Merge tag 'drm-next-2019-09-18' of git://anongit.freedesktop.org/drm/drm
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91
92 /*
93  * Ordering of locks:
94  *
95  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125                                 unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137
138 static bool largepages_enabled = true;
139
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147                 unsigned long start, unsigned long end, bool blockable)
148 {
149         return 0;
150 }
151
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154         if (pfn_valid(pfn))
155                 return PageReserved(pfn_to_page(pfn));
156
157         return true;
158 }
159
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165         int cpu = get_cpu();
166         preempt_notifier_register(&vcpu->preempt_notifier);
167         kvm_arch_vcpu_load(vcpu, cpu);
168         put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174         preempt_disable();
175         kvm_arch_vcpu_put(vcpu);
176         preempt_notifier_unregister(&vcpu->preempt_notifier);
177         preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185
186         /*
187          * We need to wait for the VCPU to reenable interrupts and get out of
188          * READING_SHADOW_PAGE_TABLES mode.
189          */
190         if (req & KVM_REQUEST_WAIT)
191                 return mode != OUTSIDE_GUEST_MODE;
192
193         /*
194          * Need to kick a running VCPU, but otherwise there is nothing to do.
195          */
196         return mode == IN_GUEST_MODE;
197 }
198
199 static void ack_flush(void *_completed)
200 {
201 }
202
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205         if (unlikely(!cpus))
206                 cpus = cpu_online_mask;
207
208         if (cpumask_empty(cpus))
209                 return false;
210
211         smp_call_function_many(cpus, ack_flush, NULL, wait);
212         return true;
213 }
214
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218         int i, cpu, me;
219         struct kvm_vcpu *vcpu;
220         bool called;
221
222         me = get_cpu();
223
224         kvm_for_each_vcpu(i, vcpu, kvm) {
225                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226                         continue;
227
228                 kvm_make_request(req, vcpu);
229                 cpu = vcpu->cpu;
230
231                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232                         continue;
233
234                 if (tmp != NULL && cpu != -1 && cpu != me &&
235                     kvm_request_needs_ipi(vcpu, req))
236                         __cpumask_set_cpu(cpu, tmp);
237         }
238
239         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240         put_cpu();
241
242         return called;
243 }
244
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247         cpumask_var_t cpus;
248         bool called;
249
250         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251
252         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253
254         free_cpumask_var(cpus);
255         return called;
256 }
257
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261         /*
262          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263          * kvm_make_all_cpus_request.
264          */
265         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266
267         /*
268          * We want to publish modifications to the page tables before reading
269          * mode. Pairs with a memory barrier in arch-specific code.
270          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271          * and smp_mb in walk_shadow_page_lockless_begin/end.
272          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273          *
274          * There is already an smp_mb__after_atomic() before
275          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276          * barrier here.
277          */
278         if (!kvm_arch_flush_remote_tlb(kvm)
279             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280                 ++kvm->stat.remote_tlb_flush;
281         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293         struct page *page;
294         int r;
295
296         mutex_init(&vcpu->mutex);
297         vcpu->cpu = -1;
298         vcpu->kvm = kvm;
299         vcpu->vcpu_id = id;
300         vcpu->pid = NULL;
301         init_swait_queue_head(&vcpu->wq);
302         kvm_async_pf_vcpu_init(vcpu);
303
304         vcpu->pre_pcpu = -1;
305         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306
307         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308         if (!page) {
309                 r = -ENOMEM;
310                 goto fail;
311         }
312         vcpu->run = page_address(page);
313
314         kvm_vcpu_set_in_spin_loop(vcpu, false);
315         kvm_vcpu_set_dy_eligible(vcpu, false);
316         vcpu->preempted = false;
317         vcpu->ready = false;
318
319         r = kvm_arch_vcpu_init(vcpu);
320         if (r < 0)
321                 goto fail_free_run;
322         return 0;
323
324 fail_free_run:
325         free_page((unsigned long)vcpu->run);
326 fail:
327         return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333         /*
334          * no need for rcu_read_lock as VCPU_RUN is the only place that
335          * will change the vcpu->pid pointer and on uninit all file
336          * descriptors are already gone.
337          */
338         put_pid(rcu_dereference_protected(vcpu->pid, 1));
339         kvm_arch_vcpu_uninit(vcpu);
340         free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347         return container_of(mn, struct kvm, mmu_notifier);
348 }
349
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351                                         struct mm_struct *mm,
352                                         unsigned long address,
353                                         pte_t pte)
354 {
355         struct kvm *kvm = mmu_notifier_to_kvm(mn);
356         int idx;
357
358         idx = srcu_read_lock(&kvm->srcu);
359         spin_lock(&kvm->mmu_lock);
360         kvm->mmu_notifier_seq++;
361
362         if (kvm_set_spte_hva(kvm, address, pte))
363                 kvm_flush_remote_tlbs(kvm);
364
365         spin_unlock(&kvm->mmu_lock);
366         srcu_read_unlock(&kvm->srcu, idx);
367 }
368
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370                                         const struct mmu_notifier_range *range)
371 {
372         struct kvm *kvm = mmu_notifier_to_kvm(mn);
373         int need_tlb_flush = 0, idx;
374         int ret;
375
376         idx = srcu_read_lock(&kvm->srcu);
377         spin_lock(&kvm->mmu_lock);
378         /*
379          * The count increase must become visible at unlock time as no
380          * spte can be established without taking the mmu_lock and
381          * count is also read inside the mmu_lock critical section.
382          */
383         kvm->mmu_notifier_count++;
384         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385         need_tlb_flush |= kvm->tlbs_dirty;
386         /* we've to flush the tlb before the pages can be freed */
387         if (need_tlb_flush)
388                 kvm_flush_remote_tlbs(kvm);
389
390         spin_unlock(&kvm->mmu_lock);
391
392         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393                                         range->end,
394                                         mmu_notifier_range_blockable(range));
395
396         srcu_read_unlock(&kvm->srcu, idx);
397
398         return ret;
399 }
400
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402                                         const struct mmu_notifier_range *range)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405
406         spin_lock(&kvm->mmu_lock);
407         /*
408          * This sequence increase will notify the kvm page fault that
409          * the page that is going to be mapped in the spte could have
410          * been freed.
411          */
412         kvm->mmu_notifier_seq++;
413         smp_wmb();
414         /*
415          * The above sequence increase must be visible before the
416          * below count decrease, which is ensured by the smp_wmb above
417          * in conjunction with the smp_rmb in mmu_notifier_retry().
418          */
419         kvm->mmu_notifier_count--;
420         spin_unlock(&kvm->mmu_lock);
421
422         BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426                                               struct mm_struct *mm,
427                                               unsigned long start,
428                                               unsigned long end)
429 {
430         struct kvm *kvm = mmu_notifier_to_kvm(mn);
431         int young, idx;
432
433         idx = srcu_read_lock(&kvm->srcu);
434         spin_lock(&kvm->mmu_lock);
435
436         young = kvm_age_hva(kvm, start, end);
437         if (young)
438                 kvm_flush_remote_tlbs(kvm);
439
440         spin_unlock(&kvm->mmu_lock);
441         srcu_read_unlock(&kvm->srcu, idx);
442
443         return young;
444 }
445
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447                                         struct mm_struct *mm,
448                                         unsigned long start,
449                                         unsigned long end)
450 {
451         struct kvm *kvm = mmu_notifier_to_kvm(mn);
452         int young, idx;
453
454         idx = srcu_read_lock(&kvm->srcu);
455         spin_lock(&kvm->mmu_lock);
456         /*
457          * Even though we do not flush TLB, this will still adversely
458          * affect performance on pre-Haswell Intel EPT, where there is
459          * no EPT Access Bit to clear so that we have to tear down EPT
460          * tables instead. If we find this unacceptable, we can always
461          * add a parameter to kvm_age_hva so that it effectively doesn't
462          * do anything on clear_young.
463          *
464          * Also note that currently we never issue secondary TLB flushes
465          * from clear_young, leaving this job up to the regular system
466          * cadence. If we find this inaccurate, we might come up with a
467          * more sophisticated heuristic later.
468          */
469         young = kvm_age_hva(kvm, start, end);
470         spin_unlock(&kvm->mmu_lock);
471         srcu_read_unlock(&kvm->srcu, idx);
472
473         return young;
474 }
475
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477                                        struct mm_struct *mm,
478                                        unsigned long address)
479 {
480         struct kvm *kvm = mmu_notifier_to_kvm(mn);
481         int young, idx;
482
483         idx = srcu_read_lock(&kvm->srcu);
484         spin_lock(&kvm->mmu_lock);
485         young = kvm_test_age_hva(kvm, address);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493                                      struct mm_struct *mm)
494 {
495         struct kvm *kvm = mmu_notifier_to_kvm(mn);
496         int idx;
497
498         idx = srcu_read_lock(&kvm->srcu);
499         kvm_arch_flush_shadow_all(kvm);
500         srcu_read_unlock(&kvm->srcu, idx);
501 }
502
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
505         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
506         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
507         .clear_young            = kvm_mmu_notifier_clear_young,
508         .test_young             = kvm_mmu_notifier_test_young,
509         .change_pte             = kvm_mmu_notifier_change_pte,
510         .release                = kvm_mmu_notifier_release,
511 };
512
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523         return 0;
524 }
525
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530         int i;
531         struct kvm_memslots *slots;
532
533         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534         if (!slots)
535                 return NULL;
536
537         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538                 slots->id_to_index[i] = slots->memslots[i].id = i;
539
540         return slots;
541 }
542
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545         if (!memslot->dirty_bitmap)
546                 return;
547
548         kvfree(memslot->dirty_bitmap);
549         memslot->dirty_bitmap = NULL;
550 }
551
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556                               struct kvm_memory_slot *dont)
557 {
558         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559                 kvm_destroy_dirty_bitmap(free);
560
561         kvm_arch_free_memslot(kvm, free, dont);
562
563         free->npages = 0;
564 }
565
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568         struct kvm_memory_slot *memslot;
569
570         if (!slots)
571                 return;
572
573         kvm_for_each_memslot(memslot, slots)
574                 kvm_free_memslot(kvm, memslot, NULL);
575
576         kvfree(slots);
577 }
578
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581         int i;
582
583         if (!kvm->debugfs_dentry)
584                 return;
585
586         debugfs_remove_recursive(kvm->debugfs_dentry);
587
588         if (kvm->debugfs_stat_data) {
589                 for (i = 0; i < kvm_debugfs_num_entries; i++)
590                         kfree(kvm->debugfs_stat_data[i]);
591                 kfree(kvm->debugfs_stat_data);
592         }
593 }
594
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597         char dir_name[ITOA_MAX_LEN * 2];
598         struct kvm_stat_data *stat_data;
599         struct kvm_stats_debugfs_item *p;
600
601         if (!debugfs_initialized())
602                 return 0;
603
604         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606
607         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608                                          sizeof(*kvm->debugfs_stat_data),
609                                          GFP_KERNEL_ACCOUNT);
610         if (!kvm->debugfs_stat_data)
611                 return -ENOMEM;
612
613         for (p = debugfs_entries; p->name; p++) {
614                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615                 if (!stat_data)
616                         return -ENOMEM;
617
618                 stat_data->kvm = kvm;
619                 stat_data->offset = p->offset;
620                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
621                 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
622                                     stat_data, stat_fops_per_vm[p->kind]);
623         }
624         return 0;
625 }
626
627 static struct kvm *kvm_create_vm(unsigned long type)
628 {
629         int r, i;
630         struct kvm *kvm = kvm_arch_alloc_vm();
631
632         if (!kvm)
633                 return ERR_PTR(-ENOMEM);
634
635         spin_lock_init(&kvm->mmu_lock);
636         mmgrab(current->mm);
637         kvm->mm = current->mm;
638         kvm_eventfd_init(kvm);
639         mutex_init(&kvm->lock);
640         mutex_init(&kvm->irq_lock);
641         mutex_init(&kvm->slots_lock);
642         refcount_set(&kvm->users_count, 1);
643         INIT_LIST_HEAD(&kvm->devices);
644
645         r = kvm_arch_init_vm(kvm, type);
646         if (r)
647                 goto out_err_no_disable;
648
649         r = hardware_enable_all();
650         if (r)
651                 goto out_err_no_disable;
652
653 #ifdef CONFIG_HAVE_KVM_IRQFD
654         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
655 #endif
656
657         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
658
659         r = -ENOMEM;
660         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
661                 struct kvm_memslots *slots = kvm_alloc_memslots();
662                 if (!slots)
663                         goto out_err_no_srcu;
664                 /* Generations must be different for each address space. */
665                 slots->generation = i;
666                 rcu_assign_pointer(kvm->memslots[i], slots);
667         }
668
669         if (init_srcu_struct(&kvm->srcu))
670                 goto out_err_no_srcu;
671         if (init_srcu_struct(&kvm->irq_srcu))
672                 goto out_err_no_irq_srcu;
673         for (i = 0; i < KVM_NR_BUSES; i++) {
674                 rcu_assign_pointer(kvm->buses[i],
675                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
676                 if (!kvm->buses[i])
677                         goto out_err;
678         }
679
680         r = kvm_init_mmu_notifier(kvm);
681         if (r)
682                 goto out_err;
683
684         mutex_lock(&kvm_lock);
685         list_add(&kvm->vm_list, &vm_list);
686         mutex_unlock(&kvm_lock);
687
688         preempt_notifier_inc();
689
690         return kvm;
691
692 out_err:
693         cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695         cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697         hardware_disable_all();
698 out_err_no_disable:
699         refcount_set(&kvm->users_count, 0);
700         for (i = 0; i < KVM_NR_BUSES; i++)
701                 kfree(kvm_get_bus(kvm, i));
702         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704         kvm_arch_free_vm(kvm);
705         mmdrop(current->mm);
706         return ERR_PTR(r);
707 }
708
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711         struct kvm_device *dev, *tmp;
712
713         /*
714          * We do not need to take the kvm->lock here, because nobody else
715          * has a reference to the struct kvm at this point and therefore
716          * cannot access the devices list anyhow.
717          */
718         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719                 list_del(&dev->vm_node);
720                 dev->ops->destroy(dev);
721         }
722 }
723
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726         int i;
727         struct mm_struct *mm = kvm->mm;
728
729         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730         kvm_destroy_vm_debugfs(kvm);
731         kvm_arch_sync_events(kvm);
732         mutex_lock(&kvm_lock);
733         list_del(&kvm->vm_list);
734         mutex_unlock(&kvm_lock);
735         kvm_free_irq_routing(kvm);
736         for (i = 0; i < KVM_NR_BUSES; i++) {
737                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738
739                 if (bus)
740                         kvm_io_bus_destroy(bus);
741                 kvm->buses[i] = NULL;
742         }
743         kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747         kvm_arch_flush_shadow_all(kvm);
748 #endif
749         kvm_arch_destroy_vm(kvm);
750         kvm_destroy_devices(kvm);
751         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753         cleanup_srcu_struct(&kvm->irq_srcu);
754         cleanup_srcu_struct(&kvm->srcu);
755         kvm_arch_free_vm(kvm);
756         preempt_notifier_dec();
757         hardware_disable_all();
758         mmdrop(mm);
759 }
760
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763         refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769         if (refcount_dec_and_test(&kvm->users_count))
770                 kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773
774
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777         struct kvm *kvm = filp->private_data;
778
779         kvm_irqfd_release(kvm);
780
781         kvm_put_kvm(kvm);
782         return 0;
783 }
784
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792
793         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
794         if (!memslot->dirty_bitmap)
795                 return -ENOMEM;
796
797         return 0;
798 }
799
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807                             struct kvm_memory_slot *new,
808                             enum kvm_mr_change change)
809 {
810         int id = new->id;
811         int i = slots->id_to_index[id];
812         struct kvm_memory_slot *mslots = slots->memslots;
813
814         WARN_ON(mslots[i].id != id);
815         switch (change) {
816         case KVM_MR_CREATE:
817                 slots->used_slots++;
818                 WARN_ON(mslots[i].npages || !new->npages);
819                 break;
820         case KVM_MR_DELETE:
821                 slots->used_slots--;
822                 WARN_ON(new->npages || !mslots[i].npages);
823                 break;
824         default:
825                 break;
826         }
827
828         while (i < KVM_MEM_SLOTS_NUM - 1 &&
829                new->base_gfn <= mslots[i + 1].base_gfn) {
830                 if (!mslots[i + 1].npages)
831                         break;
832                 mslots[i] = mslots[i + 1];
833                 slots->id_to_index[mslots[i].id] = i;
834                 i++;
835         }
836
837         /*
838          * The ">=" is needed when creating a slot with base_gfn == 0,
839          * so that it moves before all those with base_gfn == npages == 0.
840          *
841          * On the other hand, if new->npages is zero, the above loop has
842          * already left i pointing to the beginning of the empty part of
843          * mslots, and the ">=" would move the hole backwards in this
844          * case---which is wrong.  So skip the loop when deleting a slot.
845          */
846         if (new->npages) {
847                 while (i > 0 &&
848                        new->base_gfn >= mslots[i - 1].base_gfn) {
849                         mslots[i] = mslots[i - 1];
850                         slots->id_to_index[mslots[i].id] = i;
851                         i--;
852                 }
853         } else
854                 WARN_ON_ONCE(i != slots->used_slots);
855
856         mslots[i] = *new;
857         slots->id_to_index[mslots[i].id] = i;
858 }
859
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863
864 #ifdef __KVM_HAVE_READONLY_MEM
865         valid_flags |= KVM_MEM_READONLY;
866 #endif
867
868         if (mem->flags & ~valid_flags)
869                 return -EINVAL;
870
871         return 0;
872 }
873
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875                 int as_id, struct kvm_memslots *slots)
876 {
877         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878         u64 gen = old_memslots->generation;
879
880         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
881         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
882
883         rcu_assign_pointer(kvm->memslots[as_id], slots);
884         synchronize_srcu_expedited(&kvm->srcu);
885
886         /*
887          * Increment the new memslot generation a second time, dropping the
888          * update in-progress flag and incrementing then generation based on
889          * the number of address spaces.  This provides a unique and easily
890          * identifiable generation number while the memslots are in flux.
891          */
892         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
893
894         /*
895          * Generations must be unique even across address spaces.  We do not need
896          * a global counter for that, instead the generation space is evenly split
897          * across address spaces.  For example, with two address spaces, address
898          * space 0 will use generations 0, 2, 4, ... while address space 1 will
899          * use generations 1, 3, 5, ...
900          */
901         gen += KVM_ADDRESS_SPACE_NUM;
902
903         kvm_arch_memslots_updated(kvm, gen);
904
905         slots->generation = gen;
906
907         return old_memslots;
908 }
909
910 /*
911  * Allocate some memory and give it an address in the guest physical address
912  * space.
913  *
914  * Discontiguous memory is allowed, mostly for framebuffers.
915  *
916  * Must be called holding kvm->slots_lock for write.
917  */
918 int __kvm_set_memory_region(struct kvm *kvm,
919                             const struct kvm_userspace_memory_region *mem)
920 {
921         int r;
922         gfn_t base_gfn;
923         unsigned long npages;
924         struct kvm_memory_slot *slot;
925         struct kvm_memory_slot old, new;
926         struct kvm_memslots *slots = NULL, *old_memslots;
927         int as_id, id;
928         enum kvm_mr_change change;
929
930         r = check_memory_region_flags(mem);
931         if (r)
932                 goto out;
933
934         r = -EINVAL;
935         as_id = mem->slot >> 16;
936         id = (u16)mem->slot;
937
938         /* General sanity checks */
939         if (mem->memory_size & (PAGE_SIZE - 1))
940                 goto out;
941         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
942                 goto out;
943         /* We can read the guest memory with __xxx_user() later on. */
944         if ((id < KVM_USER_MEM_SLOTS) &&
945             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
946              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
947                         mem->memory_size)))
948                 goto out;
949         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
950                 goto out;
951         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952                 goto out;
953
954         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
955         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
956         npages = mem->memory_size >> PAGE_SHIFT;
957
958         if (npages > KVM_MEM_MAX_NR_PAGES)
959                 goto out;
960
961         new = old = *slot;
962
963         new.id = id;
964         new.base_gfn = base_gfn;
965         new.npages = npages;
966         new.flags = mem->flags;
967
968         if (npages) {
969                 if (!old.npages)
970                         change = KVM_MR_CREATE;
971                 else { /* Modify an existing slot. */
972                         if ((mem->userspace_addr != old.userspace_addr) ||
973                             (npages != old.npages) ||
974                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975                                 goto out;
976
977                         if (base_gfn != old.base_gfn)
978                                 change = KVM_MR_MOVE;
979                         else if (new.flags != old.flags)
980                                 change = KVM_MR_FLAGS_ONLY;
981                         else { /* Nothing to change. */
982                                 r = 0;
983                                 goto out;
984                         }
985                 }
986         } else {
987                 if (!old.npages)
988                         goto out;
989
990                 change = KVM_MR_DELETE;
991                 new.base_gfn = 0;
992                 new.flags = 0;
993         }
994
995         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
996                 /* Check for overlaps */
997                 r = -EEXIST;
998                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999                         if (slot->id == id)
1000                                 continue;
1001                         if (!((base_gfn + npages <= slot->base_gfn) ||
1002                               (base_gfn >= slot->base_gfn + slot->npages)))
1003                                 goto out;
1004                 }
1005         }
1006
1007         /* Free page dirty bitmap if unneeded */
1008         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009                 new.dirty_bitmap = NULL;
1010
1011         r = -ENOMEM;
1012         if (change == KVM_MR_CREATE) {
1013                 new.userspace_addr = mem->userspace_addr;
1014
1015                 if (kvm_arch_create_memslot(kvm, &new, npages))
1016                         goto out_free;
1017         }
1018
1019         /* Allocate page dirty bitmap if needed */
1020         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021                 if (kvm_create_dirty_bitmap(&new) < 0)
1022                         goto out_free;
1023         }
1024
1025         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026         if (!slots)
1027                 goto out_free;
1028         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029
1030         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031                 slot = id_to_memslot(slots, id);
1032                 slot->flags |= KVM_MEMSLOT_INVALID;
1033
1034                 old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036                 /* From this point no new shadow pages pointing to a deleted,
1037                  * or moved, memslot will be created.
1038                  *
1039                  * validation of sp->gfn happens in:
1040                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041                  *      - kvm_is_visible_gfn (mmu_check_roots)
1042                  */
1043                 kvm_arch_flush_shadow_memslot(kvm, slot);
1044
1045                 /*
1046                  * We can re-use the old_memslots from above, the only difference
1047                  * from the currently installed memslots is the invalid flag.  This
1048                  * will get overwritten by update_memslots anyway.
1049                  */
1050                 slots = old_memslots;
1051         }
1052
1053         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054         if (r)
1055                 goto out_slots;
1056
1057         /* actual memory is freed via old in kvm_free_memslot below */
1058         if (change == KVM_MR_DELETE) {
1059                 new.dirty_bitmap = NULL;
1060                 memset(&new.arch, 0, sizeof(new.arch));
1061         }
1062
1063         update_memslots(slots, &new, change);
1064         old_memslots = install_new_memslots(kvm, as_id, slots);
1065
1066         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067
1068         kvm_free_memslot(kvm, &old, &new);
1069         kvfree(old_memslots);
1070         return 0;
1071
1072 out_slots:
1073         kvfree(slots);
1074 out_free:
1075         kvm_free_memslot(kvm, &new, &old);
1076 out:
1077         return r;
1078 }
1079 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081 int kvm_set_memory_region(struct kvm *kvm,
1082                           const struct kvm_userspace_memory_region *mem)
1083 {
1084         int r;
1085
1086         mutex_lock(&kvm->slots_lock);
1087         r = __kvm_set_memory_region(kvm, mem);
1088         mutex_unlock(&kvm->slots_lock);
1089         return r;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094                                           struct kvm_userspace_memory_region *mem)
1095 {
1096         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097                 return -EINVAL;
1098
1099         return kvm_set_memory_region(kvm, mem);
1100 }
1101
1102 int kvm_get_dirty_log(struct kvm *kvm,
1103                         struct kvm_dirty_log *log, int *is_dirty)
1104 {
1105         struct kvm_memslots *slots;
1106         struct kvm_memory_slot *memslot;
1107         int i, as_id, id;
1108         unsigned long n;
1109         unsigned long any = 0;
1110
1111         as_id = log->slot >> 16;
1112         id = (u16)log->slot;
1113         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114                 return -EINVAL;
1115
1116         slots = __kvm_memslots(kvm, as_id);
1117         memslot = id_to_memslot(slots, id);
1118         if (!memslot->dirty_bitmap)
1119                 return -ENOENT;
1120
1121         n = kvm_dirty_bitmap_bytes(memslot);
1122
1123         for (i = 0; !any && i < n/sizeof(long); ++i)
1124                 any = memslot->dirty_bitmap[i];
1125
1126         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127                 return -EFAULT;
1128
1129         if (any)
1130                 *is_dirty = 1;
1131         return 0;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136 /**
1137  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1138  *      and reenable dirty page tracking for the corresponding pages.
1139  * @kvm:        pointer to kvm instance
1140  * @log:        slot id and address to which we copy the log
1141  * @flush:      true if TLB flush is needed by caller
1142  *
1143  * We need to keep it in mind that VCPU threads can write to the bitmap
1144  * concurrently. So, to avoid losing track of dirty pages we keep the
1145  * following order:
1146  *
1147  *    1. Take a snapshot of the bit and clear it if needed.
1148  *    2. Write protect the corresponding page.
1149  *    3. Copy the snapshot to the userspace.
1150  *    4. Upon return caller flushes TLB's if needed.
1151  *
1152  * Between 2 and 4, the guest may write to the page using the remaining TLB
1153  * entry.  This is not a problem because the page is reported dirty using
1154  * the snapshot taken before and step 4 ensures that writes done after
1155  * exiting to userspace will be logged for the next call.
1156  *
1157  */
1158 int kvm_get_dirty_log_protect(struct kvm *kvm,
1159                         struct kvm_dirty_log *log, bool *flush)
1160 {
1161         struct kvm_memslots *slots;
1162         struct kvm_memory_slot *memslot;
1163         int i, as_id, id;
1164         unsigned long n;
1165         unsigned long *dirty_bitmap;
1166         unsigned long *dirty_bitmap_buffer;
1167
1168         as_id = log->slot >> 16;
1169         id = (u16)log->slot;
1170         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171                 return -EINVAL;
1172
1173         slots = __kvm_memslots(kvm, as_id);
1174         memslot = id_to_memslot(slots, id);
1175
1176         dirty_bitmap = memslot->dirty_bitmap;
1177         if (!dirty_bitmap)
1178                 return -ENOENT;
1179
1180         n = kvm_dirty_bitmap_bytes(memslot);
1181         *flush = false;
1182         if (kvm->manual_dirty_log_protect) {
1183                 /*
1184                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1185                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186                  * is some code duplication between this function and
1187                  * kvm_get_dirty_log, but hopefully all architecture
1188                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189                  * can be eliminated.
1190                  */
1191                 dirty_bitmap_buffer = dirty_bitmap;
1192         } else {
1193                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194                 memset(dirty_bitmap_buffer, 0, n);
1195
1196                 spin_lock(&kvm->mmu_lock);
1197                 for (i = 0; i < n / sizeof(long); i++) {
1198                         unsigned long mask;
1199                         gfn_t offset;
1200
1201                         if (!dirty_bitmap[i])
1202                                 continue;
1203
1204                         *flush = true;
1205                         mask = xchg(&dirty_bitmap[i], 0);
1206                         dirty_bitmap_buffer[i] = mask;
1207
1208                         offset = i * BITS_PER_LONG;
1209                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210                                                                 offset, mask);
1211                 }
1212                 spin_unlock(&kvm->mmu_lock);
1213         }
1214
1215         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216                 return -EFAULT;
1217         return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221 /**
1222  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223  *      and reenable dirty page tracking for the corresponding pages.
1224  * @kvm:        pointer to kvm instance
1225  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1226  * @flush:      true if TLB flush is needed by caller
1227  */
1228 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229                                 struct kvm_clear_dirty_log *log, bool *flush)
1230 {
1231         struct kvm_memslots *slots;
1232         struct kvm_memory_slot *memslot;
1233         int as_id, id;
1234         gfn_t offset;
1235         unsigned long i, n;
1236         unsigned long *dirty_bitmap;
1237         unsigned long *dirty_bitmap_buffer;
1238
1239         as_id = log->slot >> 16;
1240         id = (u16)log->slot;
1241         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242                 return -EINVAL;
1243
1244         if (log->first_page & 63)
1245                 return -EINVAL;
1246
1247         slots = __kvm_memslots(kvm, as_id);
1248         memslot = id_to_memslot(slots, id);
1249
1250         dirty_bitmap = memslot->dirty_bitmap;
1251         if (!dirty_bitmap)
1252                 return -ENOENT;
1253
1254         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255
1256         if (log->first_page > memslot->npages ||
1257             log->num_pages > memslot->npages - log->first_page ||
1258             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259             return -EINVAL;
1260
1261         *flush = false;
1262         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264                 return -EFAULT;
1265
1266         spin_lock(&kvm->mmu_lock);
1267         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1268                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1269              i++, offset += BITS_PER_LONG) {
1270                 unsigned long mask = *dirty_bitmap_buffer++;
1271                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272                 if (!mask)
1273                         continue;
1274
1275                 mask &= atomic_long_fetch_andnot(mask, p);
1276
1277                 /*
1278                  * mask contains the bits that really have been cleared.  This
1279                  * never includes any bits beyond the length of the memslot (if
1280                  * the length is not aligned to 64 pages), therefore it is not
1281                  * a problem if userspace sets them in log->dirty_bitmap.
1282                 */
1283                 if (mask) {
1284                         *flush = true;
1285                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286                                                                 offset, mask);
1287                 }
1288         }
1289         spin_unlock(&kvm->mmu_lock);
1290
1291         return 0;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294 #endif
1295
1296 bool kvm_largepages_enabled(void)
1297 {
1298         return largepages_enabled;
1299 }
1300
1301 void kvm_disable_largepages(void)
1302 {
1303         largepages_enabled = false;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306
1307 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308 {
1309         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310 }
1311 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312
1313 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314 {
1315         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316 }
1317
1318 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319 {
1320         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321
1322         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323               memslot->flags & KVM_MEMSLOT_INVALID)
1324                 return false;
1325
1326         return true;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329
1330 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331 {
1332         struct vm_area_struct *vma;
1333         unsigned long addr, size;
1334
1335         size = PAGE_SIZE;
1336
1337         addr = gfn_to_hva(kvm, gfn);
1338         if (kvm_is_error_hva(addr))
1339                 return PAGE_SIZE;
1340
1341         down_read(&current->mm->mmap_sem);
1342         vma = find_vma(current->mm, addr);
1343         if (!vma)
1344                 goto out;
1345
1346         size = vma_kernel_pagesize(vma);
1347
1348 out:
1349         up_read(&current->mm->mmap_sem);
1350
1351         return size;
1352 }
1353
1354 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355 {
1356         return slot->flags & KVM_MEM_READONLY;
1357 }
1358
1359 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360                                        gfn_t *nr_pages, bool write)
1361 {
1362         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363                 return KVM_HVA_ERR_BAD;
1364
1365         if (memslot_is_readonly(slot) && write)
1366                 return KVM_HVA_ERR_RO_BAD;
1367
1368         if (nr_pages)
1369                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370
1371         return __gfn_to_hva_memslot(slot, gfn);
1372 }
1373
1374 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375                                      gfn_t *nr_pages)
1376 {
1377         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378 }
1379
1380 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381                                         gfn_t gfn)
1382 {
1383         return gfn_to_hva_many(slot, gfn, NULL);
1384 }
1385 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386
1387 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388 {
1389         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390 }
1391 EXPORT_SYMBOL_GPL(gfn_to_hva);
1392
1393 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394 {
1395         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398
1399 /*
1400  * Return the hva of a @gfn and the R/W attribute if possible.
1401  *
1402  * @slot: the kvm_memory_slot which contains @gfn
1403  * @gfn: the gfn to be translated
1404  * @writable: used to return the read/write attribute of the @slot if the hva
1405  * is valid and @writable is not NULL
1406  */
1407 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408                                       gfn_t gfn, bool *writable)
1409 {
1410         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411
1412         if (!kvm_is_error_hva(hva) && writable)
1413                 *writable = !memslot_is_readonly(slot);
1414
1415         return hva;
1416 }
1417
1418 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419 {
1420         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421
1422         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423 }
1424
1425 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426 {
1427         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428
1429         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430 }
1431
1432 static inline int check_user_page_hwpoison(unsigned long addr)
1433 {
1434         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435
1436         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437         return rc == -EHWPOISON;
1438 }
1439
1440 /*
1441  * The fast path to get the writable pfn which will be stored in @pfn,
1442  * true indicates success, otherwise false is returned.  It's also the
1443  * only part that runs if we can are in atomic context.
1444  */
1445 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446                             bool *writable, kvm_pfn_t *pfn)
1447 {
1448         struct page *page[1];
1449         int npages;
1450
1451         /*
1452          * Fast pin a writable pfn only if it is a write fault request
1453          * or the caller allows to map a writable pfn for a read fault
1454          * request.
1455          */
1456         if (!(write_fault || writable))
1457                 return false;
1458
1459         npages = __get_user_pages_fast(addr, 1, 1, page);
1460         if (npages == 1) {
1461                 *pfn = page_to_pfn(page[0]);
1462
1463                 if (writable)
1464                         *writable = true;
1465                 return true;
1466         }
1467
1468         return false;
1469 }
1470
1471 /*
1472  * The slow path to get the pfn of the specified host virtual address,
1473  * 1 indicates success, -errno is returned if error is detected.
1474  */
1475 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476                            bool *writable, kvm_pfn_t *pfn)
1477 {
1478         unsigned int flags = FOLL_HWPOISON;
1479         struct page *page;
1480         int npages = 0;
1481
1482         might_sleep();
1483
1484         if (writable)
1485                 *writable = write_fault;
1486
1487         if (write_fault)
1488                 flags |= FOLL_WRITE;
1489         if (async)
1490                 flags |= FOLL_NOWAIT;
1491
1492         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493         if (npages != 1)
1494                 return npages;
1495
1496         /* map read fault as writable if possible */
1497         if (unlikely(!write_fault) && writable) {
1498                 struct page *wpage;
1499
1500                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501                         *writable = true;
1502                         put_page(page);
1503                         page = wpage;
1504                 }
1505         }
1506         *pfn = page_to_pfn(page);
1507         return npages;
1508 }
1509
1510 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511 {
1512         if (unlikely(!(vma->vm_flags & VM_READ)))
1513                 return false;
1514
1515         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516                 return false;
1517
1518         return true;
1519 }
1520
1521 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522                                unsigned long addr, bool *async,
1523                                bool write_fault, bool *writable,
1524                                kvm_pfn_t *p_pfn)
1525 {
1526         unsigned long pfn;
1527         int r;
1528
1529         r = follow_pfn(vma, addr, &pfn);
1530         if (r) {
1531                 /*
1532                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533                  * not call the fault handler, so do it here.
1534                  */
1535                 bool unlocked = false;
1536                 r = fixup_user_fault(current, current->mm, addr,
1537                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1538                                      &unlocked);
1539                 if (unlocked)
1540                         return -EAGAIN;
1541                 if (r)
1542                         return r;
1543
1544                 r = follow_pfn(vma, addr, &pfn);
1545                 if (r)
1546                         return r;
1547
1548         }
1549
1550         if (writable)
1551                 *writable = true;
1552
1553         /*
1554          * Get a reference here because callers of *hva_to_pfn* and
1555          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558          * simply do nothing for reserved pfns.
1559          *
1560          * Whoever called remap_pfn_range is also going to call e.g.
1561          * unmap_mapping_range before the underlying pages are freed,
1562          * causing a call to our MMU notifier.
1563          */ 
1564         kvm_get_pfn(pfn);
1565
1566         *p_pfn = pfn;
1567         return 0;
1568 }
1569
1570 /*
1571  * Pin guest page in memory and return its pfn.
1572  * @addr: host virtual address which maps memory to the guest
1573  * @atomic: whether this function can sleep
1574  * @async: whether this function need to wait IO complete if the
1575  *         host page is not in the memory
1576  * @write_fault: whether we should get a writable host page
1577  * @writable: whether it allows to map a writable host page for !@write_fault
1578  *
1579  * The function will map a writable host page for these two cases:
1580  * 1): @write_fault = true
1581  * 2): @write_fault = false && @writable, @writable will tell the caller
1582  *     whether the mapping is writable.
1583  */
1584 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585                         bool write_fault, bool *writable)
1586 {
1587         struct vm_area_struct *vma;
1588         kvm_pfn_t pfn = 0;
1589         int npages, r;
1590
1591         /* we can do it either atomically or asynchronously, not both */
1592         BUG_ON(atomic && async);
1593
1594         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595                 return pfn;
1596
1597         if (atomic)
1598                 return KVM_PFN_ERR_FAULT;
1599
1600         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601         if (npages == 1)
1602                 return pfn;
1603
1604         down_read(&current->mm->mmap_sem);
1605         if (npages == -EHWPOISON ||
1606               (!async && check_user_page_hwpoison(addr))) {
1607                 pfn = KVM_PFN_ERR_HWPOISON;
1608                 goto exit;
1609         }
1610
1611 retry:
1612         vma = find_vma_intersection(current->mm, addr, addr + 1);
1613
1614         if (vma == NULL)
1615                 pfn = KVM_PFN_ERR_FAULT;
1616         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618                 if (r == -EAGAIN)
1619                         goto retry;
1620                 if (r < 0)
1621                         pfn = KVM_PFN_ERR_FAULT;
1622         } else {
1623                 if (async && vma_is_valid(vma, write_fault))
1624                         *async = true;
1625                 pfn = KVM_PFN_ERR_FAULT;
1626         }
1627 exit:
1628         up_read(&current->mm->mmap_sem);
1629         return pfn;
1630 }
1631
1632 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633                                bool atomic, bool *async, bool write_fault,
1634                                bool *writable)
1635 {
1636         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637
1638         if (addr == KVM_HVA_ERR_RO_BAD) {
1639                 if (writable)
1640                         *writable = false;
1641                 return KVM_PFN_ERR_RO_FAULT;
1642         }
1643
1644         if (kvm_is_error_hva(addr)) {
1645                 if (writable)
1646                         *writable = false;
1647                 return KVM_PFN_NOSLOT;
1648         }
1649
1650         /* Do not map writable pfn in the readonly memslot. */
1651         if (writable && memslot_is_readonly(slot)) {
1652                 *writable = false;
1653                 writable = NULL;
1654         }
1655
1656         return hva_to_pfn(addr, atomic, async, write_fault,
1657                           writable);
1658 }
1659 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660
1661 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662                       bool *writable)
1663 {
1664         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665                                     write_fault, writable);
1666 }
1667 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668
1669 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670 {
1671         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672 }
1673 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674
1675 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676 {
1677         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680
1681 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682 {
1683         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684 }
1685 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686
1687 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688 {
1689         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690 }
1691 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692
1693 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694 {
1695         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696 }
1697 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698
1699 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700 {
1701         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704
1705 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706                             struct page **pages, int nr_pages)
1707 {
1708         unsigned long addr;
1709         gfn_t entry = 0;
1710
1711         addr = gfn_to_hva_many(slot, gfn, &entry);
1712         if (kvm_is_error_hva(addr))
1713                 return -1;
1714
1715         if (entry < nr_pages)
1716                 return 0;
1717
1718         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719 }
1720 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721
1722 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723 {
1724         if (is_error_noslot_pfn(pfn))
1725                 return KVM_ERR_PTR_BAD_PAGE;
1726
1727         if (kvm_is_reserved_pfn(pfn)) {
1728                 WARN_ON(1);
1729                 return KVM_ERR_PTR_BAD_PAGE;
1730         }
1731
1732         return pfn_to_page(pfn);
1733 }
1734
1735 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736 {
1737         kvm_pfn_t pfn;
1738
1739         pfn = gfn_to_pfn(kvm, gfn);
1740
1741         return kvm_pfn_to_page(pfn);
1742 }
1743 EXPORT_SYMBOL_GPL(gfn_to_page);
1744
1745 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1746                          struct kvm_host_map *map)
1747 {
1748         kvm_pfn_t pfn;
1749         void *hva = NULL;
1750         struct page *page = KVM_UNMAPPED_PAGE;
1751
1752         if (!map)
1753                 return -EINVAL;
1754
1755         pfn = gfn_to_pfn_memslot(slot, gfn);
1756         if (is_error_noslot_pfn(pfn))
1757                 return -EINVAL;
1758
1759         if (pfn_valid(pfn)) {
1760                 page = pfn_to_page(pfn);
1761                 hva = kmap(page);
1762 #ifdef CONFIG_HAS_IOMEM
1763         } else {
1764                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765 #endif
1766         }
1767
1768         if (!hva)
1769                 return -EFAULT;
1770
1771         map->page = page;
1772         map->hva = hva;
1773         map->pfn = pfn;
1774         map->gfn = gfn;
1775
1776         return 0;
1777 }
1778
1779 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1780 {
1781         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1784
1785 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1786                     bool dirty)
1787 {
1788         if (!map)
1789                 return;
1790
1791         if (!map->hva)
1792                 return;
1793
1794         if (map->page != KVM_UNMAPPED_PAGE)
1795                 kunmap(map->page);
1796 #ifdef CONFIG_HAS_IOMEM
1797         else
1798                 memunmap(map->hva);
1799 #endif
1800
1801         if (dirty) {
1802                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1803                 kvm_release_pfn_dirty(map->pfn);
1804         } else {
1805                 kvm_release_pfn_clean(map->pfn);
1806         }
1807
1808         map->hva = NULL;
1809         map->page = NULL;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812
1813 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814 {
1815         kvm_pfn_t pfn;
1816
1817         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818
1819         return kvm_pfn_to_page(pfn);
1820 }
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822
1823 void kvm_release_page_clean(struct page *page)
1824 {
1825         WARN_ON(is_error_page(page));
1826
1827         kvm_release_pfn_clean(page_to_pfn(page));
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830
1831 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832 {
1833         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1834                 put_page(pfn_to_page(pfn));
1835 }
1836 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837
1838 void kvm_release_page_dirty(struct page *page)
1839 {
1840         WARN_ON(is_error_page(page));
1841
1842         kvm_release_pfn_dirty(page_to_pfn(page));
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845
1846 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847 {
1848         kvm_set_pfn_dirty(pfn);
1849         kvm_release_pfn_clean(pfn);
1850 }
1851 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852
1853 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854 {
1855         if (!kvm_is_reserved_pfn(pfn)) {
1856                 struct page *page = pfn_to_page(pfn);
1857
1858                 SetPageDirty(page);
1859         }
1860 }
1861 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1862
1863 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1864 {
1865         if (!kvm_is_reserved_pfn(pfn))
1866                 mark_page_accessed(pfn_to_page(pfn));
1867 }
1868 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1869
1870 void kvm_get_pfn(kvm_pfn_t pfn)
1871 {
1872         if (!kvm_is_reserved_pfn(pfn))
1873                 get_page(pfn_to_page(pfn));
1874 }
1875 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1876
1877 static int next_segment(unsigned long len, int offset)
1878 {
1879         if (len > PAGE_SIZE - offset)
1880                 return PAGE_SIZE - offset;
1881         else
1882                 return len;
1883 }
1884
1885 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1886                                  void *data, int offset, int len)
1887 {
1888         int r;
1889         unsigned long addr;
1890
1891         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1892         if (kvm_is_error_hva(addr))
1893                 return -EFAULT;
1894         r = __copy_from_user(data, (void __user *)addr + offset, len);
1895         if (r)
1896                 return -EFAULT;
1897         return 0;
1898 }
1899
1900 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1901                         int len)
1902 {
1903         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1904
1905         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1908
1909 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1910                              int offset, int len)
1911 {
1912         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1913
1914         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1917
1918 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1919 {
1920         gfn_t gfn = gpa >> PAGE_SHIFT;
1921         int seg;
1922         int offset = offset_in_page(gpa);
1923         int ret;
1924
1925         while ((seg = next_segment(len, offset)) != 0) {
1926                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1927                 if (ret < 0)
1928                         return ret;
1929                 offset = 0;
1930                 len -= seg;
1931                 data += seg;
1932                 ++gfn;
1933         }
1934         return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_read_guest);
1937
1938 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1939 {
1940         gfn_t gfn = gpa >> PAGE_SHIFT;
1941         int seg;
1942         int offset = offset_in_page(gpa);
1943         int ret;
1944
1945         while ((seg = next_segment(len, offset)) != 0) {
1946                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1947                 if (ret < 0)
1948                         return ret;
1949                 offset = 0;
1950                 len -= seg;
1951                 data += seg;
1952                 ++gfn;
1953         }
1954         return 0;
1955 }
1956 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1957
1958 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1959                                    void *data, int offset, unsigned long len)
1960 {
1961         int r;
1962         unsigned long addr;
1963
1964         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1965         if (kvm_is_error_hva(addr))
1966                 return -EFAULT;
1967         pagefault_disable();
1968         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1969         pagefault_enable();
1970         if (r)
1971                 return -EFAULT;
1972         return 0;
1973 }
1974
1975 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1976                           unsigned long len)
1977 {
1978         gfn_t gfn = gpa >> PAGE_SHIFT;
1979         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1980         int offset = offset_in_page(gpa);
1981
1982         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1983 }
1984 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1985
1986 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1987                                void *data, unsigned long len)
1988 {
1989         gfn_t gfn = gpa >> PAGE_SHIFT;
1990         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1991         int offset = offset_in_page(gpa);
1992
1993         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1996
1997 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1998                                   const void *data, int offset, int len)
1999 {
2000         int r;
2001         unsigned long addr;
2002
2003         addr = gfn_to_hva_memslot(memslot, gfn);
2004         if (kvm_is_error_hva(addr))
2005                 return -EFAULT;
2006         r = __copy_to_user((void __user *)addr + offset, data, len);
2007         if (r)
2008                 return -EFAULT;
2009         mark_page_dirty_in_slot(memslot, gfn);
2010         return 0;
2011 }
2012
2013 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2014                          const void *data, int offset, int len)
2015 {
2016         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2017
2018         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2021
2022 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2023                               const void *data, int offset, int len)
2024 {
2025         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2026
2027         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2030
2031 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2032                     unsigned long len)
2033 {
2034         gfn_t gfn = gpa >> PAGE_SHIFT;
2035         int seg;
2036         int offset = offset_in_page(gpa);
2037         int ret;
2038
2039         while ((seg = next_segment(len, offset)) != 0) {
2040                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2041                 if (ret < 0)
2042                         return ret;
2043                 offset = 0;
2044                 len -= seg;
2045                 data += seg;
2046                 ++gfn;
2047         }
2048         return 0;
2049 }
2050 EXPORT_SYMBOL_GPL(kvm_write_guest);
2051
2052 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2053                          unsigned long len)
2054 {
2055         gfn_t gfn = gpa >> PAGE_SHIFT;
2056         int seg;
2057         int offset = offset_in_page(gpa);
2058         int ret;
2059
2060         while ((seg = next_segment(len, offset)) != 0) {
2061                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2062                 if (ret < 0)
2063                         return ret;
2064                 offset = 0;
2065                 len -= seg;
2066                 data += seg;
2067                 ++gfn;
2068         }
2069         return 0;
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2072
2073 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2074                                        struct gfn_to_hva_cache *ghc,
2075                                        gpa_t gpa, unsigned long len)
2076 {
2077         int offset = offset_in_page(gpa);
2078         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2079         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2080         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2081         gfn_t nr_pages_avail;
2082         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2083
2084         ghc->gpa = gpa;
2085         ghc->generation = slots->generation;
2086         ghc->len = len;
2087         ghc->hva = KVM_HVA_ERR_BAD;
2088
2089         /*
2090          * If the requested region crosses two memslots, we still
2091          * verify that the entire region is valid here.
2092          */
2093         while (!r && start_gfn <= end_gfn) {
2094                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2095                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2096                                            &nr_pages_avail);
2097                 if (kvm_is_error_hva(ghc->hva))
2098                         r = -EFAULT;
2099                 start_gfn += nr_pages_avail;
2100         }
2101
2102         /* Use the slow path for cross page reads and writes. */
2103         if (!r && nr_pages_needed == 1)
2104                 ghc->hva += offset;
2105         else
2106                 ghc->memslot = NULL;
2107
2108         return r;
2109 }
2110
2111 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2112                               gpa_t gpa, unsigned long len)
2113 {
2114         struct kvm_memslots *slots = kvm_memslots(kvm);
2115         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2116 }
2117 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2118
2119 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2120                                   void *data, unsigned int offset,
2121                                   unsigned long len)
2122 {
2123         struct kvm_memslots *slots = kvm_memslots(kvm);
2124         int r;
2125         gpa_t gpa = ghc->gpa + offset;
2126
2127         BUG_ON(len + offset > ghc->len);
2128
2129         if (slots->generation != ghc->generation)
2130                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2131
2132         if (unlikely(!ghc->memslot))
2133                 return kvm_write_guest(kvm, gpa, data, len);
2134
2135         if (kvm_is_error_hva(ghc->hva))
2136                 return -EFAULT;
2137
2138         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2139         if (r)
2140                 return -EFAULT;
2141         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2142
2143         return 0;
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2146
2147 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2148                            void *data, unsigned long len)
2149 {
2150         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2151 }
2152 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2153
2154 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2155                            void *data, unsigned long len)
2156 {
2157         struct kvm_memslots *slots = kvm_memslots(kvm);
2158         int r;
2159
2160         BUG_ON(len > ghc->len);
2161
2162         if (slots->generation != ghc->generation)
2163                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2164
2165         if (unlikely(!ghc->memslot))
2166                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2167
2168         if (kvm_is_error_hva(ghc->hva))
2169                 return -EFAULT;
2170
2171         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2172         if (r)
2173                 return -EFAULT;
2174
2175         return 0;
2176 }
2177 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2178
2179 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2180 {
2181         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2182
2183         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2184 }
2185 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2186
2187 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2188 {
2189         gfn_t gfn = gpa >> PAGE_SHIFT;
2190         int seg;
2191         int offset = offset_in_page(gpa);
2192         int ret;
2193
2194         while ((seg = next_segment(len, offset)) != 0) {
2195                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2196                 if (ret < 0)
2197                         return ret;
2198                 offset = 0;
2199                 len -= seg;
2200                 ++gfn;
2201         }
2202         return 0;
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2205
2206 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2207                                     gfn_t gfn)
2208 {
2209         if (memslot && memslot->dirty_bitmap) {
2210                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2211
2212                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2213         }
2214 }
2215
2216 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2217 {
2218         struct kvm_memory_slot *memslot;
2219
2220         memslot = gfn_to_memslot(kvm, gfn);
2221         mark_page_dirty_in_slot(memslot, gfn);
2222 }
2223 EXPORT_SYMBOL_GPL(mark_page_dirty);
2224
2225 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2226 {
2227         struct kvm_memory_slot *memslot;
2228
2229         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2230         mark_page_dirty_in_slot(memslot, gfn);
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2233
2234 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2235 {
2236         if (!vcpu->sigset_active)
2237                 return;
2238
2239         /*
2240          * This does a lockless modification of ->real_blocked, which is fine
2241          * because, only current can change ->real_blocked and all readers of
2242          * ->real_blocked don't care as long ->real_blocked is always a subset
2243          * of ->blocked.
2244          */
2245         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2246 }
2247
2248 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2249 {
2250         if (!vcpu->sigset_active)
2251                 return;
2252
2253         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2254         sigemptyset(&current->real_blocked);
2255 }
2256
2257 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2258 {
2259         unsigned int old, val, grow, grow_start;
2260
2261         old = val = vcpu->halt_poll_ns;
2262         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2263         grow = READ_ONCE(halt_poll_ns_grow);
2264         if (!grow)
2265                 goto out;
2266
2267         val *= grow;
2268         if (val < grow_start)
2269                 val = grow_start;
2270
2271         if (val > halt_poll_ns)
2272                 val = halt_poll_ns;
2273
2274         vcpu->halt_poll_ns = val;
2275 out:
2276         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2277 }
2278
2279 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2280 {
2281         unsigned int old, val, shrink;
2282
2283         old = val = vcpu->halt_poll_ns;
2284         shrink = READ_ONCE(halt_poll_ns_shrink);
2285         if (shrink == 0)
2286                 val = 0;
2287         else
2288                 val /= shrink;
2289
2290         vcpu->halt_poll_ns = val;
2291         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2292 }
2293
2294 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2295 {
2296         int ret = -EINTR;
2297         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2298
2299         if (kvm_arch_vcpu_runnable(vcpu)) {
2300                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2301                 goto out;
2302         }
2303         if (kvm_cpu_has_pending_timer(vcpu))
2304                 goto out;
2305         if (signal_pending(current))
2306                 goto out;
2307
2308         ret = 0;
2309 out:
2310         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2311         return ret;
2312 }
2313
2314 /*
2315  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2316  */
2317 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2318 {
2319         ktime_t start, cur;
2320         DECLARE_SWAITQUEUE(wait);
2321         bool waited = false;
2322         u64 block_ns;
2323
2324         kvm_arch_vcpu_blocking(vcpu);
2325
2326         start = cur = ktime_get();
2327         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2328                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2329
2330                 ++vcpu->stat.halt_attempted_poll;
2331                 do {
2332                         /*
2333                          * This sets KVM_REQ_UNHALT if an interrupt
2334                          * arrives.
2335                          */
2336                         if (kvm_vcpu_check_block(vcpu) < 0) {
2337                                 ++vcpu->stat.halt_successful_poll;
2338                                 if (!vcpu_valid_wakeup(vcpu))
2339                                         ++vcpu->stat.halt_poll_invalid;
2340                                 goto out;
2341                         }
2342                         cur = ktime_get();
2343                 } while (single_task_running() && ktime_before(cur, stop));
2344         }
2345
2346         for (;;) {
2347                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2348
2349                 if (kvm_vcpu_check_block(vcpu) < 0)
2350                         break;
2351
2352                 waited = true;
2353                 schedule();
2354         }
2355
2356         finish_swait(&vcpu->wq, &wait);
2357         cur = ktime_get();
2358 out:
2359         kvm_arch_vcpu_unblocking(vcpu);
2360         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2361
2362         if (!vcpu_valid_wakeup(vcpu))
2363                 shrink_halt_poll_ns(vcpu);
2364         else if (halt_poll_ns) {
2365                 if (block_ns <= vcpu->halt_poll_ns)
2366                         ;
2367                 /* we had a long block, shrink polling */
2368                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2369                         shrink_halt_poll_ns(vcpu);
2370                 /* we had a short halt and our poll time is too small */
2371                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2372                         block_ns < halt_poll_ns)
2373                         grow_halt_poll_ns(vcpu);
2374         } else
2375                 vcpu->halt_poll_ns = 0;
2376
2377         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2378         kvm_arch_vcpu_block_finish(vcpu);
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2381
2382 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2383 {
2384         struct swait_queue_head *wqp;
2385
2386         wqp = kvm_arch_vcpu_wq(vcpu);
2387         if (swq_has_sleeper(wqp)) {
2388                 swake_up_one(wqp);
2389                 WRITE_ONCE(vcpu->ready, true);
2390                 ++vcpu->stat.halt_wakeup;
2391                 return true;
2392         }
2393
2394         return false;
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2397
2398 #ifndef CONFIG_S390
2399 /*
2400  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2401  */
2402 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2403 {
2404         int me;
2405         int cpu = vcpu->cpu;
2406
2407         if (kvm_vcpu_wake_up(vcpu))
2408                 return;
2409
2410         me = get_cpu();
2411         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2412                 if (kvm_arch_vcpu_should_kick(vcpu))
2413                         smp_send_reschedule(cpu);
2414         put_cpu();
2415 }
2416 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2417 #endif /* !CONFIG_S390 */
2418
2419 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2420 {
2421         struct pid *pid;
2422         struct task_struct *task = NULL;
2423         int ret = 0;
2424
2425         rcu_read_lock();
2426         pid = rcu_dereference(target->pid);
2427         if (pid)
2428                 task = get_pid_task(pid, PIDTYPE_PID);
2429         rcu_read_unlock();
2430         if (!task)
2431                 return ret;
2432         ret = yield_to(task, 1);
2433         put_task_struct(task);
2434
2435         return ret;
2436 }
2437 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2438
2439 /*
2440  * Helper that checks whether a VCPU is eligible for directed yield.
2441  * Most eligible candidate to yield is decided by following heuristics:
2442  *
2443  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2444  *  (preempted lock holder), indicated by @in_spin_loop.
2445  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2446  *
2447  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2448  *  chance last time (mostly it has become eligible now since we have probably
2449  *  yielded to lockholder in last iteration. This is done by toggling
2450  *  @dy_eligible each time a VCPU checked for eligibility.)
2451  *
2452  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2453  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2454  *  burning. Giving priority for a potential lock-holder increases lock
2455  *  progress.
2456  *
2457  *  Since algorithm is based on heuristics, accessing another VCPU data without
2458  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2459  *  and continue with next VCPU and so on.
2460  */
2461 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2462 {
2463 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2464         bool eligible;
2465
2466         eligible = !vcpu->spin_loop.in_spin_loop ||
2467                     vcpu->spin_loop.dy_eligible;
2468
2469         if (vcpu->spin_loop.in_spin_loop)
2470                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2471
2472         return eligible;
2473 #else
2474         return true;
2475 #endif
2476 }
2477
2478 /*
2479  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2480  * a vcpu_load/vcpu_put pair.  However, for most architectures
2481  * kvm_arch_vcpu_runnable does not require vcpu_load.
2482  */
2483 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2484 {
2485         return kvm_arch_vcpu_runnable(vcpu);
2486 }
2487
2488 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2489 {
2490         if (kvm_arch_dy_runnable(vcpu))
2491                 return true;
2492
2493 #ifdef CONFIG_KVM_ASYNC_PF
2494         if (!list_empty_careful(&vcpu->async_pf.done))
2495                 return true;
2496 #endif
2497
2498         return false;
2499 }
2500
2501 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2502 {
2503         struct kvm *kvm = me->kvm;
2504         struct kvm_vcpu *vcpu;
2505         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2506         int yielded = 0;
2507         int try = 3;
2508         int pass;
2509         int i;
2510
2511         kvm_vcpu_set_in_spin_loop(me, true);
2512         /*
2513          * We boost the priority of a VCPU that is runnable but not
2514          * currently running, because it got preempted by something
2515          * else and called schedule in __vcpu_run.  Hopefully that
2516          * VCPU is holding the lock that we need and will release it.
2517          * We approximate round-robin by starting at the last boosted VCPU.
2518          */
2519         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2520                 kvm_for_each_vcpu(i, vcpu, kvm) {
2521                         if (!pass && i <= last_boosted_vcpu) {
2522                                 i = last_boosted_vcpu;
2523                                 continue;
2524                         } else if (pass && i > last_boosted_vcpu)
2525                                 break;
2526                         if (!READ_ONCE(vcpu->ready))
2527                                 continue;
2528                         if (vcpu == me)
2529                                 continue;
2530                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2531                                 continue;
2532                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2533                                 !kvm_arch_vcpu_in_kernel(vcpu))
2534                                 continue;
2535                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2536                                 continue;
2537
2538                         yielded = kvm_vcpu_yield_to(vcpu);
2539                         if (yielded > 0) {
2540                                 kvm->last_boosted_vcpu = i;
2541                                 break;
2542                         } else if (yielded < 0) {
2543                                 try--;
2544                                 if (!try)
2545                                         break;
2546                         }
2547                 }
2548         }
2549         kvm_vcpu_set_in_spin_loop(me, false);
2550
2551         /* Ensure vcpu is not eligible during next spinloop */
2552         kvm_vcpu_set_dy_eligible(me, false);
2553 }
2554 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2555
2556 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2557 {
2558         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2559         struct page *page;
2560
2561         if (vmf->pgoff == 0)
2562                 page = virt_to_page(vcpu->run);
2563 #ifdef CONFIG_X86
2564         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2565                 page = virt_to_page(vcpu->arch.pio_data);
2566 #endif
2567 #ifdef CONFIG_KVM_MMIO
2568         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2569                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2570 #endif
2571         else
2572                 return kvm_arch_vcpu_fault(vcpu, vmf);
2573         get_page(page);
2574         vmf->page = page;
2575         return 0;
2576 }
2577
2578 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2579         .fault = kvm_vcpu_fault,
2580 };
2581
2582 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2583 {
2584         vma->vm_ops = &kvm_vcpu_vm_ops;
2585         return 0;
2586 }
2587
2588 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2589 {
2590         struct kvm_vcpu *vcpu = filp->private_data;
2591
2592         debugfs_remove_recursive(vcpu->debugfs_dentry);
2593         kvm_put_kvm(vcpu->kvm);
2594         return 0;
2595 }
2596
2597 static struct file_operations kvm_vcpu_fops = {
2598         .release        = kvm_vcpu_release,
2599         .unlocked_ioctl = kvm_vcpu_ioctl,
2600         .mmap           = kvm_vcpu_mmap,
2601         .llseek         = noop_llseek,
2602         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2603 };
2604
2605 /*
2606  * Allocates an inode for the vcpu.
2607  */
2608 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2609 {
2610         char name[8 + 1 + ITOA_MAX_LEN + 1];
2611
2612         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2613         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2614 }
2615
2616 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2617 {
2618 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2619         char dir_name[ITOA_MAX_LEN * 2];
2620
2621         if (!debugfs_initialized())
2622                 return;
2623
2624         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2625         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2626                                                   vcpu->kvm->debugfs_dentry);
2627
2628         kvm_arch_create_vcpu_debugfs(vcpu);
2629 #endif
2630 }
2631
2632 /*
2633  * Creates some virtual cpus.  Good luck creating more than one.
2634  */
2635 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2636 {
2637         int r;
2638         struct kvm_vcpu *vcpu;
2639
2640         if (id >= KVM_MAX_VCPU_ID)
2641                 return -EINVAL;
2642
2643         mutex_lock(&kvm->lock);
2644         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2645                 mutex_unlock(&kvm->lock);
2646                 return -EINVAL;
2647         }
2648
2649         kvm->created_vcpus++;
2650         mutex_unlock(&kvm->lock);
2651
2652         vcpu = kvm_arch_vcpu_create(kvm, id);
2653         if (IS_ERR(vcpu)) {
2654                 r = PTR_ERR(vcpu);
2655                 goto vcpu_decrement;
2656         }
2657
2658         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2659
2660         r = kvm_arch_vcpu_setup(vcpu);
2661         if (r)
2662                 goto vcpu_destroy;
2663
2664         kvm_create_vcpu_debugfs(vcpu);
2665
2666         mutex_lock(&kvm->lock);
2667         if (kvm_get_vcpu_by_id(kvm, id)) {
2668                 r = -EEXIST;
2669                 goto unlock_vcpu_destroy;
2670         }
2671
2672         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2673
2674         /* Now it's all set up, let userspace reach it */
2675         kvm_get_kvm(kvm);
2676         r = create_vcpu_fd(vcpu);
2677         if (r < 0) {
2678                 kvm_put_kvm(kvm);
2679                 goto unlock_vcpu_destroy;
2680         }
2681
2682         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2683
2684         /*
2685          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2686          * before kvm->online_vcpu's incremented value.
2687          */
2688         smp_wmb();
2689         atomic_inc(&kvm->online_vcpus);
2690
2691         mutex_unlock(&kvm->lock);
2692         kvm_arch_vcpu_postcreate(vcpu);
2693         return r;
2694
2695 unlock_vcpu_destroy:
2696         mutex_unlock(&kvm->lock);
2697         debugfs_remove_recursive(vcpu->debugfs_dentry);
2698 vcpu_destroy:
2699         kvm_arch_vcpu_destroy(vcpu);
2700 vcpu_decrement:
2701         mutex_lock(&kvm->lock);
2702         kvm->created_vcpus--;
2703         mutex_unlock(&kvm->lock);
2704         return r;
2705 }
2706
2707 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2708 {
2709         if (sigset) {
2710                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2711                 vcpu->sigset_active = 1;
2712                 vcpu->sigset = *sigset;
2713         } else
2714                 vcpu->sigset_active = 0;
2715         return 0;
2716 }
2717
2718 static long kvm_vcpu_ioctl(struct file *filp,
2719                            unsigned int ioctl, unsigned long arg)
2720 {
2721         struct kvm_vcpu *vcpu = filp->private_data;
2722         void __user *argp = (void __user *)arg;
2723         int r;
2724         struct kvm_fpu *fpu = NULL;
2725         struct kvm_sregs *kvm_sregs = NULL;
2726
2727         if (vcpu->kvm->mm != current->mm)
2728                 return -EIO;
2729
2730         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2731                 return -EINVAL;
2732
2733         /*
2734          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2735          * execution; mutex_lock() would break them.
2736          */
2737         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2738         if (r != -ENOIOCTLCMD)
2739                 return r;
2740
2741         if (mutex_lock_killable(&vcpu->mutex))
2742                 return -EINTR;
2743         switch (ioctl) {
2744         case KVM_RUN: {
2745                 struct pid *oldpid;
2746                 r = -EINVAL;
2747                 if (arg)
2748                         goto out;
2749                 oldpid = rcu_access_pointer(vcpu->pid);
2750                 if (unlikely(oldpid != task_pid(current))) {
2751                         /* The thread running this VCPU changed. */
2752                         struct pid *newpid;
2753
2754                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2755                         if (r)
2756                                 break;
2757
2758                         newpid = get_task_pid(current, PIDTYPE_PID);
2759                         rcu_assign_pointer(vcpu->pid, newpid);
2760                         if (oldpid)
2761                                 synchronize_rcu();
2762                         put_pid(oldpid);
2763                 }
2764                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2765                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2766                 break;
2767         }
2768         case KVM_GET_REGS: {
2769                 struct kvm_regs *kvm_regs;
2770
2771                 r = -ENOMEM;
2772                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2773                 if (!kvm_regs)
2774                         goto out;
2775                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2776                 if (r)
2777                         goto out_free1;
2778                 r = -EFAULT;
2779                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2780                         goto out_free1;
2781                 r = 0;
2782 out_free1:
2783                 kfree(kvm_regs);
2784                 break;
2785         }
2786         case KVM_SET_REGS: {
2787                 struct kvm_regs *kvm_regs;
2788
2789                 r = -ENOMEM;
2790                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2791                 if (IS_ERR(kvm_regs)) {
2792                         r = PTR_ERR(kvm_regs);
2793                         goto out;
2794                 }
2795                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2796                 kfree(kvm_regs);
2797                 break;
2798         }
2799         case KVM_GET_SREGS: {
2800                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2801                                     GFP_KERNEL_ACCOUNT);
2802                 r = -ENOMEM;
2803                 if (!kvm_sregs)
2804                         goto out;
2805                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2806                 if (r)
2807                         goto out;
2808                 r = -EFAULT;
2809                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2810                         goto out;
2811                 r = 0;
2812                 break;
2813         }
2814         case KVM_SET_SREGS: {
2815                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2816                 if (IS_ERR(kvm_sregs)) {
2817                         r = PTR_ERR(kvm_sregs);
2818                         kvm_sregs = NULL;
2819                         goto out;
2820                 }
2821                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2822                 break;
2823         }
2824         case KVM_GET_MP_STATE: {
2825                 struct kvm_mp_state mp_state;
2826
2827                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2828                 if (r)
2829                         goto out;
2830                 r = -EFAULT;
2831                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2832                         goto out;
2833                 r = 0;
2834                 break;
2835         }
2836         case KVM_SET_MP_STATE: {
2837                 struct kvm_mp_state mp_state;
2838
2839                 r = -EFAULT;
2840                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2841                         goto out;
2842                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2843                 break;
2844         }
2845         case KVM_TRANSLATE: {
2846                 struct kvm_translation tr;
2847
2848                 r = -EFAULT;
2849                 if (copy_from_user(&tr, argp, sizeof(tr)))
2850                         goto out;
2851                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2852                 if (r)
2853                         goto out;
2854                 r = -EFAULT;
2855                 if (copy_to_user(argp, &tr, sizeof(tr)))
2856                         goto out;
2857                 r = 0;
2858                 break;
2859         }
2860         case KVM_SET_GUEST_DEBUG: {
2861                 struct kvm_guest_debug dbg;
2862
2863                 r = -EFAULT;
2864                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2865                         goto out;
2866                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2867                 break;
2868         }
2869         case KVM_SET_SIGNAL_MASK: {
2870                 struct kvm_signal_mask __user *sigmask_arg = argp;
2871                 struct kvm_signal_mask kvm_sigmask;
2872                 sigset_t sigset, *p;
2873
2874                 p = NULL;
2875                 if (argp) {
2876                         r = -EFAULT;
2877                         if (copy_from_user(&kvm_sigmask, argp,
2878                                            sizeof(kvm_sigmask)))
2879                                 goto out;
2880                         r = -EINVAL;
2881                         if (kvm_sigmask.len != sizeof(sigset))
2882                                 goto out;
2883                         r = -EFAULT;
2884                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2885                                            sizeof(sigset)))
2886                                 goto out;
2887                         p = &sigset;
2888                 }
2889                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2890                 break;
2891         }
2892         case KVM_GET_FPU: {
2893                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2894                 r = -ENOMEM;
2895                 if (!fpu)
2896                         goto out;
2897                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2898                 if (r)
2899                         goto out;
2900                 r = -EFAULT;
2901                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2902                         goto out;
2903                 r = 0;
2904                 break;
2905         }
2906         case KVM_SET_FPU: {
2907                 fpu = memdup_user(argp, sizeof(*fpu));
2908                 if (IS_ERR(fpu)) {
2909                         r = PTR_ERR(fpu);
2910                         fpu = NULL;
2911                         goto out;
2912                 }
2913                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2914                 break;
2915         }
2916         default:
2917                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2918         }
2919 out:
2920         mutex_unlock(&vcpu->mutex);
2921         kfree(fpu);
2922         kfree(kvm_sregs);
2923         return r;
2924 }
2925
2926 #ifdef CONFIG_KVM_COMPAT
2927 static long kvm_vcpu_compat_ioctl(struct file *filp,
2928                                   unsigned int ioctl, unsigned long arg)
2929 {
2930         struct kvm_vcpu *vcpu = filp->private_data;
2931         void __user *argp = compat_ptr(arg);
2932         int r;
2933
2934         if (vcpu->kvm->mm != current->mm)
2935                 return -EIO;
2936
2937         switch (ioctl) {
2938         case KVM_SET_SIGNAL_MASK: {
2939                 struct kvm_signal_mask __user *sigmask_arg = argp;
2940                 struct kvm_signal_mask kvm_sigmask;
2941                 sigset_t sigset;
2942
2943                 if (argp) {
2944                         r = -EFAULT;
2945                         if (copy_from_user(&kvm_sigmask, argp,
2946                                            sizeof(kvm_sigmask)))
2947                                 goto out;
2948                         r = -EINVAL;
2949                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2950                                 goto out;
2951                         r = -EFAULT;
2952                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2953                                 goto out;
2954                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2955                 } else
2956                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2957                 break;
2958         }
2959         default:
2960                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2961         }
2962
2963 out:
2964         return r;
2965 }
2966 #endif
2967
2968 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2969 {
2970         struct kvm_device *dev = filp->private_data;
2971
2972         if (dev->ops->mmap)
2973                 return dev->ops->mmap(dev, vma);
2974
2975         return -ENODEV;
2976 }
2977
2978 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2979                                  int (*accessor)(struct kvm_device *dev,
2980                                                  struct kvm_device_attr *attr),
2981                                  unsigned long arg)
2982 {
2983         struct kvm_device_attr attr;
2984
2985         if (!accessor)
2986                 return -EPERM;
2987
2988         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2989                 return -EFAULT;
2990
2991         return accessor(dev, &attr);
2992 }
2993
2994 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2995                              unsigned long arg)
2996 {
2997         struct kvm_device *dev = filp->private_data;
2998
2999         if (dev->kvm->mm != current->mm)
3000                 return -EIO;
3001
3002         switch (ioctl) {
3003         case KVM_SET_DEVICE_ATTR:
3004                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3005         case KVM_GET_DEVICE_ATTR:
3006                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3007         case KVM_HAS_DEVICE_ATTR:
3008                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3009         default:
3010                 if (dev->ops->ioctl)
3011                         return dev->ops->ioctl(dev, ioctl, arg);
3012
3013                 return -ENOTTY;
3014         }
3015 }
3016
3017 static int kvm_device_release(struct inode *inode, struct file *filp)
3018 {
3019         struct kvm_device *dev = filp->private_data;
3020         struct kvm *kvm = dev->kvm;
3021
3022         if (dev->ops->release) {
3023                 mutex_lock(&kvm->lock);
3024                 list_del(&dev->vm_node);
3025                 dev->ops->release(dev);
3026                 mutex_unlock(&kvm->lock);
3027         }
3028
3029         kvm_put_kvm(kvm);
3030         return 0;
3031 }
3032
3033 static const struct file_operations kvm_device_fops = {
3034         .unlocked_ioctl = kvm_device_ioctl,
3035         .release = kvm_device_release,
3036         KVM_COMPAT(kvm_device_ioctl),
3037         .mmap = kvm_device_mmap,
3038 };
3039
3040 struct kvm_device *kvm_device_from_filp(struct file *filp)
3041 {
3042         if (filp->f_op != &kvm_device_fops)
3043                 return NULL;
3044
3045         return filp->private_data;
3046 }
3047
3048 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3049 #ifdef CONFIG_KVM_MPIC
3050         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3051         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3052 #endif
3053 };
3054
3055 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3056 {
3057         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3058                 return -ENOSPC;
3059
3060         if (kvm_device_ops_table[type] != NULL)
3061                 return -EEXIST;
3062
3063         kvm_device_ops_table[type] = ops;
3064         return 0;
3065 }
3066
3067 void kvm_unregister_device_ops(u32 type)
3068 {
3069         if (kvm_device_ops_table[type] != NULL)
3070                 kvm_device_ops_table[type] = NULL;
3071 }
3072
3073 static int kvm_ioctl_create_device(struct kvm *kvm,
3074                                    struct kvm_create_device *cd)
3075 {
3076         struct kvm_device_ops *ops = NULL;
3077         struct kvm_device *dev;
3078         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3079         int type;
3080         int ret;
3081
3082         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3083                 return -ENODEV;
3084
3085         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3086         ops = kvm_device_ops_table[type];
3087         if (ops == NULL)
3088                 return -ENODEV;
3089
3090         if (test)
3091                 return 0;
3092
3093         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3094         if (!dev)
3095                 return -ENOMEM;
3096
3097         dev->ops = ops;
3098         dev->kvm = kvm;
3099
3100         mutex_lock(&kvm->lock);
3101         ret = ops->create(dev, type);
3102         if (ret < 0) {
3103                 mutex_unlock(&kvm->lock);
3104                 kfree(dev);
3105                 return ret;
3106         }
3107         list_add(&dev->vm_node, &kvm->devices);
3108         mutex_unlock(&kvm->lock);
3109
3110         if (ops->init)
3111                 ops->init(dev);
3112
3113         kvm_get_kvm(kvm);
3114         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3115         if (ret < 0) {
3116                 kvm_put_kvm(kvm);
3117                 mutex_lock(&kvm->lock);
3118                 list_del(&dev->vm_node);
3119                 mutex_unlock(&kvm->lock);
3120                 ops->destroy(dev);
3121                 return ret;
3122         }
3123
3124         cd->fd = ret;
3125         return 0;
3126 }
3127
3128 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3129 {
3130         switch (arg) {
3131         case KVM_CAP_USER_MEMORY:
3132         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3133         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3134         case KVM_CAP_INTERNAL_ERROR_DATA:
3135 #ifdef CONFIG_HAVE_KVM_MSI
3136         case KVM_CAP_SIGNAL_MSI:
3137 #endif
3138 #ifdef CONFIG_HAVE_KVM_IRQFD
3139         case KVM_CAP_IRQFD:
3140         case KVM_CAP_IRQFD_RESAMPLE:
3141 #endif
3142         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3143         case KVM_CAP_CHECK_EXTENSION_VM:
3144         case KVM_CAP_ENABLE_CAP_VM:
3145 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3146         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3147 #endif
3148                 return 1;
3149 #ifdef CONFIG_KVM_MMIO
3150         case KVM_CAP_COALESCED_MMIO:
3151                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3152         case KVM_CAP_COALESCED_PIO:
3153                 return 1;
3154 #endif
3155 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3156         case KVM_CAP_IRQ_ROUTING:
3157                 return KVM_MAX_IRQ_ROUTES;
3158 #endif
3159 #if KVM_ADDRESS_SPACE_NUM > 1
3160         case KVM_CAP_MULTI_ADDRESS_SPACE:
3161                 return KVM_ADDRESS_SPACE_NUM;
3162 #endif
3163         case KVM_CAP_NR_MEMSLOTS:
3164                 return KVM_USER_MEM_SLOTS;
3165         default:
3166                 break;
3167         }
3168         return kvm_vm_ioctl_check_extension(kvm, arg);
3169 }
3170
3171 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3172                                                   struct kvm_enable_cap *cap)
3173 {
3174         return -EINVAL;
3175 }
3176
3177 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3178                                            struct kvm_enable_cap *cap)
3179 {
3180         switch (cap->cap) {
3181 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3182         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3183                 if (cap->flags || (cap->args[0] & ~1))
3184                         return -EINVAL;
3185                 kvm->manual_dirty_log_protect = cap->args[0];
3186                 return 0;
3187 #endif
3188         default:
3189                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3190         }
3191 }
3192
3193 static long kvm_vm_ioctl(struct file *filp,
3194                            unsigned int ioctl, unsigned long arg)
3195 {
3196         struct kvm *kvm = filp->private_data;
3197         void __user *argp = (void __user *)arg;
3198         int r;
3199
3200         if (kvm->mm != current->mm)
3201                 return -EIO;
3202         switch (ioctl) {
3203         case KVM_CREATE_VCPU:
3204                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3205                 break;
3206         case KVM_ENABLE_CAP: {
3207                 struct kvm_enable_cap cap;
3208
3209                 r = -EFAULT;
3210                 if (copy_from_user(&cap, argp, sizeof(cap)))
3211                         goto out;
3212                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3213                 break;
3214         }
3215         case KVM_SET_USER_MEMORY_REGION: {
3216                 struct kvm_userspace_memory_region kvm_userspace_mem;
3217
3218                 r = -EFAULT;
3219                 if (copy_from_user(&kvm_userspace_mem, argp,
3220                                                 sizeof(kvm_userspace_mem)))
3221                         goto out;
3222
3223                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3224                 break;
3225         }
3226         case KVM_GET_DIRTY_LOG: {
3227                 struct kvm_dirty_log log;
3228
3229                 r = -EFAULT;
3230                 if (copy_from_user(&log, argp, sizeof(log)))
3231                         goto out;
3232                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3233                 break;
3234         }
3235 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3236         case KVM_CLEAR_DIRTY_LOG: {
3237                 struct kvm_clear_dirty_log log;
3238
3239                 r = -EFAULT;
3240                 if (copy_from_user(&log, argp, sizeof(log)))
3241                         goto out;
3242                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3243                 break;
3244         }
3245 #endif
3246 #ifdef CONFIG_KVM_MMIO
3247         case KVM_REGISTER_COALESCED_MMIO: {
3248                 struct kvm_coalesced_mmio_zone zone;
3249
3250                 r = -EFAULT;
3251                 if (copy_from_user(&zone, argp, sizeof(zone)))
3252                         goto out;
3253                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3254                 break;
3255         }
3256         case KVM_UNREGISTER_COALESCED_MMIO: {
3257                 struct kvm_coalesced_mmio_zone zone;
3258
3259                 r = -EFAULT;
3260                 if (copy_from_user(&zone, argp, sizeof(zone)))
3261                         goto out;
3262                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3263                 break;
3264         }
3265 #endif
3266         case KVM_IRQFD: {
3267                 struct kvm_irqfd data;
3268
3269                 r = -EFAULT;
3270                 if (copy_from_user(&data, argp, sizeof(data)))
3271                         goto out;
3272                 r = kvm_irqfd(kvm, &data);
3273                 break;
3274         }
3275         case KVM_IOEVENTFD: {
3276                 struct kvm_ioeventfd data;
3277
3278                 r = -EFAULT;
3279                 if (copy_from_user(&data, argp, sizeof(data)))
3280                         goto out;
3281                 r = kvm_ioeventfd(kvm, &data);
3282                 break;
3283         }
3284 #ifdef CONFIG_HAVE_KVM_MSI
3285         case KVM_SIGNAL_MSI: {
3286                 struct kvm_msi msi;
3287
3288                 r = -EFAULT;
3289                 if (copy_from_user(&msi, argp, sizeof(msi)))
3290                         goto out;
3291                 r = kvm_send_userspace_msi(kvm, &msi);
3292                 break;
3293         }
3294 #endif
3295 #ifdef __KVM_HAVE_IRQ_LINE
3296         case KVM_IRQ_LINE_STATUS:
3297         case KVM_IRQ_LINE: {
3298                 struct kvm_irq_level irq_event;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3302                         goto out;
3303
3304                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3305                                         ioctl == KVM_IRQ_LINE_STATUS);
3306                 if (r)
3307                         goto out;
3308
3309                 r = -EFAULT;
3310                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3311                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3312                                 goto out;
3313                 }
3314
3315                 r = 0;
3316                 break;
3317         }
3318 #endif
3319 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3320         case KVM_SET_GSI_ROUTING: {
3321                 struct kvm_irq_routing routing;
3322                 struct kvm_irq_routing __user *urouting;
3323                 struct kvm_irq_routing_entry *entries = NULL;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&routing, argp, sizeof(routing)))
3327                         goto out;
3328                 r = -EINVAL;
3329                 if (!kvm_arch_can_set_irq_routing(kvm))
3330                         goto out;
3331                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3332                         goto out;
3333                 if (routing.flags)
3334                         goto out;
3335                 if (routing.nr) {
3336                         r = -ENOMEM;
3337                         entries = vmalloc(array_size(sizeof(*entries),
3338                                                      routing.nr));
3339                         if (!entries)
3340                                 goto out;
3341                         r = -EFAULT;
3342                         urouting = argp;
3343                         if (copy_from_user(entries, urouting->entries,
3344                                            routing.nr * sizeof(*entries)))
3345                                 goto out_free_irq_routing;
3346                 }
3347                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3348                                         routing.flags);
3349 out_free_irq_routing:
3350                 vfree(entries);
3351                 break;
3352         }
3353 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3354         case KVM_CREATE_DEVICE: {
3355                 struct kvm_create_device cd;
3356
3357                 r = -EFAULT;
3358                 if (copy_from_user(&cd, argp, sizeof(cd)))
3359                         goto out;
3360
3361                 r = kvm_ioctl_create_device(kvm, &cd);
3362                 if (r)
3363                         goto out;
3364
3365                 r = -EFAULT;
3366                 if (copy_to_user(argp, &cd, sizeof(cd)))
3367                         goto out;
3368
3369                 r = 0;
3370                 break;
3371         }
3372         case KVM_CHECK_EXTENSION:
3373                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3374                 break;
3375         default:
3376                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3377         }
3378 out:
3379         return r;
3380 }
3381
3382 #ifdef CONFIG_KVM_COMPAT
3383 struct compat_kvm_dirty_log {
3384         __u32 slot;
3385         __u32 padding1;
3386         union {
3387                 compat_uptr_t dirty_bitmap; /* one bit per page */
3388                 __u64 padding2;
3389         };
3390 };
3391
3392 static long kvm_vm_compat_ioctl(struct file *filp,
3393                            unsigned int ioctl, unsigned long arg)
3394 {
3395         struct kvm *kvm = filp->private_data;
3396         int r;
3397
3398         if (kvm->mm != current->mm)
3399                 return -EIO;
3400         switch (ioctl) {
3401         case KVM_GET_DIRTY_LOG: {
3402                 struct compat_kvm_dirty_log compat_log;
3403                 struct kvm_dirty_log log;
3404
3405                 if (copy_from_user(&compat_log, (void __user *)arg,
3406                                    sizeof(compat_log)))
3407                         return -EFAULT;
3408                 log.slot         = compat_log.slot;
3409                 log.padding1     = compat_log.padding1;
3410                 log.padding2     = compat_log.padding2;
3411                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3412
3413                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3414                 break;
3415         }
3416         default:
3417                 r = kvm_vm_ioctl(filp, ioctl, arg);
3418         }
3419         return r;
3420 }
3421 #endif
3422
3423 static struct file_operations kvm_vm_fops = {
3424         .release        = kvm_vm_release,
3425         .unlocked_ioctl = kvm_vm_ioctl,
3426         .llseek         = noop_llseek,
3427         KVM_COMPAT(kvm_vm_compat_ioctl),
3428 };
3429
3430 static int kvm_dev_ioctl_create_vm(unsigned long type)
3431 {
3432         int r;
3433         struct kvm *kvm;
3434         struct file *file;
3435
3436         kvm = kvm_create_vm(type);
3437         if (IS_ERR(kvm))
3438                 return PTR_ERR(kvm);
3439 #ifdef CONFIG_KVM_MMIO
3440         r = kvm_coalesced_mmio_init(kvm);
3441         if (r < 0)
3442                 goto put_kvm;
3443 #endif
3444         r = get_unused_fd_flags(O_CLOEXEC);
3445         if (r < 0)
3446                 goto put_kvm;
3447
3448         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3449         if (IS_ERR(file)) {
3450                 put_unused_fd(r);
3451                 r = PTR_ERR(file);
3452                 goto put_kvm;
3453         }
3454
3455         /*
3456          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3457          * already set, with ->release() being kvm_vm_release().  In error
3458          * cases it will be called by the final fput(file) and will take
3459          * care of doing kvm_put_kvm(kvm).
3460          */
3461         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3462                 put_unused_fd(r);
3463                 fput(file);
3464                 return -ENOMEM;
3465         }
3466         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3467
3468         fd_install(r, file);
3469         return r;
3470
3471 put_kvm:
3472         kvm_put_kvm(kvm);
3473         return r;
3474 }
3475
3476 static long kvm_dev_ioctl(struct file *filp,
3477                           unsigned int ioctl, unsigned long arg)
3478 {
3479         long r = -EINVAL;
3480
3481         switch (ioctl) {
3482         case KVM_GET_API_VERSION:
3483                 if (arg)
3484                         goto out;
3485                 r = KVM_API_VERSION;
3486                 break;
3487         case KVM_CREATE_VM:
3488                 r = kvm_dev_ioctl_create_vm(arg);
3489                 break;
3490         case KVM_CHECK_EXTENSION:
3491                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3492                 break;
3493         case KVM_GET_VCPU_MMAP_SIZE:
3494                 if (arg)
3495                         goto out;
3496                 r = PAGE_SIZE;     /* struct kvm_run */
3497 #ifdef CONFIG_X86
3498                 r += PAGE_SIZE;    /* pio data page */
3499 #endif
3500 #ifdef CONFIG_KVM_MMIO
3501                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3502 #endif
3503                 break;
3504         case KVM_TRACE_ENABLE:
3505         case KVM_TRACE_PAUSE:
3506         case KVM_TRACE_DISABLE:
3507                 r = -EOPNOTSUPP;
3508                 break;
3509         default:
3510                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3511         }
3512 out:
3513         return r;
3514 }
3515
3516 static struct file_operations kvm_chardev_ops = {
3517         .unlocked_ioctl = kvm_dev_ioctl,
3518         .llseek         = noop_llseek,
3519         KVM_COMPAT(kvm_dev_ioctl),
3520 };
3521
3522 static struct miscdevice kvm_dev = {
3523         KVM_MINOR,
3524         "kvm",
3525         &kvm_chardev_ops,
3526 };
3527
3528 static void hardware_enable_nolock(void *junk)
3529 {
3530         int cpu = raw_smp_processor_id();
3531         int r;
3532
3533         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3534                 return;
3535
3536         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3537
3538         r = kvm_arch_hardware_enable();
3539
3540         if (r) {
3541                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3542                 atomic_inc(&hardware_enable_failed);
3543                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3544         }
3545 }
3546
3547 static int kvm_starting_cpu(unsigned int cpu)
3548 {
3549         raw_spin_lock(&kvm_count_lock);
3550         if (kvm_usage_count)
3551                 hardware_enable_nolock(NULL);
3552         raw_spin_unlock(&kvm_count_lock);
3553         return 0;
3554 }
3555
3556 static void hardware_disable_nolock(void *junk)
3557 {
3558         int cpu = raw_smp_processor_id();
3559
3560         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3561                 return;
3562         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3563         kvm_arch_hardware_disable();
3564 }
3565
3566 static int kvm_dying_cpu(unsigned int cpu)
3567 {
3568         raw_spin_lock(&kvm_count_lock);
3569         if (kvm_usage_count)
3570                 hardware_disable_nolock(NULL);
3571         raw_spin_unlock(&kvm_count_lock);
3572         return 0;
3573 }
3574
3575 static void hardware_disable_all_nolock(void)
3576 {
3577         BUG_ON(!kvm_usage_count);
3578
3579         kvm_usage_count--;
3580         if (!kvm_usage_count)
3581                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3582 }
3583
3584 static void hardware_disable_all(void)
3585 {
3586         raw_spin_lock(&kvm_count_lock);
3587         hardware_disable_all_nolock();
3588         raw_spin_unlock(&kvm_count_lock);
3589 }
3590
3591 static int hardware_enable_all(void)
3592 {
3593         int r = 0;
3594
3595         raw_spin_lock(&kvm_count_lock);
3596
3597         kvm_usage_count++;
3598         if (kvm_usage_count == 1) {
3599                 atomic_set(&hardware_enable_failed, 0);
3600                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3601
3602                 if (atomic_read(&hardware_enable_failed)) {
3603                         hardware_disable_all_nolock();
3604                         r = -EBUSY;
3605                 }
3606         }
3607
3608         raw_spin_unlock(&kvm_count_lock);
3609
3610         return r;
3611 }
3612
3613 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3614                       void *v)
3615 {
3616         /*
3617          * Some (well, at least mine) BIOSes hang on reboot if
3618          * in vmx root mode.
3619          *
3620          * And Intel TXT required VMX off for all cpu when system shutdown.
3621          */
3622         pr_info("kvm: exiting hardware virtualization\n");
3623         kvm_rebooting = true;
3624         on_each_cpu(hardware_disable_nolock, NULL, 1);
3625         return NOTIFY_OK;
3626 }
3627
3628 static struct notifier_block kvm_reboot_notifier = {
3629         .notifier_call = kvm_reboot,
3630         .priority = 0,
3631 };
3632
3633 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3634 {
3635         int i;
3636
3637         for (i = 0; i < bus->dev_count; i++) {
3638                 struct kvm_io_device *pos = bus->range[i].dev;
3639
3640                 kvm_iodevice_destructor(pos);
3641         }
3642         kfree(bus);
3643 }
3644
3645 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3646                                  const struct kvm_io_range *r2)
3647 {
3648         gpa_t addr1 = r1->addr;
3649         gpa_t addr2 = r2->addr;
3650
3651         if (addr1 < addr2)
3652                 return -1;
3653
3654         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3655          * accept any overlapping write.  Any order is acceptable for
3656          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3657          * we process all of them.
3658          */
3659         if (r2->len) {
3660                 addr1 += r1->len;
3661                 addr2 += r2->len;
3662         }
3663
3664         if (addr1 > addr2)
3665                 return 1;
3666
3667         return 0;
3668 }
3669
3670 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3671 {
3672         return kvm_io_bus_cmp(p1, p2);
3673 }
3674
3675 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3676                              gpa_t addr, int len)
3677 {
3678         struct kvm_io_range *range, key;
3679         int off;
3680
3681         key = (struct kvm_io_range) {
3682                 .addr = addr,
3683                 .len = len,
3684         };
3685
3686         range = bsearch(&key, bus->range, bus->dev_count,
3687                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3688         if (range == NULL)
3689                 return -ENOENT;
3690
3691         off = range - bus->range;
3692
3693         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3694                 off--;
3695
3696         return off;
3697 }
3698
3699 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3700                               struct kvm_io_range *range, const void *val)
3701 {
3702         int idx;
3703
3704         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3705         if (idx < 0)
3706                 return -EOPNOTSUPP;
3707
3708         while (idx < bus->dev_count &&
3709                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3710                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3711                                         range->len, val))
3712                         return idx;
3713                 idx++;
3714         }
3715
3716         return -EOPNOTSUPP;
3717 }
3718
3719 /* kvm_io_bus_write - called under kvm->slots_lock */
3720 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3721                      int len, const void *val)
3722 {
3723         struct kvm_io_bus *bus;
3724         struct kvm_io_range range;
3725         int r;
3726
3727         range = (struct kvm_io_range) {
3728                 .addr = addr,
3729                 .len = len,
3730         };
3731
3732         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3733         if (!bus)
3734                 return -ENOMEM;
3735         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3736         return r < 0 ? r : 0;
3737 }
3738 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3739
3740 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3741 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3742                             gpa_t addr, int len, const void *val, long cookie)
3743 {
3744         struct kvm_io_bus *bus;
3745         struct kvm_io_range range;
3746
3747         range = (struct kvm_io_range) {
3748                 .addr = addr,
3749                 .len = len,
3750         };
3751
3752         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3753         if (!bus)
3754                 return -ENOMEM;
3755
3756         /* First try the device referenced by cookie. */
3757         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3758             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3759                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3760                                         val))
3761                         return cookie;
3762
3763         /*
3764          * cookie contained garbage; fall back to search and return the
3765          * correct cookie value.
3766          */
3767         return __kvm_io_bus_write(vcpu, bus, &range, val);
3768 }
3769
3770 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3771                              struct kvm_io_range *range, void *val)
3772 {
3773         int idx;
3774
3775         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3776         if (idx < 0)
3777                 return -EOPNOTSUPP;
3778
3779         while (idx < bus->dev_count &&
3780                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3781                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3782                                        range->len, val))
3783                         return idx;
3784                 idx++;
3785         }
3786
3787         return -EOPNOTSUPP;
3788 }
3789
3790 /* kvm_io_bus_read - called under kvm->slots_lock */
3791 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3792                     int len, void *val)
3793 {
3794         struct kvm_io_bus *bus;
3795         struct kvm_io_range range;
3796         int r;
3797
3798         range = (struct kvm_io_range) {
3799                 .addr = addr,
3800                 .len = len,
3801         };
3802
3803         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3804         if (!bus)
3805                 return -ENOMEM;
3806         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3807         return r < 0 ? r : 0;
3808 }
3809
3810 /* Caller must hold slots_lock. */
3811 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3812                             int len, struct kvm_io_device *dev)
3813 {
3814         int i;
3815         struct kvm_io_bus *new_bus, *bus;
3816         struct kvm_io_range range;
3817
3818         bus = kvm_get_bus(kvm, bus_idx);
3819         if (!bus)
3820                 return -ENOMEM;
3821
3822         /* exclude ioeventfd which is limited by maximum fd */
3823         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3824                 return -ENOSPC;
3825
3826         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3827                           GFP_KERNEL_ACCOUNT);
3828         if (!new_bus)
3829                 return -ENOMEM;
3830
3831         range = (struct kvm_io_range) {
3832                 .addr = addr,
3833                 .len = len,
3834                 .dev = dev,
3835         };
3836
3837         for (i = 0; i < bus->dev_count; i++)
3838                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3839                         break;
3840
3841         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3842         new_bus->dev_count++;
3843         new_bus->range[i] = range;
3844         memcpy(new_bus->range + i + 1, bus->range + i,
3845                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3846         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3847         synchronize_srcu_expedited(&kvm->srcu);
3848         kfree(bus);
3849
3850         return 0;
3851 }
3852
3853 /* Caller must hold slots_lock. */
3854 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3855                                struct kvm_io_device *dev)
3856 {
3857         int i;
3858         struct kvm_io_bus *new_bus, *bus;
3859
3860         bus = kvm_get_bus(kvm, bus_idx);
3861         if (!bus)
3862                 return;
3863
3864         for (i = 0; i < bus->dev_count; i++)
3865                 if (bus->range[i].dev == dev) {
3866                         break;
3867                 }
3868
3869         if (i == bus->dev_count)
3870                 return;
3871
3872         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3873                           GFP_KERNEL_ACCOUNT);
3874         if (!new_bus)  {
3875                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3876                 goto broken;
3877         }
3878
3879         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3880         new_bus->dev_count--;
3881         memcpy(new_bus->range + i, bus->range + i + 1,
3882                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3883
3884 broken:
3885         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3886         synchronize_srcu_expedited(&kvm->srcu);
3887         kfree(bus);
3888         return;
3889 }
3890
3891 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3892                                          gpa_t addr)
3893 {
3894         struct kvm_io_bus *bus;
3895         int dev_idx, srcu_idx;
3896         struct kvm_io_device *iodev = NULL;
3897
3898         srcu_idx = srcu_read_lock(&kvm->srcu);
3899
3900         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3901         if (!bus)
3902                 goto out_unlock;
3903
3904         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3905         if (dev_idx < 0)
3906                 goto out_unlock;
3907
3908         iodev = bus->range[dev_idx].dev;
3909
3910 out_unlock:
3911         srcu_read_unlock(&kvm->srcu, srcu_idx);
3912
3913         return iodev;
3914 }
3915 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3916
3917 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3918                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3919                            const char *fmt)
3920 {
3921         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3922                                           inode->i_private;
3923
3924         /* The debugfs files are a reference to the kvm struct which
3925          * is still valid when kvm_destroy_vm is called.
3926          * To avoid the race between open and the removal of the debugfs
3927          * directory we test against the users count.
3928          */
3929         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3930                 return -ENOENT;
3931
3932         if (simple_attr_open(inode, file, get, set, fmt)) {
3933                 kvm_put_kvm(stat_data->kvm);
3934                 return -ENOMEM;
3935         }
3936
3937         return 0;
3938 }
3939
3940 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3941 {
3942         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3943                                           inode->i_private;
3944
3945         simple_attr_release(inode, file);
3946         kvm_put_kvm(stat_data->kvm);
3947
3948         return 0;
3949 }
3950
3951 static int vm_stat_get_per_vm(void *data, u64 *val)
3952 {
3953         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3954
3955         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3956
3957         return 0;
3958 }
3959
3960 static int vm_stat_clear_per_vm(void *data, u64 val)
3961 {
3962         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3963
3964         if (val)
3965                 return -EINVAL;
3966
3967         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3968
3969         return 0;
3970 }
3971
3972 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3973 {
3974         __simple_attr_check_format("%llu\n", 0ull);
3975         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3976                                 vm_stat_clear_per_vm, "%llu\n");
3977 }
3978
3979 static const struct file_operations vm_stat_get_per_vm_fops = {
3980         .owner   = THIS_MODULE,
3981         .open    = vm_stat_get_per_vm_open,
3982         .release = kvm_debugfs_release,
3983         .read    = simple_attr_read,
3984         .write   = simple_attr_write,
3985         .llseek  = no_llseek,
3986 };
3987
3988 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3989 {
3990         int i;
3991         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3992         struct kvm_vcpu *vcpu;
3993
3994         *val = 0;
3995
3996         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3997                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3998
3999         return 0;
4000 }
4001
4002 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4003 {
4004         int i;
4005         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4006         struct kvm_vcpu *vcpu;
4007
4008         if (val)
4009                 return -EINVAL;
4010
4011         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4012                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4013
4014         return 0;
4015 }
4016
4017 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4018 {
4019         __simple_attr_check_format("%llu\n", 0ull);
4020         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4021                                  vcpu_stat_clear_per_vm, "%llu\n");
4022 }
4023
4024 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4025         .owner   = THIS_MODULE,
4026         .open    = vcpu_stat_get_per_vm_open,
4027         .release = kvm_debugfs_release,
4028         .read    = simple_attr_read,
4029         .write   = simple_attr_write,
4030         .llseek  = no_llseek,
4031 };
4032
4033 static const struct file_operations *stat_fops_per_vm[] = {
4034         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4035         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4036 };
4037
4038 static int vm_stat_get(void *_offset, u64 *val)
4039 {
4040         unsigned offset = (long)_offset;
4041         struct kvm *kvm;
4042         struct kvm_stat_data stat_tmp = {.offset = offset};
4043         u64 tmp_val;
4044
4045         *val = 0;
4046         mutex_lock(&kvm_lock);
4047         list_for_each_entry(kvm, &vm_list, vm_list) {
4048                 stat_tmp.kvm = kvm;
4049                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4050                 *val += tmp_val;
4051         }
4052         mutex_unlock(&kvm_lock);
4053         return 0;
4054 }
4055
4056 static int vm_stat_clear(void *_offset, u64 val)
4057 {
4058         unsigned offset = (long)_offset;
4059         struct kvm *kvm;
4060         struct kvm_stat_data stat_tmp = {.offset = offset};
4061
4062         if (val)
4063                 return -EINVAL;
4064
4065         mutex_lock(&kvm_lock);
4066         list_for_each_entry(kvm, &vm_list, vm_list) {
4067                 stat_tmp.kvm = kvm;
4068                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4069         }
4070         mutex_unlock(&kvm_lock);
4071
4072         return 0;
4073 }
4074
4075 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4076
4077 static int vcpu_stat_get(void *_offset, u64 *val)
4078 {
4079         unsigned offset = (long)_offset;
4080         struct kvm *kvm;
4081         struct kvm_stat_data stat_tmp = {.offset = offset};
4082         u64 tmp_val;
4083
4084         *val = 0;
4085         mutex_lock(&kvm_lock);
4086         list_for_each_entry(kvm, &vm_list, vm_list) {
4087                 stat_tmp.kvm = kvm;
4088                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4089                 *val += tmp_val;
4090         }
4091         mutex_unlock(&kvm_lock);
4092         return 0;
4093 }
4094
4095 static int vcpu_stat_clear(void *_offset, u64 val)
4096 {
4097         unsigned offset = (long)_offset;
4098         struct kvm *kvm;
4099         struct kvm_stat_data stat_tmp = {.offset = offset};
4100
4101         if (val)
4102                 return -EINVAL;
4103
4104         mutex_lock(&kvm_lock);
4105         list_for_each_entry(kvm, &vm_list, vm_list) {
4106                 stat_tmp.kvm = kvm;
4107                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4108         }
4109         mutex_unlock(&kvm_lock);
4110
4111         return 0;
4112 }
4113
4114 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4115                         "%llu\n");
4116
4117 static const struct file_operations *stat_fops[] = {
4118         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4119         [KVM_STAT_VM]   = &vm_stat_fops,
4120 };
4121
4122 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4123 {
4124         struct kobj_uevent_env *env;
4125         unsigned long long created, active;
4126
4127         if (!kvm_dev.this_device || !kvm)
4128                 return;
4129
4130         mutex_lock(&kvm_lock);
4131         if (type == KVM_EVENT_CREATE_VM) {
4132                 kvm_createvm_count++;
4133                 kvm_active_vms++;
4134         } else if (type == KVM_EVENT_DESTROY_VM) {
4135                 kvm_active_vms--;
4136         }
4137         created = kvm_createvm_count;
4138         active = kvm_active_vms;
4139         mutex_unlock(&kvm_lock);
4140
4141         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4142         if (!env)
4143                 return;
4144
4145         add_uevent_var(env, "CREATED=%llu", created);
4146         add_uevent_var(env, "COUNT=%llu", active);
4147
4148         if (type == KVM_EVENT_CREATE_VM) {
4149                 add_uevent_var(env, "EVENT=create");
4150                 kvm->userspace_pid = task_pid_nr(current);
4151         } else if (type == KVM_EVENT_DESTROY_VM) {
4152                 add_uevent_var(env, "EVENT=destroy");
4153         }
4154         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4155
4156         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4157                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4158
4159                 if (p) {
4160                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4161                         if (!IS_ERR(tmp))
4162                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4163                         kfree(p);
4164                 }
4165         }
4166         /* no need for checks, since we are adding at most only 5 keys */
4167         env->envp[env->envp_idx++] = NULL;
4168         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4169         kfree(env);
4170 }
4171
4172 static void kvm_init_debug(void)
4173 {
4174         struct kvm_stats_debugfs_item *p;
4175
4176         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4177
4178         kvm_debugfs_num_entries = 0;
4179         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4180                 debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4181                                     (void *)(long)p->offset,
4182                                     stat_fops[p->kind]);
4183         }
4184 }
4185
4186 static int kvm_suspend(void)
4187 {
4188         if (kvm_usage_count)
4189                 hardware_disable_nolock(NULL);
4190         return 0;
4191 }
4192
4193 static void kvm_resume(void)
4194 {
4195         if (kvm_usage_count) {
4196 #ifdef CONFIG_LOCKDEP
4197                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4198 #endif
4199                 hardware_enable_nolock(NULL);
4200         }
4201 }
4202
4203 static struct syscore_ops kvm_syscore_ops = {
4204         .suspend = kvm_suspend,
4205         .resume = kvm_resume,
4206 };
4207
4208 static inline
4209 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4210 {
4211         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4212 }
4213
4214 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4215 {
4216         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4217
4218         WRITE_ONCE(vcpu->preempted, false);
4219         WRITE_ONCE(vcpu->ready, false);
4220
4221         kvm_arch_sched_in(vcpu, cpu);
4222
4223         kvm_arch_vcpu_load(vcpu, cpu);
4224 }
4225
4226 static void kvm_sched_out(struct preempt_notifier *pn,
4227                           struct task_struct *next)
4228 {
4229         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4230
4231         if (current->state == TASK_RUNNING) {
4232                 WRITE_ONCE(vcpu->preempted, true);
4233                 WRITE_ONCE(vcpu->ready, true);
4234         }
4235         kvm_arch_vcpu_put(vcpu);
4236 }
4237
4238 static void check_processor_compat(void *rtn)
4239 {
4240         *(int *)rtn = kvm_arch_check_processor_compat();
4241 }
4242
4243 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4244                   struct module *module)
4245 {
4246         int r;
4247         int cpu;
4248
4249         r = kvm_arch_init(opaque);
4250         if (r)
4251                 goto out_fail;
4252
4253         /*
4254          * kvm_arch_init makes sure there's at most one caller
4255          * for architectures that support multiple implementations,
4256          * like intel and amd on x86.
4257          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4258          * conflicts in case kvm is already setup for another implementation.
4259          */
4260         r = kvm_irqfd_init();
4261         if (r)
4262                 goto out_irqfd;
4263
4264         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4265                 r = -ENOMEM;
4266                 goto out_free_0;
4267         }
4268
4269         r = kvm_arch_hardware_setup();
4270         if (r < 0)
4271                 goto out_free_0a;
4272
4273         for_each_online_cpu(cpu) {
4274                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4275                 if (r < 0)
4276                         goto out_free_1;
4277         }
4278
4279         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4280                                       kvm_starting_cpu, kvm_dying_cpu);
4281         if (r)
4282                 goto out_free_2;
4283         register_reboot_notifier(&kvm_reboot_notifier);
4284
4285         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4286         if (!vcpu_align)
4287                 vcpu_align = __alignof__(struct kvm_vcpu);
4288         kvm_vcpu_cache =
4289                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4290                                            SLAB_ACCOUNT,
4291                                            offsetof(struct kvm_vcpu, arch),
4292                                            sizeof_field(struct kvm_vcpu, arch),
4293                                            NULL);
4294         if (!kvm_vcpu_cache) {
4295                 r = -ENOMEM;
4296                 goto out_free_3;
4297         }
4298
4299         r = kvm_async_pf_init();
4300         if (r)
4301                 goto out_free;
4302
4303         kvm_chardev_ops.owner = module;
4304         kvm_vm_fops.owner = module;
4305         kvm_vcpu_fops.owner = module;
4306
4307         r = misc_register(&kvm_dev);
4308         if (r) {
4309                 pr_err("kvm: misc device register failed\n");
4310                 goto out_unreg;
4311         }
4312
4313         register_syscore_ops(&kvm_syscore_ops);
4314
4315         kvm_preempt_ops.sched_in = kvm_sched_in;
4316         kvm_preempt_ops.sched_out = kvm_sched_out;
4317
4318         kvm_init_debug();
4319
4320         r = kvm_vfio_ops_init();
4321         WARN_ON(r);
4322
4323         return 0;
4324
4325 out_unreg:
4326         kvm_async_pf_deinit();
4327 out_free:
4328         kmem_cache_destroy(kvm_vcpu_cache);
4329 out_free_3:
4330         unregister_reboot_notifier(&kvm_reboot_notifier);
4331         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4332 out_free_2:
4333 out_free_1:
4334         kvm_arch_hardware_unsetup();
4335 out_free_0a:
4336         free_cpumask_var(cpus_hardware_enabled);
4337 out_free_0:
4338         kvm_irqfd_exit();
4339 out_irqfd:
4340         kvm_arch_exit();
4341 out_fail:
4342         return r;
4343 }
4344 EXPORT_SYMBOL_GPL(kvm_init);
4345
4346 void kvm_exit(void)
4347 {
4348         debugfs_remove_recursive(kvm_debugfs_dir);
4349         misc_deregister(&kvm_dev);
4350         kmem_cache_destroy(kvm_vcpu_cache);
4351         kvm_async_pf_deinit();
4352         unregister_syscore_ops(&kvm_syscore_ops);
4353         unregister_reboot_notifier(&kvm_reboot_notifier);
4354         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4355         on_each_cpu(hardware_disable_nolock, NULL, 1);
4356         kvm_arch_hardware_unsetup();
4357         kvm_arch_exit();
4358         kvm_irqfd_exit();
4359         free_cpumask_var(cpus_hardware_enabled);
4360         kvm_vfio_ops_exit();
4361 }
4362 EXPORT_SYMBOL_GPL(kvm_exit);