Merge branch 'include_refactor' of https://github.com/sitsofe/fio
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32
33 #include "fio.h"
34 #include "smalloc.h"
35 #include "verify.h"
36 #include "diskutil.h"
37 #include "cgroup.h"
38 #include "profile.h"
39 #include "lib/rand.h"
40 #include "lib/memalign.h"
41 #include "server.h"
42 #include "lib/getrusage.h"
43 #include "idletime.h"
44 #include "err.h"
45 #include "workqueue.h"
46 #include "lib/mountcheck.h"
47 #include "rate-submit.h"
48 #include "helper_thread.h"
49 #include "pshared.h"
50
51 static struct fio_sem *startup_sem;
52 static struct flist_head *cgroup_list;
53 static char *cgroup_mnt;
54 static int exit_value;
55 static volatile int fio_abort;
56 static unsigned int nr_process = 0;
57 static unsigned int nr_thread = 0;
58
59 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
60
61 int groupid = 0;
62 unsigned int thread_number = 0;
63 unsigned int stat_number = 0;
64 int shm_id = 0;
65 int temp_stall_ts;
66 unsigned long done_secs = 0;
67
68 #define JOB_START_TIMEOUT       (5 * 1000)
69
70 static void sig_int(int sig)
71 {
72         if (threads) {
73                 if (is_backend)
74                         fio_server_got_signal(sig);
75                 else {
76                         log_info("\nfio: terminating on signal %d\n", sig);
77                         log_info_flush();
78                         exit_value = 128;
79                 }
80
81                 fio_terminate_threads(TERMINATE_ALL);
82         }
83 }
84
85 void sig_show_status(int sig)
86 {
87         show_running_run_stats();
88 }
89
90 static void set_sig_handlers(void)
91 {
92         struct sigaction act;
93
94         memset(&act, 0, sizeof(act));
95         act.sa_handler = sig_int;
96         act.sa_flags = SA_RESTART;
97         sigaction(SIGINT, &act, NULL);
98
99         memset(&act, 0, sizeof(act));
100         act.sa_handler = sig_int;
101         act.sa_flags = SA_RESTART;
102         sigaction(SIGTERM, &act, NULL);
103
104 /* Windows uses SIGBREAK as a quit signal from other applications */
105 #ifdef WIN32
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGBREAK, &act, NULL);
110 #endif
111
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_show_status;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGUSR1, &act, NULL);
116
117         if (is_backend) {
118                 memset(&act, 0, sizeof(act));
119                 act.sa_handler = sig_int;
120                 act.sa_flags = SA_RESTART;
121                 sigaction(SIGPIPE, &act, NULL);
122         }
123 }
124
125 /*
126  * Check if we are above the minimum rate given.
127  */
128 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
129                              enum fio_ddir ddir)
130 {
131         unsigned long long bytes = 0;
132         unsigned long iops = 0;
133         unsigned long spent;
134         unsigned long rate;
135         unsigned int ratemin = 0;
136         unsigned int rate_iops = 0;
137         unsigned int rate_iops_min = 0;
138
139         assert(ddir_rw(ddir));
140
141         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
142                 return false;
143
144         /*
145          * allow a 2 second settle period in the beginning
146          */
147         if (mtime_since(&td->start, now) < 2000)
148                 return false;
149
150         iops += td->this_io_blocks[ddir];
151         bytes += td->this_io_bytes[ddir];
152         ratemin += td->o.ratemin[ddir];
153         rate_iops += td->o.rate_iops[ddir];
154         rate_iops_min += td->o.rate_iops_min[ddir];
155
156         /*
157          * if rate blocks is set, sample is running
158          */
159         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
160                 spent = mtime_since(&td->lastrate[ddir], now);
161                 if (spent < td->o.ratecycle)
162                         return false;
163
164                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
165                         /*
166                          * check bandwidth specified rate
167                          */
168                         if (bytes < td->rate_bytes[ddir]) {
169                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
170                                         td->o.name, ratemin, bytes);
171                                 return true;
172                         } else {
173                                 if (spent)
174                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
175                                 else
176                                         rate = 0;
177
178                                 if (rate < ratemin ||
179                                     bytes < td->rate_bytes[ddir]) {
180                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
181                                                 td->o.name, ratemin, rate);
182                                         return true;
183                                 }
184                         }
185                 } else {
186                         /*
187                          * checks iops specified rate
188                          */
189                         if (iops < rate_iops) {
190                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
191                                                 td->o.name, rate_iops, iops);
192                                 return true;
193                         } else {
194                                 if (spent)
195                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
196                                 else
197                                         rate = 0;
198
199                                 if (rate < rate_iops_min ||
200                                     iops < td->rate_blocks[ddir]) {
201                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
202                                                 td->o.name, rate_iops_min, rate);
203                                         return true;
204                                 }
205                         }
206                 }
207         }
208
209         td->rate_bytes[ddir] = bytes;
210         td->rate_blocks[ddir] = iops;
211         memcpy(&td->lastrate[ddir], now, sizeof(*now));
212         return false;
213 }
214
215 static bool check_min_rate(struct thread_data *td, struct timespec *now)
216 {
217         bool ret = false;
218
219         if (td->bytes_done[DDIR_READ])
220                 ret |= __check_min_rate(td, now, DDIR_READ);
221         if (td->bytes_done[DDIR_WRITE])
222                 ret |= __check_min_rate(td, now, DDIR_WRITE);
223         if (td->bytes_done[DDIR_TRIM])
224                 ret |= __check_min_rate(td, now, DDIR_TRIM);
225
226         return ret;
227 }
228
229 /*
230  * When job exits, we can cancel the in-flight IO if we are using async
231  * io. Attempt to do so.
232  */
233 static void cleanup_pending_aio(struct thread_data *td)
234 {
235         int r;
236
237         /*
238          * get immediately available events, if any
239          */
240         r = io_u_queued_complete(td, 0);
241         if (r < 0)
242                 return;
243
244         /*
245          * now cancel remaining active events
246          */
247         if (td->io_ops->cancel) {
248                 struct io_u *io_u;
249                 int i;
250
251                 io_u_qiter(&td->io_u_all, io_u, i) {
252                         if (io_u->flags & IO_U_F_FLIGHT) {
253                                 r = td->io_ops->cancel(td, io_u);
254                                 if (!r)
255                                         put_io_u(td, io_u);
256                         }
257                 }
258         }
259
260         if (td->cur_depth)
261                 r = io_u_queued_complete(td, td->cur_depth);
262 }
263
264 /*
265  * Helper to handle the final sync of a file. Works just like the normal
266  * io path, just does everything sync.
267  */
268 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
269 {
270         struct io_u *io_u = __get_io_u(td);
271         int ret;
272
273         if (!io_u)
274                 return true;
275
276         io_u->ddir = DDIR_SYNC;
277         io_u->file = f;
278
279         if (td_io_prep(td, io_u)) {
280                 put_io_u(td, io_u);
281                 return true;
282         }
283
284 requeue:
285         ret = td_io_queue(td, io_u);
286         if (ret < 0) {
287                 td_verror(td, io_u->error, "td_io_queue");
288                 put_io_u(td, io_u);
289                 return true;
290         } else if (ret == FIO_Q_QUEUED) {
291                 if (td_io_commit(td))
292                         return true;
293                 if (io_u_queued_complete(td, 1) < 0)
294                         return true;
295         } else if (ret == FIO_Q_COMPLETED) {
296                 if (io_u->error) {
297                         td_verror(td, io_u->error, "td_io_queue");
298                         return true;
299                 }
300
301                 if (io_u_sync_complete(td, io_u) < 0)
302                         return true;
303         } else if (ret == FIO_Q_BUSY) {
304                 if (td_io_commit(td))
305                         return true;
306                 goto requeue;
307         }
308
309         return false;
310 }
311
312 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
313 {
314         int ret;
315
316         if (fio_file_open(f))
317                 return fio_io_sync(td, f);
318
319         if (td_io_open_file(td, f))
320                 return 1;
321
322         ret = fio_io_sync(td, f);
323         td_io_close_file(td, f);
324         return ret;
325 }
326
327 static inline void __update_ts_cache(struct thread_data *td)
328 {
329         fio_gettime(&td->ts_cache, NULL);
330 }
331
332 static inline void update_ts_cache(struct thread_data *td)
333 {
334         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
335                 __update_ts_cache(td);
336 }
337
338 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
339 {
340         if (in_ramp_time(td))
341                 return false;
342         if (!td->o.timeout)
343                 return false;
344         if (utime_since(&td->epoch, t) >= td->o.timeout)
345                 return true;
346
347         return false;
348 }
349
350 /*
351  * We need to update the runtime consistently in ms, but keep a running
352  * tally of the current elapsed time in microseconds for sub millisecond
353  * updates.
354  */
355 static inline void update_runtime(struct thread_data *td,
356                                   unsigned long long *elapsed_us,
357                                   const enum fio_ddir ddir)
358 {
359         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
360                 return;
361
362         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
363         elapsed_us[ddir] += utime_since_now(&td->start);
364         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
365 }
366
367 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
368                                 int *retptr)
369 {
370         int ret = *retptr;
371
372         if (ret < 0 || td->error) {
373                 int err = td->error;
374                 enum error_type_bit eb;
375
376                 if (ret < 0)
377                         err = -ret;
378
379                 eb = td_error_type(ddir, err);
380                 if (!(td->o.continue_on_error & (1 << eb)))
381                         return true;
382
383                 if (td_non_fatal_error(td, eb, err)) {
384                         /*
385                          * Continue with the I/Os in case of
386                          * a non fatal error.
387                          */
388                         update_error_count(td, err);
389                         td_clear_error(td);
390                         *retptr = 0;
391                         return false;
392                 } else if (td->o.fill_device && err == ENOSPC) {
393                         /*
394                          * We expect to hit this error if
395                          * fill_device option is set.
396                          */
397                         td_clear_error(td);
398                         fio_mark_td_terminate(td);
399                         return true;
400                 } else {
401                         /*
402                          * Stop the I/O in case of a fatal
403                          * error.
404                          */
405                         update_error_count(td, err);
406                         return true;
407                 }
408         }
409
410         return false;
411 }
412
413 static void check_update_rusage(struct thread_data *td)
414 {
415         if (td->update_rusage) {
416                 td->update_rusage = 0;
417                 update_rusage_stat(td);
418                 fio_sem_up(td->rusage_sem);
419         }
420 }
421
422 static int wait_for_completions(struct thread_data *td, struct timespec *time)
423 {
424         const int full = queue_full(td);
425         int min_evts = 0;
426         int ret;
427
428         if (td->flags & TD_F_REGROW_LOGS)
429                 return io_u_quiesce(td);
430
431         /*
432          * if the queue is full, we MUST reap at least 1 event
433          */
434         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
435         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
436                 min_evts = 1;
437
438         if (time && (__should_check_rate(td, DDIR_READ) ||
439             __should_check_rate(td, DDIR_WRITE) ||
440             __should_check_rate(td, DDIR_TRIM)))
441                 fio_gettime(time, NULL);
442
443         do {
444                 ret = io_u_queued_complete(td, min_evts);
445                 if (ret < 0)
446                         break;
447         } while (full && (td->cur_depth > td->o.iodepth_low));
448
449         return ret;
450 }
451
452 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
453                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
454                    struct timespec *comp_time)
455 {
456         int ret2;
457
458         switch (*ret) {
459         case FIO_Q_COMPLETED:
460                 if (io_u->error) {
461                         *ret = -io_u->error;
462                         clear_io_u(td, io_u);
463                 } else if (io_u->resid) {
464                         int bytes = io_u->xfer_buflen - io_u->resid;
465                         struct fio_file *f = io_u->file;
466
467                         if (bytes_issued)
468                                 *bytes_issued += bytes;
469
470                         if (!from_verify)
471                                 trim_io_piece(td, io_u);
472
473                         /*
474                          * zero read, fail
475                          */
476                         if (!bytes) {
477                                 if (!from_verify)
478                                         unlog_io_piece(td, io_u);
479                                 td_verror(td, EIO, "full resid");
480                                 put_io_u(td, io_u);
481                                 break;
482                         }
483
484                         io_u->xfer_buflen = io_u->resid;
485                         io_u->xfer_buf += bytes;
486                         io_u->offset += bytes;
487
488                         if (ddir_rw(io_u->ddir))
489                                 td->ts.short_io_u[io_u->ddir]++;
490
491                         if (io_u->offset == f->real_file_size)
492                                 goto sync_done;
493
494                         requeue_io_u(td, &io_u);
495                 } else {
496 sync_done:
497                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
498                             __should_check_rate(td, DDIR_WRITE) ||
499                             __should_check_rate(td, DDIR_TRIM)))
500                                 fio_gettime(comp_time, NULL);
501
502                         *ret = io_u_sync_complete(td, io_u);
503                         if (*ret < 0)
504                                 break;
505                 }
506
507                 if (td->flags & TD_F_REGROW_LOGS)
508                         regrow_logs(td);
509
510                 /*
511                  * when doing I/O (not when verifying),
512                  * check for any errors that are to be ignored
513                  */
514                 if (!from_verify)
515                         break;
516
517                 return 0;
518         case FIO_Q_QUEUED:
519                 /*
520                  * if the engine doesn't have a commit hook,
521                  * the io_u is really queued. if it does have such
522                  * a hook, it has to call io_u_queued() itself.
523                  */
524                 if (td->io_ops->commit == NULL)
525                         io_u_queued(td, io_u);
526                 if (bytes_issued)
527                         *bytes_issued += io_u->xfer_buflen;
528                 break;
529         case FIO_Q_BUSY:
530                 if (!from_verify)
531                         unlog_io_piece(td, io_u);
532                 requeue_io_u(td, &io_u);
533                 ret2 = td_io_commit(td);
534                 if (ret2 < 0)
535                         *ret = ret2;
536                 break;
537         default:
538                 assert(*ret < 0);
539                 td_verror(td, -(*ret), "td_io_queue");
540                 break;
541         }
542
543         if (break_on_this_error(td, ddir, ret))
544                 return 1;
545
546         return 0;
547 }
548
549 static inline bool io_in_polling(struct thread_data *td)
550 {
551         return !td->o.iodepth_batch_complete_min &&
552                    !td->o.iodepth_batch_complete_max;
553 }
554 /*
555  * Unlinks files from thread data fio_file structure
556  */
557 static int unlink_all_files(struct thread_data *td)
558 {
559         struct fio_file *f;
560         unsigned int i;
561         int ret = 0;
562
563         for_each_file(td, f, i) {
564                 if (f->filetype != FIO_TYPE_FILE)
565                         continue;
566                 ret = td_io_unlink_file(td, f);
567                 if (ret)
568                         break;
569         }
570
571         if (ret)
572                 td_verror(td, ret, "unlink_all_files");
573
574         return ret;
575 }
576
577 /*
578  * Check if io_u will overlap an in-flight IO in the queue
579  */
580 static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
581 {
582         bool overlap;
583         struct io_u *check_io_u;
584         unsigned long long x1, x2, y1, y2;
585         int i;
586
587         x1 = io_u->offset;
588         x2 = io_u->offset + io_u->buflen;
589         overlap = false;
590         io_u_qiter(q, check_io_u, i) {
591                 if (check_io_u->flags & IO_U_F_FLIGHT) {
592                         y1 = check_io_u->offset;
593                         y2 = check_io_u->offset + check_io_u->buflen;
594
595                         if (x1 < y2 && y1 < x2) {
596                                 overlap = true;
597                                 dprint(FD_IO, "in-flight overlap: %llu/%lu, %llu/%lu\n",
598                                                 x1, io_u->buflen,
599                                                 y1, check_io_u->buflen);
600                                 break;
601                         }
602                 }
603         }
604
605         return overlap;
606 }
607
608 static int io_u_submit(struct thread_data *td, struct io_u *io_u)
609 {
610         /*
611          * Check for overlap if the user asked us to, and we have
612          * at least one IO in flight besides this one.
613          */
614         if (td->o.serialize_overlap && td->cur_depth > 1 &&
615             in_flight_overlap(&td->io_u_all, io_u))
616                 return FIO_Q_BUSY;
617
618         return td_io_queue(td, io_u);
619 }
620
621 /*
622  * The main verify engine. Runs over the writes we previously submitted,
623  * reads the blocks back in, and checks the crc/md5 of the data.
624  */
625 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
626 {
627         struct fio_file *f;
628         struct io_u *io_u;
629         int ret, min_events;
630         unsigned int i;
631
632         dprint(FD_VERIFY, "starting loop\n");
633
634         /*
635          * sync io first and invalidate cache, to make sure we really
636          * read from disk.
637          */
638         for_each_file(td, f, i) {
639                 if (!fio_file_open(f))
640                         continue;
641                 if (fio_io_sync(td, f))
642                         break;
643                 if (file_invalidate_cache(td, f))
644                         break;
645         }
646
647         check_update_rusage(td);
648
649         if (td->error)
650                 return;
651
652         /*
653          * verify_state needs to be reset before verification
654          * proceeds so that expected random seeds match actual
655          * random seeds in headers. The main loop will reset
656          * all random number generators if randrepeat is set.
657          */
658         if (!td->o.rand_repeatable)
659                 td_fill_verify_state_seed(td);
660
661         td_set_runstate(td, TD_VERIFYING);
662
663         io_u = NULL;
664         while (!td->terminate) {
665                 enum fio_ddir ddir;
666                 int full;
667
668                 update_ts_cache(td);
669                 check_update_rusage(td);
670
671                 if (runtime_exceeded(td, &td->ts_cache)) {
672                         __update_ts_cache(td);
673                         if (runtime_exceeded(td, &td->ts_cache)) {
674                                 fio_mark_td_terminate(td);
675                                 break;
676                         }
677                 }
678
679                 if (flow_threshold_exceeded(td))
680                         continue;
681
682                 if (!td->o.experimental_verify) {
683                         io_u = __get_io_u(td);
684                         if (!io_u)
685                                 break;
686
687                         if (get_next_verify(td, io_u)) {
688                                 put_io_u(td, io_u);
689                                 break;
690                         }
691
692                         if (td_io_prep(td, io_u)) {
693                                 put_io_u(td, io_u);
694                                 break;
695                         }
696                 } else {
697                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
698                                 break;
699
700                         while ((io_u = get_io_u(td)) != NULL) {
701                                 if (IS_ERR_OR_NULL(io_u)) {
702                                         io_u = NULL;
703                                         ret = FIO_Q_BUSY;
704                                         goto reap;
705                                 }
706
707                                 /*
708                                  * We are only interested in the places where
709                                  * we wrote or trimmed IOs. Turn those into
710                                  * reads for verification purposes.
711                                  */
712                                 if (io_u->ddir == DDIR_READ) {
713                                         /*
714                                          * Pretend we issued it for rwmix
715                                          * accounting
716                                          */
717                                         td->io_issues[DDIR_READ]++;
718                                         put_io_u(td, io_u);
719                                         continue;
720                                 } else if (io_u->ddir == DDIR_TRIM) {
721                                         io_u->ddir = DDIR_READ;
722                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
723                                         break;
724                                 } else if (io_u->ddir == DDIR_WRITE) {
725                                         io_u->ddir = DDIR_READ;
726                                         break;
727                                 } else {
728                                         put_io_u(td, io_u);
729                                         continue;
730                                 }
731                         }
732
733                         if (!io_u)
734                                 break;
735                 }
736
737                 if (verify_state_should_stop(td, io_u)) {
738                         put_io_u(td, io_u);
739                         break;
740                 }
741
742                 if (td->o.verify_async)
743                         io_u->end_io = verify_io_u_async;
744                 else
745                         io_u->end_io = verify_io_u;
746
747                 ddir = io_u->ddir;
748                 if (!td->o.disable_slat)
749                         fio_gettime(&io_u->start_time, NULL);
750
751                 ret = io_u_submit(td, io_u);
752
753                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
754                         break;
755
756                 /*
757                  * if we can queue more, do so. but check if there are
758                  * completed io_u's first. Note that we can get BUSY even
759                  * without IO queued, if the system is resource starved.
760                  */
761 reap:
762                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
763                 if (full || io_in_polling(td))
764                         ret = wait_for_completions(td, NULL);
765
766                 if (ret < 0)
767                         break;
768         }
769
770         check_update_rusage(td);
771
772         if (!td->error) {
773                 min_events = td->cur_depth;
774
775                 if (min_events)
776                         ret = io_u_queued_complete(td, min_events);
777         } else
778                 cleanup_pending_aio(td);
779
780         td_set_runstate(td, TD_RUNNING);
781
782         dprint(FD_VERIFY, "exiting loop\n");
783 }
784
785 static bool exceeds_number_ios(struct thread_data *td)
786 {
787         unsigned long long number_ios;
788
789         if (!td->o.number_ios)
790                 return false;
791
792         number_ios = ddir_rw_sum(td->io_blocks);
793         number_ios += td->io_u_queued + td->io_u_in_flight;
794
795         return number_ios >= (td->o.number_ios * td->loops);
796 }
797
798 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
799 {
800         unsigned long long bytes, limit;
801
802         if (td_rw(td))
803                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
804         else if (td_write(td))
805                 bytes = this_bytes[DDIR_WRITE];
806         else if (td_read(td))
807                 bytes = this_bytes[DDIR_READ];
808         else
809                 bytes = this_bytes[DDIR_TRIM];
810
811         if (td->o.io_size)
812                 limit = td->o.io_size;
813         else
814                 limit = td->o.size;
815
816         limit *= td->loops;
817         return bytes >= limit || exceeds_number_ios(td);
818 }
819
820 static bool io_issue_bytes_exceeded(struct thread_data *td)
821 {
822         return io_bytes_exceeded(td, td->io_issue_bytes);
823 }
824
825 static bool io_complete_bytes_exceeded(struct thread_data *td)
826 {
827         return io_bytes_exceeded(td, td->this_io_bytes);
828 }
829
830 /*
831  * used to calculate the next io time for rate control
832  *
833  */
834 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
835 {
836         uint64_t bps = td->rate_bps[ddir];
837
838         assert(!(td->flags & TD_F_CHILD));
839
840         if (td->o.rate_process == RATE_PROCESS_POISSON) {
841                 uint64_t val, iops;
842
843                 iops = bps / td->o.bs[ddir];
844                 val = (int64_t) (1000000 / iops) *
845                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
846                 if (val) {
847                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
848                                         (unsigned long long) 1000000 / val,
849                                         ddir);
850                 }
851                 td->last_usec[ddir] += val;
852                 return td->last_usec[ddir];
853         } else if (bps) {
854                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
855                 uint64_t secs = bytes / bps;
856                 uint64_t remainder = bytes % bps;
857
858                 return remainder * 1000000 / bps + secs * 1000000;
859         }
860
861         return 0;
862 }
863
864 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
865 {
866         unsigned long long b;
867         uint64_t total;
868         int left;
869
870         b = ddir_rw_sum(td->io_blocks);
871         if (b % td->o.thinktime_blocks)
872                 return;
873
874         io_u_quiesce(td);
875
876         total = 0;
877         if (td->o.thinktime_spin)
878                 total = usec_spin(td->o.thinktime_spin);
879
880         left = td->o.thinktime - total;
881         if (left)
882                 total += usec_sleep(td, left);
883
884         /*
885          * If we're ignoring thinktime for the rate, add the number of bytes
886          * we would have done while sleeping, minus one block to ensure we
887          * start issuing immediately after the sleep.
888          */
889         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
890                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
891                 uint64_t bs = td->o.min_bs[ddir];
892                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
893                 uint64_t over;
894
895                 if (usperop <= total)
896                         over = bs;
897                 else
898                         over = (usperop - total) / usperop * -bs;
899
900                 td->rate_io_issue_bytes[ddir] += (missed - over);
901         }
902 }
903
904 /*
905  * Main IO worker function. It retrieves io_u's to process and queues
906  * and reaps them, checking for rate and errors along the way.
907  *
908  * Returns number of bytes written and trimmed.
909  */
910 static void do_io(struct thread_data *td, uint64_t *bytes_done)
911 {
912         unsigned int i;
913         int ret = 0;
914         uint64_t total_bytes, bytes_issued = 0;
915
916         for (i = 0; i < DDIR_RWDIR_CNT; i++)
917                 bytes_done[i] = td->bytes_done[i];
918
919         if (in_ramp_time(td))
920                 td_set_runstate(td, TD_RAMP);
921         else
922                 td_set_runstate(td, TD_RUNNING);
923
924         lat_target_init(td);
925
926         total_bytes = td->o.size;
927         /*
928         * Allow random overwrite workloads to write up to io_size
929         * before starting verification phase as 'size' doesn't apply.
930         */
931         if (td_write(td) && td_random(td) && td->o.norandommap)
932                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
933         /*
934          * If verify_backlog is enabled, we'll run the verify in this
935          * handler as well. For that case, we may need up to twice the
936          * amount of bytes.
937          */
938         if (td->o.verify != VERIFY_NONE &&
939            (td_write(td) && td->o.verify_backlog))
940                 total_bytes += td->o.size;
941
942         /* In trimwrite mode, each byte is trimmed and then written, so
943          * allow total_bytes to be twice as big */
944         if (td_trimwrite(td))
945                 total_bytes += td->total_io_size;
946
947         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
948                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
949                 td->o.time_based) {
950                 struct timespec comp_time;
951                 struct io_u *io_u;
952                 int full;
953                 enum fio_ddir ddir;
954
955                 check_update_rusage(td);
956
957                 if (td->terminate || td->done)
958                         break;
959
960                 update_ts_cache(td);
961
962                 if (runtime_exceeded(td, &td->ts_cache)) {
963                         __update_ts_cache(td);
964                         if (runtime_exceeded(td, &td->ts_cache)) {
965                                 fio_mark_td_terminate(td);
966                                 break;
967                         }
968                 }
969
970                 if (flow_threshold_exceeded(td))
971                         continue;
972
973                 /*
974                  * Break if we exceeded the bytes. The exception is time
975                  * based runs, but we still need to break out of the loop
976                  * for those to run verification, if enabled.
977                  */
978                 if (bytes_issued >= total_bytes &&
979                     (!td->o.time_based ||
980                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
981                         break;
982
983                 io_u = get_io_u(td);
984                 if (IS_ERR_OR_NULL(io_u)) {
985                         int err = PTR_ERR(io_u);
986
987                         io_u = NULL;
988                         ddir = DDIR_INVAL;
989                         if (err == -EBUSY) {
990                                 ret = FIO_Q_BUSY;
991                                 goto reap;
992                         }
993                         if (td->o.latency_target)
994                                 goto reap;
995                         break;
996                 }
997
998                 ddir = io_u->ddir;
999
1000                 /*
1001                  * Add verification end_io handler if:
1002                  *      - Asked to verify (!td_rw(td))
1003                  *      - Or the io_u is from our verify list (mixed write/ver)
1004                  */
1005                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1006                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1007
1008                         if (!td->o.verify_pattern_bytes) {
1009                                 io_u->rand_seed = __rand(&td->verify_state);
1010                                 if (sizeof(int) != sizeof(long *))
1011                                         io_u->rand_seed *= __rand(&td->verify_state);
1012                         }
1013
1014                         if (verify_state_should_stop(td, io_u)) {
1015                                 put_io_u(td, io_u);
1016                                 break;
1017                         }
1018
1019                         if (td->o.verify_async)
1020                                 io_u->end_io = verify_io_u_async;
1021                         else
1022                                 io_u->end_io = verify_io_u;
1023                         td_set_runstate(td, TD_VERIFYING);
1024                 } else if (in_ramp_time(td))
1025                         td_set_runstate(td, TD_RAMP);
1026                 else
1027                         td_set_runstate(td, TD_RUNNING);
1028
1029                 /*
1030                  * Always log IO before it's issued, so we know the specific
1031                  * order of it. The logged unit will track when the IO has
1032                  * completed.
1033                  */
1034                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1035                     td->o.do_verify &&
1036                     td->o.verify != VERIFY_NONE &&
1037                     !td->o.experimental_verify)
1038                         log_io_piece(td, io_u);
1039
1040                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1041                         const unsigned long blen = io_u->xfer_buflen;
1042                         const enum fio_ddir ddir = acct_ddir(io_u);
1043
1044                         if (td->error)
1045                                 break;
1046
1047                         workqueue_enqueue(&td->io_wq, &io_u->work);
1048                         ret = FIO_Q_QUEUED;
1049
1050                         if (ddir_rw(ddir)) {
1051                                 td->io_issues[ddir]++;
1052                                 td->io_issue_bytes[ddir] += blen;
1053                                 td->rate_io_issue_bytes[ddir] += blen;
1054                         }
1055
1056                         if (should_check_rate(td))
1057                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1058
1059                 } else {
1060                         ret = io_u_submit(td, io_u);
1061
1062                         if (should_check_rate(td))
1063                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1064
1065                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1066                                 break;
1067
1068                         /*
1069                          * See if we need to complete some commands. Note that
1070                          * we can get BUSY even without IO queued, if the
1071                          * system is resource starved.
1072                          */
1073 reap:
1074                         full = queue_full(td) ||
1075                                 (ret == FIO_Q_BUSY && td->cur_depth);
1076                         if (full || io_in_polling(td))
1077                                 ret = wait_for_completions(td, &comp_time);
1078                 }
1079                 if (ret < 0)
1080                         break;
1081                 if (!ddir_rw_sum(td->bytes_done) &&
1082                     !td_ioengine_flagged(td, FIO_NOIO))
1083                         continue;
1084
1085                 if (!in_ramp_time(td) && should_check_rate(td)) {
1086                         if (check_min_rate(td, &comp_time)) {
1087                                 if (exitall_on_terminate || td->o.exitall_error)
1088                                         fio_terminate_threads(td->groupid);
1089                                 td_verror(td, EIO, "check_min_rate");
1090                                 break;
1091                         }
1092                 }
1093                 if (!in_ramp_time(td) && td->o.latency_target)
1094                         lat_target_check(td);
1095
1096                 if (ddir_rw(ddir) && td->o.thinktime)
1097                         handle_thinktime(td, ddir);
1098         }
1099
1100         check_update_rusage(td);
1101
1102         if (td->trim_entries)
1103                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1104
1105         if (td->o.fill_device && td->error == ENOSPC) {
1106                 td->error = 0;
1107                 fio_mark_td_terminate(td);
1108         }
1109         if (!td->error) {
1110                 struct fio_file *f;
1111
1112                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1113                         workqueue_flush(&td->io_wq);
1114                         i = 0;
1115                 } else
1116                         i = td->cur_depth;
1117
1118                 if (i) {
1119                         ret = io_u_queued_complete(td, i);
1120                         if (td->o.fill_device && td->error == ENOSPC)
1121                                 td->error = 0;
1122                 }
1123
1124                 if (should_fsync(td) && td->o.end_fsync) {
1125                         td_set_runstate(td, TD_FSYNCING);
1126
1127                         for_each_file(td, f, i) {
1128                                 if (!fio_file_fsync(td, f))
1129                                         continue;
1130
1131                                 log_err("fio: end_fsync failed for file %s\n",
1132                                                                 f->file_name);
1133                         }
1134                 }
1135         } else
1136                 cleanup_pending_aio(td);
1137
1138         /*
1139          * stop job if we failed doing any IO
1140          */
1141         if (!ddir_rw_sum(td->this_io_bytes))
1142                 td->done = 1;
1143
1144         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1145                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1146 }
1147
1148 static void free_file_completion_logging(struct thread_data *td)
1149 {
1150         struct fio_file *f;
1151         unsigned int i;
1152
1153         for_each_file(td, f, i) {
1154                 if (!f->last_write_comp)
1155                         break;
1156                 sfree(f->last_write_comp);
1157         }
1158 }
1159
1160 static int init_file_completion_logging(struct thread_data *td,
1161                                         unsigned int depth)
1162 {
1163         struct fio_file *f;
1164         unsigned int i;
1165
1166         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1167                 return 0;
1168
1169         for_each_file(td, f, i) {
1170                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1171                 if (!f->last_write_comp)
1172                         goto cleanup;
1173         }
1174
1175         return 0;
1176
1177 cleanup:
1178         free_file_completion_logging(td);
1179         log_err("fio: failed to alloc write comp data\n");
1180         return 1;
1181 }
1182
1183 static void cleanup_io_u(struct thread_data *td)
1184 {
1185         struct io_u *io_u;
1186
1187         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1188
1189                 if (td->io_ops->io_u_free)
1190                         td->io_ops->io_u_free(td, io_u);
1191
1192                 fio_memfree(io_u, sizeof(*io_u));
1193         }
1194
1195         free_io_mem(td);
1196
1197         io_u_rexit(&td->io_u_requeues);
1198         io_u_qexit(&td->io_u_freelist);
1199         io_u_qexit(&td->io_u_all);
1200
1201         free_file_completion_logging(td);
1202 }
1203
1204 static int init_io_u(struct thread_data *td)
1205 {
1206         struct io_u *io_u;
1207         unsigned int max_bs, min_write;
1208         int cl_align, i, max_units;
1209         int data_xfer = 1, err;
1210         char *p;
1211
1212         max_units = td->o.iodepth;
1213         max_bs = td_max_bs(td);
1214         min_write = td->o.min_bs[DDIR_WRITE];
1215         td->orig_buffer_size = (unsigned long long) max_bs
1216                                         * (unsigned long long) max_units;
1217
1218         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1219                 data_xfer = 0;
1220
1221         err = 0;
1222         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1223         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1224         err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1225
1226         if (err) {
1227                 log_err("fio: failed setting up IO queues\n");
1228                 return 1;
1229         }
1230
1231         /*
1232          * if we may later need to do address alignment, then add any
1233          * possible adjustment here so that we don't cause a buffer
1234          * overflow later. this adjustment may be too much if we get
1235          * lucky and the allocator gives us an aligned address.
1236          */
1237         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1238             td_ioengine_flagged(td, FIO_RAWIO))
1239                 td->orig_buffer_size += page_mask + td->o.mem_align;
1240
1241         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1242                 unsigned long bs;
1243
1244                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1245                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1246         }
1247
1248         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1249                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1250                 return 1;
1251         }
1252
1253         if (data_xfer && allocate_io_mem(td))
1254                 return 1;
1255
1256         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1257             td_ioengine_flagged(td, FIO_RAWIO))
1258                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1259         else
1260                 p = td->orig_buffer;
1261
1262         cl_align = os_cache_line_size();
1263
1264         for (i = 0; i < max_units; i++) {
1265                 void *ptr;
1266
1267                 if (td->terminate)
1268                         return 1;
1269
1270                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1271                 if (!ptr) {
1272                         log_err("fio: unable to allocate aligned memory\n");
1273                         break;
1274                 }
1275
1276                 io_u = ptr;
1277                 memset(io_u, 0, sizeof(*io_u));
1278                 INIT_FLIST_HEAD(&io_u->verify_list);
1279                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1280
1281                 if (data_xfer) {
1282                         io_u->buf = p;
1283                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1284
1285                         if (td_write(td))
1286                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1287                         if (td_write(td) && td->o.verify_pattern_bytes) {
1288                                 /*
1289                                  * Fill the buffer with the pattern if we are
1290                                  * going to be doing writes.
1291                                  */
1292                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1293                         }
1294                 }
1295
1296                 io_u->index = i;
1297                 io_u->flags = IO_U_F_FREE;
1298                 io_u_qpush(&td->io_u_freelist, io_u);
1299
1300                 /*
1301                  * io_u never leaves this stack, used for iteration of all
1302                  * io_u buffers.
1303                  */
1304                 io_u_qpush(&td->io_u_all, io_u);
1305
1306                 if (td->io_ops->io_u_init) {
1307                         int ret = td->io_ops->io_u_init(td, io_u);
1308
1309                         if (ret) {
1310                                 log_err("fio: failed to init engine data: %d\n", ret);
1311                                 return 1;
1312                         }
1313                 }
1314
1315                 p += max_bs;
1316         }
1317
1318         if (init_file_completion_logging(td, max_units))
1319                 return 1;
1320
1321         return 0;
1322 }
1323
1324 /*
1325  * This function is Linux specific.
1326  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1327  */
1328 static int switch_ioscheduler(struct thread_data *td)
1329 {
1330 #ifdef FIO_HAVE_IOSCHED_SWITCH
1331         char tmp[256], tmp2[128];
1332         FILE *f;
1333         int ret;
1334
1335         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1336                 return 0;
1337
1338         assert(td->files && td->files[0]);
1339         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1340
1341         f = fopen(tmp, "r+");
1342         if (!f) {
1343                 if (errno == ENOENT) {
1344                         log_err("fio: os or kernel doesn't support IO scheduler"
1345                                 " switching\n");
1346                         return 0;
1347                 }
1348                 td_verror(td, errno, "fopen iosched");
1349                 return 1;
1350         }
1351
1352         /*
1353          * Set io scheduler.
1354          */
1355         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1356         if (ferror(f) || ret != 1) {
1357                 td_verror(td, errno, "fwrite");
1358                 fclose(f);
1359                 return 1;
1360         }
1361
1362         rewind(f);
1363
1364         /*
1365          * Read back and check that the selected scheduler is now the default.
1366          */
1367         memset(tmp, 0, sizeof(tmp));
1368         ret = fread(tmp, sizeof(tmp), 1, f);
1369         if (ferror(f) || ret < 0) {
1370                 td_verror(td, errno, "fread");
1371                 fclose(f);
1372                 return 1;
1373         }
1374         /*
1375          * either a list of io schedulers or "none\n" is expected.
1376          */
1377         tmp[strlen(tmp) - 1] = '\0';
1378
1379         /*
1380          * Write to "none" entry doesn't fail, so check the result here.
1381          */
1382         if (!strcmp(tmp, "none")) {
1383                 log_err("fio: io scheduler is not tunable\n");
1384                 fclose(f);
1385                 return 0;
1386         }
1387
1388         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1389         if (!strstr(tmp, tmp2)) {
1390                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1391                 td_verror(td, EINVAL, "iosched_switch");
1392                 fclose(f);
1393                 return 1;
1394         }
1395
1396         fclose(f);
1397         return 0;
1398 #else
1399         return 0;
1400 #endif
1401 }
1402
1403 static bool keep_running(struct thread_data *td)
1404 {
1405         unsigned long long limit;
1406
1407         if (td->done)
1408                 return false;
1409         if (td->terminate)
1410                 return false;
1411         if (td->o.time_based)
1412                 return true;
1413         if (td->o.loops) {
1414                 td->o.loops--;
1415                 return true;
1416         }
1417         if (exceeds_number_ios(td))
1418                 return false;
1419
1420         if (td->o.io_size)
1421                 limit = td->o.io_size;
1422         else
1423                 limit = td->o.size;
1424
1425         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1426                 uint64_t diff;
1427
1428                 /*
1429                  * If the difference is less than the maximum IO size, we
1430                  * are done.
1431                  */
1432                 diff = limit - ddir_rw_sum(td->io_bytes);
1433                 if (diff < td_max_bs(td))
1434                         return false;
1435
1436                 if (fio_files_done(td) && !td->o.io_size)
1437                         return false;
1438
1439                 return true;
1440         }
1441
1442         return false;
1443 }
1444
1445 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1446 {
1447         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1448         int ret;
1449         char *str;
1450
1451         str = malloc(newlen);
1452         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1453
1454         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1455         ret = system(str);
1456         if (ret == -1)
1457                 log_err("fio: exec of cmd <%s> failed\n", str);
1458
1459         free(str);
1460         return ret;
1461 }
1462
1463 /*
1464  * Dry run to compute correct state of numberio for verification.
1465  */
1466 static uint64_t do_dry_run(struct thread_data *td)
1467 {
1468         td_set_runstate(td, TD_RUNNING);
1469
1470         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1471                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1472                 struct io_u *io_u;
1473                 int ret;
1474
1475                 if (td->terminate || td->done)
1476                         break;
1477
1478                 io_u = get_io_u(td);
1479                 if (IS_ERR_OR_NULL(io_u))
1480                         break;
1481
1482                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1483                 io_u->error = 0;
1484                 io_u->resid = 0;
1485                 if (ddir_rw(acct_ddir(io_u)))
1486                         td->io_issues[acct_ddir(io_u)]++;
1487                 if (ddir_rw(io_u->ddir)) {
1488                         io_u_mark_depth(td, 1);
1489                         td->ts.total_io_u[io_u->ddir]++;
1490                 }
1491
1492                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1493                     td->o.do_verify &&
1494                     td->o.verify != VERIFY_NONE &&
1495                     !td->o.experimental_verify)
1496                         log_io_piece(td, io_u);
1497
1498                 ret = io_u_sync_complete(td, io_u);
1499                 (void) ret;
1500         }
1501
1502         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1503 }
1504
1505 struct fork_data {
1506         struct thread_data *td;
1507         struct sk_out *sk_out;
1508 };
1509
1510 /*
1511  * Entry point for the thread based jobs. The process based jobs end up
1512  * here as well, after a little setup.
1513  */
1514 static void *thread_main(void *data)
1515 {
1516         struct fork_data *fd = data;
1517         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1518         struct thread_data *td = fd->td;
1519         struct thread_options *o = &td->o;
1520         struct sk_out *sk_out = fd->sk_out;
1521         uint64_t bytes_done[DDIR_RWDIR_CNT];
1522         int deadlock_loop_cnt;
1523         bool clear_state, did_some_io;
1524         int ret;
1525
1526         sk_out_assign(sk_out);
1527         free(fd);
1528
1529         if (!o->use_thread) {
1530                 setsid();
1531                 td->pid = getpid();
1532         } else
1533                 td->pid = gettid();
1534
1535         fio_local_clock_init(o->use_thread);
1536
1537         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1538
1539         if (is_backend)
1540                 fio_server_send_start(td);
1541
1542         INIT_FLIST_HEAD(&td->io_log_list);
1543         INIT_FLIST_HEAD(&td->io_hist_list);
1544         INIT_FLIST_HEAD(&td->verify_list);
1545         INIT_FLIST_HEAD(&td->trim_list);
1546         INIT_FLIST_HEAD(&td->next_rand_list);
1547         td->io_hist_tree = RB_ROOT;
1548
1549         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1550         if (ret) {
1551                 td_verror(td, ret, "mutex_cond_init_pshared");
1552                 goto err;
1553         }
1554         ret = cond_init_pshared(&td->verify_cond);
1555         if (ret) {
1556                 td_verror(td, ret, "mutex_cond_pshared");
1557                 goto err;
1558         }
1559
1560         td_set_runstate(td, TD_INITIALIZED);
1561         dprint(FD_MUTEX, "up startup_sem\n");
1562         fio_sem_up(startup_sem);
1563         dprint(FD_MUTEX, "wait on td->sem\n");
1564         fio_sem_down(td->sem);
1565         dprint(FD_MUTEX, "done waiting on td->sem\n");
1566
1567         /*
1568          * A new gid requires privilege, so we need to do this before setting
1569          * the uid.
1570          */
1571         if (o->gid != -1U && setgid(o->gid)) {
1572                 td_verror(td, errno, "setgid");
1573                 goto err;
1574         }
1575         if (o->uid != -1U && setuid(o->uid)) {
1576                 td_verror(td, errno, "setuid");
1577                 goto err;
1578         }
1579
1580         /*
1581          * Do this early, we don't want the compress threads to be limited
1582          * to the same CPUs as the IO workers. So do this before we set
1583          * any potential CPU affinity
1584          */
1585         if (iolog_compress_init(td, sk_out))
1586                 goto err;
1587
1588         /*
1589          * If we have a gettimeofday() thread, make sure we exclude that
1590          * thread from this job
1591          */
1592         if (o->gtod_cpu)
1593                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1594
1595         /*
1596          * Set affinity first, in case it has an impact on the memory
1597          * allocations.
1598          */
1599         if (fio_option_is_set(o, cpumask)) {
1600                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1601                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1602                         if (!ret) {
1603                                 log_err("fio: no CPUs set\n");
1604                                 log_err("fio: Try increasing number of available CPUs\n");
1605                                 td_verror(td, EINVAL, "cpus_split");
1606                                 goto err;
1607                         }
1608                 }
1609                 ret = fio_setaffinity(td->pid, o->cpumask);
1610                 if (ret == -1) {
1611                         td_verror(td, errno, "cpu_set_affinity");
1612                         goto err;
1613                 }
1614         }
1615
1616 #ifdef CONFIG_LIBNUMA
1617         /* numa node setup */
1618         if (fio_option_is_set(o, numa_cpunodes) ||
1619             fio_option_is_set(o, numa_memnodes)) {
1620                 struct bitmask *mask;
1621
1622                 if (numa_available() < 0) {
1623                         td_verror(td, errno, "Does not support NUMA API\n");
1624                         goto err;
1625                 }
1626
1627                 if (fio_option_is_set(o, numa_cpunodes)) {
1628                         mask = numa_parse_nodestring(o->numa_cpunodes);
1629                         ret = numa_run_on_node_mask(mask);
1630                         numa_free_nodemask(mask);
1631                         if (ret == -1) {
1632                                 td_verror(td, errno, \
1633                                         "numa_run_on_node_mask failed\n");
1634                                 goto err;
1635                         }
1636                 }
1637
1638                 if (fio_option_is_set(o, numa_memnodes)) {
1639                         mask = NULL;
1640                         if (o->numa_memnodes)
1641                                 mask = numa_parse_nodestring(o->numa_memnodes);
1642
1643                         switch (o->numa_mem_mode) {
1644                         case MPOL_INTERLEAVE:
1645                                 numa_set_interleave_mask(mask);
1646                                 break;
1647                         case MPOL_BIND:
1648                                 numa_set_membind(mask);
1649                                 break;
1650                         case MPOL_LOCAL:
1651                                 numa_set_localalloc();
1652                                 break;
1653                         case MPOL_PREFERRED:
1654                                 numa_set_preferred(o->numa_mem_prefer_node);
1655                                 break;
1656                         case MPOL_DEFAULT:
1657                         default:
1658                                 break;
1659                         }
1660
1661                         if (mask)
1662                                 numa_free_nodemask(mask);
1663
1664                 }
1665         }
1666 #endif
1667
1668         if (fio_pin_memory(td))
1669                 goto err;
1670
1671         /*
1672          * May alter parameters that init_io_u() will use, so we need to
1673          * do this first.
1674          */
1675         if (init_iolog(td))
1676                 goto err;
1677
1678         if (init_io_u(td))
1679                 goto err;
1680
1681         if (o->verify_async && verify_async_init(td))
1682                 goto err;
1683
1684         if (fio_option_is_set(o, ioprio) ||
1685             fio_option_is_set(o, ioprio_class)) {
1686                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1687                 if (ret == -1) {
1688                         td_verror(td, errno, "ioprio_set");
1689                         goto err;
1690                 }
1691         }
1692
1693         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1694                 goto err;
1695
1696         errno = 0;
1697         if (nice(o->nice) == -1 && errno != 0) {
1698                 td_verror(td, errno, "nice");
1699                 goto err;
1700         }
1701
1702         if (o->ioscheduler && switch_ioscheduler(td))
1703                 goto err;
1704
1705         if (!o->create_serialize && setup_files(td))
1706                 goto err;
1707
1708         if (td_io_init(td))
1709                 goto err;
1710
1711         if (!init_random_map(td))
1712                 goto err;
1713
1714         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1715                 goto err;
1716
1717         if (o->pre_read && !pre_read_files(td))
1718                 goto err;
1719
1720         fio_verify_init(td);
1721
1722         if (rate_submit_init(td, sk_out))
1723                 goto err;
1724
1725         set_epoch_time(td, o->log_unix_epoch);
1726         fio_getrusage(&td->ru_start);
1727         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1728         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1729         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1730
1731         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1732                         o->ratemin[DDIR_TRIM]) {
1733                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1734                                         sizeof(td->bw_sample_time));
1735                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1736                                         sizeof(td->bw_sample_time));
1737                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1738                                         sizeof(td->bw_sample_time));
1739         }
1740
1741         memset(bytes_done, 0, sizeof(bytes_done));
1742         clear_state = false;
1743         did_some_io = false;
1744
1745         while (keep_running(td)) {
1746                 uint64_t verify_bytes;
1747
1748                 fio_gettime(&td->start, NULL);
1749                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1750
1751                 if (clear_state) {
1752                         clear_io_state(td, 0);
1753
1754                         if (o->unlink_each_loop && unlink_all_files(td))
1755                                 break;
1756                 }
1757
1758                 prune_io_piece_log(td);
1759
1760                 if (td->o.verify_only && td_write(td))
1761                         verify_bytes = do_dry_run(td);
1762                 else {
1763                         do_io(td, bytes_done);
1764
1765                         if (!ddir_rw_sum(bytes_done)) {
1766                                 fio_mark_td_terminate(td);
1767                                 verify_bytes = 0;
1768                         } else {
1769                                 verify_bytes = bytes_done[DDIR_WRITE] +
1770                                                 bytes_done[DDIR_TRIM];
1771                         }
1772                 }
1773
1774                 /*
1775                  * If we took too long to shut down, the main thread could
1776                  * already consider us reaped/exited. If that happens, break
1777                  * out and clean up.
1778                  */
1779                 if (td->runstate >= TD_EXITED)
1780                         break;
1781
1782                 clear_state = true;
1783
1784                 /*
1785                  * Make sure we've successfully updated the rusage stats
1786                  * before waiting on the stat mutex. Otherwise we could have
1787                  * the stat thread holding stat mutex and waiting for
1788                  * the rusage_sem, which would never get upped because
1789                  * this thread is waiting for the stat mutex.
1790                  */
1791                 deadlock_loop_cnt = 0;
1792                 do {
1793                         check_update_rusage(td);
1794                         if (!fio_sem_down_trylock(stat_sem))
1795                                 break;
1796                         usleep(1000);
1797                         if (deadlock_loop_cnt++ > 5000) {
1798                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1799                                 td->error = EDEADLK;
1800                                 goto err;
1801                         }
1802                 } while (1);
1803
1804                 if (td_read(td) && td->io_bytes[DDIR_READ])
1805                         update_runtime(td, elapsed_us, DDIR_READ);
1806                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1807                         update_runtime(td, elapsed_us, DDIR_WRITE);
1808                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1809                         update_runtime(td, elapsed_us, DDIR_TRIM);
1810                 fio_gettime(&td->start, NULL);
1811                 fio_sem_up(stat_sem);
1812
1813                 if (td->error || td->terminate)
1814                         break;
1815
1816                 if (!o->do_verify ||
1817                     o->verify == VERIFY_NONE ||
1818                     td_ioengine_flagged(td, FIO_UNIDIR))
1819                         continue;
1820
1821                 if (ddir_rw_sum(bytes_done))
1822                         did_some_io = true;
1823
1824                 clear_io_state(td, 0);
1825
1826                 fio_gettime(&td->start, NULL);
1827
1828                 do_verify(td, verify_bytes);
1829
1830                 /*
1831                  * See comment further up for why this is done here.
1832                  */
1833                 check_update_rusage(td);
1834
1835                 fio_sem_down(stat_sem);
1836                 update_runtime(td, elapsed_us, DDIR_READ);
1837                 fio_gettime(&td->start, NULL);
1838                 fio_sem_up(stat_sem);
1839
1840                 if (td->error || td->terminate)
1841                         break;
1842         }
1843
1844         /*
1845          * If td ended up with no I/O when it should have had,
1846          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1847          * (Are we not missing other flags that can be ignored ?)
1848          */
1849         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1850             !did_some_io && !td->o.create_only &&
1851             !(td_ioengine_flagged(td, FIO_NOIO) ||
1852               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1853                 log_err("%s: No I/O performed by %s, "
1854                          "perhaps try --debug=io option for details?\n",
1855                          td->o.name, td->io_ops->name);
1856
1857         td_set_runstate(td, TD_FINISHING);
1858
1859         update_rusage_stat(td);
1860         td->ts.total_run_time = mtime_since_now(&td->epoch);
1861         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1862         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1863         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1864
1865         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1866             (td->o.verify != VERIFY_NONE && td_write(td)))
1867                 verify_save_state(td->thread_number);
1868
1869         fio_unpin_memory(td);
1870
1871         td_writeout_logs(td, true);
1872
1873         iolog_compress_exit(td);
1874         rate_submit_exit(td);
1875
1876         if (o->exec_postrun)
1877                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1878
1879         if (exitall_on_terminate || (o->exitall_error && td->error))
1880                 fio_terminate_threads(td->groupid);
1881
1882 err:
1883         if (td->error)
1884                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1885                                                         td->verror);
1886
1887         if (o->verify_async)
1888                 verify_async_exit(td);
1889
1890         close_and_free_files(td);
1891         cleanup_io_u(td);
1892         close_ioengine(td);
1893         cgroup_shutdown(td, &cgroup_mnt);
1894         verify_free_state(td);
1895
1896         if (td->zone_state_index) {
1897                 int i;
1898
1899                 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1900                         free(td->zone_state_index[i]);
1901                 free(td->zone_state_index);
1902                 td->zone_state_index = NULL;
1903         }
1904
1905         if (fio_option_is_set(o, cpumask)) {
1906                 ret = fio_cpuset_exit(&o->cpumask);
1907                 if (ret)
1908                         td_verror(td, ret, "fio_cpuset_exit");
1909         }
1910
1911         /*
1912          * do this very late, it will log file closing as well
1913          */
1914         if (o->write_iolog_file)
1915                 write_iolog_close(td);
1916
1917         td_set_runstate(td, TD_EXITED);
1918
1919         /*
1920          * Do this last after setting our runstate to exited, so we
1921          * know that the stat thread is signaled.
1922          */
1923         check_update_rusage(td);
1924
1925         sk_out_drop();
1926         return (void *) (uintptr_t) td->error;
1927 }
1928
1929 /*
1930  * Run over the job map and reap the threads that have exited, if any.
1931  */
1932 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1933                          uint64_t *m_rate)
1934 {
1935         struct thread_data *td;
1936         unsigned int cputhreads, realthreads, pending;
1937         int i, status, ret;
1938
1939         /*
1940          * reap exited threads (TD_EXITED -> TD_REAPED)
1941          */
1942         realthreads = pending = cputhreads = 0;
1943         for_each_td(td, i) {
1944                 int flags = 0;
1945
1946                  if (!strcmp(td->o.ioengine, "cpuio"))
1947                         cputhreads++;
1948                 else
1949                         realthreads++;
1950
1951                 if (!td->pid) {
1952                         pending++;
1953                         continue;
1954                 }
1955                 if (td->runstate == TD_REAPED)
1956                         continue;
1957                 if (td->o.use_thread) {
1958                         if (td->runstate == TD_EXITED) {
1959                                 td_set_runstate(td, TD_REAPED);
1960                                 goto reaped;
1961                         }
1962                         continue;
1963                 }
1964
1965                 flags = WNOHANG;
1966                 if (td->runstate == TD_EXITED)
1967                         flags = 0;
1968
1969                 /*
1970                  * check if someone quit or got killed in an unusual way
1971                  */
1972                 ret = waitpid(td->pid, &status, flags);
1973                 if (ret < 0) {
1974                         if (errno == ECHILD) {
1975                                 log_err("fio: pid=%d disappeared %d\n",
1976                                                 (int) td->pid, td->runstate);
1977                                 td->sig = ECHILD;
1978                                 td_set_runstate(td, TD_REAPED);
1979                                 goto reaped;
1980                         }
1981                         perror("waitpid");
1982                 } else if (ret == td->pid) {
1983                         if (WIFSIGNALED(status)) {
1984                                 int sig = WTERMSIG(status);
1985
1986                                 if (sig != SIGTERM && sig != SIGUSR2)
1987                                         log_err("fio: pid=%d, got signal=%d\n",
1988                                                         (int) td->pid, sig);
1989                                 td->sig = sig;
1990                                 td_set_runstate(td, TD_REAPED);
1991                                 goto reaped;
1992                         }
1993                         if (WIFEXITED(status)) {
1994                                 if (WEXITSTATUS(status) && !td->error)
1995                                         td->error = WEXITSTATUS(status);
1996
1997                                 td_set_runstate(td, TD_REAPED);
1998                                 goto reaped;
1999                         }
2000                 }
2001
2002                 /*
2003                  * If the job is stuck, do a forceful timeout of it and
2004                  * move on.
2005                  */
2006                 if (td->terminate &&
2007                     td->runstate < TD_FSYNCING &&
2008                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2009                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2010                                 "%lu seconds, it appears to be stuck. Doing "
2011                                 "forceful exit of this job.\n",
2012                                 td->o.name, td->runstate,
2013                                 (unsigned long) time_since_now(&td->terminate_time));
2014                         td_set_runstate(td, TD_REAPED);
2015                         goto reaped;
2016                 }
2017
2018                 /*
2019                  * thread is not dead, continue
2020                  */
2021                 pending++;
2022                 continue;
2023 reaped:
2024                 (*nr_running)--;
2025                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2026                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2027                 if (!td->pid)
2028                         pending--;
2029
2030                 if (td->error)
2031                         exit_value++;
2032
2033                 done_secs += mtime_since_now(&td->epoch) / 1000;
2034                 profile_td_exit(td);
2035         }
2036
2037         if (*nr_running == cputhreads && !pending && realthreads)
2038                 fio_terminate_threads(TERMINATE_ALL);
2039 }
2040
2041 static bool __check_trigger_file(void)
2042 {
2043         struct stat sb;
2044
2045         if (!trigger_file)
2046                 return false;
2047
2048         if (stat(trigger_file, &sb))
2049                 return false;
2050
2051         if (unlink(trigger_file) < 0)
2052                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2053                                                         strerror(errno));
2054
2055         return true;
2056 }
2057
2058 static bool trigger_timedout(void)
2059 {
2060         if (trigger_timeout)
2061                 if (time_since_genesis() >= trigger_timeout) {
2062                         trigger_timeout = 0;
2063                         return true;
2064                 }
2065
2066         return false;
2067 }
2068
2069 void exec_trigger(const char *cmd)
2070 {
2071         int ret;
2072
2073         if (!cmd || cmd[0] == '\0')
2074                 return;
2075
2076         ret = system(cmd);
2077         if (ret == -1)
2078                 log_err("fio: failed executing %s trigger\n", cmd);
2079 }
2080
2081 void check_trigger_file(void)
2082 {
2083         if (__check_trigger_file() || trigger_timedout()) {
2084                 if (nr_clients)
2085                         fio_clients_send_trigger(trigger_remote_cmd);
2086                 else {
2087                         verify_save_state(IO_LIST_ALL);
2088                         fio_terminate_threads(TERMINATE_ALL);
2089                         exec_trigger(trigger_cmd);
2090                 }
2091         }
2092 }
2093
2094 static int fio_verify_load_state(struct thread_data *td)
2095 {
2096         int ret;
2097
2098         if (!td->o.verify_state)
2099                 return 0;
2100
2101         if (is_backend) {
2102                 void *data;
2103
2104                 ret = fio_server_get_verify_state(td->o.name,
2105                                         td->thread_number - 1, &data);
2106                 if (!ret)
2107                         verify_assign_state(td, data);
2108         } else
2109                 ret = verify_load_state(td, "local");
2110
2111         return ret;
2112 }
2113
2114 static void do_usleep(unsigned int usecs)
2115 {
2116         check_for_running_stats();
2117         check_trigger_file();
2118         usleep(usecs);
2119 }
2120
2121 static bool check_mount_writes(struct thread_data *td)
2122 {
2123         struct fio_file *f;
2124         unsigned int i;
2125
2126         if (!td_write(td) || td->o.allow_mounted_write)
2127                 return false;
2128
2129         /*
2130          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2131          * are mkfs'd and mounted.
2132          */
2133         for_each_file(td, f, i) {
2134 #ifdef FIO_HAVE_CHARDEV_SIZE
2135                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2136 #else
2137                 if (f->filetype != FIO_TYPE_BLOCK)
2138 #endif
2139                         continue;
2140                 if (device_is_mounted(f->file_name))
2141                         goto mounted;
2142         }
2143
2144         return false;
2145 mounted:
2146         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2147         return true;
2148 }
2149
2150 static bool waitee_running(struct thread_data *me)
2151 {
2152         const char *waitee = me->o.wait_for;
2153         const char *self = me->o.name;
2154         struct thread_data *td;
2155         int i;
2156
2157         if (!waitee)
2158                 return false;
2159
2160         for_each_td(td, i) {
2161                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2162                         continue;
2163
2164                 if (td->runstate < TD_EXITED) {
2165                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2166                                         self, td->o.name,
2167                                         runstate_to_name(td->runstate));
2168                         return true;
2169                 }
2170         }
2171
2172         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2173         return false;
2174 }
2175
2176 /*
2177  * Main function for kicking off and reaping jobs, as needed.
2178  */
2179 static void run_threads(struct sk_out *sk_out)
2180 {
2181         struct thread_data *td;
2182         unsigned int i, todo, nr_running, nr_started;
2183         uint64_t m_rate, t_rate;
2184         uint64_t spent;
2185
2186         if (fio_gtod_offload && fio_start_gtod_thread())
2187                 return;
2188
2189         fio_idle_prof_init();
2190
2191         set_sig_handlers();
2192
2193         nr_thread = nr_process = 0;
2194         for_each_td(td, i) {
2195                 if (check_mount_writes(td))
2196                         return;
2197                 if (td->o.use_thread)
2198                         nr_thread++;
2199                 else
2200                         nr_process++;
2201         }
2202
2203         if (output_format & FIO_OUTPUT_NORMAL) {
2204                 log_info("Starting ");
2205                 if (nr_thread)
2206                         log_info("%d thread%s", nr_thread,
2207                                                 nr_thread > 1 ? "s" : "");
2208                 if (nr_process) {
2209                         if (nr_thread)
2210                                 log_info(" and ");
2211                         log_info("%d process%s", nr_process,
2212                                                 nr_process > 1 ? "es" : "");
2213                 }
2214                 log_info("\n");
2215                 log_info_flush();
2216         }
2217
2218         todo = thread_number;
2219         nr_running = 0;
2220         nr_started = 0;
2221         m_rate = t_rate = 0;
2222
2223         for_each_td(td, i) {
2224                 print_status_init(td->thread_number - 1);
2225
2226                 if (!td->o.create_serialize)
2227                         continue;
2228
2229                 if (fio_verify_load_state(td))
2230                         goto reap;
2231
2232                 /*
2233                  * do file setup here so it happens sequentially,
2234                  * we don't want X number of threads getting their
2235                  * client data interspersed on disk
2236                  */
2237                 if (setup_files(td)) {
2238 reap:
2239                         exit_value++;
2240                         if (td->error)
2241                                 log_err("fio: pid=%d, err=%d/%s\n",
2242                                         (int) td->pid, td->error, td->verror);
2243                         td_set_runstate(td, TD_REAPED);
2244                         todo--;
2245                 } else {
2246                         struct fio_file *f;
2247                         unsigned int j;
2248
2249                         /*
2250                          * for sharing to work, each job must always open
2251                          * its own files. so close them, if we opened them
2252                          * for creation
2253                          */
2254                         for_each_file(td, f, j) {
2255                                 if (fio_file_open(f))
2256                                         td_io_close_file(td, f);
2257                         }
2258                 }
2259         }
2260
2261         /* start idle threads before io threads start to run */
2262         fio_idle_prof_start();
2263
2264         set_genesis_time();
2265
2266         while (todo) {
2267                 struct thread_data *map[REAL_MAX_JOBS];
2268                 struct timespec this_start;
2269                 int this_jobs = 0, left;
2270                 struct fork_data *fd;
2271
2272                 /*
2273                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2274                  */
2275                 for_each_td(td, i) {
2276                         if (td->runstate != TD_NOT_CREATED)
2277                                 continue;
2278
2279                         /*
2280                          * never got a chance to start, killed by other
2281                          * thread for some reason
2282                          */
2283                         if (td->terminate) {
2284                                 todo--;
2285                                 continue;
2286                         }
2287
2288                         if (td->o.start_delay) {
2289                                 spent = utime_since_genesis();
2290
2291                                 if (td->o.start_delay > spent)
2292                                         continue;
2293                         }
2294
2295                         if (td->o.stonewall && (nr_started || nr_running)) {
2296                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2297                                                         td->o.name);
2298                                 break;
2299                         }
2300
2301                         if (waitee_running(td)) {
2302                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2303                                                 td->o.name, td->o.wait_for);
2304                                 continue;
2305                         }
2306
2307                         init_disk_util(td);
2308
2309                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2310                         td->update_rusage = 0;
2311
2312                         /*
2313                          * Set state to created. Thread will transition
2314                          * to TD_INITIALIZED when it's done setting up.
2315                          */
2316                         td_set_runstate(td, TD_CREATED);
2317                         map[this_jobs++] = td;
2318                         nr_started++;
2319
2320                         fd = calloc(1, sizeof(*fd));
2321                         fd->td = td;
2322                         fd->sk_out = sk_out;
2323
2324                         if (td->o.use_thread) {
2325                                 int ret;
2326
2327                                 dprint(FD_PROCESS, "will pthread_create\n");
2328                                 ret = pthread_create(&td->thread, NULL,
2329                                                         thread_main, fd);
2330                                 if (ret) {
2331                                         log_err("pthread_create: %s\n",
2332                                                         strerror(ret));
2333                                         free(fd);
2334                                         nr_started--;
2335                                         break;
2336                                 }
2337                                 fd = NULL;
2338                                 ret = pthread_detach(td->thread);
2339                                 if (ret)
2340                                         log_err("pthread_detach: %s",
2341                                                         strerror(ret));
2342                         } else {
2343                                 pid_t pid;
2344                                 dprint(FD_PROCESS, "will fork\n");
2345                                 pid = fork();
2346                                 if (!pid) {
2347                                         int ret;
2348
2349                                         ret = (int)(uintptr_t)thread_main(fd);
2350                                         _exit(ret);
2351                                 } else if (i == fio_debug_jobno)
2352                                         *fio_debug_jobp = pid;
2353                         }
2354                         dprint(FD_MUTEX, "wait on startup_sem\n");
2355                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2356                                 log_err("fio: job startup hung? exiting.\n");
2357                                 fio_terminate_threads(TERMINATE_ALL);
2358                                 fio_abort = 1;
2359                                 nr_started--;
2360                                 free(fd);
2361                                 break;
2362                         }
2363                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2364                 }
2365
2366                 /*
2367                  * Wait for the started threads to transition to
2368                  * TD_INITIALIZED.
2369                  */
2370                 fio_gettime(&this_start, NULL);
2371                 left = this_jobs;
2372                 while (left && !fio_abort) {
2373                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2374                                 break;
2375
2376                         do_usleep(100000);
2377
2378                         for (i = 0; i < this_jobs; i++) {
2379                                 td = map[i];
2380                                 if (!td)
2381                                         continue;
2382                                 if (td->runstate == TD_INITIALIZED) {
2383                                         map[i] = NULL;
2384                                         left--;
2385                                 } else if (td->runstate >= TD_EXITED) {
2386                                         map[i] = NULL;
2387                                         left--;
2388                                         todo--;
2389                                         nr_running++; /* work-around... */
2390                                 }
2391                         }
2392                 }
2393
2394                 if (left) {
2395                         log_err("fio: %d job%s failed to start\n", left,
2396                                         left > 1 ? "s" : "");
2397                         for (i = 0; i < this_jobs; i++) {
2398                                 td = map[i];
2399                                 if (!td)
2400                                         continue;
2401                                 kill(td->pid, SIGTERM);
2402                         }
2403                         break;
2404                 }
2405
2406                 /*
2407                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2408                  */
2409                 for_each_td(td, i) {
2410                         if (td->runstate != TD_INITIALIZED)
2411                                 continue;
2412
2413                         if (in_ramp_time(td))
2414                                 td_set_runstate(td, TD_RAMP);
2415                         else
2416                                 td_set_runstate(td, TD_RUNNING);
2417                         nr_running++;
2418                         nr_started--;
2419                         m_rate += ddir_rw_sum(td->o.ratemin);
2420                         t_rate += ddir_rw_sum(td->o.rate);
2421                         todo--;
2422                         fio_sem_up(td->sem);
2423                 }
2424
2425                 reap_threads(&nr_running, &t_rate, &m_rate);
2426
2427                 if (todo)
2428                         do_usleep(100000);
2429         }
2430
2431         while (nr_running) {
2432                 reap_threads(&nr_running, &t_rate, &m_rate);
2433                 do_usleep(10000);
2434         }
2435
2436         fio_idle_prof_stop();
2437
2438         update_io_ticks();
2439 }
2440
2441 static void free_disk_util(void)
2442 {
2443         disk_util_prune_entries();
2444         helper_thread_destroy();
2445 }
2446
2447 int fio_backend(struct sk_out *sk_out)
2448 {
2449         struct thread_data *td;
2450         int i;
2451
2452         if (exec_profile) {
2453                 if (load_profile(exec_profile))
2454                         return 1;
2455                 free(exec_profile);
2456                 exec_profile = NULL;
2457         }
2458         if (!thread_number)
2459                 return 0;
2460
2461         if (write_bw_log) {
2462                 struct log_params p = {
2463                         .log_type = IO_LOG_TYPE_BW,
2464                 };
2465
2466                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2467                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2468                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2469         }
2470
2471         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2472         if (startup_sem == NULL)
2473                 return 1;
2474
2475         set_genesis_time();
2476         stat_init();
2477         helper_thread_create(startup_sem, sk_out);
2478
2479         cgroup_list = smalloc(sizeof(*cgroup_list));
2480         INIT_FLIST_HEAD(cgroup_list);
2481
2482         run_threads(sk_out);
2483
2484         helper_thread_exit();
2485
2486         if (!fio_abort) {
2487                 __show_run_stats();
2488                 if (write_bw_log) {
2489                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2490                                 struct io_log *log = agg_io_log[i];
2491
2492                                 flush_log(log, false);
2493                                 free_log(log);
2494                         }
2495                 }
2496         }
2497
2498         for_each_td(td, i) {
2499                 steadystate_free(td);
2500                 fio_options_free(td);
2501                 if (td->rusage_sem) {
2502                         fio_sem_remove(td->rusage_sem);
2503                         td->rusage_sem = NULL;
2504                 }
2505                 fio_sem_remove(td->sem);
2506                 td->sem = NULL;
2507         }
2508
2509         free_disk_util();
2510         cgroup_kill(cgroup_list);
2511         sfree(cgroup_list);
2512         sfree(cgroup_mnt);
2513
2514         fio_sem_remove(startup_sem);
2515         stat_exit();
2516         return exit_value;
2517 }