io_u_queue: convert rings to bool
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits;
104         unsigned long long k, base;
105
106         assert(idx < FIO_IO_U_PLAT_NR);
107
108         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
109          * all bits of the sample as index */
110         if (idx < (FIO_IO_U_PLAT_VAL << 1))
111                 return idx;
112
113         /* Find the group and compute the minimum value of that group */
114         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
115         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116
117         /* Find its bucket number of the group */
118         k = idx % FIO_IO_U_PLAT_VAL;
119
120         /* Return the mean of the range of the bucket */
121         return base + ((k + 0.5) * (1 << error_bits));
122 }
123
124 static int double_cmp(const void *a, const void *b)
125 {
126         const fio_fp64_t fa = *(const fio_fp64_t *) a;
127         const fio_fp64_t fb = *(const fio_fp64_t *) b;
128         int cmp = 0;
129
130         if (fa.u.f > fb.u.f)
131                 cmp = 1;
132         else if (fa.u.f < fb.u.f)
133                 cmp = -1;
134
135         return cmp;
136 }
137
138 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
139                                    fio_fp64_t *plist, unsigned long long **output,
140                                    unsigned long long *maxv, unsigned long long *minv)
141 {
142         unsigned long long sum = 0;
143         unsigned int len, i, j = 0;
144         unsigned int oval_len = 0;
145         unsigned long long *ovals = NULL;
146         bool is_last;
147
148         *minv = -1ULL;
149         *maxv = 0;
150
151         len = 0;
152         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
153                 len++;
154
155         if (!len)
156                 return 0;
157
158         /*
159          * Sort the percentile list. Note that it may already be sorted if
160          * we are using the default values, but since it's a short list this
161          * isn't a worry. Also note that this does not work for NaN values.
162          */
163         if (len > 1)
164                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
165
166         /*
167          * Calculate bucket values, note down max and min values
168          */
169         is_last = false;
170         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
171                 sum += io_u_plat[i];
172                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
173                         assert(plist[j].u.f <= 100.0);
174
175                         if (j == oval_len) {
176                                 oval_len += 100;
177                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
178                         }
179
180                         ovals[j] = plat_idx_to_val(i);
181                         if (ovals[j] < *minv)
182                                 *minv = ovals[j];
183                         if (ovals[j] > *maxv)
184                                 *maxv = ovals[j];
185
186                         is_last = (j == len - 1) != 0;
187                         if (is_last)
188                                 break;
189
190                         j++;
191                 }
192         }
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   bool is_clat, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         const char *pre = is_clat ? "clat" : " lat";
210         bool is_last;
211         char fmt[32];
212
213         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
214         if (!len)
215                 goto out;
216
217         /*
218          * We default to nsecs, but if the value range is such that we
219          * should scale down to usecs or msecs, do that.
220          */
221         if (minv > 2000000 && maxv > 99999999ULL) {
222                 scale_down = 2;
223                 divisor = 1000000;
224                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
225         } else if (minv > 2000 && maxv > 99999) {
226                 scale_down = 1;
227                 divisor = 1000;
228                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
229         } else {
230                 scale_down = 0;
231                 divisor = 1;
232                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
233         }
234
235
236         time_width = max(5, (int) (log10(maxv / divisor) + 1));
237         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
238                         precision, time_width);
239         /* fmt will be something like " %5.2fth=[%4llu]%c" */
240         per_line = (80 - 7) / (precision + 10 + time_width);
241
242         for (j = 0; j < len; j++) {
243                 /* for formatting */
244                 if (j != 0 && (j % per_line) == 0)
245                         log_buf(out, "     |");
246
247                 /* end of the list */
248                 is_last = (j == len - 1) != 0;
249
250                 for (i = 0; i < scale_down; i++)
251                         ovals[j] = (ovals[j] + 999) / 1000;
252
253                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
254
255                 if (is_last)
256                         break;
257
258                 if ((j % per_line) == per_line - 1)     /* for formatting */
259                         log_buf(out, "\n");
260         }
261
262 out:
263         if (ovals)
264                 free(ovals);
265 }
266
267 bool calc_lat(struct io_stat *is, unsigned long long *min,
268               unsigned long long *max, double *mean, double *dev)
269 {
270         double n = (double) is->samples;
271
272         if (n == 0)
273                 return false;
274
275         *min = is->min_val;
276         *max = is->max_val;
277         *mean = is->mean.u.f;
278
279         if (n > 1.0)
280                 *dev = sqrt(is->S.u.f / (n - 1.0));
281         else
282                 *dev = 0;
283
284         return true;
285 }
286
287 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
288 {
289         char *io, *agg, *min, *max;
290         char *ioalt, *aggalt, *minalt, *maxalt;
291         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
292         int i;
293
294         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
295
296         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
297                 const int i2p = is_power_of_2(rs->kb_base);
298
299                 if (!rs->max_run[i])
300                         continue;
301
302                 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
303                 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
304                 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
305                 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
306                 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
307                 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
308                 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
309                 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
310                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
311                                 rs->unified_rw_rep ? "  MIXED" : str[i],
312                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
313                                 (unsigned long long) rs->min_run[i],
314                                 (unsigned long long) rs->max_run[i]);
315
316                 free(io);
317                 free(agg);
318                 free(min);
319                 free(max);
320                 free(ioalt);
321                 free(aggalt);
322                 free(minalt);
323                 free(maxalt);
324         }
325 }
326
327 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
328 {
329         int i;
330
331         /*
332          * Do depth distribution calculations
333          */
334         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
335                 if (total) {
336                         io_u_dist[i] = (double) map[i] / (double) total;
337                         io_u_dist[i] *= 100.0;
338                         if (io_u_dist[i] < 0.1 && map[i])
339                                 io_u_dist[i] = 0.1;
340                 } else
341                         io_u_dist[i] = 0.0;
342         }
343 }
344
345 static void stat_calc_lat(struct thread_stat *ts, double *dst,
346                           unsigned int *src, int nr)
347 {
348         unsigned long total = ddir_rw_sum(ts->total_io_u);
349         int i;
350
351         /*
352          * Do latency distribution calculations
353          */
354         for (i = 0; i < nr; i++) {
355                 if (total) {
356                         dst[i] = (double) src[i] / (double) total;
357                         dst[i] *= 100.0;
358                         if (dst[i] < 0.01 && src[i])
359                                 dst[i] = 0.01;
360                 } else
361                         dst[i] = 0.0;
362         }
363 }
364
365 /*
366  * To keep the terse format unaltered, add all of the ns latency
367  * buckets to the first us latency bucket
368  */
369 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
370 {
371         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
372         int i;
373
374         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
375
376         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
377                 ntotal += ts->io_u_lat_n[i];
378
379         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
380 }
381
382 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
383 {
384         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
385 }
386
387 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
388 {
389         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
390 }
391
392 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
393 {
394         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
395 }
396
397 static void display_lat(const char *name, unsigned long long min,
398                         unsigned long long max, double mean, double dev,
399                         struct buf_output *out)
400 {
401         const char *base = "(nsec)";
402         char *minp, *maxp;
403
404         if (nsec_to_msec(&min, &max, &mean, &dev))
405                 base = "(msec)";
406         else if (nsec_to_usec(&min, &max, &mean, &dev))
407                 base = "(usec)";
408
409         minp = num2str(min, 6, 1, 0, N2S_NONE);
410         maxp = num2str(max, 6, 1, 0, N2S_NONE);
411
412         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
413                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
414
415         free(minp);
416         free(maxp);
417 }
418
419 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
420                              int ddir, struct buf_output *out)
421 {
422         const char *str[] = { " read", "write", " trim" };
423         unsigned long runt;
424         unsigned long long min, max, bw, iops;
425         double mean, dev;
426         char *io_p, *bw_p, *bw_p_alt, *iops_p;
427         int i2p;
428
429         assert(ddir_rw(ddir));
430
431         if (!ts->runtime[ddir])
432                 return;
433
434         i2p = is_power_of_2(rs->kb_base);
435         runt = ts->runtime[ddir];
436
437         bw = (1000 * ts->io_bytes[ddir]) / runt;
438         io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
439         bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
440         bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
441
442         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
443         iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
444
445         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
446                         rs->unified_rw_rep ? "mixed" : str[ddir],
447                         iops_p, bw_p, bw_p_alt, io_p,
448                         (unsigned long long) ts->runtime[ddir]);
449
450         free(io_p);
451         free(bw_p);
452         free(bw_p_alt);
453         free(iops_p);
454
455         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
456                 display_lat("slat", min, max, mean, dev, out);
457         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
458                 display_lat("clat", min, max, mean, dev, out);
459         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
460                 display_lat(" lat", min, max, mean, dev, out);
461
462         if (ts->clat_percentiles || ts->lat_percentiles) {
463                 show_clat_percentiles(ts->io_u_plat[ddir],
464                                         ts->clat_stat[ddir].samples,
465                                         ts->percentile_list,
466                                         ts->percentile_precision,
467                                         ts->clat_percentiles, out);
468         }
469         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
470                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
471                 const char *bw_str;
472
473                 if ((rs->unit_base == 1) && i2p)
474                         bw_str = "Kibit";
475                 else if (rs->unit_base == 1)
476                         bw_str = "kbit";
477                 else if (i2p)
478                         bw_str = "KiB";
479                 else
480                         bw_str = "kB";
481
482                 if (rs->agg[ddir]) {
483                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
484                         if (p_of_agg > 100.0)
485                                 p_of_agg = 100.0;
486                 }
487
488                 if (rs->unit_base == 1) {
489                         min *= 8.0;
490                         max *= 8.0;
491                         mean *= 8.0;
492                         dev *= 8.0;
493                 }
494
495                 if (mean > fkb_base * fkb_base) {
496                         min /= fkb_base;
497                         max /= fkb_base;
498                         mean /= fkb_base;
499                         dev /= fkb_base;
500                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
501                 }
502
503                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
504                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
505                         bw_str, min, max, p_of_agg, mean, dev,
506                         (&ts->bw_stat[ddir])->samples);
507         }
508         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
509                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
510                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
511                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
512         }
513 }
514
515 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
516                      const char *msg, struct buf_output *out)
517 {
518         bool new_line = true, shown = false;
519         int i, line = 0;
520
521         for (i = 0; i < nr; i++) {
522                 if (io_u_lat[i] <= 0.0)
523                         continue;
524                 shown = true;
525                 if (new_line) {
526                         if (line)
527                                 log_buf(out, "\n");
528                         log_buf(out, "  lat (%s)   : ", msg);
529                         new_line = false;
530                         line = 0;
531                 }
532                 if (line)
533                         log_buf(out, ", ");
534                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
535                 line++;
536                 if (line == 5)
537                         new_line = true;
538         }
539
540         if (shown)
541                 log_buf(out, "\n");
542
543         return true;
544 }
545
546 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
547 {
548         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
549                                  "250=", "500=", "750=", "1000=", };
550
551         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
552 }
553
554 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
555 {
556         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
557                                  "250=", "500=", "750=", "1000=", };
558
559         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
560 }
561
562 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
563 {
564         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
565                                  "250=", "500=", "750=", "1000=", "2000=",
566                                  ">=2000=", };
567
568         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
569 }
570
571 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
572 {
573         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
574         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
575         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
576
577         stat_calc_lat_n(ts, io_u_lat_n);
578         stat_calc_lat_u(ts, io_u_lat_u);
579         stat_calc_lat_m(ts, io_u_lat_m);
580
581         show_lat_n(io_u_lat_n, out);
582         show_lat_u(io_u_lat_u, out);
583         show_lat_m(io_u_lat_m, out);
584 }
585
586 static int block_state_category(int block_state)
587 {
588         switch (block_state) {
589         case BLOCK_STATE_UNINIT:
590                 return 0;
591         case BLOCK_STATE_TRIMMED:
592         case BLOCK_STATE_WRITTEN:
593                 return 1;
594         case BLOCK_STATE_WRITE_FAILURE:
595         case BLOCK_STATE_TRIM_FAILURE:
596                 return 2;
597         default:
598                 /* Silence compile warning on some BSDs and have a return */
599                 assert(0);
600                 return -1;
601         }
602 }
603
604 static int compare_block_infos(const void *bs1, const void *bs2)
605 {
606         uint32_t block1 = *(uint32_t *)bs1;
607         uint32_t block2 = *(uint32_t *)bs2;
608         int state1 = BLOCK_INFO_STATE(block1);
609         int state2 = BLOCK_INFO_STATE(block2);
610         int bscat1 = block_state_category(state1);
611         int bscat2 = block_state_category(state2);
612         int cycles1 = BLOCK_INFO_TRIMS(block1);
613         int cycles2 = BLOCK_INFO_TRIMS(block2);
614
615         if (bscat1 < bscat2)
616                 return -1;
617         if (bscat1 > bscat2)
618                 return 1;
619
620         if (cycles1 < cycles2)
621                 return -1;
622         if (cycles1 > cycles2)
623                 return 1;
624
625         if (state1 < state2)
626                 return -1;
627         if (state1 > state2)
628                 return 1;
629
630         assert(block1 == block2);
631         return 0;
632 }
633
634 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
635                                   fio_fp64_t *plist, unsigned int **percentiles,
636                                   unsigned int *types)
637 {
638         int len = 0;
639         int i, nr_uninit;
640
641         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
642
643         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
644                 len++;
645
646         if (!len)
647                 return 0;
648
649         /*
650          * Sort the percentile list. Note that it may already be sorted if
651          * we are using the default values, but since it's a short list this
652          * isn't a worry. Also note that this does not work for NaN values.
653          */
654         if (len > 1)
655                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
656
657         nr_uninit = 0;
658         /* Start only after the uninit entries end */
659         for (nr_uninit = 0;
660              nr_uninit < nr_block_infos
661                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
662              nr_uninit ++)
663                 ;
664
665         if (nr_uninit == nr_block_infos)
666                 return 0;
667
668         *percentiles = calloc(len, sizeof(**percentiles));
669
670         for (i = 0; i < len; i++) {
671                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
672                                 + nr_uninit;
673                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
674         }
675
676         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
677         for (i = 0; i < nr_block_infos; i++)
678                 types[BLOCK_INFO_STATE(block_infos[i])]++;
679
680         return len;
681 }
682
683 static const char *block_state_names[] = {
684         [BLOCK_STATE_UNINIT] = "unwritten",
685         [BLOCK_STATE_TRIMMED] = "trimmed",
686         [BLOCK_STATE_WRITTEN] = "written",
687         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
688         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
689 };
690
691 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
692                              fio_fp64_t *plist, struct buf_output *out)
693 {
694         int len, pos, i;
695         unsigned int *percentiles = NULL;
696         unsigned int block_state_counts[BLOCK_STATE_COUNT];
697
698         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
699                                      &percentiles, block_state_counts);
700
701         log_buf(out, "  block lifetime percentiles :\n   |");
702         pos = 0;
703         for (i = 0; i < len; i++) {
704                 uint32_t block_info = percentiles[i];
705 #define LINE_LENGTH     75
706                 char str[LINE_LENGTH];
707                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
708                                      plist[i].u.f, block_info,
709                                      i == len - 1 ? '\n' : ',');
710                 assert(strln < LINE_LENGTH);
711                 if (pos + strln > LINE_LENGTH) {
712                         pos = 0;
713                         log_buf(out, "\n   |");
714                 }
715                 log_buf(out, "%s", str);
716                 pos += strln;
717 #undef LINE_LENGTH
718         }
719         if (percentiles)
720                 free(percentiles);
721
722         log_buf(out, "        states               :");
723         for (i = 0; i < BLOCK_STATE_COUNT; i++)
724                 log_buf(out, " %s=%u%c",
725                          block_state_names[i], block_state_counts[i],
726                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
727 }
728
729 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
730 {
731         char *p1, *p1alt, *p2;
732         unsigned long long bw_mean, iops_mean;
733         const int i2p = is_power_of_2(ts->kb_base);
734
735         if (!ts->ss_dur)
736                 return;
737
738         bw_mean = steadystate_bw_mean(ts);
739         iops_mean = steadystate_iops_mean(ts);
740
741         p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
742         p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
743         p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
744
745         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
746                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
747                 p1, p1alt, p2,
748                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
749                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
750                 ts->ss_criterion.u.f,
751                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
752
753         free(p1);
754         free(p1alt);
755         free(p2);
756 }
757
758 static void show_thread_status_normal(struct thread_stat *ts,
759                                       struct group_run_stats *rs,
760                                       struct buf_output *out)
761 {
762         double usr_cpu, sys_cpu;
763         unsigned long runtime;
764         double io_u_dist[FIO_IO_U_MAP_NR];
765         time_t time_p;
766         char time_buf[32];
767
768         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
769                 return;
770                 
771         memset(time_buf, 0, sizeof(time_buf));
772
773         time(&time_p);
774         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
775
776         if (!ts->error) {
777                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
778                                         ts->name, ts->groupid, ts->members,
779                                         ts->error, (int) ts->pid, time_buf);
780         } else {
781                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
782                                         ts->name, ts->groupid, ts->members,
783                                         ts->error, ts->verror, (int) ts->pid,
784                                         time_buf);
785         }
786
787         if (strlen(ts->description))
788                 log_buf(out, "  Description  : [%s]\n", ts->description);
789
790         if (ts->io_bytes[DDIR_READ])
791                 show_ddir_status(rs, ts, DDIR_READ, out);
792         if (ts->io_bytes[DDIR_WRITE])
793                 show_ddir_status(rs, ts, DDIR_WRITE, out);
794         if (ts->io_bytes[DDIR_TRIM])
795                 show_ddir_status(rs, ts, DDIR_TRIM, out);
796
797         show_latencies(ts, out);
798
799         runtime = ts->total_run_time;
800         if (runtime) {
801                 double runt = (double) runtime;
802
803                 usr_cpu = (double) ts->usr_time * 100 / runt;
804                 sys_cpu = (double) ts->sys_time * 100 / runt;
805         } else {
806                 usr_cpu = 0;
807                 sys_cpu = 0;
808         }
809
810         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
811                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
812                         (unsigned long long) ts->ctx,
813                         (unsigned long long) ts->majf,
814                         (unsigned long long) ts->minf);
815
816         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
817         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
818                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
819                                         io_u_dist[1], io_u_dist[2],
820                                         io_u_dist[3], io_u_dist[4],
821                                         io_u_dist[5], io_u_dist[6]);
822
823         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
824         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
825                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
826                                         io_u_dist[1], io_u_dist[2],
827                                         io_u_dist[3], io_u_dist[4],
828                                         io_u_dist[5], io_u_dist[6]);
829         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
830         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
831                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
832                                         io_u_dist[1], io_u_dist[2],
833                                         io_u_dist[3], io_u_dist[4],
834                                         io_u_dist[5], io_u_dist[6]);
835         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
836                                  " short=%llu,%llu,%llu,"
837                                  " dropped=%llu,%llu,%llu\n",
838                                         (unsigned long long) ts->total_io_u[0],
839                                         (unsigned long long) ts->total_io_u[1],
840                                         (unsigned long long) ts->total_io_u[2],
841                                         (unsigned long long) ts->short_io_u[0],
842                                         (unsigned long long) ts->short_io_u[1],
843                                         (unsigned long long) ts->short_io_u[2],
844                                         (unsigned long long) ts->drop_io_u[0],
845                                         (unsigned long long) ts->drop_io_u[1],
846                                         (unsigned long long) ts->drop_io_u[2]);
847         if (ts->continue_on_error) {
848                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
849                                         (unsigned long long)ts->total_err_count,
850                                         ts->first_error,
851                                         strerror(ts->first_error));
852         }
853         if (ts->latency_depth) {
854                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
855                                         (unsigned long long)ts->latency_target,
856                                         (unsigned long long)ts->latency_window,
857                                         ts->latency_percentile.u.f,
858                                         ts->latency_depth);
859         }
860
861         if (ts->nr_block_infos)
862                 show_block_infos(ts->nr_block_infos, ts->block_infos,
863                                   ts->percentile_list, out);
864
865         if (ts->ss_dur)
866                 show_ss_normal(ts, out);
867 }
868
869 static void show_ddir_status_terse(struct thread_stat *ts,
870                                    struct group_run_stats *rs, int ddir,
871                                    int ver, struct buf_output *out)
872 {
873         unsigned long long min, max, minv, maxv, bw, iops;
874         unsigned long long *ovals = NULL;
875         double mean, dev;
876         unsigned int len;
877         int i, bw_stat;
878
879         assert(ddir_rw(ddir));
880
881         iops = bw = 0;
882         if (ts->runtime[ddir]) {
883                 uint64_t runt = ts->runtime[ddir];
884
885                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
886                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
887         }
888
889         log_buf(out, ";%llu;%llu;%llu;%llu",
890                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
891                                         (unsigned long long) ts->runtime[ddir]);
892
893         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
894                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
895         else
896                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
897
898         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
899                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
900         else
901                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
902
903         if (ts->clat_percentiles || ts->lat_percentiles) {
904                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
905                                         ts->clat_stat[ddir].samples,
906                                         ts->percentile_list, &ovals, &maxv,
907                                         &minv);
908         } else
909                 len = 0;
910
911         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
912                 if (i >= len) {
913                         log_buf(out, ";0%%=0");
914                         continue;
915                 }
916                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
917         }
918
919         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
920                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
921         else
922                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
923
924         if (ovals)
925                 free(ovals);
926
927         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
928         if (bw_stat) {
929                 double p_of_agg = 100.0;
930
931                 if (rs->agg[ddir]) {
932                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
933                         if (p_of_agg > 100.0)
934                                 p_of_agg = 100.0;
935                 }
936
937                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
938         } else
939                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
940
941         if (ver == 5) {
942                 if (bw_stat)
943                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
944                 else
945                         log_buf(out, ";%lu", 0UL);
946
947                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
948                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
949                                 mean, dev, (&ts->iops_stat[ddir])->samples);
950                 else
951                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
952         }
953 }
954
955 static void add_ddir_status_json(struct thread_stat *ts,
956                 struct group_run_stats *rs, int ddir, struct json_object *parent)
957 {
958         unsigned long long min, max, minv, maxv;
959         unsigned long long bw;
960         unsigned long long *ovals = NULL;
961         double mean, dev, iops;
962         unsigned int len;
963         int i;
964         const char *ddirname[] = {"read", "write", "trim"};
965         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
966         char buf[120];
967         double p_of_agg = 100.0;
968
969         assert(ddir_rw(ddir));
970
971         if (ts->unified_rw_rep && ddir != DDIR_READ)
972                 return;
973
974         dir_object = json_create_object();
975         json_object_add_value_object(parent,
976                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
977
978         bw = 0;
979         iops = 0.0;
980         if (ts->runtime[ddir]) {
981                 uint64_t runt = ts->runtime[ddir];
982
983                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
984                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
985         }
986
987         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
988         json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
989         json_object_add_value_int(dir_object, "bw", bw);
990         json_object_add_value_float(dir_object, "iops", iops);
991         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
992         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
993         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
994         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
995
996         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
997                 min = max = 0;
998                 mean = dev = 0.0;
999         }
1000         tmp_object = json_create_object();
1001         json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1002         json_object_add_value_int(tmp_object, "min", min);
1003         json_object_add_value_int(tmp_object, "max", max);
1004         json_object_add_value_float(tmp_object, "mean", mean);
1005         json_object_add_value_float(tmp_object, "stddev", dev);
1006
1007         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1008                 min = max = 0;
1009                 mean = dev = 0.0;
1010         }
1011         tmp_object = json_create_object();
1012         json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1013         json_object_add_value_int(tmp_object, "min", min);
1014         json_object_add_value_int(tmp_object, "max", max);
1015         json_object_add_value_float(tmp_object, "mean", mean);
1016         json_object_add_value_float(tmp_object, "stddev", dev);
1017
1018         if (ts->clat_percentiles || ts->lat_percentiles) {
1019                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1020                                         ts->clat_stat[ddir].samples,
1021                                         ts->percentile_list, &ovals, &maxv,
1022                                         &minv);
1023         } else
1024                 len = 0;
1025
1026         percentile_object = json_create_object();
1027         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1028         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1029                 if (i >= len) {
1030                         json_object_add_value_int(percentile_object, "0.00", 0);
1031                         continue;
1032                 }
1033                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1034                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1035         }
1036
1037         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1038                 clat_bins_object = json_create_object();
1039                 if (ts->clat_percentiles)
1040                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1041
1042                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1043                         if (ts->io_u_plat[ddir][i]) {
1044                                 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1045                                 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1046                         }
1047                 }
1048         }
1049
1050         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1051                 min = max = 0;
1052                 mean = dev = 0.0;
1053         }
1054         tmp_object = json_create_object();
1055         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1056         json_object_add_value_int(tmp_object, "min", min);
1057         json_object_add_value_int(tmp_object, "max", max);
1058         json_object_add_value_float(tmp_object, "mean", mean);
1059         json_object_add_value_float(tmp_object, "stddev", dev);
1060         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1061                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1062
1063         if (ovals)
1064                 free(ovals);
1065
1066         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1067                 if (rs->agg[ddir]) {
1068                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1069                         if (p_of_agg > 100.0)
1070                                 p_of_agg = 100.0;
1071                 }
1072         } else {
1073                 min = max = 0;
1074                 p_of_agg = mean = dev = 0.0;
1075         }
1076         json_object_add_value_int(dir_object, "bw_min", min);
1077         json_object_add_value_int(dir_object, "bw_max", max);
1078         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1079         json_object_add_value_float(dir_object, "bw_mean", mean);
1080         json_object_add_value_float(dir_object, "bw_dev", dev);
1081         json_object_add_value_int(dir_object, "bw_samples",
1082                                 (&ts->bw_stat[ddir])->samples);
1083
1084         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1085                 min = max = 0;
1086                 mean = dev = 0.0;
1087         }
1088         json_object_add_value_int(dir_object, "iops_min", min);
1089         json_object_add_value_int(dir_object, "iops_max", max);
1090         json_object_add_value_float(dir_object, "iops_mean", mean);
1091         json_object_add_value_float(dir_object, "iops_stddev", dev);
1092         json_object_add_value_int(dir_object, "iops_samples",
1093                                 (&ts->iops_stat[ddir])->samples);
1094 }
1095
1096 static void show_thread_status_terse_all(struct thread_stat *ts,
1097                                          struct group_run_stats *rs, int ver,
1098                                          struct buf_output *out)
1099 {
1100         double io_u_dist[FIO_IO_U_MAP_NR];
1101         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1102         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1103         double usr_cpu, sys_cpu;
1104         int i;
1105
1106         /* General Info */
1107         if (ver == 2)
1108                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1109         else
1110                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1111                         ts->name, ts->groupid, ts->error);
1112
1113         /* Log Read Status */
1114         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1115         /* Log Write Status */
1116         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1117         /* Log Trim Status */
1118         if (ver == 2 || ver == 4 || ver == 5)
1119                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1120
1121         /* CPU Usage */
1122         if (ts->total_run_time) {
1123                 double runt = (double) ts->total_run_time;
1124
1125                 usr_cpu = (double) ts->usr_time * 100 / runt;
1126                 sys_cpu = (double) ts->sys_time * 100 / runt;
1127         } else {
1128                 usr_cpu = 0;
1129                 sys_cpu = 0;
1130         }
1131
1132         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1133                                                 (unsigned long long) ts->ctx,
1134                                                 (unsigned long long) ts->majf,
1135                                                 (unsigned long long) ts->minf);
1136
1137         /* Calc % distribution of IO depths, usecond, msecond latency */
1138         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1139         stat_calc_lat_nu(ts, io_u_lat_u);
1140         stat_calc_lat_m(ts, io_u_lat_m);
1141
1142         /* Only show fixed 7 I/O depth levels*/
1143         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1144                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1145                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1146
1147         /* Microsecond latency */
1148         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1149                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1150         /* Millisecond latency */
1151         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1152                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1153
1154         /* disk util stats, if any */
1155         if (ver >= 3)
1156                 show_disk_util(1, NULL, out);
1157
1158         /* Additional output if continue_on_error set - default off*/
1159         if (ts->continue_on_error)
1160                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1161         if (ver == 2)
1162                 log_buf(out, "\n");
1163
1164         /* Additional output if description is set */
1165         if (strlen(ts->description))
1166                 log_buf(out, ";%s", ts->description);
1167
1168         log_buf(out, "\n");
1169 }
1170
1171 static void json_add_job_opts(struct json_object *root, const char *name,
1172                               struct flist_head *opt_list, bool num_jobs)
1173 {
1174         struct json_object *dir_object;
1175         struct flist_head *entry;
1176         struct print_option *p;
1177
1178         if (flist_empty(opt_list))
1179                 return;
1180
1181         dir_object = json_create_object();
1182         json_object_add_value_object(root, name, dir_object);
1183
1184         flist_for_each(entry, opt_list) {
1185                 const char *pos = "";
1186
1187                 p = flist_entry(entry, struct print_option, list);
1188                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1189                         continue;
1190                 if (p->value)
1191                         pos = p->value;
1192                 json_object_add_value_string(dir_object, p->name, pos);
1193         }
1194 }
1195
1196 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1197                                                    struct group_run_stats *rs,
1198                                                    struct flist_head *opt_list)
1199 {
1200         struct json_object *root, *tmp;
1201         struct jobs_eta *je;
1202         double io_u_dist[FIO_IO_U_MAP_NR];
1203         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1204         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1205         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1206         double usr_cpu, sys_cpu;
1207         int i;
1208         size_t size;
1209
1210         root = json_create_object();
1211         json_object_add_value_string(root, "jobname", ts->name);
1212         json_object_add_value_int(root, "groupid", ts->groupid);
1213         json_object_add_value_int(root, "error", ts->error);
1214
1215         /* ETA Info */
1216         je = get_jobs_eta(true, &size);
1217         if (je) {
1218                 json_object_add_value_int(root, "eta", je->eta_sec);
1219                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1220         }
1221
1222         if (opt_list)
1223                 json_add_job_opts(root, "job options", opt_list, true);
1224
1225         add_ddir_status_json(ts, rs, DDIR_READ, root);
1226         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1227         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1228
1229         /* CPU Usage */
1230         if (ts->total_run_time) {
1231                 double runt = (double) ts->total_run_time;
1232
1233                 usr_cpu = (double) ts->usr_time * 100 / runt;
1234                 sys_cpu = (double) ts->sys_time * 100 / runt;
1235         } else {
1236                 usr_cpu = 0;
1237                 sys_cpu = 0;
1238         }
1239         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1240         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1241         json_object_add_value_int(root, "ctx", ts->ctx);
1242         json_object_add_value_int(root, "majf", ts->majf);
1243         json_object_add_value_int(root, "minf", ts->minf);
1244
1245
1246         /* Calc % distribution of IO depths, usecond, msecond latency */
1247         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1248         stat_calc_lat_n(ts, io_u_lat_n);
1249         stat_calc_lat_u(ts, io_u_lat_u);
1250         stat_calc_lat_m(ts, io_u_lat_m);
1251
1252         tmp = json_create_object();
1253         json_object_add_value_object(root, "iodepth_level", tmp);
1254         /* Only show fixed 7 I/O depth levels*/
1255         for (i = 0; i < 7; i++) {
1256                 char name[20];
1257                 if (i < 6)
1258                         snprintf(name, 20, "%d", 1 << i);
1259                 else
1260                         snprintf(name, 20, ">=%d", 1 << i);
1261                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1262         }
1263
1264         /* Nanosecond latency */
1265         tmp = json_create_object();
1266         json_object_add_value_object(root, "latency_ns", tmp);
1267         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1268                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1269                                  "250", "500", "750", "1000", };
1270                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1271         }
1272         /* Microsecond latency */
1273         tmp = json_create_object();
1274         json_object_add_value_object(root, "latency_us", tmp);
1275         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1276                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1277                                  "250", "500", "750", "1000", };
1278                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1279         }
1280         /* Millisecond latency */
1281         tmp = json_create_object();
1282         json_object_add_value_object(root, "latency_ms", tmp);
1283         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1284                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1285                                  "250", "500", "750", "1000", "2000",
1286                                  ">=2000", };
1287                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1288         }
1289
1290         /* Additional output if continue_on_error set - default off*/
1291         if (ts->continue_on_error) {
1292                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1293                 json_object_add_value_int(root, "first_error", ts->first_error);
1294         }
1295
1296         if (ts->latency_depth) {
1297                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1298                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1299                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1300                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1301         }
1302
1303         /* Additional output if description is set */
1304         if (strlen(ts->description))
1305                 json_object_add_value_string(root, "desc", ts->description);
1306
1307         if (ts->nr_block_infos) {
1308                 /* Block error histogram and types */
1309                 int len;
1310                 unsigned int *percentiles = NULL;
1311                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1312
1313                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1314                                              ts->percentile_list,
1315                                              &percentiles, block_state_counts);
1316
1317                 if (len) {
1318                         struct json_object *block, *percentile_object, *states;
1319                         int state;
1320                         block = json_create_object();
1321                         json_object_add_value_object(root, "block", block);
1322
1323                         percentile_object = json_create_object();
1324                         json_object_add_value_object(block, "percentiles",
1325                                                      percentile_object);
1326                         for (i = 0; i < len; i++) {
1327                                 char buf[20];
1328                                 snprintf(buf, sizeof(buf), "%f",
1329                                          ts->percentile_list[i].u.f);
1330                                 json_object_add_value_int(percentile_object,
1331                                                           (const char *)buf,
1332                                                           percentiles[i]);
1333                         }
1334
1335                         states = json_create_object();
1336                         json_object_add_value_object(block, "states", states);
1337                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1338                                 json_object_add_value_int(states,
1339                                         block_state_names[state],
1340                                         block_state_counts[state]);
1341                         }
1342                         free(percentiles);
1343                 }
1344         }
1345
1346         if (ts->ss_dur) {
1347                 struct json_object *data;
1348                 struct json_array *iops, *bw;
1349                 int i, j, k;
1350                 char ss_buf[64];
1351
1352                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1353                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1354                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1355                         (float) ts->ss_limit.u.f,
1356                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1357
1358                 tmp = json_create_object();
1359                 json_object_add_value_object(root, "steadystate", tmp);
1360                 json_object_add_value_string(tmp, "ss", ss_buf);
1361                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1362                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1363
1364                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1365                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1366                 json_object_add_value_string(tmp, "criterion", ss_buf);
1367                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1368                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1369
1370                 data = json_create_object();
1371                 json_object_add_value_object(tmp, "data", data);
1372                 bw = json_create_array();
1373                 iops = json_create_array();
1374
1375                 /*
1376                 ** if ss was attained or the buffer is not full,
1377                 ** ss->head points to the first element in the list.
1378                 ** otherwise it actually points to the second element
1379                 ** in the list
1380                 */
1381                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1382                         j = ts->ss_head;
1383                 else
1384                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1385                 for (i = 0; i < ts->ss_dur; i++) {
1386                         k = (j + i) % ts->ss_dur;
1387                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1388                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1389                 }
1390                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1391                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1392                 json_object_add_value_array(data, "iops", iops);
1393                 json_object_add_value_array(data, "bw", bw);
1394         }
1395
1396         return root;
1397 }
1398
1399 static void show_thread_status_terse(struct thread_stat *ts,
1400                                      struct group_run_stats *rs,
1401                                      struct buf_output *out)
1402 {
1403         if (terse_version >= 2 && terse_version <= 5)
1404                 show_thread_status_terse_all(ts, rs, terse_version, out);
1405         else
1406                 log_err("fio: bad terse version!? %d\n", terse_version);
1407 }
1408
1409 struct json_object *show_thread_status(struct thread_stat *ts,
1410                                        struct group_run_stats *rs,
1411                                        struct flist_head *opt_list,
1412                                        struct buf_output *out)
1413 {
1414         struct json_object *ret = NULL;
1415
1416         if (output_format & FIO_OUTPUT_TERSE)
1417                 show_thread_status_terse(ts, rs,  out);
1418         if (output_format & FIO_OUTPUT_JSON)
1419                 ret = show_thread_status_json(ts, rs, opt_list);
1420         if (output_format & FIO_OUTPUT_NORMAL)
1421                 show_thread_status_normal(ts, rs,  out);
1422
1423         return ret;
1424 }
1425
1426 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1427 {
1428         double mean, S;
1429
1430         if (src->samples == 0)
1431                 return;
1432
1433         dst->min_val = min(dst->min_val, src->min_val);
1434         dst->max_val = max(dst->max_val, src->max_val);
1435
1436         /*
1437          * Compute new mean and S after the merge
1438          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1439          *  #Parallel_algorithm>
1440          */
1441         if (first) {
1442                 mean = src->mean.u.f;
1443                 S = src->S.u.f;
1444         } else {
1445                 double delta = src->mean.u.f - dst->mean.u.f;
1446
1447                 mean = ((src->mean.u.f * src->samples) +
1448                         (dst->mean.u.f * dst->samples)) /
1449                         (dst->samples + src->samples);
1450
1451                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1452                         (dst->samples * src->samples) /
1453                         (dst->samples + src->samples);
1454         }
1455
1456         dst->samples += src->samples;
1457         dst->mean.u.f = mean;
1458         dst->S.u.f = S;
1459 }
1460
1461 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1462 {
1463         int i;
1464
1465         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1466                 if (dst->max_run[i] < src->max_run[i])
1467                         dst->max_run[i] = src->max_run[i];
1468                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1469                         dst->min_run[i] = src->min_run[i];
1470                 if (dst->max_bw[i] < src->max_bw[i])
1471                         dst->max_bw[i] = src->max_bw[i];
1472                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1473                         dst->min_bw[i] = src->min_bw[i];
1474
1475                 dst->iobytes[i] += src->iobytes[i];
1476                 dst->agg[i] += src->agg[i];
1477         }
1478
1479         if (!dst->kb_base)
1480                 dst->kb_base = src->kb_base;
1481         if (!dst->unit_base)
1482                 dst->unit_base = src->unit_base;
1483 }
1484
1485 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1486                       bool first)
1487 {
1488         int l, k;
1489
1490         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1491                 if (!dst->unified_rw_rep) {
1492                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1493                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1494                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1495                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1496                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1497
1498                         dst->io_bytes[l] += src->io_bytes[l];
1499
1500                         if (dst->runtime[l] < src->runtime[l])
1501                                 dst->runtime[l] = src->runtime[l];
1502                 } else {
1503                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1504                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1505                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1506                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1507                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1508
1509                         dst->io_bytes[0] += src->io_bytes[l];
1510
1511                         if (dst->runtime[0] < src->runtime[l])
1512                                 dst->runtime[0] = src->runtime[l];
1513
1514                         /*
1515                          * We're summing to the same destination, so override
1516                          * 'first' after the first iteration of the loop
1517                          */
1518                         first = false;
1519                 }
1520         }
1521
1522         dst->usr_time += src->usr_time;
1523         dst->sys_time += src->sys_time;
1524         dst->ctx += src->ctx;
1525         dst->majf += src->majf;
1526         dst->minf += src->minf;
1527
1528         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1529                 dst->io_u_map[k] += src->io_u_map[k];
1530         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1531                 dst->io_u_submit[k] += src->io_u_submit[k];
1532         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1533                 dst->io_u_complete[k] += src->io_u_complete[k];
1534         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1535                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1536         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1537                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1538         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1539                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1540
1541         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1542                 if (!dst->unified_rw_rep) {
1543                         dst->total_io_u[k] += src->total_io_u[k];
1544                         dst->short_io_u[k] += src->short_io_u[k];
1545                         dst->drop_io_u[k] += src->drop_io_u[k];
1546                 } else {
1547                         dst->total_io_u[0] += src->total_io_u[k];
1548                         dst->short_io_u[0] += src->short_io_u[k];
1549                         dst->drop_io_u[0] += src->drop_io_u[k];
1550                 }
1551         }
1552
1553         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1554                 int m;
1555
1556                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1557                         if (!dst->unified_rw_rep)
1558                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1559                         else
1560                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1561                 }
1562         }
1563
1564         dst->total_run_time += src->total_run_time;
1565         dst->total_submit += src->total_submit;
1566         dst->total_complete += src->total_complete;
1567 }
1568
1569 void init_group_run_stat(struct group_run_stats *gs)
1570 {
1571         int i;
1572         memset(gs, 0, sizeof(*gs));
1573
1574         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1575                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1576 }
1577
1578 void init_thread_stat(struct thread_stat *ts)
1579 {
1580         int j;
1581
1582         memset(ts, 0, sizeof(*ts));
1583
1584         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1585                 ts->lat_stat[j].min_val = -1UL;
1586                 ts->clat_stat[j].min_val = -1UL;
1587                 ts->slat_stat[j].min_val = -1UL;
1588                 ts->bw_stat[j].min_val = -1UL;
1589                 ts->iops_stat[j].min_val = -1UL;
1590         }
1591         ts->groupid = -1;
1592 }
1593
1594 void __show_run_stats(void)
1595 {
1596         struct group_run_stats *runstats, *rs;
1597         struct thread_data *td;
1598         struct thread_stat *threadstats, *ts;
1599         int i, j, k, nr_ts, last_ts, idx;
1600         bool kb_base_warned = false;
1601         bool unit_base_warned = false;
1602         struct json_object *root = NULL;
1603         struct json_array *array = NULL;
1604         struct buf_output output[FIO_OUTPUT_NR];
1605         struct flist_head **opt_lists;
1606
1607         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1608
1609         for (i = 0; i < groupid + 1; i++)
1610                 init_group_run_stat(&runstats[i]);
1611
1612         /*
1613          * find out how many threads stats we need. if group reporting isn't
1614          * enabled, it's one-per-td.
1615          */
1616         nr_ts = 0;
1617         last_ts = -1;
1618         for_each_td(td, i) {
1619                 if (!td->o.group_reporting) {
1620                         nr_ts++;
1621                         continue;
1622                 }
1623                 if (last_ts == td->groupid)
1624                         continue;
1625                 if (!td->o.stats)
1626                         continue;
1627
1628                 last_ts = td->groupid;
1629                 nr_ts++;
1630         }
1631
1632         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1633         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1634
1635         for (i = 0; i < nr_ts; i++) {
1636                 init_thread_stat(&threadstats[i]);
1637                 opt_lists[i] = NULL;
1638         }
1639
1640         j = 0;
1641         last_ts = -1;
1642         idx = 0;
1643         for_each_td(td, i) {
1644                 if (!td->o.stats)
1645                         continue;
1646                 if (idx && (!td->o.group_reporting ||
1647                     (td->o.group_reporting && last_ts != td->groupid))) {
1648                         idx = 0;
1649                         j++;
1650                 }
1651
1652                 last_ts = td->groupid;
1653
1654                 ts = &threadstats[j];
1655
1656                 ts->clat_percentiles = td->o.clat_percentiles;
1657                 ts->lat_percentiles = td->o.lat_percentiles;
1658                 ts->percentile_precision = td->o.percentile_precision;
1659                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1660                 opt_lists[j] = &td->opt_list;
1661
1662                 idx++;
1663                 ts->members++;
1664
1665                 if (ts->groupid == -1) {
1666                         /*
1667                          * These are per-group shared already
1668                          */
1669                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1670                         if (td->o.description)
1671                                 strncpy(ts->description, td->o.description,
1672                                                 FIO_JOBDESC_SIZE - 1);
1673                         else
1674                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1675
1676                         /*
1677                          * If multiple entries in this group, this is
1678                          * the first member.
1679                          */
1680                         ts->thread_number = td->thread_number;
1681                         ts->groupid = td->groupid;
1682
1683                         /*
1684                          * first pid in group, not very useful...
1685                          */
1686                         ts->pid = td->pid;
1687
1688                         ts->kb_base = td->o.kb_base;
1689                         ts->unit_base = td->o.unit_base;
1690                         ts->unified_rw_rep = td->o.unified_rw_rep;
1691                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1692                         log_info("fio: kb_base differs for jobs in group, using"
1693                                  " %u as the base\n", ts->kb_base);
1694                         kb_base_warned = true;
1695                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1696                         log_info("fio: unit_base differs for jobs in group, using"
1697                                  " %u as the base\n", ts->unit_base);
1698                         unit_base_warned = true;
1699                 }
1700
1701                 ts->continue_on_error = td->o.continue_on_error;
1702                 ts->total_err_count += td->total_err_count;
1703                 ts->first_error = td->first_error;
1704                 if (!ts->error) {
1705                         if (!td->error && td->o.continue_on_error &&
1706                             td->first_error) {
1707                                 ts->error = td->first_error;
1708                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1709                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1710                         } else  if (td->error) {
1711                                 ts->error = td->error;
1712                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1713                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1714                         }
1715                 }
1716
1717                 ts->latency_depth = td->latency_qd;
1718                 ts->latency_target = td->o.latency_target;
1719                 ts->latency_percentile = td->o.latency_percentile;
1720                 ts->latency_window = td->o.latency_window;
1721
1722                 ts->nr_block_infos = td->ts.nr_block_infos;
1723                 for (k = 0; k < ts->nr_block_infos; k++)
1724                         ts->block_infos[k] = td->ts.block_infos[k];
1725
1726                 sum_thread_stats(ts, &td->ts, idx == 1);
1727
1728                 if (td->o.ss_dur) {
1729                         ts->ss_state = td->ss.state;
1730                         ts->ss_dur = td->ss.dur;
1731                         ts->ss_head = td->ss.head;
1732                         ts->ss_bw_data = td->ss.bw_data;
1733                         ts->ss_iops_data = td->ss.iops_data;
1734                         ts->ss_limit.u.f = td->ss.limit;
1735                         ts->ss_slope.u.f = td->ss.slope;
1736                         ts->ss_deviation.u.f = td->ss.deviation;
1737                         ts->ss_criterion.u.f = td->ss.criterion;
1738                 }
1739                 else
1740                         ts->ss_dur = ts->ss_state = 0;
1741         }
1742
1743         for (i = 0; i < nr_ts; i++) {
1744                 unsigned long long bw;
1745
1746                 ts = &threadstats[i];
1747                 if (ts->groupid == -1)
1748                         continue;
1749                 rs = &runstats[ts->groupid];
1750                 rs->kb_base = ts->kb_base;
1751                 rs->unit_base = ts->unit_base;
1752                 rs->unified_rw_rep += ts->unified_rw_rep;
1753
1754                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1755                         if (!ts->runtime[j])
1756                                 continue;
1757                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1758                                 rs->min_run[j] = ts->runtime[j];
1759                         if (ts->runtime[j] > rs->max_run[j])
1760                                 rs->max_run[j] = ts->runtime[j];
1761
1762                         bw = 0;
1763                         if (ts->runtime[j])
1764                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1765                         if (bw < rs->min_bw[j])
1766                                 rs->min_bw[j] = bw;
1767                         if (bw > rs->max_bw[j])
1768                                 rs->max_bw[j] = bw;
1769
1770                         rs->iobytes[j] += ts->io_bytes[j];
1771                 }
1772         }
1773
1774         for (i = 0; i < groupid + 1; i++) {
1775                 int ddir;
1776
1777                 rs = &runstats[i];
1778
1779                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1780                         if (rs->max_run[ddir])
1781                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1782                                                 rs->max_run[ddir];
1783                 }
1784         }
1785
1786         for (i = 0; i < FIO_OUTPUT_NR; i++)
1787                 buf_output_init(&output[i]);
1788
1789         /*
1790          * don't overwrite last signal output
1791          */
1792         if (output_format & FIO_OUTPUT_NORMAL)
1793                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1794         if (output_format & FIO_OUTPUT_JSON) {
1795                 struct thread_data *global;
1796                 char time_buf[32];
1797                 struct timeval now;
1798                 unsigned long long ms_since_epoch;
1799
1800                 gettimeofday(&now, NULL);
1801                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1802                                  (unsigned long long)(now.tv_usec) / 1000;
1803
1804                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1805                                 sizeof(time_buf));
1806                 if (time_buf[strlen(time_buf) - 1] == '\n')
1807                         time_buf[strlen(time_buf) - 1] = '\0';
1808
1809                 root = json_create_object();
1810                 json_object_add_value_string(root, "fio version", fio_version_string);
1811                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1812                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1813                 json_object_add_value_string(root, "time", time_buf);
1814                 global = get_global_options();
1815                 json_add_job_opts(root, "global options", &global->opt_list, false);
1816                 array = json_create_array();
1817                 json_object_add_value_array(root, "jobs", array);
1818         }
1819
1820         if (is_backend)
1821                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1822
1823         for (i = 0; i < nr_ts; i++) {
1824                 ts = &threadstats[i];
1825                 rs = &runstats[ts->groupid];
1826
1827                 if (is_backend) {
1828                         fio_server_send_job_options(opt_lists[i], i);
1829                         fio_server_send_ts(ts, rs);
1830                 } else {
1831                         if (output_format & FIO_OUTPUT_TERSE)
1832                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1833                         if (output_format & FIO_OUTPUT_JSON) {
1834                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1835                                 json_array_add_value_object(array, tmp);
1836                         }
1837                         if (output_format & FIO_OUTPUT_NORMAL)
1838                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1839                 }
1840         }
1841         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1842                 /* disk util stats, if any */
1843                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1844
1845                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1846
1847                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1848                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1849                 json_free_object(root);
1850         }
1851
1852         for (i = 0; i < groupid + 1; i++) {
1853                 rs = &runstats[i];
1854
1855                 rs->groupid = i;
1856                 if (is_backend)
1857                         fio_server_send_gs(rs);
1858                 else if (output_format & FIO_OUTPUT_NORMAL)
1859                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1860         }
1861
1862         if (is_backend)
1863                 fio_server_send_du();
1864         else if (output_format & FIO_OUTPUT_NORMAL) {
1865                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1866                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1867         }
1868
1869         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1870                 struct buf_output *out = &output[i];
1871
1872                 log_info_buf(out->buf, out->buflen);
1873                 buf_output_free(out);
1874         }
1875
1876         log_info_flush();
1877         free(runstats);
1878         free(threadstats);
1879         free(opt_lists);
1880 }
1881
1882 void show_run_stats(void)
1883 {
1884         fio_mutex_down(stat_mutex);
1885         __show_run_stats();
1886         fio_mutex_up(stat_mutex);
1887 }
1888
1889 void __show_running_run_stats(void)
1890 {
1891         struct thread_data *td;
1892         unsigned long long *rt;
1893         struct timespec ts;
1894         int i;
1895
1896         fio_mutex_down(stat_mutex);
1897
1898         rt = malloc(thread_number * sizeof(unsigned long long));
1899         fio_gettime(&ts, NULL);
1900
1901         for_each_td(td, i) {
1902                 td->update_rusage = 1;
1903                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1904                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1905                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1906                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1907
1908                 rt[i] = mtime_since(&td->start, &ts);
1909                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1910                         td->ts.runtime[DDIR_READ] += rt[i];
1911                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1912                         td->ts.runtime[DDIR_WRITE] += rt[i];
1913                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1914                         td->ts.runtime[DDIR_TRIM] += rt[i];
1915         }
1916
1917         for_each_td(td, i) {
1918                 if (td->runstate >= TD_EXITED)
1919                         continue;
1920                 if (td->rusage_sem) {
1921                         td->update_rusage = 1;
1922                         fio_mutex_down(td->rusage_sem);
1923                 }
1924                 td->update_rusage = 0;
1925         }
1926
1927         __show_run_stats();
1928
1929         for_each_td(td, i) {
1930                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1931                         td->ts.runtime[DDIR_READ] -= rt[i];
1932                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1933                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1934                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1935                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1936         }
1937
1938         free(rt);
1939         fio_mutex_up(stat_mutex);
1940 }
1941
1942 static bool status_interval_init;
1943 static struct timespec status_time;
1944 static bool status_file_disabled;
1945
1946 #define FIO_STATUS_FILE         "fio-dump-status"
1947
1948 static int check_status_file(void)
1949 {
1950         struct stat sb;
1951         const char *temp_dir;
1952         char fio_status_file_path[PATH_MAX];
1953
1954         if (status_file_disabled)
1955                 return 0;
1956
1957         temp_dir = getenv("TMPDIR");
1958         if (temp_dir == NULL) {
1959                 temp_dir = getenv("TEMP");
1960                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1961                         temp_dir = NULL;
1962         }
1963         if (temp_dir == NULL)
1964                 temp_dir = "/tmp";
1965
1966         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1967
1968         if (stat(fio_status_file_path, &sb))
1969                 return 0;
1970
1971         if (unlink(fio_status_file_path) < 0) {
1972                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1973                                                         strerror(errno));
1974                 log_err("fio: disabling status file updates\n");
1975                 status_file_disabled = true;
1976         }
1977
1978         return 1;
1979 }
1980
1981 void check_for_running_stats(void)
1982 {
1983         if (status_interval) {
1984                 if (!status_interval_init) {
1985                         fio_gettime(&status_time, NULL);
1986                         status_interval_init = true;
1987                 } else if (mtime_since_now(&status_time) >= status_interval) {
1988                         show_running_run_stats();
1989                         fio_gettime(&status_time, NULL);
1990                         return;
1991                 }
1992         }
1993         if (check_status_file()) {
1994                 show_running_run_stats();
1995                 return;
1996         }
1997 }
1998
1999 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2000 {
2001         double val = data;
2002         double delta;
2003
2004         if (data > is->max_val)
2005                 is->max_val = data;
2006         if (data < is->min_val)
2007                 is->min_val = data;
2008
2009         delta = val - is->mean.u.f;
2010         if (delta) {
2011                 is->mean.u.f += delta / (is->samples + 1.0);
2012                 is->S.u.f += delta * (val - is->mean.u.f);
2013         }
2014
2015         is->samples++;
2016 }
2017
2018 /*
2019  * Return a struct io_logs, which is added to the tail of the log
2020  * list for 'iolog'.
2021  */
2022 static struct io_logs *get_new_log(struct io_log *iolog)
2023 {
2024         size_t new_size, new_samples;
2025         struct io_logs *cur_log;
2026
2027         /*
2028          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2029          * forever
2030          */
2031         if (!iolog->cur_log_max)
2032                 new_samples = DEF_LOG_ENTRIES;
2033         else {
2034                 new_samples = iolog->cur_log_max * 2;
2035                 if (new_samples > MAX_LOG_ENTRIES)
2036                         new_samples = MAX_LOG_ENTRIES;
2037         }
2038
2039         new_size = new_samples * log_entry_sz(iolog);
2040
2041         cur_log = smalloc(sizeof(*cur_log));
2042         if (cur_log) {
2043                 INIT_FLIST_HEAD(&cur_log->list);
2044                 cur_log->log = malloc(new_size);
2045                 if (cur_log->log) {
2046                         cur_log->nr_samples = 0;
2047                         cur_log->max_samples = new_samples;
2048                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2049                         iolog->cur_log_max = new_samples;
2050                         return cur_log;
2051                 }
2052                 sfree(cur_log);
2053         }
2054
2055         return NULL;
2056 }
2057
2058 /*
2059  * Add and return a new log chunk, or return current log if big enough
2060  */
2061 static struct io_logs *regrow_log(struct io_log *iolog)
2062 {
2063         struct io_logs *cur_log;
2064         int i;
2065
2066         if (!iolog || iolog->disabled)
2067                 goto disable;
2068
2069         cur_log = iolog_cur_log(iolog);
2070         if (!cur_log) {
2071                 cur_log = get_new_log(iolog);
2072                 if (!cur_log)
2073                         return NULL;
2074         }
2075
2076         if (cur_log->nr_samples < cur_log->max_samples)
2077                 return cur_log;
2078
2079         /*
2080          * No room for a new sample. If we're compressing on the fly, flush
2081          * out the current chunk
2082          */
2083         if (iolog->log_gz) {
2084                 if (iolog_cur_flush(iolog, cur_log)) {
2085                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2086                         return NULL;
2087                 }
2088         }
2089
2090         /*
2091          * Get a new log array, and add to our list
2092          */
2093         cur_log = get_new_log(iolog);
2094         if (!cur_log) {
2095                 log_err("fio: failed extending iolog! Will stop logging.\n");
2096                 return NULL;
2097         }
2098
2099         if (!iolog->pending || !iolog->pending->nr_samples)
2100                 return cur_log;
2101
2102         /*
2103          * Flush pending items to new log
2104          */
2105         for (i = 0; i < iolog->pending->nr_samples; i++) {
2106                 struct io_sample *src, *dst;
2107
2108                 src = get_sample(iolog, iolog->pending, i);
2109                 dst = get_sample(iolog, cur_log, i);
2110                 memcpy(dst, src, log_entry_sz(iolog));
2111         }
2112         cur_log->nr_samples = iolog->pending->nr_samples;
2113
2114         iolog->pending->nr_samples = 0;
2115         return cur_log;
2116 disable:
2117         if (iolog)
2118                 iolog->disabled = true;
2119         return NULL;
2120 }
2121
2122 void regrow_logs(struct thread_data *td)
2123 {
2124         regrow_log(td->slat_log);
2125         regrow_log(td->clat_log);
2126         regrow_log(td->clat_hist_log);
2127         regrow_log(td->lat_log);
2128         regrow_log(td->bw_log);
2129         regrow_log(td->iops_log);
2130         td->flags &= ~TD_F_REGROW_LOGS;
2131 }
2132
2133 static struct io_logs *get_cur_log(struct io_log *iolog)
2134 {
2135         struct io_logs *cur_log;
2136
2137         cur_log = iolog_cur_log(iolog);
2138         if (!cur_log) {
2139                 cur_log = get_new_log(iolog);
2140                 if (!cur_log)
2141                         return NULL;
2142         }
2143
2144         if (cur_log->nr_samples < cur_log->max_samples)
2145                 return cur_log;
2146
2147         /*
2148          * Out of space. If we're in IO offload mode, or we're not doing
2149          * per unit logging (hence logging happens outside of the IO thread
2150          * as well), add a new log chunk inline. If we're doing inline
2151          * submissions, flag 'td' as needing a log regrow and we'll take
2152          * care of it on the submission side.
2153          */
2154         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2155             !per_unit_log(iolog))
2156                 return regrow_log(iolog);
2157
2158         iolog->td->flags |= TD_F_REGROW_LOGS;
2159         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2160         return iolog->pending;
2161 }
2162
2163 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2164                              enum fio_ddir ddir, unsigned int bs,
2165                              unsigned long t, uint64_t offset)
2166 {
2167         struct io_logs *cur_log;
2168
2169         if (iolog->disabled)
2170                 return;
2171         if (flist_empty(&iolog->io_logs))
2172                 iolog->avg_last[ddir] = t;
2173
2174         cur_log = get_cur_log(iolog);
2175         if (cur_log) {
2176                 struct io_sample *s;
2177
2178                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2179
2180                 s->data = data;
2181                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2182                 io_sample_set_ddir(iolog, s, ddir);
2183                 s->bs = bs;
2184
2185                 if (iolog->log_offset) {
2186                         struct io_sample_offset *so = (void *) s;
2187
2188                         so->offset = offset;
2189                 }
2190
2191                 cur_log->nr_samples++;
2192                 return;
2193         }
2194
2195         iolog->disabled = true;
2196 }
2197
2198 static inline void reset_io_stat(struct io_stat *ios)
2199 {
2200         ios->max_val = ios->min_val = ios->samples = 0;
2201         ios->mean.u.f = ios->S.u.f = 0;
2202 }
2203
2204 void reset_io_stats(struct thread_data *td)
2205 {
2206         struct thread_stat *ts = &td->ts;
2207         int i, j;
2208
2209         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2210                 reset_io_stat(&ts->clat_stat[i]);
2211                 reset_io_stat(&ts->slat_stat[i]);
2212                 reset_io_stat(&ts->lat_stat[i]);
2213                 reset_io_stat(&ts->bw_stat[i]);
2214                 reset_io_stat(&ts->iops_stat[i]);
2215
2216                 ts->io_bytes[i] = 0;
2217                 ts->runtime[i] = 0;
2218                 ts->total_io_u[i] = 0;
2219                 ts->short_io_u[i] = 0;
2220                 ts->drop_io_u[i] = 0;
2221
2222                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2223                         ts->io_u_plat[i][j] = 0;
2224         }
2225
2226         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2227                 ts->io_u_map[i] = 0;
2228                 ts->io_u_submit[i] = 0;
2229                 ts->io_u_complete[i] = 0;
2230         }
2231
2232         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2233                 ts->io_u_lat_n[i] = 0;
2234         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2235                 ts->io_u_lat_u[i] = 0;
2236         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2237                 ts->io_u_lat_m[i] = 0;
2238
2239         ts->total_submit = 0;
2240         ts->total_complete = 0;
2241 }
2242
2243 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2244                               unsigned long elapsed, bool log_max)
2245 {
2246         /*
2247          * Note an entry in the log. Use the mean from the logged samples,
2248          * making sure to properly round up. Only write a log entry if we
2249          * had actual samples done.
2250          */
2251         if (iolog->avg_window[ddir].samples) {
2252                 union io_sample_data data;
2253
2254                 if (log_max)
2255                         data.val = iolog->avg_window[ddir].max_val;
2256                 else
2257                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2258
2259                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2260         }
2261
2262         reset_io_stat(&iolog->avg_window[ddir]);
2263 }
2264
2265 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2266                              bool log_max)
2267 {
2268         int ddir;
2269
2270         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2271                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2272 }
2273
2274 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2275                            union io_sample_data data, enum fio_ddir ddir,
2276                            unsigned int bs, uint64_t offset)
2277 {
2278         unsigned long elapsed, this_window;
2279
2280         if (!ddir_rw(ddir))
2281                 return 0;
2282
2283         elapsed = mtime_since_now(&td->epoch);
2284
2285         /*
2286          * If no time averaging, just add the log sample.
2287          */
2288         if (!iolog->avg_msec) {
2289                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2290                 return 0;
2291         }
2292
2293         /*
2294          * Add the sample. If the time period has passed, then
2295          * add that entry to the log and clear.
2296          */
2297         add_stat_sample(&iolog->avg_window[ddir], data.val);
2298
2299         /*
2300          * If period hasn't passed, adding the above sample is all we
2301          * need to do.
2302          */
2303         this_window = elapsed - iolog->avg_last[ddir];
2304         if (elapsed < iolog->avg_last[ddir])
2305                 return iolog->avg_last[ddir] - elapsed;
2306         else if (this_window < iolog->avg_msec) {
2307                 int diff = iolog->avg_msec - this_window;
2308
2309                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2310                         return diff;
2311         }
2312
2313         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2314
2315         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2316         return iolog->avg_msec;
2317 }
2318
2319 void finalize_logs(struct thread_data *td, bool unit_logs)
2320 {
2321         unsigned long elapsed;
2322
2323         elapsed = mtime_since_now(&td->epoch);
2324
2325         if (td->clat_log && unit_logs)
2326                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2327         if (td->slat_log && unit_logs)
2328                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2329         if (td->lat_log && unit_logs)
2330                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2331         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2332                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2333         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2334                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2335 }
2336
2337 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2338 {
2339         struct io_log *iolog;
2340
2341         if (!ddir_rw(ddir))
2342                 return;
2343
2344         iolog = agg_io_log[ddir];
2345         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2346 }
2347
2348 static void add_clat_percentile_sample(struct thread_stat *ts,
2349                                 unsigned long long nsec, enum fio_ddir ddir)
2350 {
2351         unsigned int idx = plat_val_to_idx(nsec);
2352         assert(idx < FIO_IO_U_PLAT_NR);
2353
2354         ts->io_u_plat[ddir][idx]++;
2355 }
2356
2357 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2358                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2359 {
2360         unsigned long elapsed, this_window;
2361         struct thread_stat *ts = &td->ts;
2362         struct io_log *iolog = td->clat_hist_log;
2363
2364         td_io_u_lock(td);
2365
2366         add_stat_sample(&ts->clat_stat[ddir], nsec);
2367
2368         if (td->clat_log)
2369                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2370                                offset);
2371
2372         if (ts->clat_percentiles)
2373                 add_clat_percentile_sample(ts, nsec, ddir);
2374
2375         if (iolog && iolog->hist_msec) {
2376                 struct io_hist *hw = &iolog->hist_window[ddir];
2377
2378                 hw->samples++;
2379                 elapsed = mtime_since_now(&td->epoch);
2380                 if (!hw->hist_last)
2381                         hw->hist_last = elapsed;
2382                 this_window = elapsed - hw->hist_last;
2383                 
2384                 if (this_window >= iolog->hist_msec) {
2385                         unsigned int *io_u_plat;
2386                         struct io_u_plat_entry *dst;
2387
2388                         /*
2389                          * Make a byte-for-byte copy of the latency histogram
2390                          * stored in td->ts.io_u_plat[ddir], recording it in a
2391                          * log sample. Note that the matching call to free() is
2392                          * located in iolog.c after printing this sample to the
2393                          * log file.
2394                          */
2395                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2396                         dst = malloc(sizeof(struct io_u_plat_entry));
2397                         memcpy(&(dst->io_u_plat), io_u_plat,
2398                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2399                         flist_add(&dst->list, &hw->list);
2400                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2401                                                 elapsed, offset);
2402
2403                         /*
2404                          * Update the last time we recorded as being now, minus
2405                          * any drift in time we encountered before actually
2406                          * making the record.
2407                          */
2408                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2409                         hw->samples = 0;
2410                 }
2411         }
2412
2413         td_io_u_unlock(td);
2414 }
2415
2416 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2417                      unsigned long usec, unsigned int bs, uint64_t offset)
2418 {
2419         struct thread_stat *ts = &td->ts;
2420
2421         if (!ddir_rw(ddir))
2422                 return;
2423
2424         td_io_u_lock(td);
2425
2426         add_stat_sample(&ts->slat_stat[ddir], usec);
2427
2428         if (td->slat_log)
2429                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2430
2431         td_io_u_unlock(td);
2432 }
2433
2434 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2435                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2436 {
2437         struct thread_stat *ts = &td->ts;
2438
2439         if (!ddir_rw(ddir))
2440                 return;
2441
2442         td_io_u_lock(td);
2443
2444         add_stat_sample(&ts->lat_stat[ddir], nsec);
2445
2446         if (td->lat_log)
2447                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2448                                offset);
2449
2450         if (ts->lat_percentiles)
2451                 add_clat_percentile_sample(ts, nsec, ddir);
2452
2453         td_io_u_unlock(td);
2454 }
2455
2456 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2457                    unsigned int bytes, unsigned long long spent)
2458 {
2459         struct thread_stat *ts = &td->ts;
2460         unsigned long rate;
2461
2462         if (spent)
2463                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2464         else
2465                 rate = 0;
2466
2467         td_io_u_lock(td);
2468
2469         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2470
2471         if (td->bw_log)
2472                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2473                                bytes, io_u->offset);
2474
2475         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2476         td_io_u_unlock(td);
2477 }
2478
2479 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2480                          struct timespec *t, unsigned int avg_time,
2481                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2482                          struct io_stat *stat, struct io_log *log,
2483                          bool is_kb)
2484 {
2485         unsigned long spent, rate;
2486         enum fio_ddir ddir;
2487         unsigned int next, next_log;
2488
2489         next_log = avg_time;
2490
2491         spent = mtime_since(parent_tv, t);
2492         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2493                 return avg_time - spent;
2494
2495         td_io_u_lock(td);
2496
2497         /*
2498          * Compute both read and write rates for the interval.
2499          */
2500         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2501                 uint64_t delta;
2502
2503                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2504                 if (!delta)
2505                         continue; /* No entries for interval */
2506
2507                 if (spent) {
2508                         if (is_kb)
2509                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2510                         else
2511                                 rate = (delta * 1000) / spent;
2512                 } else
2513                         rate = 0;
2514
2515                 add_stat_sample(&stat[ddir], rate);
2516
2517                 if (log) {
2518                         unsigned int bs = 0;
2519
2520                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2521                                 bs = td->o.min_bs[ddir];
2522
2523                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2524                         next_log = min(next_log, next);
2525                 }
2526
2527                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2528         }
2529
2530         timespec_add_msec(parent_tv, avg_time);
2531
2532         td_io_u_unlock(td);
2533
2534         if (spent <= avg_time)
2535                 next = avg_time;
2536         else
2537                 next = avg_time - (1 + spent - avg_time);
2538
2539         return min(next, next_log);
2540 }
2541
2542 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2543 {
2544         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2545                                 td->this_io_bytes, td->stat_io_bytes,
2546                                 td->ts.bw_stat, td->bw_log, true);
2547 }
2548
2549 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2550                      unsigned int bytes)
2551 {
2552         struct thread_stat *ts = &td->ts;
2553
2554         td_io_u_lock(td);
2555
2556         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2557
2558         if (td->iops_log)
2559                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2560                                bytes, io_u->offset);
2561
2562         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2563         td_io_u_unlock(td);
2564 }
2565
2566 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2567 {
2568         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2569                                 td->this_io_blocks, td->stat_io_blocks,
2570                                 td->ts.iops_stat, td->iops_log, false);
2571 }
2572
2573 /*
2574  * Returns msecs to next event
2575  */
2576 int calc_log_samples(void)
2577 {
2578         struct thread_data *td;
2579         unsigned int next = ~0U, tmp;
2580         struct timespec now;
2581         int i;
2582
2583         fio_gettime(&now, NULL);
2584
2585         for_each_td(td, i) {
2586                 if (!td->o.stats)
2587                         continue;
2588                 if (in_ramp_time(td) ||
2589                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2590                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2591                         continue;
2592                 }
2593                 if (!td->bw_log ||
2594                         (td->bw_log && !per_unit_log(td->bw_log))) {
2595                         tmp = add_bw_samples(td, &now);
2596                         if (tmp < next)
2597                                 next = tmp;
2598                 }
2599                 if (!td->iops_log ||
2600                         (td->iops_log && !per_unit_log(td->iops_log))) {
2601                         tmp = add_iops_samples(td, &now);
2602                         if (tmp < next)
2603                                 next = tmp;
2604                 }
2605         }
2606
2607         return next == ~0U ? 0 : next;
2608 }
2609
2610 void stat_init(void)
2611 {
2612         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2613 }
2614
2615 void stat_exit(void)
2616 {
2617         /*
2618          * When we have the mutex, we know out-of-band access to it
2619          * have ended.
2620          */
2621         fio_mutex_down(stat_mutex);
2622         fio_mutex_remove(stat_mutex);
2623 }
2624
2625 /*
2626  * Called from signal handler. Wake up status thread.
2627  */
2628 void show_running_run_stats(void)
2629 {
2630         helper_do_stat();
2631 }
2632
2633 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2634 {
2635         /* Ignore io_u's which span multiple blocks--they will just get
2636          * inaccurate counts. */
2637         int idx = (io_u->offset - io_u->file->file_offset)
2638                         / td->o.bs[DDIR_TRIM];
2639         uint32_t *info = &td->ts.block_infos[idx];
2640         assert(idx < td->ts.nr_block_infos);
2641         return info;
2642 }