stat: Print number of samples in bw and iops stats
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned long long val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned long long plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned long long *ovals = NULL;
145         int is_last;
146
147         *minv = -1ULL;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(*ovals));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int divisor, len, i, j = 0;
205         unsigned long long minv, maxv;
206         unsigned long long *ovals;
207         int is_last, per_line, scale_down, time_width;
208         char fmt[32];
209
210         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211         if (!len)
212                 goto out;
213
214         /*
215          * We default to nsecs, but if the value range is such that we
216          * should scale down to usecs or msecs, do that.
217          */
218         if (minv > 2000000 && maxv > 99999999ULL) {
219                 scale_down = 2;
220                 divisor = 1000000;
221                 log_buf(out, "    clat percentiles (msec):\n     |");
222         } else if (minv > 2000 && maxv > 99999) {
223                 scale_down = 1;
224                 divisor = 1000;
225                 log_buf(out, "    clat percentiles (usec):\n     |");
226         } else {
227                 scale_down = 0;
228                 divisor = 1;
229                 log_buf(out, "    clat percentiles (nsec):\n     |");
230         }
231
232
233         time_width = max(5, (int) (log10(maxv / divisor) + 1));
234         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235                         precision, time_width);
236         /* fmt will be something like " %5.2fth=[%4llu]%c" */
237         per_line = (80 - 7) / (precision + 10 + time_width);
238
239         for (j = 0; j < len; j++) {
240                 /* for formatting */
241                 if (j != 0 && (j % per_line) == 0)
242                         log_buf(out, "     |");
243
244                 /* end of the list */
245                 is_last = (j == len - 1);
246
247                 for (i = 0; i < scale_down; i++)
248                         ovals[j] = (ovals[j] + 999) / 1000;
249
250                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252                 if (is_last)
253                         break;
254
255                 if ((j % per_line) == per_line - 1)     /* for formatting */
256                         log_buf(out, "\n");
257         }
258
259 out:
260         if (ovals)
261                 free(ovals);
262 }
263
264 bool calc_lat(struct io_stat *is, unsigned long long *min,
265               unsigned long long *max, double *mean, double *dev)
266 {
267         double n = (double) is->samples;
268
269         if (n == 0)
270                 return false;
271
272         *min = is->min_val;
273         *max = is->max_val;
274         *mean = is->mean.u.f;
275
276         if (n > 1.0)
277                 *dev = sqrt(is->S.u.f / (n - 1.0));
278         else
279                 *dev = 0;
280
281         return true;
282 }
283
284 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285 {
286         char *io, *agg, *min, *max;
287         char *ioalt, *aggalt, *minalt, *maxalt;
288         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
289         int i;
290
291         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294                 const int i2p = is_power_of_2(rs->kb_base);
295
296                 if (!rs->max_run[i])
297                         continue;
298
299                 io = num2str(rs->iobytes[i], 4, 1, i2p, N2S_BYTE);
300                 ioalt = num2str(rs->iobytes[i], 4, 1, !i2p, N2S_BYTE);
301                 agg = num2str(rs->agg[i], 4, 1, i2p, rs->unit_base);
302                 aggalt = num2str(rs->agg[i], 4, 1, !i2p, rs->unit_base);
303                 min = num2str(rs->min_bw[i], 4, 1, i2p, rs->unit_base);
304                 minalt = num2str(rs->min_bw[i], 4, 1, !i2p, rs->unit_base);
305                 max = num2str(rs->max_bw[i], 4, 1, i2p, rs->unit_base);
306                 maxalt = num2str(rs->max_bw[i], 4, 1, !i2p, rs->unit_base);
307                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308                                 rs->unified_rw_rep ? "  MIXED" : str[i],
309                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310                                 (unsigned long long) rs->min_run[i],
311                                 (unsigned long long) rs->max_run[i]);
312
313                 free(io);
314                 free(agg);
315                 free(min);
316                 free(max);
317                 free(ioalt);
318                 free(aggalt);
319                 free(minalt);
320                 free(maxalt);
321         }
322 }
323
324 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
325 {
326         int i;
327
328         /*
329          * Do depth distribution calculations
330          */
331         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332                 if (total) {
333                         io_u_dist[i] = (double) map[i] / (double) total;
334                         io_u_dist[i] *= 100.0;
335                         if (io_u_dist[i] < 0.1 && map[i])
336                                 io_u_dist[i] = 0.1;
337                 } else
338                         io_u_dist[i] = 0.0;
339         }
340 }
341
342 static void stat_calc_lat(struct thread_stat *ts, double *dst,
343                           unsigned int *src, int nr)
344 {
345         unsigned long total = ddir_rw_sum(ts->total_io_u);
346         int i;
347
348         /*
349          * Do latency distribution calculations
350          */
351         for (i = 0; i < nr; i++) {
352                 if (total) {
353                         dst[i] = (double) src[i] / (double) total;
354                         dst[i] *= 100.0;
355                         if (dst[i] < 0.01 && src[i])
356                                 dst[i] = 0.01;
357                 } else
358                         dst[i] = 0.0;
359         }
360 }
361
362 /*
363  * To keep the terse format unaltered, add all of the ns latency
364  * buckets to the first us latency bucket
365  */
366 void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367 {
368         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369         int i;
370
371         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374                 ntotal += ts->io_u_lat_n[i];
375
376         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377 }
378
379 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380 {
381         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382 }
383
384 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385 {
386         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387 }
388
389 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390 {
391         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392 }
393
394 static void display_lat(const char *name, unsigned long long min,
395                         unsigned long long max, double mean, double dev,
396                         struct buf_output *out)
397 {
398         const char *base = "(nsec)";
399         char *minp, *maxp;
400
401         if (nsec_to_msec(&min, &max, &mean, &dev))
402                 base = "(msec)";
403         else if (nsec_to_usec(&min, &max, &mean, &dev))
404                 base = "(usec)";
405
406         minp = num2str(min, 6, 1, 0, N2S_NONE);
407         maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
410                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412         free(minp);
413         free(maxp);
414 }
415
416 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417                              int ddir, struct buf_output *out)
418 {
419         const char *str[] = { " read", "write", " trim" };
420         unsigned long runt;
421         unsigned long long min, max, bw, iops;
422         double mean, dev;
423         char *io_p, *bw_p, *bw_p_alt, *iops_p;
424         int i2p;
425
426         assert(ddir_rw(ddir));
427
428         if (!ts->runtime[ddir])
429                 return;
430
431         i2p = is_power_of_2(rs->kb_base);
432         runt = ts->runtime[ddir];
433
434         bw = (1000 * ts->io_bytes[ddir]) / runt;
435         io_p = num2str(ts->io_bytes[ddir], 4, 1, i2p, N2S_BYTE);
436         bw_p = num2str(bw, 4, 1, i2p, ts->unit_base);
437         bw_p_alt = num2str(bw, 4, 1, !i2p, ts->unit_base);
438
439         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
440         iops_p = num2str(iops, 4, 1, 0, N2S_NONE);
441
442         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)\n",
443                         rs->unified_rw_rep ? "mixed" : str[ddir],
444                         iops_p, bw_p, bw_p_alt, io_p,
445                         (unsigned long long) ts->runtime[ddir]);
446
447         free(io_p);
448         free(bw_p);
449         free(bw_p_alt);
450         free(iops_p);
451
452         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
453                 display_lat("slat", min, max, mean, dev, out);
454         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
455                 display_lat("clat", min, max, mean, dev, out);
456         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
457                 display_lat(" lat", min, max, mean, dev, out);
458
459         if (ts->clat_percentiles) {
460                 show_clat_percentiles(ts->io_u_plat[ddir],
461                                         ts->clat_stat[ddir].samples,
462                                         ts->percentile_list,
463                                         ts->percentile_precision, out);
464         }
465         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
466                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
467                 const char *bw_str;
468
469                 if ((rs->unit_base == 1) && i2p)
470                         bw_str = "Kibit";
471                 else if (rs->unit_base == 1)
472                         bw_str = "kbit";
473                 else if (i2p)
474                         bw_str = "KiB";
475                 else
476                         bw_str = "kB";
477
478                 if (rs->unit_base == 1) {
479                         min *= 8.0;
480                         max *= 8.0;
481                         mean *= 8.0;
482                         dev *= 8.0;
483                 }
484
485                 if (rs->agg[ddir]) {
486                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
487                         if (p_of_agg > 100.0)
488                                 p_of_agg = 100.0;
489                 }
490
491                 if (mean > fkb_base * fkb_base) {
492                         min /= fkb_base;
493                         max /= fkb_base;
494                         mean /= fkb_base;
495                         dev /= fkb_base;
496                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
497                 }
498
499                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
500                         "avg=%5.02f, stdev=%5.02f, samples=%5lu\n",
501                         bw_str, min, max, p_of_agg, mean, dev,
502                         (&ts->bw_stat[ddir])->samples);
503         }
504         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
505                 log_buf(out, "   iops : min=%5llu, max=%5llu, avg=%5.02f, "
506                         "stdev=%5.02f, samples=%5lu\n",
507                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
508         }
509 }
510
511 static int show_lat(double *io_u_lat, int nr, const char **ranges,
512                     const char *msg, struct buf_output *out)
513 {
514         int new_line = 1, i, line = 0, shown = 0;
515
516         for (i = 0; i < nr; i++) {
517                 if (io_u_lat[i] <= 0.0)
518                         continue;
519                 shown = 1;
520                 if (new_line) {
521                         if (line)
522                                 log_buf(out, "\n");
523                         log_buf(out, "    lat (%s) : ", msg);
524                         new_line = 0;
525                         line = 0;
526                 }
527                 if (line)
528                         log_buf(out, ", ");
529                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
530                 line++;
531                 if (line == 5)
532                         new_line = 1;
533         }
534
535         if (shown)
536                 log_buf(out, "\n");
537
538         return shown;
539 }
540
541 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
542 {
543         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
544                                  "250=", "500=", "750=", "1000=", };
545
546         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
547 }
548
549 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
550 {
551         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
552                                  "250=", "500=", "750=", "1000=", };
553
554         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
555 }
556
557 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
558 {
559         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
560                                  "250=", "500=", "750=", "1000=", "2000=",
561                                  ">=2000=", };
562
563         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
564 }
565
566 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
567 {
568         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
569         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
570         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
571
572         stat_calc_lat_n(ts, io_u_lat_n);
573         stat_calc_lat_u(ts, io_u_lat_u);
574         stat_calc_lat_m(ts, io_u_lat_m);
575
576         show_lat_n(io_u_lat_n, out);
577         show_lat_u(io_u_lat_u, out);
578         show_lat_m(io_u_lat_m, out);
579 }
580
581 static int block_state_category(int block_state)
582 {
583         switch (block_state) {
584         case BLOCK_STATE_UNINIT:
585                 return 0;
586         case BLOCK_STATE_TRIMMED:
587         case BLOCK_STATE_WRITTEN:
588                 return 1;
589         case BLOCK_STATE_WRITE_FAILURE:
590         case BLOCK_STATE_TRIM_FAILURE:
591                 return 2;
592         default:
593                 /* Silence compile warning on some BSDs and have a return */
594                 assert(0);
595                 return -1;
596         }
597 }
598
599 static int compare_block_infos(const void *bs1, const void *bs2)
600 {
601         uint32_t block1 = *(uint32_t *)bs1;
602         uint32_t block2 = *(uint32_t *)bs2;
603         int state1 = BLOCK_INFO_STATE(block1);
604         int state2 = BLOCK_INFO_STATE(block2);
605         int bscat1 = block_state_category(state1);
606         int bscat2 = block_state_category(state2);
607         int cycles1 = BLOCK_INFO_TRIMS(block1);
608         int cycles2 = BLOCK_INFO_TRIMS(block2);
609
610         if (bscat1 < bscat2)
611                 return -1;
612         if (bscat1 > bscat2)
613                 return 1;
614
615         if (cycles1 < cycles2)
616                 return -1;
617         if (cycles1 > cycles2)
618                 return 1;
619
620         if (state1 < state2)
621                 return -1;
622         if (state1 > state2)
623                 return 1;
624
625         assert(block1 == block2);
626         return 0;
627 }
628
629 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
630                                   fio_fp64_t *plist, unsigned int **percentiles,
631                                   unsigned int *types)
632 {
633         int len = 0;
634         int i, nr_uninit;
635
636         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
637
638         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
639                 len++;
640
641         if (!len)
642                 return 0;
643
644         /*
645          * Sort the percentile list. Note that it may already be sorted if
646          * we are using the default values, but since it's a short list this
647          * isn't a worry. Also note that this does not work for NaN values.
648          */
649         if (len > 1)
650                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
651
652         nr_uninit = 0;
653         /* Start only after the uninit entries end */
654         for (nr_uninit = 0;
655              nr_uninit < nr_block_infos
656                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
657              nr_uninit ++)
658                 ;
659
660         if (nr_uninit == nr_block_infos)
661                 return 0;
662
663         *percentiles = calloc(len, sizeof(**percentiles));
664
665         for (i = 0; i < len; i++) {
666                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
667                                 + nr_uninit;
668                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
669         }
670
671         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
672         for (i = 0; i < nr_block_infos; i++)
673                 types[BLOCK_INFO_STATE(block_infos[i])]++;
674
675         return len;
676 }
677
678 static const char *block_state_names[] = {
679         [BLOCK_STATE_UNINIT] = "unwritten",
680         [BLOCK_STATE_TRIMMED] = "trimmed",
681         [BLOCK_STATE_WRITTEN] = "written",
682         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
683         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
684 };
685
686 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
687                              fio_fp64_t *plist, struct buf_output *out)
688 {
689         int len, pos, i;
690         unsigned int *percentiles = NULL;
691         unsigned int block_state_counts[BLOCK_STATE_COUNT];
692
693         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
694                                      &percentiles, block_state_counts);
695
696         log_buf(out, "  block lifetime percentiles :\n   |");
697         pos = 0;
698         for (i = 0; i < len; i++) {
699                 uint32_t block_info = percentiles[i];
700 #define LINE_LENGTH     75
701                 char str[LINE_LENGTH];
702                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
703                                      plist[i].u.f, block_info,
704                                      i == len - 1 ? '\n' : ',');
705                 assert(strln < LINE_LENGTH);
706                 if (pos + strln > LINE_LENGTH) {
707                         pos = 0;
708                         log_buf(out, "\n   |");
709                 }
710                 log_buf(out, "%s", str);
711                 pos += strln;
712 #undef LINE_LENGTH
713         }
714         if (percentiles)
715                 free(percentiles);
716
717         log_buf(out, "        states               :");
718         for (i = 0; i < BLOCK_STATE_COUNT; i++)
719                 log_buf(out, " %s=%u%c",
720                          block_state_names[i], block_state_counts[i],
721                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
722 }
723
724 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
725 {
726         char *p1, *p1alt, *p2;
727         unsigned long long bw_mean, iops_mean;
728         const int i2p = is_power_of_2(ts->kb_base);
729
730         if (!ts->ss_dur)
731                 return;
732
733         bw_mean = steadystate_bw_mean(ts);
734         iops_mean = steadystate_iops_mean(ts);
735
736         p1 = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, i2p, ts->unit_base);
737         p1alt = num2str(bw_mean / ts->kb_base, 4, ts->kb_base, !i2p, ts->unit_base);
738         p2 = num2str(iops_mean, 4, 1, 0, N2S_NONE);
739
740         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
741                 ts->ss_state & __FIO_SS_ATTAINED ? "yes" : "no",
742                 p1, p1alt, p2,
743                 ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
744                 ts->ss_state & __FIO_SS_SLOPE ? " slope": " mean dev",
745                 ts->ss_criterion.u.f,
746                 ts->ss_state & __FIO_SS_PCT ? "%" : "");
747
748         free(p1);
749         free(p1alt);
750         free(p2);
751 }
752
753 static void show_thread_status_normal(struct thread_stat *ts,
754                                       struct group_run_stats *rs,
755                                       struct buf_output *out)
756 {
757         double usr_cpu, sys_cpu;
758         unsigned long runtime;
759         double io_u_dist[FIO_IO_U_MAP_NR];
760         time_t time_p;
761         char time_buf[32];
762
763         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
764                 return;
765                 
766         memset(time_buf, 0, sizeof(time_buf));
767
768         time(&time_p);
769         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
770
771         if (!ts->error) {
772                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
773                                         ts->name, ts->groupid, ts->members,
774                                         ts->error, (int) ts->pid, time_buf);
775         } else {
776                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
777                                         ts->name, ts->groupid, ts->members,
778                                         ts->error, ts->verror, (int) ts->pid,
779                                         time_buf);
780         }
781
782         if (strlen(ts->description))
783                 log_buf(out, "  Description  : [%s]\n", ts->description);
784
785         if (ts->io_bytes[DDIR_READ])
786                 show_ddir_status(rs, ts, DDIR_READ, out);
787         if (ts->io_bytes[DDIR_WRITE])
788                 show_ddir_status(rs, ts, DDIR_WRITE, out);
789         if (ts->io_bytes[DDIR_TRIM])
790                 show_ddir_status(rs, ts, DDIR_TRIM, out);
791
792         show_latencies(ts, out);
793
794         runtime = ts->total_run_time;
795         if (runtime) {
796                 double runt = (double) runtime;
797
798                 usr_cpu = (double) ts->usr_time * 100 / runt;
799                 sys_cpu = (double) ts->sys_time * 100 / runt;
800         } else {
801                 usr_cpu = 0;
802                 sys_cpu = 0;
803         }
804
805         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
806                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
807                         (unsigned long long) ts->ctx,
808                         (unsigned long long) ts->majf,
809                         (unsigned long long) ts->minf);
810
811         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
812         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
813                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
814                                         io_u_dist[1], io_u_dist[2],
815                                         io_u_dist[3], io_u_dist[4],
816                                         io_u_dist[5], io_u_dist[6]);
817
818         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
819         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
820                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
821                                         io_u_dist[1], io_u_dist[2],
822                                         io_u_dist[3], io_u_dist[4],
823                                         io_u_dist[5], io_u_dist[6]);
824         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
825         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
826                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
827                                         io_u_dist[1], io_u_dist[2],
828                                         io_u_dist[3], io_u_dist[4],
829                                         io_u_dist[5], io_u_dist[6]);
830         log_buf(out, "     issued rwt: total=%llu,%llu,%llu,"
831                                  " short=%llu,%llu,%llu,"
832                                  " dropped=%llu,%llu,%llu\n",
833                                         (unsigned long long) ts->total_io_u[0],
834                                         (unsigned long long) ts->total_io_u[1],
835                                         (unsigned long long) ts->total_io_u[2],
836                                         (unsigned long long) ts->short_io_u[0],
837                                         (unsigned long long) ts->short_io_u[1],
838                                         (unsigned long long) ts->short_io_u[2],
839                                         (unsigned long long) ts->drop_io_u[0],
840                                         (unsigned long long) ts->drop_io_u[1],
841                                         (unsigned long long) ts->drop_io_u[2]);
842         if (ts->continue_on_error) {
843                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
844                                         (unsigned long long)ts->total_err_count,
845                                         ts->first_error,
846                                         strerror(ts->first_error));
847         }
848         if (ts->latency_depth) {
849                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
850                                         (unsigned long long)ts->latency_target,
851                                         (unsigned long long)ts->latency_window,
852                                         ts->latency_percentile.u.f,
853                                         ts->latency_depth);
854         }
855
856         if (ts->nr_block_infos)
857                 show_block_infos(ts->nr_block_infos, ts->block_infos,
858                                   ts->percentile_list, out);
859
860         if (ts->ss_dur)
861                 show_ss_normal(ts, out);
862 }
863
864 static void show_ddir_status_terse(struct thread_stat *ts,
865                                    struct group_run_stats *rs, int ddir,
866                                    struct buf_output *out)
867 {
868         unsigned long long min, max, minv, maxv, bw, iops;
869         unsigned long long *ovals = NULL;
870         double mean, dev;
871         unsigned int len;
872         int i;
873
874         assert(ddir_rw(ddir));
875
876         iops = bw = 0;
877         if (ts->runtime[ddir]) {
878                 uint64_t runt = ts->runtime[ddir];
879
880                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
881                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
882         }
883
884         log_buf(out, ";%llu;%llu;%llu;%llu",
885                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
886                                         (unsigned long long) ts->runtime[ddir]);
887
888         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
889                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
890         else
891                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
892
893         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
894                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
895         else
896                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
897
898         if (ts->clat_percentiles) {
899                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
900                                         ts->clat_stat[ddir].samples,
901                                         ts->percentile_list, &ovals, &maxv,
902                                         &minv);
903         } else
904                 len = 0;
905
906         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
907                 if (i >= len) {
908                         log_buf(out, ";0%%=0");
909                         continue;
910                 }
911                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
912         }
913
914         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
915                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
916         else
917                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
918
919         if (ovals)
920                 free(ovals);
921
922         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
923                 double p_of_agg = 100.0;
924
925                 if (rs->agg[ddir]) {
926                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
927                         if (p_of_agg > 100.0)
928                                 p_of_agg = 100.0;
929                 }
930
931                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
932         } else
933                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
934 }
935
936 static void add_ddir_status_json(struct thread_stat *ts,
937                 struct group_run_stats *rs, int ddir, struct json_object *parent)
938 {
939         unsigned long long min, max, minv, maxv;
940         unsigned long long bw;
941         unsigned long long *ovals = NULL;
942         double mean, dev, iops;
943         unsigned int len;
944         int i;
945         const char *ddirname[] = {"read", "write", "trim"};
946         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
947         char buf[120];
948         double p_of_agg = 100.0;
949
950         assert(ddir_rw(ddir));
951
952         if (ts->unified_rw_rep && ddir != DDIR_READ)
953                 return;
954
955         dir_object = json_create_object();
956         json_object_add_value_object(parent,
957                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
958
959         bw = 0;
960         iops = 0.0;
961         if (ts->runtime[ddir]) {
962                 uint64_t runt = ts->runtime[ddir];
963
964                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
965                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
966         }
967
968         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
969         json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
970         json_object_add_value_int(dir_object, "bw", bw);
971         json_object_add_value_float(dir_object, "iops", iops);
972         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
973         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
974         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
975         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
976
977         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
978                 min = max = 0;
979                 mean = dev = 0.0;
980         }
981         tmp_object = json_create_object();
982         json_object_add_value_object(dir_object, "slat_ns", tmp_object);
983         json_object_add_value_int(tmp_object, "min", min);
984         json_object_add_value_int(tmp_object, "max", max);
985         json_object_add_value_float(tmp_object, "mean", mean);
986         json_object_add_value_float(tmp_object, "stddev", dev);
987
988         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
989                 min = max = 0;
990                 mean = dev = 0.0;
991         }
992         tmp_object = json_create_object();
993         json_object_add_value_object(dir_object, "clat_ns", tmp_object);
994         json_object_add_value_int(tmp_object, "min", min);
995         json_object_add_value_int(tmp_object, "max", max);
996         json_object_add_value_float(tmp_object, "mean", mean);
997         json_object_add_value_float(tmp_object, "stddev", dev);
998
999         if (ts->clat_percentiles) {
1000                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1001                                         ts->clat_stat[ddir].samples,
1002                                         ts->percentile_list, &ovals, &maxv,
1003                                         &minv);
1004         } else
1005                 len = 0;
1006
1007         percentile_object = json_create_object();
1008         json_object_add_value_object(tmp_object, "percentile", percentile_object);
1009         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1010                 if (i >= len) {
1011                         json_object_add_value_int(percentile_object, "0.00", 0);
1012                         continue;
1013                 }
1014                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1015                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1016         }
1017
1018         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1019                 clat_bins_object = json_create_object();
1020                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1021                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1022                         if (ts->io_u_plat[ddir][i]) {
1023                                 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1024                                 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1025                         }
1026                 }
1027         }
1028
1029         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1030                 min = max = 0;
1031                 mean = dev = 0.0;
1032         }
1033         tmp_object = json_create_object();
1034         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1035         json_object_add_value_int(tmp_object, "min", min);
1036         json_object_add_value_int(tmp_object, "max", max);
1037         json_object_add_value_float(tmp_object, "mean", mean);
1038         json_object_add_value_float(tmp_object, "stddev", dev);
1039         if (ovals)
1040                 free(ovals);
1041
1042         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1043                 if (rs->agg[ddir]) {
1044                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
1045                         if (p_of_agg > 100.0)
1046                                 p_of_agg = 100.0;
1047                 }
1048         } else {
1049                 min = max = 0;
1050                 p_of_agg = mean = dev = 0.0;
1051         }
1052         json_object_add_value_int(dir_object, "bw_min", min);
1053         json_object_add_value_int(dir_object, "bw_max", max);
1054         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1055         json_object_add_value_float(dir_object, "bw_mean", mean);
1056         json_object_add_value_float(dir_object, "bw_dev", dev);
1057         json_object_add_value_int(dir_object, "bw_samples",
1058                                 (&ts->bw_stat[ddir])->samples);
1059
1060         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1061                 min = max = 0;
1062                 mean = dev = 0.0;
1063         }
1064         json_object_add_value_int(dir_object, "iops_min", min);
1065         json_object_add_value_int(dir_object, "iops_max", max);
1066         json_object_add_value_float(dir_object, "iops_mean", mean);
1067         json_object_add_value_float(dir_object, "iops_stddev", dev);
1068         json_object_add_value_int(dir_object, "iops_samples",
1069                                 (&ts->iops_stat[ddir])->samples);
1070 }
1071
1072 static void show_thread_status_terse_v2(struct thread_stat *ts,
1073                                         struct group_run_stats *rs,
1074                                         struct buf_output *out)
1075 {
1076         double io_u_dist[FIO_IO_U_MAP_NR];
1077         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1078         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1079         double usr_cpu, sys_cpu;
1080         int i;
1081
1082         /* General Info */
1083         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1084         /* Log Read Status */
1085         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1086         /* Log Write Status */
1087         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1088         /* Log Trim Status */
1089         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1090
1091         /* CPU Usage */
1092         if (ts->total_run_time) {
1093                 double runt = (double) ts->total_run_time;
1094
1095                 usr_cpu = (double) ts->usr_time * 100 / runt;
1096                 sys_cpu = (double) ts->sys_time * 100 / runt;
1097         } else {
1098                 usr_cpu = 0;
1099                 sys_cpu = 0;
1100         }
1101
1102         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1103                                                 (unsigned long long) ts->ctx,
1104                                                 (unsigned long long) ts->majf,
1105                                                 (unsigned long long) ts->minf);
1106
1107         /* Calc % distribution of IO depths, usecond, msecond latency */
1108         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1109         stat_calc_lat_nu(ts, io_u_lat_u);
1110         stat_calc_lat_m(ts, io_u_lat_m);
1111
1112         /* Only show fixed 7 I/O depth levels*/
1113         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1114                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1115                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1116
1117         /* Microsecond latency */
1118         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1119                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1120         /* Millisecond latency */
1121         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1122                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1123         /* Additional output if continue_on_error set - default off*/
1124         if (ts->continue_on_error)
1125                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1126         log_buf(out, "\n");
1127
1128         /* Additional output if description is set */
1129         if (strlen(ts->description))
1130                 log_buf(out, ";%s", ts->description);
1131
1132         log_buf(out, "\n");
1133 }
1134
1135 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1136                                            struct group_run_stats *rs, int ver,
1137                                            struct buf_output *out)
1138 {
1139         double io_u_dist[FIO_IO_U_MAP_NR];
1140         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1141         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1142         double usr_cpu, sys_cpu;
1143         int i;
1144
1145         /* General Info */
1146         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1147                                         ts->name, ts->groupid, ts->error);
1148         /* Log Read Status */
1149         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1150         /* Log Write Status */
1151         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1152         /* Log Trim Status */
1153         if (ver == 4)
1154                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1155
1156         /* CPU Usage */
1157         if (ts->total_run_time) {
1158                 double runt = (double) ts->total_run_time;
1159
1160                 usr_cpu = (double) ts->usr_time * 100 / runt;
1161                 sys_cpu = (double) ts->sys_time * 100 / runt;
1162         } else {
1163                 usr_cpu = 0;
1164                 sys_cpu = 0;
1165         }
1166
1167         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1168                                                 (unsigned long long) ts->ctx,
1169                                                 (unsigned long long) ts->majf,
1170                                                 (unsigned long long) ts->minf);
1171
1172         /* Calc % distribution of IO depths, usecond, msecond latency */
1173         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1174         stat_calc_lat_nu(ts, io_u_lat_u);
1175         stat_calc_lat_m(ts, io_u_lat_m);
1176
1177         /* Only show fixed 7 I/O depth levels*/
1178         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1179                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1180                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1181
1182         /* Microsecond latency */
1183         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1184                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1185         /* Millisecond latency */
1186         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1187                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1188
1189         /* disk util stats, if any */
1190         show_disk_util(1, NULL, out);
1191
1192         /* Additional output if continue_on_error set - default off*/
1193         if (ts->continue_on_error)
1194                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1195
1196         /* Additional output if description is set */
1197         if (strlen(ts->description))
1198                 log_buf(out, ";%s", ts->description);
1199
1200         log_buf(out, "\n");
1201 }
1202
1203 static void json_add_job_opts(struct json_object *root, const char *name,
1204                               struct flist_head *opt_list, bool num_jobs)
1205 {
1206         struct json_object *dir_object;
1207         struct flist_head *entry;
1208         struct print_option *p;
1209
1210         if (flist_empty(opt_list))
1211                 return;
1212
1213         dir_object = json_create_object();
1214         json_object_add_value_object(root, name, dir_object);
1215
1216         flist_for_each(entry, opt_list) {
1217                 const char *pos = "";
1218
1219                 p = flist_entry(entry, struct print_option, list);
1220                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1221                         continue;
1222                 if (p->value)
1223                         pos = p->value;
1224                 json_object_add_value_string(dir_object, p->name, pos);
1225         }
1226 }
1227
1228 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1229                                                    struct group_run_stats *rs,
1230                                                    struct flist_head *opt_list)
1231 {
1232         struct json_object *root, *tmp;
1233         struct jobs_eta *je;
1234         double io_u_dist[FIO_IO_U_MAP_NR];
1235         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1236         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1237         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1238         double usr_cpu, sys_cpu;
1239         int i;
1240         size_t size;
1241
1242         root = json_create_object();
1243         json_object_add_value_string(root, "jobname", ts->name);
1244         json_object_add_value_int(root, "groupid", ts->groupid);
1245         json_object_add_value_int(root, "error", ts->error);
1246
1247         /* ETA Info */
1248         je = get_jobs_eta(true, &size);
1249         if (je) {
1250                 json_object_add_value_int(root, "eta", je->eta_sec);
1251                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1252         }
1253
1254         if (opt_list)
1255                 json_add_job_opts(root, "job options", opt_list, true);
1256
1257         add_ddir_status_json(ts, rs, DDIR_READ, root);
1258         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1259         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1260
1261         /* CPU Usage */
1262         if (ts->total_run_time) {
1263                 double runt = (double) ts->total_run_time;
1264
1265                 usr_cpu = (double) ts->usr_time * 100 / runt;
1266                 sys_cpu = (double) ts->sys_time * 100 / runt;
1267         } else {
1268                 usr_cpu = 0;
1269                 sys_cpu = 0;
1270         }
1271         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1272         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1273         json_object_add_value_int(root, "ctx", ts->ctx);
1274         json_object_add_value_int(root, "majf", ts->majf);
1275         json_object_add_value_int(root, "minf", ts->minf);
1276
1277
1278         /* Calc % distribution of IO depths, usecond, msecond latency */
1279         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1280         stat_calc_lat_n(ts, io_u_lat_n);
1281         stat_calc_lat_u(ts, io_u_lat_u);
1282         stat_calc_lat_m(ts, io_u_lat_m);
1283
1284         tmp = json_create_object();
1285         json_object_add_value_object(root, "iodepth_level", tmp);
1286         /* Only show fixed 7 I/O depth levels*/
1287         for (i = 0; i < 7; i++) {
1288                 char name[20];
1289                 if (i < 6)
1290                         snprintf(name, 20, "%d", 1 << i);
1291                 else
1292                         snprintf(name, 20, ">=%d", 1 << i);
1293                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1294         }
1295
1296         /* Nanosecond latency */
1297         tmp = json_create_object();
1298         json_object_add_value_object(root, "latency_ns", tmp);
1299         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1300                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1301                                  "250", "500", "750", "1000", };
1302                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1303         }
1304         /* Microsecond latency */
1305         tmp = json_create_object();
1306         json_object_add_value_object(root, "latency_us", tmp);
1307         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1308                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1309                                  "250", "500", "750", "1000", };
1310                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1311         }
1312         /* Millisecond latency */
1313         tmp = json_create_object();
1314         json_object_add_value_object(root, "latency_ms", tmp);
1315         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1316                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1317                                  "250", "500", "750", "1000", "2000",
1318                                  ">=2000", };
1319                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1320         }
1321
1322         /* Additional output if continue_on_error set - default off*/
1323         if (ts->continue_on_error) {
1324                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1325                 json_object_add_value_int(root, "first_error", ts->first_error);
1326         }
1327
1328         if (ts->latency_depth) {
1329                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1330                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1331                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1332                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1333         }
1334
1335         /* Additional output if description is set */
1336         if (strlen(ts->description))
1337                 json_object_add_value_string(root, "desc", ts->description);
1338
1339         if (ts->nr_block_infos) {
1340                 /* Block error histogram and types */
1341                 int len;
1342                 unsigned int *percentiles = NULL;
1343                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1344
1345                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1346                                              ts->percentile_list,
1347                                              &percentiles, block_state_counts);
1348
1349                 if (len) {
1350                         struct json_object *block, *percentile_object, *states;
1351                         int state;
1352                         block = json_create_object();
1353                         json_object_add_value_object(root, "block", block);
1354
1355                         percentile_object = json_create_object();
1356                         json_object_add_value_object(block, "percentiles",
1357                                                      percentile_object);
1358                         for (i = 0; i < len; i++) {
1359                                 char buf[20];
1360                                 snprintf(buf, sizeof(buf), "%f",
1361                                          ts->percentile_list[i].u.f);
1362                                 json_object_add_value_int(percentile_object,
1363                                                           (const char *)buf,
1364                                                           percentiles[i]);
1365                         }
1366
1367                         states = json_create_object();
1368                         json_object_add_value_object(block, "states", states);
1369                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1370                                 json_object_add_value_int(states,
1371                                         block_state_names[state],
1372                                         block_state_counts[state]);
1373                         }
1374                         free(percentiles);
1375                 }
1376         }
1377
1378         if (ts->ss_dur) {
1379                 struct json_object *data;
1380                 struct json_array *iops, *bw;
1381                 int i, j, k;
1382                 char ss_buf[64];
1383
1384                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1385                         ts->ss_state & __FIO_SS_IOPS ? "iops" : "bw",
1386                         ts->ss_state & __FIO_SS_SLOPE ? "_slope" : "",
1387                         (float) ts->ss_limit.u.f,
1388                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1389
1390                 tmp = json_create_object();
1391                 json_object_add_value_object(root, "steadystate", tmp);
1392                 json_object_add_value_string(tmp, "ss", ss_buf);
1393                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1394                 json_object_add_value_int(tmp, "attained", (ts->ss_state & __FIO_SS_ATTAINED) > 0);
1395
1396                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1397                         ts->ss_state & __FIO_SS_PCT ? "%" : "");
1398                 json_object_add_value_string(tmp, "criterion", ss_buf);
1399                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1400                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1401
1402                 data = json_create_object();
1403                 json_object_add_value_object(tmp, "data", data);
1404                 bw = json_create_array();
1405                 iops = json_create_array();
1406
1407                 /*
1408                 ** if ss was attained or the buffer is not full,
1409                 ** ss->head points to the first element in the list.
1410                 ** otherwise it actually points to the second element
1411                 ** in the list
1412                 */
1413                 if ((ts->ss_state & __FIO_SS_ATTAINED) || !(ts->ss_state & __FIO_SS_BUFFER_FULL))
1414                         j = ts->ss_head;
1415                 else
1416                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1417                 for (i = 0; i < ts->ss_dur; i++) {
1418                         k = (j + i) % ts->ss_dur;
1419                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1420                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1421                 }
1422                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1423                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1424                 json_object_add_value_array(data, "iops", iops);
1425                 json_object_add_value_array(data, "bw", bw);
1426         }
1427
1428         return root;
1429 }
1430
1431 static void show_thread_status_terse(struct thread_stat *ts,
1432                                      struct group_run_stats *rs,
1433                                      struct buf_output *out)
1434 {
1435         if (terse_version == 2)
1436                 show_thread_status_terse_v2(ts, rs, out);
1437         else if (terse_version == 3 || terse_version == 4)
1438                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1439         else
1440                 log_err("fio: bad terse version!? %d\n", terse_version);
1441 }
1442
1443 struct json_object *show_thread_status(struct thread_stat *ts,
1444                                        struct group_run_stats *rs,
1445                                        struct flist_head *opt_list,
1446                                        struct buf_output *out)
1447 {
1448         struct json_object *ret = NULL;
1449
1450         if (output_format & FIO_OUTPUT_TERSE)
1451                 show_thread_status_terse(ts, rs,  out);
1452         if (output_format & FIO_OUTPUT_JSON)
1453                 ret = show_thread_status_json(ts, rs, opt_list);
1454         if (output_format & FIO_OUTPUT_NORMAL)
1455                 show_thread_status_normal(ts, rs,  out);
1456
1457         return ret;
1458 }
1459
1460 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1461 {
1462         double mean, S;
1463
1464         if (src->samples == 0)
1465                 return;
1466
1467         dst->min_val = min(dst->min_val, src->min_val);
1468         dst->max_val = max(dst->max_val, src->max_val);
1469
1470         /*
1471          * Compute new mean and S after the merge
1472          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1473          *  #Parallel_algorithm>
1474          */
1475         if (first) {
1476                 mean = src->mean.u.f;
1477                 S = src->S.u.f;
1478         } else {
1479                 double delta = src->mean.u.f - dst->mean.u.f;
1480
1481                 mean = ((src->mean.u.f * src->samples) +
1482                         (dst->mean.u.f * dst->samples)) /
1483                         (dst->samples + src->samples);
1484
1485                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1486                         (dst->samples * src->samples) /
1487                         (dst->samples + src->samples);
1488         }
1489
1490         dst->samples += src->samples;
1491         dst->mean.u.f = mean;
1492         dst->S.u.f = S;
1493 }
1494
1495 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1496 {
1497         int i;
1498
1499         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1500                 if (dst->max_run[i] < src->max_run[i])
1501                         dst->max_run[i] = src->max_run[i];
1502                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1503                         dst->min_run[i] = src->min_run[i];
1504                 if (dst->max_bw[i] < src->max_bw[i])
1505                         dst->max_bw[i] = src->max_bw[i];
1506                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1507                         dst->min_bw[i] = src->min_bw[i];
1508
1509                 dst->iobytes[i] += src->iobytes[i];
1510                 dst->agg[i] += src->agg[i];
1511         }
1512
1513         if (!dst->kb_base)
1514                 dst->kb_base = src->kb_base;
1515         if (!dst->unit_base)
1516                 dst->unit_base = src->unit_base;
1517 }
1518
1519 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1520                       bool first)
1521 {
1522         int l, k;
1523
1524         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1525                 if (!dst->unified_rw_rep) {
1526                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1527                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1528                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1529                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1530                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1531
1532                         dst->io_bytes[l] += src->io_bytes[l];
1533
1534                         if (dst->runtime[l] < src->runtime[l])
1535                                 dst->runtime[l] = src->runtime[l];
1536                 } else {
1537                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1538                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1539                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1540                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1541                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1542
1543                         dst->io_bytes[0] += src->io_bytes[l];
1544
1545                         if (dst->runtime[0] < src->runtime[l])
1546                                 dst->runtime[0] = src->runtime[l];
1547
1548                         /*
1549                          * We're summing to the same destination, so override
1550                          * 'first' after the first iteration of the loop
1551                          */
1552                         first = false;
1553                 }
1554         }
1555
1556         dst->usr_time += src->usr_time;
1557         dst->sys_time += src->sys_time;
1558         dst->ctx += src->ctx;
1559         dst->majf += src->majf;
1560         dst->minf += src->minf;
1561
1562         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1563                 dst->io_u_map[k] += src->io_u_map[k];
1564         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1565                 dst->io_u_submit[k] += src->io_u_submit[k];
1566         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1567                 dst->io_u_complete[k] += src->io_u_complete[k];
1568         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1569                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1570         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1571                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1572         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1573                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1574
1575         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1576                 if (!dst->unified_rw_rep) {
1577                         dst->total_io_u[k] += src->total_io_u[k];
1578                         dst->short_io_u[k] += src->short_io_u[k];
1579                         dst->drop_io_u[k] += src->drop_io_u[k];
1580                 } else {
1581                         dst->total_io_u[0] += src->total_io_u[k];
1582                         dst->short_io_u[0] += src->short_io_u[k];
1583                         dst->drop_io_u[0] += src->drop_io_u[k];
1584                 }
1585         }
1586
1587         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1588                 int m;
1589
1590                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1591                         if (!dst->unified_rw_rep)
1592                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1593                         else
1594                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1595                 }
1596         }
1597
1598         dst->total_run_time += src->total_run_time;
1599         dst->total_submit += src->total_submit;
1600         dst->total_complete += src->total_complete;
1601 }
1602
1603 void init_group_run_stat(struct group_run_stats *gs)
1604 {
1605         int i;
1606         memset(gs, 0, sizeof(*gs));
1607
1608         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1609                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1610 }
1611
1612 void init_thread_stat(struct thread_stat *ts)
1613 {
1614         int j;
1615
1616         memset(ts, 0, sizeof(*ts));
1617
1618         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1619                 ts->lat_stat[j].min_val = -1UL;
1620                 ts->clat_stat[j].min_val = -1UL;
1621                 ts->slat_stat[j].min_val = -1UL;
1622                 ts->bw_stat[j].min_val = -1UL;
1623                 ts->iops_stat[j].min_val = -1UL;
1624         }
1625         ts->groupid = -1;
1626 }
1627
1628 void __show_run_stats(void)
1629 {
1630         struct group_run_stats *runstats, *rs;
1631         struct thread_data *td;
1632         struct thread_stat *threadstats, *ts;
1633         int i, j, k, nr_ts, last_ts, idx;
1634         int kb_base_warned = 0;
1635         int unit_base_warned = 0;
1636         struct json_object *root = NULL;
1637         struct json_array *array = NULL;
1638         struct buf_output output[FIO_OUTPUT_NR];
1639         struct flist_head **opt_lists;
1640
1641         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1642
1643         for (i = 0; i < groupid + 1; i++)
1644                 init_group_run_stat(&runstats[i]);
1645
1646         /*
1647          * find out how many threads stats we need. if group reporting isn't
1648          * enabled, it's one-per-td.
1649          */
1650         nr_ts = 0;
1651         last_ts = -1;
1652         for_each_td(td, i) {
1653                 if (!td->o.group_reporting) {
1654                         nr_ts++;
1655                         continue;
1656                 }
1657                 if (last_ts == td->groupid)
1658                         continue;
1659                 if (!td->o.stats)
1660                         continue;
1661
1662                 last_ts = td->groupid;
1663                 nr_ts++;
1664         }
1665
1666         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1667         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1668
1669         for (i = 0; i < nr_ts; i++) {
1670                 init_thread_stat(&threadstats[i]);
1671                 opt_lists[i] = NULL;
1672         }
1673
1674         j = 0;
1675         last_ts = -1;
1676         idx = 0;
1677         for_each_td(td, i) {
1678                 if (!td->o.stats)
1679                         continue;
1680                 if (idx && (!td->o.group_reporting ||
1681                     (td->o.group_reporting && last_ts != td->groupid))) {
1682                         idx = 0;
1683                         j++;
1684                 }
1685
1686                 last_ts = td->groupid;
1687
1688                 ts = &threadstats[j];
1689
1690                 ts->clat_percentiles = td->o.clat_percentiles;
1691                 ts->percentile_precision = td->o.percentile_precision;
1692                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1693                 opt_lists[j] = &td->opt_list;
1694
1695                 idx++;
1696                 ts->members++;
1697
1698                 if (ts->groupid == -1) {
1699                         /*
1700                          * These are per-group shared already
1701                          */
1702                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1703                         if (td->o.description)
1704                                 strncpy(ts->description, td->o.description,
1705                                                 FIO_JOBDESC_SIZE - 1);
1706                         else
1707                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1708
1709                         /*
1710                          * If multiple entries in this group, this is
1711                          * the first member.
1712                          */
1713                         ts->thread_number = td->thread_number;
1714                         ts->groupid = td->groupid;
1715
1716                         /*
1717                          * first pid in group, not very useful...
1718                          */
1719                         ts->pid = td->pid;
1720
1721                         ts->kb_base = td->o.kb_base;
1722                         ts->unit_base = td->o.unit_base;
1723                         ts->unified_rw_rep = td->o.unified_rw_rep;
1724                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1725                         log_info("fio: kb_base differs for jobs in group, using"
1726                                  " %u as the base\n", ts->kb_base);
1727                         kb_base_warned = 1;
1728                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1729                         log_info("fio: unit_base differs for jobs in group, using"
1730                                  " %u as the base\n", ts->unit_base);
1731                         unit_base_warned = 1;
1732                 }
1733
1734                 ts->continue_on_error = td->o.continue_on_error;
1735                 ts->total_err_count += td->total_err_count;
1736                 ts->first_error = td->first_error;
1737                 if (!ts->error) {
1738                         if (!td->error && td->o.continue_on_error &&
1739                             td->first_error) {
1740                                 ts->error = td->first_error;
1741                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1742                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1743                         } else  if (td->error) {
1744                                 ts->error = td->error;
1745                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1746                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1747                         }
1748                 }
1749
1750                 ts->latency_depth = td->latency_qd;
1751                 ts->latency_target = td->o.latency_target;
1752                 ts->latency_percentile = td->o.latency_percentile;
1753                 ts->latency_window = td->o.latency_window;
1754
1755                 ts->nr_block_infos = td->ts.nr_block_infos;
1756                 for (k = 0; k < ts->nr_block_infos; k++)
1757                         ts->block_infos[k] = td->ts.block_infos[k];
1758
1759                 sum_thread_stats(ts, &td->ts, idx == 1);
1760
1761                 if (td->o.ss_dur) {
1762                         ts->ss_state = td->ss.state;
1763                         ts->ss_dur = td->ss.dur;
1764                         ts->ss_head = td->ss.head;
1765                         ts->ss_bw_data = td->ss.bw_data;
1766                         ts->ss_iops_data = td->ss.iops_data;
1767                         ts->ss_limit.u.f = td->ss.limit;
1768                         ts->ss_slope.u.f = td->ss.slope;
1769                         ts->ss_deviation.u.f = td->ss.deviation;
1770                         ts->ss_criterion.u.f = td->ss.criterion;
1771                 }
1772                 else
1773                         ts->ss_dur = ts->ss_state = 0;
1774         }
1775
1776         for (i = 0; i < nr_ts; i++) {
1777                 unsigned long long bw;
1778
1779                 ts = &threadstats[i];
1780                 if (ts->groupid == -1)
1781                         continue;
1782                 rs = &runstats[ts->groupid];
1783                 rs->kb_base = ts->kb_base;
1784                 rs->unit_base = ts->unit_base;
1785                 rs->unified_rw_rep += ts->unified_rw_rep;
1786
1787                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1788                         if (!ts->runtime[j])
1789                                 continue;
1790                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1791                                 rs->min_run[j] = ts->runtime[j];
1792                         if (ts->runtime[j] > rs->max_run[j])
1793                                 rs->max_run[j] = ts->runtime[j];
1794
1795                         bw = 0;
1796                         if (ts->runtime[j])
1797                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1798                         if (bw < rs->min_bw[j])
1799                                 rs->min_bw[j] = bw;
1800                         if (bw > rs->max_bw[j])
1801                                 rs->max_bw[j] = bw;
1802
1803                         rs->iobytes[j] += ts->io_bytes[j];
1804                 }
1805         }
1806
1807         for (i = 0; i < groupid + 1; i++) {
1808                 int ddir;
1809
1810                 rs = &runstats[i];
1811
1812                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1813                         if (rs->max_run[ddir])
1814                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1815                                                 rs->max_run[ddir];
1816                 }
1817         }
1818
1819         for (i = 0; i < FIO_OUTPUT_NR; i++)
1820                 buf_output_init(&output[i]);
1821
1822         /*
1823          * don't overwrite last signal output
1824          */
1825         if (output_format & FIO_OUTPUT_NORMAL)
1826                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1827         if (output_format & FIO_OUTPUT_JSON) {
1828                 struct thread_data *global;
1829                 char time_buf[32];
1830                 struct timeval now;
1831                 unsigned long long ms_since_epoch;
1832
1833                 gettimeofday(&now, NULL);
1834                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1835                                  (unsigned long long)(now.tv_usec) / 1000;
1836
1837                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1838                                 sizeof(time_buf));
1839                 if (time_buf[strlen(time_buf) - 1] == '\n')
1840                         time_buf[strlen(time_buf) - 1] = '\0';
1841
1842                 root = json_create_object();
1843                 json_object_add_value_string(root, "fio version", fio_version_string);
1844                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1845                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1846                 json_object_add_value_string(root, "time", time_buf);
1847                 global = get_global_options();
1848                 json_add_job_opts(root, "global options", &global->opt_list, false);
1849                 array = json_create_array();
1850                 json_object_add_value_array(root, "jobs", array);
1851         }
1852
1853         if (is_backend)
1854                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1855
1856         for (i = 0; i < nr_ts; i++) {
1857                 ts = &threadstats[i];
1858                 rs = &runstats[ts->groupid];
1859
1860                 if (is_backend) {
1861                         fio_server_send_job_options(opt_lists[i], i);
1862                         fio_server_send_ts(ts, rs);
1863                 } else {
1864                         if (output_format & FIO_OUTPUT_TERSE)
1865                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1866                         if (output_format & FIO_OUTPUT_JSON) {
1867                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1868                                 json_array_add_value_object(array, tmp);
1869                         }
1870                         if (output_format & FIO_OUTPUT_NORMAL)
1871                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1872                 }
1873         }
1874         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1875                 /* disk util stats, if any */
1876                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1877
1878                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1879
1880                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1881                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1882                 json_free_object(root);
1883         }
1884
1885         for (i = 0; i < groupid + 1; i++) {
1886                 rs = &runstats[i];
1887
1888                 rs->groupid = i;
1889                 if (is_backend)
1890                         fio_server_send_gs(rs);
1891                 else if (output_format & FIO_OUTPUT_NORMAL)
1892                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1893         }
1894
1895         if (is_backend)
1896                 fio_server_send_du();
1897         else if (output_format & FIO_OUTPUT_NORMAL) {
1898                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1899                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1900         }
1901
1902         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1903                 struct buf_output *out = &output[i];
1904
1905                 log_info_buf(out->buf, out->buflen);
1906                 buf_output_free(out);
1907         }
1908
1909         log_info_flush();
1910         free(runstats);
1911         free(threadstats);
1912         free(opt_lists);
1913 }
1914
1915 void show_run_stats(void)
1916 {
1917         fio_mutex_down(stat_mutex);
1918         __show_run_stats();
1919         fio_mutex_up(stat_mutex);
1920 }
1921
1922 void __show_running_run_stats(void)
1923 {
1924         struct thread_data *td;
1925         unsigned long long *rt;
1926         struct timespec ts;
1927         int i;
1928
1929         fio_mutex_down(stat_mutex);
1930
1931         rt = malloc(thread_number * sizeof(unsigned long long));
1932         fio_gettime(&ts, NULL);
1933
1934         for_each_td(td, i) {
1935                 td->update_rusage = 1;
1936                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1937                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1938                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1939                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
1940
1941                 rt[i] = mtime_since(&td->start, &ts);
1942                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1943                         td->ts.runtime[DDIR_READ] += rt[i];
1944                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1945                         td->ts.runtime[DDIR_WRITE] += rt[i];
1946                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1947                         td->ts.runtime[DDIR_TRIM] += rt[i];
1948         }
1949
1950         for_each_td(td, i) {
1951                 if (td->runstate >= TD_EXITED)
1952                         continue;
1953                 if (td->rusage_sem) {
1954                         td->update_rusage = 1;
1955                         fio_mutex_down(td->rusage_sem);
1956                 }
1957                 td->update_rusage = 0;
1958         }
1959
1960         __show_run_stats();
1961
1962         for_each_td(td, i) {
1963                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1964                         td->ts.runtime[DDIR_READ] -= rt[i];
1965                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1966                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1967                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1968                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1969         }
1970
1971         free(rt);
1972         fio_mutex_up(stat_mutex);
1973 }
1974
1975 static int status_interval_init;
1976 static struct timespec status_time;
1977 static int status_file_disabled;
1978
1979 #define FIO_STATUS_FILE         "fio-dump-status"
1980
1981 static int check_status_file(void)
1982 {
1983         struct stat sb;
1984         const char *temp_dir;
1985         char fio_status_file_path[PATH_MAX];
1986
1987         if (status_file_disabled)
1988                 return 0;
1989
1990         temp_dir = getenv("TMPDIR");
1991         if (temp_dir == NULL) {
1992                 temp_dir = getenv("TEMP");
1993                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1994                         temp_dir = NULL;
1995         }
1996         if (temp_dir == NULL)
1997                 temp_dir = "/tmp";
1998
1999         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2000
2001         if (stat(fio_status_file_path, &sb))
2002                 return 0;
2003
2004         if (unlink(fio_status_file_path) < 0) {
2005                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2006                                                         strerror(errno));
2007                 log_err("fio: disabling status file updates\n");
2008                 status_file_disabled = 1;
2009         }
2010
2011         return 1;
2012 }
2013
2014 void check_for_running_stats(void)
2015 {
2016         if (status_interval) {
2017                 if (!status_interval_init) {
2018                         fio_gettime(&status_time, NULL);
2019                         status_interval_init = 1;
2020                 } else if (mtime_since_now(&status_time) >= status_interval) {
2021                         show_running_run_stats();
2022                         fio_gettime(&status_time, NULL);
2023                         return;
2024                 }
2025         }
2026         if (check_status_file()) {
2027                 show_running_run_stats();
2028                 return;
2029         }
2030 }
2031
2032 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2033 {
2034         double val = data;
2035         double delta;
2036
2037         if (data > is->max_val)
2038                 is->max_val = data;
2039         if (data < is->min_val)
2040                 is->min_val = data;
2041
2042         delta = val - is->mean.u.f;
2043         if (delta) {
2044                 is->mean.u.f += delta / (is->samples + 1.0);
2045                 is->S.u.f += delta * (val - is->mean.u.f);
2046         }
2047
2048         is->samples++;
2049 }
2050
2051 /*
2052  * Return a struct io_logs, which is added to the tail of the log
2053  * list for 'iolog'.
2054  */
2055 static struct io_logs *get_new_log(struct io_log *iolog)
2056 {
2057         size_t new_size, new_samples;
2058         struct io_logs *cur_log;
2059
2060         /*
2061          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2062          * forever
2063          */
2064         if (!iolog->cur_log_max)
2065                 new_samples = DEF_LOG_ENTRIES;
2066         else {
2067                 new_samples = iolog->cur_log_max * 2;
2068                 if (new_samples > MAX_LOG_ENTRIES)
2069                         new_samples = MAX_LOG_ENTRIES;
2070         }
2071
2072         new_size = new_samples * log_entry_sz(iolog);
2073
2074         cur_log = smalloc(sizeof(*cur_log));
2075         if (cur_log) {
2076                 INIT_FLIST_HEAD(&cur_log->list);
2077                 cur_log->log = malloc(new_size);
2078                 if (cur_log->log) {
2079                         cur_log->nr_samples = 0;
2080                         cur_log->max_samples = new_samples;
2081                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2082                         iolog->cur_log_max = new_samples;
2083                         return cur_log;
2084                 }
2085                 sfree(cur_log);
2086         }
2087
2088         return NULL;
2089 }
2090
2091 /*
2092  * Add and return a new log chunk, or return current log if big enough
2093  */
2094 static struct io_logs *regrow_log(struct io_log *iolog)
2095 {
2096         struct io_logs *cur_log;
2097         int i;
2098
2099         if (!iolog || iolog->disabled)
2100                 goto disable;
2101
2102         cur_log = iolog_cur_log(iolog);
2103         if (!cur_log) {
2104                 cur_log = get_new_log(iolog);
2105                 if (!cur_log)
2106                         return NULL;
2107         }
2108
2109         if (cur_log->nr_samples < cur_log->max_samples)
2110                 return cur_log;
2111
2112         /*
2113          * No room for a new sample. If we're compressing on the fly, flush
2114          * out the current chunk
2115          */
2116         if (iolog->log_gz) {
2117                 if (iolog_cur_flush(iolog, cur_log)) {
2118                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2119                         return NULL;
2120                 }
2121         }
2122
2123         /*
2124          * Get a new log array, and add to our list
2125          */
2126         cur_log = get_new_log(iolog);
2127         if (!cur_log) {
2128                 log_err("fio: failed extending iolog! Will stop logging.\n");
2129                 return NULL;
2130         }
2131
2132         if (!iolog->pending || !iolog->pending->nr_samples)
2133                 return cur_log;
2134
2135         /*
2136          * Flush pending items to new log
2137          */
2138         for (i = 0; i < iolog->pending->nr_samples; i++) {
2139                 struct io_sample *src, *dst;
2140
2141                 src = get_sample(iolog, iolog->pending, i);
2142                 dst = get_sample(iolog, cur_log, i);
2143                 memcpy(dst, src, log_entry_sz(iolog));
2144         }
2145         cur_log->nr_samples = iolog->pending->nr_samples;
2146
2147         iolog->pending->nr_samples = 0;
2148         return cur_log;
2149 disable:
2150         if (iolog)
2151                 iolog->disabled = true;
2152         return NULL;
2153 }
2154
2155 void regrow_logs(struct thread_data *td)
2156 {
2157         regrow_log(td->slat_log);
2158         regrow_log(td->clat_log);
2159         regrow_log(td->clat_hist_log);
2160         regrow_log(td->lat_log);
2161         regrow_log(td->bw_log);
2162         regrow_log(td->iops_log);
2163         td->flags &= ~TD_F_REGROW_LOGS;
2164 }
2165
2166 static struct io_logs *get_cur_log(struct io_log *iolog)
2167 {
2168         struct io_logs *cur_log;
2169
2170         cur_log = iolog_cur_log(iolog);
2171         if (!cur_log) {
2172                 cur_log = get_new_log(iolog);
2173                 if (!cur_log)
2174                         return NULL;
2175         }
2176
2177         if (cur_log->nr_samples < cur_log->max_samples)
2178                 return cur_log;
2179
2180         /*
2181          * Out of space. If we're in IO offload mode, or we're not doing
2182          * per unit logging (hence logging happens outside of the IO thread
2183          * as well), add a new log chunk inline. If we're doing inline
2184          * submissions, flag 'td' as needing a log regrow and we'll take
2185          * care of it on the submission side.
2186          */
2187         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2188             !per_unit_log(iolog))
2189                 return regrow_log(iolog);
2190
2191         iolog->td->flags |= TD_F_REGROW_LOGS;
2192         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2193         return iolog->pending;
2194 }
2195
2196 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2197                              enum fio_ddir ddir, unsigned int bs,
2198                              unsigned long t, uint64_t offset)
2199 {
2200         struct io_logs *cur_log;
2201
2202         if (iolog->disabled)
2203                 return;
2204         if (flist_empty(&iolog->io_logs))
2205                 iolog->avg_last = t;
2206
2207         cur_log = get_cur_log(iolog);
2208         if (cur_log) {
2209                 struct io_sample *s;
2210
2211                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2212
2213                 s->data = data;
2214                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2215                 io_sample_set_ddir(iolog, s, ddir);
2216                 s->bs = bs;
2217
2218                 if (iolog->log_offset) {
2219                         struct io_sample_offset *so = (void *) s;
2220
2221                         so->offset = offset;
2222                 }
2223
2224                 cur_log->nr_samples++;
2225                 return;
2226         }
2227
2228         iolog->disabled = true;
2229 }
2230
2231 static inline void reset_io_stat(struct io_stat *ios)
2232 {
2233         ios->max_val = ios->min_val = ios->samples = 0;
2234         ios->mean.u.f = ios->S.u.f = 0;
2235 }
2236
2237 void reset_io_stats(struct thread_data *td)
2238 {
2239         struct thread_stat *ts = &td->ts;
2240         int i, j;
2241
2242         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2243                 reset_io_stat(&ts->clat_stat[i]);
2244                 reset_io_stat(&ts->slat_stat[i]);
2245                 reset_io_stat(&ts->lat_stat[i]);
2246                 reset_io_stat(&ts->bw_stat[i]);
2247                 reset_io_stat(&ts->iops_stat[i]);
2248
2249                 ts->io_bytes[i] = 0;
2250                 ts->runtime[i] = 0;
2251                 ts->total_io_u[i] = 0;
2252                 ts->short_io_u[i] = 0;
2253                 ts->drop_io_u[i] = 0;
2254
2255                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2256                         ts->io_u_plat[i][j] = 0;
2257         }
2258
2259         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2260                 ts->io_u_map[i] = 0;
2261                 ts->io_u_submit[i] = 0;
2262                 ts->io_u_complete[i] = 0;
2263         }
2264
2265         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2266                 ts->io_u_lat_n[i] = 0;
2267         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2268                 ts->io_u_lat_u[i] = 0;
2269         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2270                 ts->io_u_lat_m[i] = 0;
2271
2272         ts->total_submit = 0;
2273         ts->total_complete = 0;
2274 }
2275
2276 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2277                               unsigned long elapsed, bool log_max)
2278 {
2279         /*
2280          * Note an entry in the log. Use the mean from the logged samples,
2281          * making sure to properly round up. Only write a log entry if we
2282          * had actual samples done.
2283          */
2284         if (iolog->avg_window[ddir].samples) {
2285                 union io_sample_data data;
2286
2287                 if (log_max)
2288                         data.val = iolog->avg_window[ddir].max_val;
2289                 else
2290                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2291
2292                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2293         }
2294
2295         reset_io_stat(&iolog->avg_window[ddir]);
2296 }
2297
2298 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2299                              bool log_max)
2300 {
2301         int ddir;
2302
2303         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2304                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2305 }
2306
2307 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2308                            union io_sample_data data, enum fio_ddir ddir,
2309                            unsigned int bs, uint64_t offset)
2310 {
2311         unsigned long elapsed, this_window;
2312
2313         if (!ddir_rw(ddir))
2314                 return 0;
2315
2316         elapsed = mtime_since_now(&td->epoch);
2317
2318         /*
2319          * If no time averaging, just add the log sample.
2320          */
2321         if (!iolog->avg_msec) {
2322                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2323                 return 0;
2324         }
2325
2326         /*
2327          * Add the sample. If the time period has passed, then
2328          * add that entry to the log and clear.
2329          */
2330         add_stat_sample(&iolog->avg_window[ddir], data.val);
2331
2332         /*
2333          * If period hasn't passed, adding the above sample is all we
2334          * need to do.
2335          */
2336         this_window = elapsed - iolog->avg_last;
2337         if (elapsed < iolog->avg_last)
2338                 return iolog->avg_last - elapsed;
2339         else if (this_window < iolog->avg_msec) {
2340                 int diff = iolog->avg_msec - this_window;
2341
2342                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2343                         return diff;
2344         }
2345
2346         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2347
2348         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2349         return iolog->avg_msec;
2350 }
2351
2352 void finalize_logs(struct thread_data *td, bool unit_logs)
2353 {
2354         unsigned long elapsed;
2355
2356         elapsed = mtime_since_now(&td->epoch);
2357
2358         if (td->clat_log && unit_logs)
2359                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2360         if (td->slat_log && unit_logs)
2361                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2362         if (td->lat_log && unit_logs)
2363                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2364         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2365                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2366         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2367                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2368 }
2369
2370 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned int bs)
2371 {
2372         struct io_log *iolog;
2373
2374         if (!ddir_rw(ddir))
2375                 return;
2376
2377         iolog = agg_io_log[ddir];
2378         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2379 }
2380
2381 static void add_clat_percentile_sample(struct thread_stat *ts,
2382                                 unsigned long long nsec, enum fio_ddir ddir)
2383 {
2384         unsigned int idx = plat_val_to_idx(nsec);
2385         assert(idx < FIO_IO_U_PLAT_NR);
2386
2387         ts->io_u_plat[ddir][idx]++;
2388 }
2389
2390 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2391                      unsigned long long nsec, unsigned int bs, uint64_t offset)
2392 {
2393         unsigned long elapsed, this_window;
2394         struct thread_stat *ts = &td->ts;
2395         struct io_log *iolog = td->clat_hist_log;
2396
2397         td_io_u_lock(td);
2398
2399         add_stat_sample(&ts->clat_stat[ddir], nsec);
2400
2401         if (td->clat_log)
2402                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2403                                offset);
2404
2405         if (ts->clat_percentiles)
2406                 add_clat_percentile_sample(ts, nsec, ddir);
2407
2408         if (iolog && iolog->hist_msec) {
2409                 struct io_hist *hw = &iolog->hist_window[ddir];
2410
2411                 hw->samples++;
2412                 elapsed = mtime_since_now(&td->epoch);
2413                 if (!hw->hist_last)
2414                         hw->hist_last = elapsed;
2415                 this_window = elapsed - hw->hist_last;
2416                 
2417                 if (this_window >= iolog->hist_msec) {
2418                         unsigned int *io_u_plat;
2419                         struct io_u_plat_entry *dst;
2420
2421                         /*
2422                          * Make a byte-for-byte copy of the latency histogram
2423                          * stored in td->ts.io_u_plat[ddir], recording it in a
2424                          * log sample. Note that the matching call to free() is
2425                          * located in iolog.c after printing this sample to the
2426                          * log file.
2427                          */
2428                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2429                         dst = malloc(sizeof(struct io_u_plat_entry));
2430                         memcpy(&(dst->io_u_plat), io_u_plat,
2431                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2432                         flist_add(&dst->list, &hw->list);
2433                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2434                                                 elapsed, offset);
2435
2436                         /*
2437                          * Update the last time we recorded as being now, minus
2438                          * any drift in time we encountered before actually
2439                          * making the record.
2440                          */
2441                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2442                         hw->samples = 0;
2443                 }
2444         }
2445
2446         td_io_u_unlock(td);
2447 }
2448
2449 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2450                      unsigned long usec, unsigned int bs, uint64_t offset)
2451 {
2452         struct thread_stat *ts = &td->ts;
2453
2454         if (!ddir_rw(ddir))
2455                 return;
2456
2457         td_io_u_lock(td);
2458
2459         add_stat_sample(&ts->slat_stat[ddir], usec);
2460
2461         if (td->slat_log)
2462                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2463
2464         td_io_u_unlock(td);
2465 }
2466
2467 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2468                     unsigned long long nsec, unsigned int bs, uint64_t offset)
2469 {
2470         struct thread_stat *ts = &td->ts;
2471
2472         if (!ddir_rw(ddir))
2473                 return;
2474
2475         td_io_u_lock(td);
2476
2477         add_stat_sample(&ts->lat_stat[ddir], nsec);
2478
2479         if (td->lat_log)
2480                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2481                                offset);
2482
2483         td_io_u_unlock(td);
2484 }
2485
2486 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2487                    unsigned int bytes, unsigned long long spent)
2488 {
2489         struct thread_stat *ts = &td->ts;
2490         unsigned long rate;
2491
2492         if (spent)
2493                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2494         else
2495                 rate = 0;
2496
2497         td_io_u_lock(td);
2498
2499         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2500
2501         if (td->bw_log)
2502                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2503                                bytes, io_u->offset);
2504
2505         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2506         td_io_u_unlock(td);
2507 }
2508
2509 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2510                          struct timespec *t, unsigned int avg_time,
2511                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2512                          struct io_stat *stat, struct io_log *log,
2513                          bool is_kb)
2514 {
2515         unsigned long spent, rate;
2516         enum fio_ddir ddir;
2517         unsigned int next, next_log;
2518
2519         next_log = avg_time;
2520
2521         spent = mtime_since(parent_tv, t);
2522         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2523                 return avg_time - spent;
2524
2525         td_io_u_lock(td);
2526
2527         /*
2528          * Compute both read and write rates for the interval.
2529          */
2530         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2531                 uint64_t delta;
2532
2533                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2534                 if (!delta)
2535                         continue; /* No entries for interval */
2536
2537                 if (spent) {
2538                         if (is_kb)
2539                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2540                         else
2541                                 rate = (delta * 1000) / spent;
2542                 } else
2543                         rate = 0;
2544
2545                 add_stat_sample(&stat[ddir], rate);
2546
2547                 if (log) {
2548                         unsigned int bs = 0;
2549
2550                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2551                                 bs = td->o.min_bs[ddir];
2552
2553                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2554                         next_log = min(next_log, next);
2555                 }
2556
2557                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2558         }
2559
2560         timespec_add_msec(parent_tv, avg_time);
2561
2562         td_io_u_unlock(td);
2563
2564         if (spent <= avg_time)
2565                 next = avg_time;
2566         else
2567                 next = avg_time - (1 + spent - avg_time);
2568
2569         return min(next, next_log);
2570 }
2571
2572 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2573 {
2574         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2575                                 td->this_io_bytes, td->stat_io_bytes,
2576                                 td->ts.bw_stat, td->bw_log, true);
2577 }
2578
2579 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2580                      unsigned int bytes)
2581 {
2582         struct thread_stat *ts = &td->ts;
2583
2584         td_io_u_lock(td);
2585
2586         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2587
2588         if (td->iops_log)
2589                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2590                                bytes, io_u->offset);
2591
2592         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2593         td_io_u_unlock(td);
2594 }
2595
2596 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2597 {
2598         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2599                                 td->this_io_blocks, td->stat_io_blocks,
2600                                 td->ts.iops_stat, td->iops_log, false);
2601 }
2602
2603 /*
2604  * Returns msecs to next event
2605  */
2606 int calc_log_samples(void)
2607 {
2608         struct thread_data *td;
2609         unsigned int next = ~0U, tmp;
2610         struct timespec now;
2611         int i;
2612
2613         fio_gettime(&now, NULL);
2614
2615         for_each_td(td, i) {
2616                 if (!td->o.stats)
2617                         continue;
2618                 if (in_ramp_time(td) ||
2619                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2620                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2621                         continue;
2622                 }
2623                 if (!td->bw_log ||
2624                         (td->bw_log && !per_unit_log(td->bw_log))) {
2625                         tmp = add_bw_samples(td, &now);
2626                         if (tmp < next)
2627                                 next = tmp;
2628                 }
2629                 if (!td->iops_log ||
2630                         (td->iops_log && !per_unit_log(td->iops_log))) {
2631                         tmp = add_iops_samples(td, &now);
2632                         if (tmp < next)
2633                                 next = tmp;
2634                 }
2635         }
2636
2637         return next == ~0U ? 0 : next;
2638 }
2639
2640 void stat_init(void)
2641 {
2642         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2643 }
2644
2645 void stat_exit(void)
2646 {
2647         /*
2648          * When we have the mutex, we know out-of-band access to it
2649          * have ended.
2650          */
2651         fio_mutex_down(stat_mutex);
2652         fio_mutex_remove(stat_mutex);
2653 }
2654
2655 /*
2656  * Called from signal handler. Wake up status thread.
2657  */
2658 void show_running_run_stats(void)
2659 {
2660         helper_do_stat();
2661 }
2662
2663 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2664 {
2665         /* Ignore io_u's which span multiple blocks--they will just get
2666          * inaccurate counts. */
2667         int idx = (io_u->offset - io_u->file->file_offset)
2668                         / td->o.bs[DDIR_TRIM];
2669         uint32_t *info = &td->ts.block_infos[idx];
2670         assert(idx < td->ts.nr_block_infos);
2671         return info;
2672 }