amd64_edac: fix use-uninitialised bug
[linux-2.6-block.git] / drivers / edac / amd64_edac.c
index 708d065efc959933c852a267500066b34f38c1ba..5fdd6daa40eaef5ba7b3284663d0741c592f2c01 100644 (file)
@@ -792,7 +792,7 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
        return csrow;
 }
 
-static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
 
 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
 {
@@ -1017,10 +1017,11 @@ static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
        enum mem_type type;
 
        if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
-               /* Rev F and later */
-               type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+               if (pvt->dchr0 & DDR3_MODE)
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
+               else
+                       type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
        } else {
-               /* Rev E and earlier */
                type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
        }
 
@@ -1112,7 +1113,7 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
 
        /* CHIPKILL enabled */
        if (info->nbcfg & K8_NBCFG_CHIPKILL) {
-               channel = get_channel_from_ecc_syndrome(syndrome);
+               channel = get_channel_from_ecc_syndrome(mci, syndrome);
                if (channel < 0) {
                        /*
                         * Syndrome didn't map, so we don't know which of the
@@ -1644,10 +1645,11 @@ static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
 }
 
 /*
- * This the F10h reference code from AMD to map a @sys_addr to NodeID,
- * CSROW, Channel.
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  *
- * The @sys_addr is usually an error address received from the hardware.
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
  */
 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
                                     struct err_regs *info,
@@ -1660,39 +1662,34 @@ static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
 
        csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
 
-       if (csrow >= 0) {
-               error_address_to_page_and_offset(sys_addr, &page, &offset);
+       if (csrow < 0) {
+               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+               return;
+       }
 
-               syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
-               syndrome |= LOW_SYNDROME(info->nbsh);
+       error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+       syndrome  = HIGH_SYNDROME(info->nbsl) << 8;
+       syndrome |= LOW_SYNDROME(info->nbsh);
+
+       /*
+        * We need the syndromes for channel detection only when we're
+        * ganged. Otherwise @chan should already contain the channel at
+        * this point.
+        */
+       if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
+               chan = get_channel_from_ecc_syndrome(mci, syndrome);
 
+       if (chan >= 0)
+               edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
+                                 EDAC_MOD_STR);
+       else
                /*
-                * Is CHIPKILL on? If so, then we can attempt to use the
-                * syndrome to isolate which channel the error was on.
+                * Channel unknown, report all channels on this CSROW as failed.
                 */
-               if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
-                       chan = get_channel_from_ecc_syndrome(syndrome);
-
-               if (chan >= 0) {
+               for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
                        edac_mc_handle_ce(mci, page, offset, syndrome,
-                                       csrow, chan, EDAC_MOD_STR);
-               } else {
-                       /*
-                        * Channel unknown, report all channels on this
-                        * CSROW as failed.
-                        */
-                       for (chan = 0; chan < mci->csrows[csrow].nr_channels;
-                                                               chan++) {
-                                       edac_mc_handle_ce(mci, page, offset,
-                                                       syndrome,
-                                                       csrow, chan,
-                                                       EDAC_MOD_STR);
-                       }
-               }
-
-       } else {
-               edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
-       }
+                                         csrow, chan, EDAC_MOD_STR);
 }
 
 /*
@@ -1737,42 +1734,6 @@ static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
        }
 }
 
-/*
- * Very early hardware probe on pci_probe thread to determine if this module
- * supports the hardware.
- *
- * Return:
- *      0 for OK
- *      1 for error
- */
-static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
-{
-       int ret = 0;
-
-       /*
-        * If we are on a DDR3 machine, we don't know yet if
-        * we support that properly at this time
-        */
-       if ((pvt->dchr0 & DDR3_MODE) ||
-           (pvt->dchr1 & DDR3_MODE)) {
-
-               amd64_printk(KERN_WARNING,
-                       "%s() This machine is running with DDR3 memory. "
-                       "This is not currently supported. "
-                       "DCHR0=0x%x DCHR1=0x%x\n",
-                       __func__, pvt->dchr0, pvt->dchr1);
-
-               amd64_printk(KERN_WARNING,
-                       "   Contact '%s' module MAINTAINER to help add"
-                       " support.\n",
-                       EDAC_MOD_STR);
-
-               ret = 1;
-
-       }
-       return ret;
-}
-
 /*
  * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  * (as per PCI DEVICE_IDs):
@@ -1802,7 +1763,6 @@ static struct amd64_family_type amd64_family_types[] = {
                .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
                .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
                .ops = {
-                       .probe_valid_hardware   = f10_probe_valid_hardware,
                        .early_channel_count    = f10_early_channel_count,
                        .get_error_address      = f10_get_error_address,
                        .read_dram_base_limit   = f10_read_dram_base_limit,
@@ -1816,7 +1776,6 @@ static struct amd64_family_type amd64_family_types[] = {
                .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
                .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
                .ops = {
-                       .probe_valid_hardware   = f10_probe_valid_hardware,
                        .early_channel_count    = f10_early_channel_count,
                        .get_error_address      = f10_get_error_address,
                        .read_dram_base_limit   = f10_read_dram_base_limit,
@@ -1845,142 +1804,170 @@ static struct pci_dev *pci_get_related_function(unsigned int vendor,
 }
 
 /*
- * syndrome mapping table for ECC ChipKill devices
- *
- * The comment in each row is the token (nibble) number that is in error.
- * The least significant nibble of the syndrome is the mask for the bits
- * that are in error (need to be toggled) for the particular nibble.
- *
- * Each row contains 16 entries.
- * The first entry (0th) is the channel number for that row of syndromes.
- * The remaining 15 entries are the syndromes for the respective Error
- * bit mask index.
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
  *
- * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
- * bit in error.
- * The 2nd index entry is 0x0010 that the second bit is damaged.
- * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
- * are damaged.
- * Thus so on until index 15, 0x1111, whose entry has the syndrome
- * indicating that all 4 bits are damaged.
- *
- * A search is performed on this table looking for a given syndrome.
- *
- * See the AMD documentation for ECC syndromes. This ECC table is valid
- * across all the versions of the AMD64 processors.
- *
- * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
- * COLUMN index, then search all ROWS of that column, looking for a match
- * with the input syndrome. The ROW value will be the token number.
- *
- * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
- * error.
+ * Algorithm courtesy of Ross LaFetra from AMD.
  */
-#define NUMBER_ECC_ROWS  36
-static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
-       /* Channel 0 syndromes */
-       {/*0*/  0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
-          0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
-       {/*1*/  0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
-          0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
-       {/*2*/  0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
-          0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
-       {/*3*/  0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
-          0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
-       {/*4*/  0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
-          0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
-       {/*5*/  0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
-          0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
-       {/*6*/  0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
-          0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
-       {/*7*/  0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
-          0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
-       {/*8*/  0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
-          0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
-       {/*9*/  0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
-          0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
-       {/*a*/  0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
-          0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
-       {/*b*/  0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
-          0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
-       {/*c*/  0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
-          0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
-       {/*d*/  0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
-          0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
-       {/*e*/  0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
-          0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
-       {/*f*/  0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
-          0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
-
-       /* Channel 1 syndromes */
-       {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
-          0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
-       {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
-          0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
-       {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
-          0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
-       {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
-          0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
-       {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
-          0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
-       {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
-          0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
-       {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
-          0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
-       {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
-          0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
-       {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
-          0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
-       {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
-          0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
-       {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
-          0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
-       {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
-          0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
-       {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
-          0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
-       {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
-          0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
-       {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
-          0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
-       {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
-          0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
-
-       /* ECC bits are also in the set of tokens and they too can go bad
-        * first 2 cover channel 0, while the second 2 cover channel 1
-        */
-       {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
-          0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
-       {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
-          0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
-       {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
-          0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
-       {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
-          0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+static u16 x4_vectors[] = {
+       0x2f57, 0x1afe, 0x66cc, 0xdd88,
+       0x11eb, 0x3396, 0x7f4c, 0xeac8,
+       0x0001, 0x0002, 0x0004, 0x0008,
+       0x1013, 0x3032, 0x4044, 0x8088,
+       0x106b, 0x30d6, 0x70fc, 0xe0a8,
+       0x4857, 0xc4fe, 0x13cc, 0x3288,
+       0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+       0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+       0x15c1, 0x2a42, 0x89ac, 0x4758,
+       0x2b03, 0x1602, 0x4f0c, 0xca08,
+       0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+       0x8ba7, 0x465e, 0x244c, 0x1cc8,
+       0x2b87, 0x164e, 0x642c, 0xdc18,
+       0x40b9, 0x80de, 0x1094, 0x20e8,
+       0x27db, 0x1eb6, 0x9dac, 0x7b58,
+       0x11c1, 0x2242, 0x84ac, 0x4c58,
+       0x1be5, 0x2d7a, 0x5e34, 0xa718,
+       0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+       0x4c97, 0xc87e, 0x11fc, 0x33a8,
+       0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+       0x16b3, 0x3d62, 0x4f34, 0x8518,
+       0x1e2f, 0x391a, 0x5cac, 0xf858,
+       0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+       0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+       0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+       0x4397, 0xc27e, 0x17fc, 0x3ea8,
+       0x1617, 0x3d3e, 0x6464, 0xb8b8,
+       0x23ff, 0x12aa, 0xab6c, 0x56d8,
+       0x2dfb, 0x1ba6, 0x913c, 0x7328,
+       0x185d, 0x2ca6, 0x7914, 0x9e28,
+       0x171b, 0x3e36, 0x7d7c, 0xebe8,
+       0x4199, 0x82ee, 0x19f4, 0x2e58,
+       0x4807, 0xc40e, 0x130c, 0x3208,
+       0x1905, 0x2e0a, 0x5804, 0xac08,
+       0x213f, 0x132a, 0xadfc, 0x5ba8,
+       0x19a9, 0x2efe, 0xb5cc, 0x6f88,
 };
 
-/*
- * Given the syndrome argument, scan each of the channel tables for a syndrome
- * match. Depending on which table it is found, return the channel number.
- */
-static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+static u16 x8_vectors[] = {
+       0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+       0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+       0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+       0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+       0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+       0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+       0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+       0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+       0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+       0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+       0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+       0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+       0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+       0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+       0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+       0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+       0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+       0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+       0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
+                                int v_dim)
 {
-       int row;
-       int column;
+       unsigned int i, err_sym;
+
+       for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+               u16 s = syndrome;
+               int v_idx =  err_sym * v_dim;
+               int v_end = (err_sym + 1) * v_dim;
 
-       /* Determine column to scan */
-       column = syndrome & 0xF;
+               /* walk over all 16 bits of the syndrome */
+               for (i = 1; i < (1U << 16); i <<= 1) {
 
-       /* Scan all rows, looking for syndrome, or end of table */
-       for (row = 0; row < NUMBER_ECC_ROWS; row++) {
-               if (ecc_chipkill_syndromes[row][column] == syndrome)
-                       return ecc_chipkill_syndromes[row][0];
+                       /* if bit is set in that eigenvector... */
+                       if (v_idx < v_end && vectors[v_idx] & i) {
+                               u16 ev_comp = vectors[v_idx++];
+
+                               /* ... and bit set in the modified syndrome, */
+                               if (s & i) {
+                                       /* remove it. */
+                                       s ^= ev_comp;
+
+                                       if (!s)
+                                               return err_sym;
+                               }
+
+                       } else if (s & i)
+                               /* can't get to zero, move to next symbol */
+                               break;
+               }
        }
 
        debugf0("syndrome(%x) not found\n", syndrome);
        return -1;
 }
 
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+       if (sym_size == 4)
+               switch (err_sym) {
+               case 0x20:
+               case 0x21:
+                       return 0;
+                       break;
+               case 0x22:
+               case 0x23:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 4;
+                       break;
+               }
+       /* x8 symbols */
+       else
+               switch (err_sym) {
+               /* imaginary bits not in a DIMM */
+               case 0x10:
+                       WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+                                         err_sym);
+                       return -1;
+                       break;
+
+               case 0x11:
+                       return 0;
+                       break;
+               case 0x12:
+                       return 1;
+                       break;
+               default:
+                       return err_sym >> 3;
+                       break;
+               }
+       return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+       struct amd64_pvt *pvt = mci->pvt_info;
+       u32 value = 0;
+       int err_sym = 0;
+
+       amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
+
+       /* F3x180[EccSymbolSize]=1, x8 symbols */
+       if (boot_cpu_data.x86 == 0x10 &&
+           boot_cpu_data.x86_model > 7 &&
+           value & BIT(25)) {
+               err_sym = decode_syndrome(syndrome, x8_vectors,
+                                         ARRAY_SIZE(x8_vectors), 8);
+               return map_err_sym_to_channel(err_sym, 8);
+       } else {
+               err_sym = decode_syndrome(syndrome, x4_vectors,
+                                         ARRAY_SIZE(x4_vectors), 4);
+               return map_err_sym_to_channel(err_sym, 4);
+       }
+}
+
 /*
  * Check for valid error in the NB Status High register. If so, proceed to read
  * NB Status Low, NB Address Low and NB Address High registers and store data
@@ -2850,17 +2837,10 @@ static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
 {
        int node_id = pvt->mc_node_id;
        struct mem_ctl_info *mci;
-       int ret, err = 0;
+       int ret = -ENODEV;
 
        amd64_read_mc_registers(pvt);
 
-       ret = -ENODEV;
-       if (pvt->ops->probe_valid_hardware) {
-               err = pvt->ops->probe_valid_hardware(pvt);
-               if (err)
-                       goto err_exit;
-       }
-
        /*
         * We need to determine how many memory channels there are. Then use
         * that information for calculating the size of the dynamic instance