531                 add_clat_percentile_sample(ts, nsec, ddir);
2532
2533         td_io_u_unlock(td);
2534 }
2535
2536 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2537                    unsigned int bytes, unsigned long long spent)
2538 {
2539         struct thread_stat *ts = &td->ts;
2540         unsigned long rate;
2541
2542         if (spent)
2543                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2544         else
2545                 rate = 0;
2546
2547         td_io_u_lock(td);
2548
2549         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2550
2551         if (td->bw_log)
2552                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2553                                bytes, io_u->offset);
2554
2555         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2556         td_io_u_unlock(td);
2557 }
2558
2559 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2560                          struct timespec *t, unsigned int avg_time,
2561                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2562                          struct io_stat *stat, struct io_log *log,
2563                          bool is_kb)
2564 {
2565         unsigned long spent, rate;
2566         enum fio_ddir ddir;
2567         unsigned long next, next_log;
2568
2569         next_log = avg_time;
2570
2571         spent = mtime_since(parent_tv, t);
2572         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2573                 return avg_time - spent;
2574
2575         td_io_u_lock(td);
2576
2577         /*
2578          * Compute both read and write rates for the interval.
2579          */
2580         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2581                 uint64_t delta;
2582
2583                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2584                 if (!delta)
2585                         continue; /* No entries for interval */
2586
2587                 if (spent) {
2588                         if (is_kb)
2589                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2590                         else
2591                                 rate = (delta * 1000) / spent;
2592                 } else
2593                         rate = 0;
2594
2595                 add_stat_sample(&stat[ddir], rate);
2596
2597                 if (log) {
2598                         unsigned int bs = 0;
2599
2600                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2601                                 bs = td->o.min_bs[ddir];
2602
2603                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2604                         next_log = min(next_log, next);
2605                 }
2606
2607                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2608         }
2609
2610         timespec_add_msec(parent_tv, avg_time);
2611
2612         td_io_u_unlock(td);
2613
2614         if (spent <= avg_time)
2615                 next = avg_time;
2616         else
2617                 next = avg_time - (1 + spent - avg_time);
2618
2619         return min(next, next_log);
2620 }
2621
2622 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2623 {
2624         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2625                                 td->this_io_bytes, td->stat_io_bytes,
2626                                 td->ts.bw_stat, td->bw_log, true);
2627 }
2628
2629 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2630                      unsigned int bytes)
2631 {
2632         struct thread_stat *ts = &td->ts;
2633
2634         td_io_u_lock(td);
2635
2636         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2637
2638         if (td->iops_log)
2639                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2640                                bytes, io_u->offset);
2641
2642         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2643         td_io_u_unlock(td);
2644 }
2645
2646 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2647 {
2648         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2649                                 td->this_io_blocks, td->stat_io_blocks,
2650                                 td->ts.iops_stat, td->iops_log, false);
2651 }
2652
2653 /*
2654  * Returns msecs to next event
2655  */
2656 int calc_log_samples(void)
2657 {
2658         struct thread_data *td;
2659         unsigned int next = ~0U, tmp;
2660         struct timespec now;
2661         int i;
2662
2663         fio_gettime(&now, NULL);
2664
2665         for_each_td(td, i) {
2666                 if (!td->o.stats)
2667                         continue;
2668                 if (in_ramp_time(td) ||
2669                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2670                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2671                         continue;
2672                 }
2673                 if (!td->bw_log ||
2674                         (td->bw_log && !per_unit_log(td->bw_log))) {
2675                         tmp = add_bw_samples(td, &now);
2676                         if (tmp < next)
2677                                 next = tmp;
2678                 }
2679                 if (!td->iops_log ||
2680                         (td->iops_log && !per_unit_log(td->iops_log))) {
2681                         tmp = add_iops_samples(td, &now);
2682                         if (tmp < next)
2683                                 next = tmp;
2684                 }
2685         }
2686
2687         return next == ~0U ? 0 : next;
2688 }
2689
2690 void stat_init(void)
2691 {
2692         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2693 }
2694
2695 void stat_exit(void)
2696 {
2697         /*
2698          * When we have the mutex, we know out-of-band access to it
2699          * have ended.
2700          */
2701         fio_mutex_down(stat_mutex);
2702         fio_mutex_remove(stat_mutex);
2703 }
2704
2705 /*
2706  * Called from signal handler. Wake up status thread.
2707  */
2708 void show_running_run_stats(void)
2709 {
2710         helper_do_stat();
2711 }
2712
2713 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2714 {
2715         /* Ignore io_u's which span multiple blocks--they will just get
2716          * inaccurate counts. */
2717         int idx = (io_u->offset - io_u->file->file_offset)
2718                         / td->o.bs[DDIR_TRIM];
2719         uint32_t *info = &td->ts.block_infos[idx];
2720         assert(idx < td->ts.nr_block_infos);
2721         return info;
2722 }