Merge branch 'dev' of https://github.com/smartxworks/fio
[fio.git] / lib / prio_tree.c
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004    Initial version
12  */
13
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <limits.h>
17
18 #include "../compiler/compiler.h"
19 #include "prio_tree.h"
20
21 #define ARRAY_SIZE(x)    (sizeof((x)) / (sizeof((x)[0])))
22
23 /*
24  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
25  * which is useful for storing intervals, e.g, we can consider a vma as a closed
26  * interval of file pages [offset_begin, offset_end], and store all vmas that
27  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
28  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
29  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
30  * time where 'log n' is the height of the PST, and 'm' is the number of stored
31  * intervals (vmas) that overlap (map) with the input interval X (the set of
32  * consecutive file pages).
33  *
34  * In our implementation, we store closed intervals of the form [radix_index,
35  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
36  * is designed for storing intervals with unique radix indices, i.e., each
37  * interval have different radix_index. However, this limitation can be easily
38  * overcome by using the size, i.e., heap_index - radix_index, as part of the
39  * index, so we index the tree using [(radix_index,size), heap_index].
40  *
41  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
42  * machine, the maximum height of a PST can be 64. We can use a balanced version
43  * of the priority search tree to optimize the tree height, but the balanced
44  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
45  */
46
47 static void get_index(const struct prio_tree_node *node,
48                       unsigned long *radix, unsigned long *heap)
49 {
50         *radix = node->start;
51         *heap = node->last;
52 }
53
54 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
55
56 static void fio_init prio_tree_init(void)
57 {
58         unsigned int i;
59
60         for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
61                 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
62         index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
63 }
64
65 /*
66  * Maximum heap_index that can be stored in a PST with index_bits bits
67  */
68 static inline unsigned long prio_tree_maxindex(unsigned int bits)
69 {
70         return index_bits_to_maxindex[bits - 1];
71 }
72
73 /*
74  * Extend a priority search tree so that it can store a node with heap_index
75  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
76  * However, this function is used rarely and the common case performance is
77  * not bad.
78  */
79 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
80                 struct prio_tree_node *node, unsigned long max_heap_index)
81 {
82         struct prio_tree_node *first = NULL, *prev, *last = NULL;
83
84         if (max_heap_index > prio_tree_maxindex(root->index_bits))
85                 root->index_bits++;
86
87         while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
88                 root->index_bits++;
89
90                 if (prio_tree_empty(root))
91                         continue;
92
93                 if (first == NULL) {
94                         first = root->prio_tree_node;
95                         prio_tree_remove(root, root->prio_tree_node);
96                         INIT_PRIO_TREE_NODE(first);
97                         last = first;
98                 } else {
99                         prev = last;
100                         last = root->prio_tree_node;
101                         prio_tree_remove(root, root->prio_tree_node);
102                         INIT_PRIO_TREE_NODE(last);
103                         prev->left = last;
104                         last->parent = prev;
105                 }
106         }
107
108         INIT_PRIO_TREE_NODE(node);
109
110         if (first) {
111                 node->left = first;
112                 first->parent = node;
113         } else
114                 last = node;
115
116         if (!prio_tree_empty(root)) {
117                 last->left = root->prio_tree_node;
118                 last->left->parent = last;
119         }
120
121         root->prio_tree_node = node;
122         return node;
123 }
124
125 /*
126  * Replace a prio_tree_node with a new node and return the old node
127  */
128 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
129                 struct prio_tree_node *old, struct prio_tree_node *node)
130 {
131         INIT_PRIO_TREE_NODE(node);
132
133         if (prio_tree_root(old)) {
134                 assert(root->prio_tree_node == old);
135                 /*
136                  * We can reduce root->index_bits here. However, it is complex
137                  * and does not help much to improve performance (IMO).
138                  */
139                 node->parent = node;
140                 root->prio_tree_node = node;
141         } else {
142                 node->parent = old->parent;
143                 if (old->parent->left == old)
144                         old->parent->left = node;
145                 else
146                         old->parent->right = node;
147         }
148
149         if (!prio_tree_left_empty(old)) {
150                 node->left = old->left;
151                 old->left->parent = node;
152         }
153
154         if (!prio_tree_right_empty(old)) {
155                 node->right = old->right;
156                 old->right->parent = node;
157         }
158
159         return old;
160 }
161
162 /*
163  * Insert a prio_tree_node @node into a radix priority search tree @root. The
164  * algorithm typically takes O(log n) time where 'log n' is the number of bits
165  * required to represent the maximum heap_index. In the worst case, the algo
166  * can take O((log n)^2) - check prio_tree_expand.
167  *
168  * If a prior node with same radix_index and heap_index is already found in
169  * the tree, then returns the address of the prior node. Otherwise, inserts
170  * @node into the tree and returns @node.
171  */
172 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
173                 struct prio_tree_node *node)
174 {
175         struct prio_tree_node *cur, *res = node;
176         unsigned long radix_index, heap_index;
177         unsigned long r_index, h_index, index, mask;
178         int size_flag = 0;
179
180         get_index(node, &radix_index, &heap_index);
181
182         if (prio_tree_empty(root) ||
183                         heap_index > prio_tree_maxindex(root->index_bits))
184                 return prio_tree_expand(root, node, heap_index);
185
186         cur = root->prio_tree_node;
187         mask = 1UL << (root->index_bits - 1);
188
189         while (mask) {
190                 get_index(cur, &r_index, &h_index);
191
192                 if (r_index == radix_index && h_index == heap_index)
193                         return cur;
194
195                 if (h_index < heap_index ||
196                     (h_index == heap_index && r_index > radix_index)) {
197                         struct prio_tree_node *tmp = node;
198                         node = prio_tree_replace(root, cur, node);
199                         cur = tmp;
200                         /* swap indices */
201                         index = r_index;
202                         r_index = radix_index;
203                         radix_index = index;
204                         index = h_index;
205                         h_index = heap_index;
206                         heap_index = index;
207                 }
208
209                 if (size_flag)
210                         index = heap_index - radix_index;
211                 else
212                         index = radix_index;
213
214                 if (index & mask) {
215                         if (prio_tree_right_empty(cur)) {
216                                 INIT_PRIO_TREE_NODE(node);
217                                 cur->right = node;
218                                 node->parent = cur;
219                                 return res;
220                         } else
221                                 cur = cur->right;
222                 } else {
223                         if (prio_tree_left_empty(cur)) {
224                                 INIT_PRIO_TREE_NODE(node);
225                                 cur->left = node;
226                                 node->parent = cur;
227                                 return res;
228                         } else
229                                 cur = cur->left;
230                 }
231
232                 mask >>= 1;
233
234                 if (!mask) {
235                         mask = 1UL << (BITS_PER_LONG - 1);
236                         size_flag = 1;
237                 }
238         }
239         /* Should not reach here */
240         assert(0);
241         return NULL;
242 }
243
244 /*
245  * Remove a prio_tree_node @node from a radix priority search tree @root. The
246  * algorithm takes O(log n) time where 'log n' is the number of bits required
247  * to represent the maximum heap_index.
248  */
249 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
250 {
251         struct prio_tree_node *cur;
252         unsigned long r_index, h_index_right, h_index_left;
253
254         cur = node;
255
256         while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
257                 if (!prio_tree_left_empty(cur))
258                         get_index(cur->left, &r_index, &h_index_left);
259                 else {
260                         cur = cur->right;
261                         continue;
262                 }
263
264                 if (!prio_tree_right_empty(cur))
265                         get_index(cur->right, &r_index, &h_index_right);
266                 else {
267                         cur = cur->left;
268                         continue;
269                 }
270
271                 /* both h_index_left and h_index_right cannot be 0 */
272                 if (h_index_left >= h_index_right)
273                         cur = cur->left;
274                 else
275                         cur = cur->right;
276         }
277
278         if (prio_tree_root(cur)) {
279                 assert(root->prio_tree_node == cur);
280                 INIT_PRIO_TREE_ROOT(root);
281                 return;
282         }
283
284         if (cur->parent->right == cur)
285                 cur->parent->right = cur->parent;
286         else
287                 cur->parent->left = cur->parent;
288
289         while (cur != node)
290                 cur = prio_tree_replace(root, cur->parent, cur);
291 }
292
293 /*
294  * Following functions help to enumerate all prio_tree_nodes in the tree that
295  * overlap with the input interval X [radix_index, heap_index]. The enumeration
296  * takes O(log n + m) time where 'log n' is the height of the tree (which is
297  * proportional to # of bits required to represent the maximum heap_index) and
298  * 'm' is the number of prio_tree_nodes that overlap the interval X.
299  */
300
301 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
302                 unsigned long *r_index, unsigned long *h_index)
303 {
304         if (prio_tree_left_empty(iter->cur))
305                 return NULL;
306
307         get_index(iter->cur->left, r_index, h_index);
308
309         if (iter->r_index <= *h_index) {
310                 iter->cur = iter->cur->left;
311                 iter->mask >>= 1;
312                 if (iter->mask) {
313                         if (iter->size_level)
314                                 iter->size_level++;
315                 } else {
316                         if (iter->size_level) {
317                                 assert(prio_tree_left_empty(iter->cur));
318                                 assert(prio_tree_right_empty(iter->cur));
319                                 iter->size_level++;
320                                 iter->mask = ULONG_MAX;
321                         } else {
322                                 iter->size_level = 1;
323                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
324                         }
325                 }
326                 return iter->cur;
327         }
328
329         return NULL;
330 }
331
332 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
333                 unsigned long *r_index, unsigned long *h_index)
334 {
335         unsigned long value;
336
337         if (prio_tree_right_empty(iter->cur))
338                 return NULL;
339
340         if (iter->size_level)
341                 value = iter->value;
342         else
343                 value = iter->value | iter->mask;
344
345         if (iter->h_index < value)
346                 return NULL;
347
348         get_index(iter->cur->right, r_index, h_index);
349
350         if (iter->r_index <= *h_index) {
351                 iter->cur = iter->cur->right;
352                 iter->mask >>= 1;
353                 iter->value = value;
354                 if (iter->mask) {
355                         if (iter->size_level)
356                                 iter->size_level++;
357                 } else {
358                         if (iter->size_level) {
359                                 assert(prio_tree_left_empty(iter->cur));
360                                 assert(prio_tree_right_empty(iter->cur));
361                                 iter->size_level++;
362                                 iter->mask = ULONG_MAX;
363                         } else {
364                                 iter->size_level = 1;
365                                 iter->mask = 1UL << (BITS_PER_LONG - 1);
366                         }
367                 }
368                 return iter->cur;
369         }
370
371         return NULL;
372 }
373
374 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
375 {
376         iter->cur = iter->cur->parent;
377         if (iter->mask == ULONG_MAX)
378                 iter->mask = 1UL;
379         else if (iter->size_level == 1)
380                 iter->mask = 1UL;
381         else
382                 iter->mask <<= 1;
383         if (iter->size_level)
384                 iter->size_level--;
385         if (!iter->size_level && (iter->value & iter->mask))
386                 iter->value ^= iter->mask;
387         return iter->cur;
388 }
389
390 static inline int overlap(struct prio_tree_iter *iter,
391                 unsigned long r_index, unsigned long h_index)
392 {
393         return iter->h_index >= r_index && iter->r_index <= h_index;
394 }
395
396 /*
397  * prio_tree_first:
398  *
399  * Get the first prio_tree_node that overlaps with the interval [radix_index,
400  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
401  * traversal of the tree.
402  */
403 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
404 {
405         struct prio_tree_root *root;
406         unsigned long r_index, h_index;
407
408         INIT_PRIO_TREE_ITER(iter);
409
410         root = iter->root;
411         if (prio_tree_empty(root))
412                 return NULL;
413
414         get_index(root->prio_tree_node, &r_index, &h_index);
415
416         if (iter->r_index > h_index)
417                 return NULL;
418
419         iter->mask = 1UL << (root->index_bits - 1);
420         iter->cur = root->prio_tree_node;
421
422         while (1) {
423                 if (overlap(iter, r_index, h_index))
424                         return iter->cur;
425
426                 if (prio_tree_left(iter, &r_index, &h_index))
427                         continue;
428
429                 if (prio_tree_right(iter, &r_index, &h_index))
430                         continue;
431
432                 break;
433         }
434         return NULL;
435 }
436
437 /*
438  * prio_tree_next:
439  *
440  * Get the next prio_tree_node that overlaps with the input interval in iter
441  */
442 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
443 {
444         unsigned long r_index, h_index;
445
446         if (iter->cur == NULL)
447                 return prio_tree_first(iter);
448
449 repeat:
450         while (prio_tree_left(iter, &r_index, &h_index))
451                 if (overlap(iter, r_index, h_index))
452                         return iter->cur;
453
454         while (!prio_tree_right(iter, &r_index, &h_index)) {
455                 while (!prio_tree_root(iter->cur) &&
456                                 iter->cur->parent->right == iter->cur)
457                         prio_tree_parent(iter);
458
459                 if (prio_tree_root(iter->cur))
460                         return NULL;
461
462                 prio_tree_parent(iter);
463         }
464
465         if (overlap(iter, r_index, h_index))
466                 return iter->cur;
467
468         goto repeat;
469 }