[PATCH] Move related code next to each other
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  */
22 #include <unistd.h>
23 #include <fcntl.h>
24 #include <string.h>
25 #include <signal.h>
26 #include <time.h>
27 #include <assert.h>
28 #include <sys/stat.h>
29 #include <sys/wait.h>
30 #include <sys/ipc.h>
31 #include <sys/shm.h>
32 #include <sys/ioctl.h>
33 #include <sys/mman.h>
34
35 #include "fio.h"
36 #include "os.h"
37
38 #define MASK    (4095)
39
40 #define ALIGN(buf)      (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
41
42 int groupid = 0;
43 int thread_number = 0;
44 int shm_id = 0;
45 int temp_stall_ts;
46 char *fio_inst_prefix = _INST_PREFIX;
47
48 #define should_fsync(td)        ((td_write(td) || td_rw(td)) && (!(td)->odirect || (td)->override_sync))
49
50 static volatile int startup_sem;
51
52 #define TERMINATE_ALL           (-1)
53 #define JOB_START_TIMEOUT       (5 * 1000)
54
55 static void terminate_threads(int group_id)
56 {
57         struct thread_data *td;
58         int i;
59
60         for_each_td(td, i) {
61                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
62                         td->terminate = 1;
63                         td->start_delay = 0;
64                 }
65         }
66 }
67
68 static void sig_handler(int sig)
69 {
70         switch (sig) {
71                 case SIGALRM:
72                         update_io_ticks();
73                         disk_util_timer_arm();
74                         print_thread_status();
75                         break;
76                 default:
77                         printf("\nfio: terminating on signal\n");
78                         fflush(stdout);
79                         terminate_threads(TERMINATE_ALL);
80                         break;
81         }
82 }
83
84 /*
85  * Check if we are above the minimum rate given.
86  */
87 static int check_min_rate(struct thread_data *td, struct timeval *now)
88 {
89         unsigned long spent;
90         unsigned long rate;
91         int ddir = td->ddir;
92
93         /*
94          * allow a 2 second settle period in the beginning
95          */
96         if (mtime_since(&td->start, now) < 2000)
97                 return 0;
98
99         /*
100          * if rate blocks is set, sample is running
101          */
102         if (td->rate_bytes) {
103                 spent = mtime_since(&td->lastrate, now);
104                 if (spent < td->ratecycle)
105                         return 0;
106
107                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
108                 if (rate < td->ratemin) {
109                         fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
110                         return 1;
111                 }
112         }
113
114         td->rate_bytes = td->this_io_bytes[ddir];
115         memcpy(&td->lastrate, now, sizeof(*now));
116         return 0;
117 }
118
119 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
120 {
121         if (!td->timeout)
122                 return 0;
123         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
124                 return 1;
125
126         return 0;
127 }
128
129 static inline void td_set_runstate(struct thread_data *td, int runstate)
130 {
131         td->runstate = runstate;
132 }
133
134 static struct fio_file *get_next_file(struct thread_data *td)
135 {
136         unsigned int old_next_file = td->next_file;
137         struct fio_file *f;
138
139         do {
140                 f = &td->files[td->next_file];
141
142                 td->next_file++;
143                 if (td->next_file >= td->nr_files)
144                         td->next_file = 0;
145
146                 if (f->fd != -1)
147                         break;
148
149                 f = NULL;
150         } while (td->next_file != old_next_file);
151
152         return f;
153 }
154
155 /*
156  * When job exits, we can cancel the in-flight IO if we are using async
157  * io. Attempt to do so.
158  */
159 static void cleanup_pending_aio(struct thread_data *td)
160 {
161         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
162         struct list_head *entry, *n;
163         struct io_completion_data icd;
164         struct io_u *io_u;
165         int r;
166
167         /*
168          * get immediately available events, if any
169          */
170         r = td_io_getevents(td, 0, td->cur_depth, &ts);
171         if (r > 0) {
172                 icd.nr = r;
173                 ios_completed(td, &icd);
174         }
175
176         /*
177          * now cancel remaining active events
178          */
179         if (td->io_ops->cancel) {
180                 list_for_each_safe(entry, n, &td->io_u_busylist) {
181                         io_u = list_entry(entry, struct io_u, list);
182
183                         r = td->io_ops->cancel(td, io_u);
184                         if (!r)
185                                 put_io_u(td, io_u);
186                 }
187         }
188
189         if (td->cur_depth) {
190                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
191                 if (r > 0) {
192                         icd.nr = r;
193                         ios_completed(td, &icd);
194                 }
195         }
196 }
197
198 /*
199  * The main verify engine. Runs over the writes we previusly submitted,
200  * reads the blocks back in, and checks the crc/md5 of the data.
201  */
202 void do_verify(struct thread_data *td)
203 {
204         struct timeval t;
205         struct io_u *io_u, *v_io_u = NULL;
206         struct io_completion_data icd;
207         struct fio_file *f;
208         int ret, i;
209
210         /*
211          * sync io first and invalidate cache, to make sure we really
212          * read from disk.
213          */
214         for_each_file(td, f, i) {
215                 td_io_sync(td, f);
216                 file_invalidate_cache(td, f);
217         }
218
219         td_set_runstate(td, TD_VERIFYING);
220
221         do {
222                 if (td->terminate)
223                         break;
224
225                 gettimeofday(&t, NULL);
226                 if (runtime_exceeded(td, &t))
227                         break;
228
229                 io_u = __get_io_u(td);
230                 if (!io_u)
231                         break;
232
233                 if (get_next_verify(td, io_u)) {
234                         put_io_u(td, io_u);
235                         break;
236                 }
237
238                 f = get_next_file(td);
239                 if (!f)
240                         break;
241
242                 io_u->file = f;
243
244                 if (td_io_prep(td, io_u)) {
245                         put_io_u(td, io_u);
246                         break;
247                 }
248
249                 ret = td_io_queue(td, io_u);
250                 if (ret) {
251                         put_io_u(td, io_u);
252                         td_verror(td, ret);
253                         break;
254                 }
255
256                 /*
257                  * we have one pending to verify, do that while
258                  * we are doing io on the next one
259                  */
260                 if (do_io_u_verify(td, &v_io_u))
261                         break;
262
263                 ret = td_io_getevents(td, 1, 1, NULL);
264                 if (ret != 1) {
265                         if (ret < 0)
266                                 td_verror(td, ret);
267                         break;
268                 }
269
270                 v_io_u = td->io_ops->event(td, 0);
271                 icd.nr = 1;
272                 icd.error = 0;
273                 io_completed(td, v_io_u, &icd);
274
275                 if (icd.error) {
276                         td_verror(td, icd.error);
277                         put_io_u(td, v_io_u);
278                         v_io_u = NULL;
279                         break;
280                 }
281
282                 /*
283                  * if we can't submit more io, we need to verify now
284                  */
285                 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
286                         break;
287
288         } while (1);
289
290         do_io_u_verify(td, &v_io_u);
291
292         if (td->cur_depth)
293                 cleanup_pending_aio(td);
294
295         td_set_runstate(td, TD_RUNNING);
296 }
297
298 /*
299  * Not really an io thread, all it does is burn CPU cycles in the specified
300  * manner.
301  */
302 static void do_cpuio(struct thread_data *td)
303 {
304         struct timeval e;
305         int split = 100 / td->cpuload;
306         int i = 0;
307
308         while (!td->terminate) {
309                 gettimeofday(&e, NULL);
310
311                 if (runtime_exceeded(td, &e))
312                         break;
313
314                 if (!(i % split))
315                         __usec_sleep(10000);
316                 else
317                         usec_sleep(td, 10000);
318
319                 i++;
320         }
321 }
322
323 /*
324  * Main IO worker function. It retrieves io_u's to process and queues
325  * and reaps them, checking for rate and errors along the way.
326  */
327 static void do_io(struct thread_data *td)
328 {
329         struct io_completion_data icd;
330         struct timeval s, e;
331         unsigned long usec;
332         struct fio_file *f;
333         int i, ret = 0;
334
335         td_set_runstate(td, TD_RUNNING);
336
337         while (td->this_io_bytes[td->ddir] < td->io_size) {
338                 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
339                 struct timespec *timeout;
340                 int min_evts = 0;
341                 struct io_u *io_u;
342
343                 if (td->terminate)
344                         break;
345
346                 f = get_next_file(td);
347                 if (!f)
348                         break;
349
350                 io_u = get_io_u(td, f);
351                 if (!io_u)
352                         break;
353
354                 memcpy(&s, &io_u->start_time, sizeof(s));
355
356                 ret = td_io_queue(td, io_u);
357                 if (ret) {
358                         put_io_u(td, io_u);
359                         td_verror(td, ret);
360                         break;
361                 }
362
363                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
364
365                 if (td->cur_depth < td->iodepth) {
366                         timeout = &ts;
367                         min_evts = 0;
368                 } else {
369                         timeout = NULL;
370                         min_evts = 1;
371                 }
372
373                 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
374                 if (ret < 0) {
375                         td_verror(td, -ret);
376                         break;
377                 } else if (!ret)
378                         continue;
379
380                 icd.nr = ret;
381                 ios_completed(td, &icd);
382                 if (icd.error) {
383                         td_verror(td, icd.error);
384                         break;
385                 }
386
387                 /*
388                  * the rate is batched for now, it should work for batches
389                  * of completions except the very first one which may look
390                  * a little bursty
391                  */
392                 gettimeofday(&e, NULL);
393                 usec = utime_since(&s, &e);
394
395                 rate_throttle(td, usec, icd.bytes_done[td->ddir]);
396
397                 if (check_min_rate(td, &e)) {
398                         if (rate_quit)
399                                 terminate_threads(td->groupid);
400                         td_verror(td, ENOMEM);
401                         break;
402                 }
403
404                 if (runtime_exceeded(td, &e))
405                         break;
406
407                 if (td->thinktime)
408                         usec_sleep(td, td->thinktime);
409
410                 if (should_fsync(td) && td->fsync_blocks &&
411                     (td->io_blocks[DDIR_WRITE] % td->fsync_blocks) == 0)
412                         td_io_sync(td, f);
413         }
414
415         if (!ret) {
416                 if (td->cur_depth)
417                         cleanup_pending_aio(td);
418
419                 if (should_fsync(td) && td->end_fsync) {
420                         td_set_runstate(td, TD_FSYNCING);
421                         for_each_file(td, f, i)
422                                 td_io_sync(td, f);
423                 }
424         }
425 }
426
427 static int td_io_init(struct thread_data *td)
428 {
429         if (td->io_ops->init)
430                 return td->io_ops->init(td);
431
432         return 0;
433 }
434
435 static void cleanup_io_u(struct thread_data *td)
436 {
437         struct list_head *entry, *n;
438         struct io_u *io_u;
439
440         list_for_each_safe(entry, n, &td->io_u_freelist) {
441                 io_u = list_entry(entry, struct io_u, list);
442
443                 list_del(&io_u->list);
444                 free(io_u);
445         }
446
447         free_io_mem(td);
448 }
449
450 static int init_io_u(struct thread_data *td)
451 {
452         struct io_u *io_u;
453         int i, max_units;
454         char *p;
455
456         if (td->io_ops->flags & FIO_CPUIO)
457                 return 0;
458
459         if (td->io_ops->flags & FIO_SYNCIO)
460                 max_units = 1;
461         else
462                 max_units = td->iodepth;
463
464         td->orig_buffer_size = td->max_bs * max_units + MASK;
465
466         if (allocate_io_mem(td))
467                 return 1;
468
469         p = ALIGN(td->orig_buffer);
470         for (i = 0; i < max_units; i++) {
471                 io_u = malloc(sizeof(*io_u));
472                 memset(io_u, 0, sizeof(*io_u));
473                 INIT_LIST_HEAD(&io_u->list);
474
475                 io_u->buf = p + td->max_bs * i;
476                 io_u->index = i;
477                 list_add(&io_u->list, &td->io_u_freelist);
478         }
479
480         return 0;
481 }
482
483 static int switch_ioscheduler(struct thread_data *td)
484 {
485         char tmp[256], tmp2[128];
486         FILE *f;
487         int ret;
488
489         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
490
491         f = fopen(tmp, "r+");
492         if (!f) {
493                 td_verror(td, errno);
494                 return 1;
495         }
496
497         /*
498          * Set io scheduler.
499          */
500         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
501         if (ferror(f) || ret != 1) {
502                 td_verror(td, errno);
503                 fclose(f);
504                 return 1;
505         }
506
507         rewind(f);
508
509         /*
510          * Read back and check that the selected scheduler is now the default.
511          */
512         ret = fread(tmp, 1, sizeof(tmp), f);
513         if (ferror(f) || ret < 0) {
514                 td_verror(td, errno);
515                 fclose(f);
516                 return 1;
517         }
518
519         sprintf(tmp2, "[%s]", td->ioscheduler);
520         if (!strstr(tmp, tmp2)) {
521                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
522                 td_verror(td, EINVAL);
523                 fclose(f);
524                 return 1;
525         }
526
527         fclose(f);
528         return 0;
529 }
530
531 static void clear_io_state(struct thread_data *td)
532 {
533         struct fio_file *f;
534         int i;
535
536         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
537         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
538         td->zone_bytes = 0;
539
540         for_each_file(td, f, i) {
541                 f->last_pos = 0;
542                 if (td->io_ops->flags & FIO_SYNCIO)
543                         lseek(f->fd, SEEK_SET, 0);
544
545                 if (f->file_map)
546                         memset(f->file_map, 0, f->num_maps * sizeof(long));
547         }
548 }
549
550 /*
551  * Entry point for the thread based jobs. The process based jobs end up
552  * here as well, after a little setup.
553  */
554 static void *thread_main(void *data)
555 {
556         struct thread_data *td = data;
557
558         if (!td->use_thread)
559                 setsid();
560
561         td->pid = getpid();
562
563         INIT_LIST_HEAD(&td->io_u_freelist);
564         INIT_LIST_HEAD(&td->io_u_busylist);
565         INIT_LIST_HEAD(&td->io_hist_list);
566         INIT_LIST_HEAD(&td->io_log_list);
567
568         if (init_io_u(td))
569                 goto err;
570
571         if (fio_setaffinity(td) == -1) {
572                 td_verror(td, errno);
573                 goto err;
574         }
575
576         if (td_io_init(td))
577                 goto err;
578
579         if (init_iolog(td))
580                 goto err;
581
582         if (td->ioprio) {
583                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
584                         td_verror(td, errno);
585                         goto err;
586                 }
587         }
588
589         if (nice(td->nice) == -1) {
590                 td_verror(td, errno);
591                 goto err;
592         }
593
594         if (init_random_state(td))
595                 goto err;
596
597         if (td->ioscheduler && switch_ioscheduler(td))
598                 goto err;
599
600         td_set_runstate(td, TD_INITIALIZED);
601         fio_sem_up(&startup_sem);
602         fio_sem_down(&td->mutex);
603
604         if (!td->create_serialize && setup_files(td))
605                 goto err;
606
607         gettimeofday(&td->epoch, NULL);
608
609         if (td->exec_prerun)
610                 system(td->exec_prerun);
611
612         while (td->loops--) {
613                 getrusage(RUSAGE_SELF, &td->ru_start);
614                 gettimeofday(&td->start, NULL);
615                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
616
617                 if (td->ratemin)
618                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
619
620                 clear_io_state(td);
621                 prune_io_piece_log(td);
622
623                 if (td->io_ops->flags & FIO_CPUIO)
624                         do_cpuio(td);
625                 else
626                         do_io(td);
627
628                 td->runtime[td->ddir] += mtime_since_now(&td->start);
629                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
630                         td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
631
632                 update_rusage_stat(td);
633
634                 if (td->error || td->terminate)
635                         break;
636
637                 if (td->verify == VERIFY_NONE)
638                         continue;
639
640                 clear_io_state(td);
641                 gettimeofday(&td->start, NULL);
642
643                 do_verify(td);
644
645                 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
646
647                 if (td->error || td->terminate)
648                         break;
649         }
650
651         if (td->bw_log)
652                 finish_log(td, td->bw_log, "bw");
653         if (td->slat_log)
654                 finish_log(td, td->slat_log, "slat");
655         if (td->clat_log)
656                 finish_log(td, td->clat_log, "clat");
657         if (td->write_iolog)
658                 write_iolog_close(td);
659         if (td->exec_postrun)
660                 system(td->exec_postrun);
661
662         if (exitall_on_terminate)
663                 terminate_threads(td->groupid);
664
665 err:
666         close_files(td);
667         close_ioengine(td);
668         cleanup_io_u(td);
669         td_set_runstate(td, TD_EXITED);
670         return NULL;
671
672 }
673
674 /*
675  * We cannot pass the td data into a forked process, so attach the td and
676  * pass it to the thread worker.
677  */
678 static void *fork_main(int shmid, int offset)
679 {
680         struct thread_data *td;
681         void *data;
682
683         data = shmat(shmid, NULL, 0);
684         if (data == (void *) -1) {
685                 perror("shmat");
686                 return NULL;
687         }
688
689         td = data + offset * sizeof(struct thread_data);
690         thread_main(td);
691         shmdt(data);
692         return NULL;
693 }
694
695 /*
696  * Run over the job map and reap the threads that have exited, if any.
697  */
698 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
699 {
700         struct thread_data *td;
701         int i, cputhreads;
702
703         /*
704          * reap exited threads (TD_EXITED -> TD_REAPED)
705          */
706         cputhreads = 0;
707         for_each_td(td, i) {
708                 /*
709                  * ->io_ops is NULL for a thread that has closed its
710                  * io engine
711                  */
712                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
713                         cputhreads++;
714
715                 if (td->runstate != TD_EXITED)
716                         continue;
717
718                 td_set_runstate(td, TD_REAPED);
719
720                 if (td->use_thread) {
721                         long ret;
722
723                         if (pthread_join(td->thread, (void *) &ret))
724                                 perror("thread_join");
725                 } else
726                         waitpid(td->pid, NULL, 0);
727
728                 (*nr_running)--;
729                 (*m_rate) -= td->ratemin;
730                 (*t_rate) -= td->rate;
731         }
732
733         if (*nr_running == cputhreads)
734                 terminate_threads(TERMINATE_ALL);
735 }
736
737 /*
738  * Main function for kicking off and reaping jobs, as needed.
739  */
740 static void run_threads(void)
741 {
742         struct thread_data *td;
743         unsigned long spent;
744         int i, todo, nr_running, m_rate, t_rate, nr_started;
745
746         if (fio_pin_memory())
747                 return;
748
749         if (!terse_output) {
750                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
751                 fflush(stdout);
752         }
753
754         signal(SIGINT, sig_handler);
755         signal(SIGALRM, sig_handler);
756
757         todo = thread_number;
758         nr_running = 0;
759         nr_started = 0;
760         m_rate = t_rate = 0;
761
762         for_each_td(td, i) {
763                 print_status_init(td->thread_number - 1);
764
765                 init_disk_util(td);
766
767                 if (!td->create_serialize)
768                         continue;
769
770                 /*
771                  * do file setup here so it happens sequentially,
772                  * we don't want X number of threads getting their
773                  * client data interspersed on disk
774                  */
775                 if (setup_files(td)) {
776                         td_set_runstate(td, TD_REAPED);
777                         todo--;
778                 }
779         }
780
781         time_init();
782
783         while (todo) {
784                 struct thread_data *map[MAX_JOBS];
785                 struct timeval this_start;
786                 int this_jobs = 0, left;
787
788                 /*
789                  * create threads (TD_NOT_CREATED -> TD_CREATED)
790                  */
791                 for_each_td(td, i) {
792                         if (td->runstate != TD_NOT_CREATED)
793                                 continue;
794
795                         /*
796                          * never got a chance to start, killed by other
797                          * thread for some reason
798                          */
799                         if (td->terminate) {
800                                 todo--;
801                                 continue;
802                         }
803
804                         if (td->start_delay) {
805                                 spent = mtime_since_genesis();
806
807                                 if (td->start_delay * 1000 > spent)
808                                         continue;
809                         }
810
811                         if (td->stonewall && (nr_started || nr_running))
812                                 break;
813
814                         /*
815                          * Set state to created. Thread will transition
816                          * to TD_INITIALIZED when it's done setting up.
817                          */
818                         td_set_runstate(td, TD_CREATED);
819                         map[this_jobs++] = td;
820                         fio_sem_init(&startup_sem, 1);
821                         nr_started++;
822
823                         if (td->use_thread) {
824                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
825                                         perror("thread_create");
826                                         nr_started--;
827                                 }
828                         } else {
829                                 if (fork())
830                                         fio_sem_down(&startup_sem);
831                                 else {
832                                         fork_main(shm_id, i);
833                                         exit(0);
834                                 }
835                         }
836                 }
837
838                 /*
839                  * Wait for the started threads to transition to
840                  * TD_INITIALIZED.
841                  */
842                 gettimeofday(&this_start, NULL);
843                 left = this_jobs;
844                 while (left) {
845                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
846                                 break;
847
848                         usleep(100000);
849
850                         for (i = 0; i < this_jobs; i++) {
851                                 td = map[i];
852                                 if (!td)
853                                         continue;
854                                 if (td->runstate == TD_INITIALIZED) {
855                                         map[i] = NULL;
856                                         left--;
857                                 } else if (td->runstate >= TD_EXITED) {
858                                         map[i] = NULL;
859                                         left--;
860                                         todo--;
861                                         nr_running++; /* work-around... */
862                                 }
863                         }
864                 }
865
866                 if (left) {
867                         log_err("fio: %d jobs failed to start\n", left);
868                         for (i = 0; i < this_jobs; i++) {
869                                 td = map[i];
870                                 if (!td)
871                                         continue;
872                                 kill(td->pid, SIGTERM);
873                         }
874                         break;
875                 }
876
877                 /*
878                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
879                  */
880                 for_each_td(td, i) {
881                         if (td->runstate != TD_INITIALIZED)
882                                 continue;
883
884                         td_set_runstate(td, TD_RUNNING);
885                         nr_running++;
886                         nr_started--;
887                         m_rate += td->ratemin;
888                         t_rate += td->rate;
889                         todo--;
890                         fio_sem_up(&td->mutex);
891                 }
892
893                 reap_threads(&nr_running, &t_rate, &m_rate);
894
895                 if (todo)
896                         usleep(100000);
897         }
898
899         while (nr_running) {
900                 reap_threads(&nr_running, &t_rate, &m_rate);
901                 usleep(10000);
902         }
903
904         update_io_ticks();
905         fio_unpin_memory();
906 }
907
908 int main(int argc, char *argv[])
909 {
910         if (parse_options(argc, argv))
911                 return 1;
912
913         if (!thread_number) {
914                 log_err("Nothing to do\n");
915                 return 1;
916         }
917
918         disk_util_timer_arm();
919
920         run_threads();
921         show_run_stats();
922
923         return 0;
924 }