x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
126                                 unsigned long arg) { return -EINVAL; }
127 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
128 #endif
129 static int hardware_enable_all(void);
130 static void hardware_disable_all(void);
131
132 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
133
134 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
135
136 __visible bool kvm_rebooting;
137 EXPORT_SYMBOL_GPL(kvm_rebooting);
138
139 static bool largepages_enabled = true;
140
141 #define KVM_EVENT_CREATE_VM 0
142 #define KVM_EVENT_DESTROY_VM 1
143 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
144 static unsigned long long kvm_createvm_count;
145 static unsigned long long kvm_active_vms;
146
147 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
148                 unsigned long start, unsigned long end, bool blockable)
149 {
150         return 0;
151 }
152
153 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
154 {
155         if (pfn_valid(pfn))
156                 return PageReserved(pfn_to_page(pfn));
157
158         return true;
159 }
160
161 /*
162  * Switches to specified vcpu, until a matching vcpu_put()
163  */
164 void vcpu_load(struct kvm_vcpu *vcpu)
165 {
166         int cpu = get_cpu();
167         preempt_notifier_register(&vcpu->preempt_notifier);
168         kvm_arch_vcpu_load(vcpu, cpu);
169         put_cpu();
170 }
171 EXPORT_SYMBOL_GPL(vcpu_load);
172
173 void vcpu_put(struct kvm_vcpu *vcpu)
174 {
175         preempt_disable();
176         kvm_arch_vcpu_put(vcpu);
177         preempt_notifier_unregister(&vcpu->preempt_notifier);
178         preempt_enable();
179 }
180 EXPORT_SYMBOL_GPL(vcpu_put);
181
182 /* TODO: merge with kvm_arch_vcpu_should_kick */
183 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
184 {
185         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
186
187         /*
188          * We need to wait for the VCPU to reenable interrupts and get out of
189          * READING_SHADOW_PAGE_TABLES mode.
190          */
191         if (req & KVM_REQUEST_WAIT)
192                 return mode != OUTSIDE_GUEST_MODE;
193
194         /*
195          * Need to kick a running VCPU, but otherwise there is nothing to do.
196          */
197         return mode == IN_GUEST_MODE;
198 }
199
200 static void ack_flush(void *_completed)
201 {
202 }
203
204 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
205 {
206         if (unlikely(!cpus))
207                 cpus = cpu_online_mask;
208
209         if (cpumask_empty(cpus))
210                 return false;
211
212         smp_call_function_many(cpus, ack_flush, NULL, wait);
213         return true;
214 }
215
216 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
217                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
218 {
219         int i, cpu, me;
220         struct kvm_vcpu *vcpu;
221         bool called;
222
223         me = get_cpu();
224
225         kvm_for_each_vcpu(i, vcpu, kvm) {
226                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
227                         continue;
228
229                 kvm_make_request(req, vcpu);
230                 cpu = vcpu->cpu;
231
232                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
233                         continue;
234
235                 if (tmp != NULL && cpu != -1 && cpu != me &&
236                     kvm_request_needs_ipi(vcpu, req))
237                         __cpumask_set_cpu(cpu, tmp);
238         }
239
240         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
241         put_cpu();
242
243         return called;
244 }
245
246 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
247 {
248         cpumask_var_t cpus;
249         bool called;
250
251         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
252
253         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
254
255         free_cpumask_var(cpus);
256         return called;
257 }
258
259 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
260 void kvm_flush_remote_tlbs(struct kvm *kvm)
261 {
262         /*
263          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
264          * kvm_make_all_cpus_request.
265          */
266         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
267
268         /*
269          * We want to publish modifications to the page tables before reading
270          * mode. Pairs with a memory barrier in arch-specific code.
271          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
272          * and smp_mb in walk_shadow_page_lockless_begin/end.
273          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
274          *
275          * There is already an smp_mb__after_atomic() before
276          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
277          * barrier here.
278          */
279         if (!kvm_arch_flush_remote_tlb(kvm)
280             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
281                 ++kvm->stat.remote_tlb_flush;
282         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
283 }
284 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
285 #endif
286
287 void kvm_reload_remote_mmus(struct kvm *kvm)
288 {
289         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
290 }
291
292 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
293 {
294         struct page *page;
295         int r;
296
297         mutex_init(&vcpu->mutex);
298         vcpu->cpu = -1;
299         vcpu->kvm = kvm;
300         vcpu->vcpu_id = id;
301         vcpu->pid = NULL;
302         init_swait_queue_head(&vcpu->wq);
303         kvm_async_pf_vcpu_init(vcpu);
304
305         vcpu->pre_pcpu = -1;
306         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
307
308         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
309         if (!page) {
310                 r = -ENOMEM;
311                 goto fail;
312         }
313         vcpu->run = page_address(page);
314
315         kvm_vcpu_set_in_spin_loop(vcpu, false);
316         kvm_vcpu_set_dy_eligible(vcpu, false);
317         vcpu->preempted = false;
318         vcpu->ready = false;
319
320         r = kvm_arch_vcpu_init(vcpu);
321         if (r < 0)
322                 goto fail_free_run;
323         return 0;
324
325 fail_free_run:
326         free_page((unsigned long)vcpu->run);
327 fail:
328         return r;
329 }
330 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
331
332 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
333 {
334         /*
335          * no need for rcu_read_lock as VCPU_RUN is the only place that
336          * will change the vcpu->pid pointer and on uninit all file
337          * descriptors are already gone.
338          */
339         put_pid(rcu_dereference_protected(vcpu->pid, 1));
340         kvm_arch_vcpu_uninit(vcpu);
341         free_page((unsigned long)vcpu->run);
342 }
343 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
344
345 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
346 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
347 {
348         return container_of(mn, struct kvm, mmu_notifier);
349 }
350
351 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
352                                         struct mm_struct *mm,
353                                         unsigned long address,
354                                         pte_t pte)
355 {
356         struct kvm *kvm = mmu_notifier_to_kvm(mn);
357         int idx;
358
359         idx = srcu_read_lock(&kvm->srcu);
360         spin_lock(&kvm->mmu_lock);
361         kvm->mmu_notifier_seq++;
362
363         if (kvm_set_spte_hva(kvm, address, pte))
364                 kvm_flush_remote_tlbs(kvm);
365
366         spin_unlock(&kvm->mmu_lock);
367         srcu_read_unlock(&kvm->srcu, idx);
368 }
369
370 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
371                                         const struct mmu_notifier_range *range)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374         int need_tlb_flush = 0, idx;
375         int ret;
376
377         idx = srcu_read_lock(&kvm->srcu);
378         spin_lock(&kvm->mmu_lock);
379         /*
380          * The count increase must become visible at unlock time as no
381          * spte can be established without taking the mmu_lock and
382          * count is also read inside the mmu_lock critical section.
383          */
384         kvm->mmu_notifier_count++;
385         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
386         need_tlb_flush |= kvm->tlbs_dirty;
387         /* we've to flush the tlb before the pages can be freed */
388         if (need_tlb_flush)
389                 kvm_flush_remote_tlbs(kvm);
390
391         spin_unlock(&kvm->mmu_lock);
392
393         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
394                                         range->end,
395                                         mmu_notifier_range_blockable(range));
396
397         srcu_read_unlock(&kvm->srcu, idx);
398
399         return ret;
400 }
401
402 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
403                                         const struct mmu_notifier_range *range)
404 {
405         struct kvm *kvm = mmu_notifier_to_kvm(mn);
406
407         spin_lock(&kvm->mmu_lock);
408         /*
409          * This sequence increase will notify the kvm page fault that
410          * the page that is going to be mapped in the spte could have
411          * been freed.
412          */
413         kvm->mmu_notifier_seq++;
414         smp_wmb();
415         /*
416          * The above sequence increase must be visible before the
417          * below count decrease, which is ensured by the smp_wmb above
418          * in conjunction with the smp_rmb in mmu_notifier_retry().
419          */
420         kvm->mmu_notifier_count--;
421         spin_unlock(&kvm->mmu_lock);
422
423         BUG_ON(kvm->mmu_notifier_count < 0);
424 }
425
426 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
427                                               struct mm_struct *mm,
428                                               unsigned long start,
429                                               unsigned long end)
430 {
431         struct kvm *kvm = mmu_notifier_to_kvm(mn);
432         int young, idx;
433
434         idx = srcu_read_lock(&kvm->srcu);
435         spin_lock(&kvm->mmu_lock);
436
437         young = kvm_age_hva(kvm, start, end);
438         if (young)
439                 kvm_flush_remote_tlbs(kvm);
440
441         spin_unlock(&kvm->mmu_lock);
442         srcu_read_unlock(&kvm->srcu, idx);
443
444         return young;
445 }
446
447 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
448                                         struct mm_struct *mm,
449                                         unsigned long start,
450                                         unsigned long end)
451 {
452         struct kvm *kvm = mmu_notifier_to_kvm(mn);
453         int young, idx;
454
455         idx = srcu_read_lock(&kvm->srcu);
456         spin_lock(&kvm->mmu_lock);
457         /*
458          * Even though we do not flush TLB, this will still adversely
459          * affect performance on pre-Haswell Intel EPT, where there is
460          * no EPT Access Bit to clear so that we have to tear down EPT
461          * tables instead. If we find this unacceptable, we can always
462          * add a parameter to kvm_age_hva so that it effectively doesn't
463          * do anything on clear_young.
464          *
465          * Also note that currently we never issue secondary TLB flushes
466          * from clear_young, leaving this job up to the regular system
467          * cadence. If we find this inaccurate, we might come up with a
468          * more sophisticated heuristic later.
469          */
470         young = kvm_age_hva(kvm, start, end);
471         spin_unlock(&kvm->mmu_lock);
472         srcu_read_unlock(&kvm->srcu, idx);
473
474         return young;
475 }
476
477 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
478                                        struct mm_struct *mm,
479                                        unsigned long address)
480 {
481         struct kvm *kvm = mmu_notifier_to_kvm(mn);
482         int young, idx;
483
484         idx = srcu_read_lock(&kvm->srcu);
485         spin_lock(&kvm->mmu_lock);
486         young = kvm_test_age_hva(kvm, address);
487         spin_unlock(&kvm->mmu_lock);
488         srcu_read_unlock(&kvm->srcu, idx);
489
490         return young;
491 }
492
493 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
494                                      struct mm_struct *mm)
495 {
496         struct kvm *kvm = mmu_notifier_to_kvm(mn);
497         int idx;
498
499         idx = srcu_read_lock(&kvm->srcu);
500         kvm_arch_flush_shadow_all(kvm);
501         srcu_read_unlock(&kvm->srcu, idx);
502 }
503
504 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
505         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
506         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
507         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
508         .clear_young            = kvm_mmu_notifier_clear_young,
509         .test_young             = kvm_mmu_notifier_test_young,
510         .change_pte             = kvm_mmu_notifier_change_pte,
511         .release                = kvm_mmu_notifier_release,
512 };
513
514 static int kvm_init_mmu_notifier(struct kvm *kvm)
515 {
516         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
517         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
518 }
519
520 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
521
522 static int kvm_init_mmu_notifier(struct kvm *kvm)
523 {
524         return 0;
525 }
526
527 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
528
529 static struct kvm_memslots *kvm_alloc_memslots(void)
530 {
531         int i;
532         struct kvm_memslots *slots;
533
534         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
535         if (!slots)
536                 return NULL;
537
538         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
539                 slots->id_to_index[i] = slots->memslots[i].id = i;
540
541         return slots;
542 }
543
544 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
545 {
546         if (!memslot->dirty_bitmap)
547                 return;
548
549         kvfree(memslot->dirty_bitmap);
550         memslot->dirty_bitmap = NULL;
551 }
552
553 /*
554  * Free any memory in @free but not in @dont.
555  */
556 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
557                               struct kvm_memory_slot *dont)
558 {
559         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
560                 kvm_destroy_dirty_bitmap(free);
561
562         kvm_arch_free_memslot(kvm, free, dont);
563
564         free->npages = 0;
565 }
566
567 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
568 {
569         struct kvm_memory_slot *memslot;
570
571         if (!slots)
572                 return;
573
574         kvm_for_each_memslot(memslot, slots)
575                 kvm_free_memslot(kvm, memslot, NULL);
576
577         kvfree(slots);
578 }
579
580 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
581 {
582         int i;
583
584         if (!kvm->debugfs_dentry)
585                 return;
586
587         debugfs_remove_recursive(kvm->debugfs_dentry);
588
589         if (kvm->debugfs_stat_data) {
590                 for (i = 0; i < kvm_debugfs_num_entries; i++)
591                         kfree(kvm->debugfs_stat_data[i]);
592                 kfree(kvm->debugfs_stat_data);
593         }
594 }
595
596 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
597 {
598         char dir_name[ITOA_MAX_LEN * 2];
599         struct kvm_stat_data *stat_data;
600         struct kvm_stats_debugfs_item *p;
601
602         if (!debugfs_initialized())
603                 return 0;
604
605         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
606         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
607
608         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
609                                          sizeof(*kvm->debugfs_stat_data),
610                                          GFP_KERNEL_ACCOUNT);
611         if (!kvm->debugfs_stat_data)
612                 return -ENOMEM;
613
614         for (p = debugfs_entries; p->name; p++) {
615                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
616                 if (!stat_data)
617                         return -ENOMEM;
618
619                 stat_data->kvm = kvm;
620                 stat_data->offset = p->offset;
621                 stat_data->mode = p->mode ? p->mode : 0644;
622                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
623                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
624                                     stat_data, stat_fops_per_vm[p->kind]);
625         }
626         return 0;
627 }
628
629 /*
630  * Called after the VM is otherwise initialized, but just before adding it to
631  * the vm_list.
632  */
633 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
634 {
635         return 0;
636 }
637
638 /*
639  * Called just after removing the VM from the vm_list, but before doing any
640  * other destruction.
641  */
642 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
643 {
644 }
645
646 static struct kvm *kvm_create_vm(unsigned long type)
647 {
648         struct kvm *kvm = kvm_arch_alloc_vm();
649         int r = -ENOMEM;
650         int i;
651
652         if (!kvm)
653                 return ERR_PTR(-ENOMEM);
654
655         spin_lock_init(&kvm->mmu_lock);
656         mmgrab(current->mm);
657         kvm->mm = current->mm;
658         kvm_eventfd_init(kvm);
659         mutex_init(&kvm->lock);
660         mutex_init(&kvm->irq_lock);
661         mutex_init(&kvm->slots_lock);
662         INIT_LIST_HEAD(&kvm->devices);
663
664         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
665
666         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
667                 struct kvm_memslots *slots = kvm_alloc_memslots();
668
669                 if (!slots)
670                         goto out_err_no_arch_destroy_vm;
671                 /* Generations must be different for each address space. */
672                 slots->generation = i;
673                 rcu_assign_pointer(kvm->memslots[i], slots);
674         }
675
676         for (i = 0; i < KVM_NR_BUSES; i++) {
677                 rcu_assign_pointer(kvm->buses[i],
678                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
679                 if (!kvm->buses[i])
680                         goto out_err_no_arch_destroy_vm;
681         }
682
683         refcount_set(&kvm->users_count, 1);
684         r = kvm_arch_init_vm(kvm, type);
685         if (r)
686                 goto out_err_no_arch_destroy_vm;
687
688         r = hardware_enable_all();
689         if (r)
690                 goto out_err_no_disable;
691
692 #ifdef CONFIG_HAVE_KVM_IRQFD
693         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
694 #endif
695
696         if (init_srcu_struct(&kvm->srcu))
697                 goto out_err_no_srcu;
698         if (init_srcu_struct(&kvm->irq_srcu))
699                 goto out_err_no_irq_srcu;
700
701         r = kvm_init_mmu_notifier(kvm);
702         if (r)
703                 goto out_err_no_mmu_notifier;
704
705         r = kvm_arch_post_init_vm(kvm);
706         if (r)
707                 goto out_err;
708
709         mutex_lock(&kvm_lock);
710         list_add(&kvm->vm_list, &vm_list);
711         mutex_unlock(&kvm_lock);
712
713         preempt_notifier_inc();
714
715         return kvm;
716
717 out_err:
718 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
719         if (kvm->mmu_notifier.ops)
720                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
721 #endif
722 out_err_no_mmu_notifier:
723         cleanup_srcu_struct(&kvm->irq_srcu);
724 out_err_no_irq_srcu:
725         cleanup_srcu_struct(&kvm->srcu);
726 out_err_no_srcu:
727         hardware_disable_all();
728 out_err_no_disable:
729         kvm_arch_destroy_vm(kvm);
730         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
731 out_err_no_arch_destroy_vm:
732         for (i = 0; i < KVM_NR_BUSES; i++)
733                 kfree(kvm_get_bus(kvm, i));
734         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
735                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
736         kvm_arch_free_vm(kvm);
737         mmdrop(current->mm);
738         return ERR_PTR(r);
739 }
740
741 static void kvm_destroy_devices(struct kvm *kvm)
742 {
743         struct kvm_device *dev, *tmp;
744
745         /*
746          * We do not need to take the kvm->lock here, because nobody else
747          * has a reference to the struct kvm at this point and therefore
748          * cannot access the devices list anyhow.
749          */
750         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
751                 list_del(&dev->vm_node);
752                 dev->ops->destroy(dev);
753         }
754 }
755
756 static void kvm_destroy_vm(struct kvm *kvm)
757 {
758         int i;
759         struct mm_struct *mm = kvm->mm;
760
761         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
762         kvm_destroy_vm_debugfs(kvm);
763         kvm_arch_sync_events(kvm);
764         mutex_lock(&kvm_lock);
765         list_del(&kvm->vm_list);
766         mutex_unlock(&kvm_lock);
767         kvm_arch_pre_destroy_vm(kvm);
768
769         kvm_free_irq_routing(kvm);
770         for (i = 0; i < KVM_NR_BUSES; i++) {
771                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
772
773                 if (bus)
774                         kvm_io_bus_destroy(bus);
775                 kvm->buses[i] = NULL;
776         }
777         kvm_coalesced_mmio_free(kvm);
778 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
779         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
780 #else
781         kvm_arch_flush_shadow_all(kvm);
782 #endif
783         kvm_arch_destroy_vm(kvm);
784         kvm_destroy_devices(kvm);
785         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
786                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
787         cleanup_srcu_struct(&kvm->irq_srcu);
788         cleanup_srcu_struct(&kvm->srcu);
789         kvm_arch_free_vm(kvm);
790         preempt_notifier_dec();
791         hardware_disable_all();
792         mmdrop(mm);
793 }
794
795 void kvm_get_kvm(struct kvm *kvm)
796 {
797         refcount_inc(&kvm->users_count);
798 }
799 EXPORT_SYMBOL_GPL(kvm_get_kvm);
800
801 void kvm_put_kvm(struct kvm *kvm)
802 {
803         if (refcount_dec_and_test(&kvm->users_count))
804                 kvm_destroy_vm(kvm);
805 }
806 EXPORT_SYMBOL_GPL(kvm_put_kvm);
807
808
809 static int kvm_vm_release(struct inode *inode, struct file *filp)
810 {
811         struct kvm *kvm = filp->private_data;
812
813         kvm_irqfd_release(kvm);
814
815         kvm_put_kvm(kvm);
816         return 0;
817 }
818
819 /*
820  * Allocation size is twice as large as the actual dirty bitmap size.
821  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
822  */
823 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
824 {
825         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
826
827         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
828         if (!memslot->dirty_bitmap)
829                 return -ENOMEM;
830
831         return 0;
832 }
833
834 /*
835  * Insert memslot and re-sort memslots based on their GFN,
836  * so binary search could be used to lookup GFN.
837  * Sorting algorithm takes advantage of having initially
838  * sorted array and known changed memslot position.
839  */
840 static void update_memslots(struct kvm_memslots *slots,
841                             struct kvm_memory_slot *new,
842                             enum kvm_mr_change change)
843 {
844         int id = new->id;
845         int i = slots->id_to_index[id];
846         struct kvm_memory_slot *mslots = slots->memslots;
847
848         WARN_ON(mslots[i].id != id);
849         switch (change) {
850         case KVM_MR_CREATE:
851                 slots->used_slots++;
852                 WARN_ON(mslots[i].npages || !new->npages);
853                 break;
854         case KVM_MR_DELETE:
855                 slots->used_slots--;
856                 WARN_ON(new->npages || !mslots[i].npages);
857                 break;
858         default:
859                 break;
860         }
861
862         while (i < KVM_MEM_SLOTS_NUM - 1 &&
863                new->base_gfn <= mslots[i + 1].base_gfn) {
864                 if (!mslots[i + 1].npages)
865                         break;
866                 mslots[i] = mslots[i + 1];
867                 slots->id_to_index[mslots[i].id] = i;
868                 i++;
869         }
870
871         /*
872          * The ">=" is needed when creating a slot with base_gfn == 0,
873          * so that it moves before all those with base_gfn == npages == 0.
874          *
875          * On the other hand, if new->npages is zero, the above loop has
876          * already left i pointing to the beginning of the empty part of
877          * mslots, and the ">=" would move the hole backwards in this
878          * case---which is wrong.  So skip the loop when deleting a slot.
879          */
880         if (new->npages) {
881                 while (i > 0 &&
882                        new->base_gfn >= mslots[i - 1].base_gfn) {
883                         mslots[i] = mslots[i - 1];
884                         slots->id_to_index[mslots[i].id] = i;
885                         i--;
886                 }
887         } else
888                 WARN_ON_ONCE(i != slots->used_slots);
889
890         mslots[i] = *new;
891         slots->id_to_index[mslots[i].id] = i;
892 }
893
894 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
895 {
896         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
897
898 #ifdef __KVM_HAVE_READONLY_MEM
899         valid_flags |= KVM_MEM_READONLY;
900 #endif
901
902         if (mem->flags & ~valid_flags)
903                 return -EINVAL;
904
905         return 0;
906 }
907
908 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
909                 int as_id, struct kvm_memslots *slots)
910 {
911         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
912         u64 gen = old_memslots->generation;
913
914         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
915         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
916
917         rcu_assign_pointer(kvm->memslots[as_id], slots);
918         synchronize_srcu_expedited(&kvm->srcu);
919
920         /*
921          * Increment the new memslot generation a second time, dropping the
922          * update in-progress flag and incrementing then generation based on
923          * the number of address spaces.  This provides a unique and easily
924          * identifiable generation number while the memslots are in flux.
925          */
926         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
927
928         /*
929          * Generations must be unique even across address spaces.  We do not need
930          * a global counter for that, instead the generation space is evenly split
931          * across address spaces.  For example, with two address spaces, address
932          * space 0 will use generations 0, 2, 4, ... while address space 1 will
933          * use generations 1, 3, 5, ...
934          */
935         gen += KVM_ADDRESS_SPACE_NUM;
936
937         kvm_arch_memslots_updated(kvm, gen);
938
939         slots->generation = gen;
940
941         return old_memslots;
942 }
943
944 /*
945  * Allocate some memory and give it an address in the guest physical address
946  * space.
947  *
948  * Discontiguous memory is allowed, mostly for framebuffers.
949  *
950  * Must be called holding kvm->slots_lock for write.
951  */
952 int __kvm_set_memory_region(struct kvm *kvm,
953                             const struct kvm_userspace_memory_region *mem)
954 {
955         int r;
956         gfn_t base_gfn;
957         unsigned long npages;
958         struct kvm_memory_slot *slot;
959         struct kvm_memory_slot old, new;
960         struct kvm_memslots *slots = NULL, *old_memslots;
961         int as_id, id;
962         enum kvm_mr_change change;
963
964         r = check_memory_region_flags(mem);
965         if (r)
966                 goto out;
967
968         r = -EINVAL;
969         as_id = mem->slot >> 16;
970         id = (u16)mem->slot;
971
972         /* General sanity checks */
973         if (mem->memory_size & (PAGE_SIZE - 1))
974                 goto out;
975         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
976                 goto out;
977         /* We can read the guest memory with __xxx_user() later on. */
978         if ((id < KVM_USER_MEM_SLOTS) &&
979             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
980              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
981                         mem->memory_size)))
982                 goto out;
983         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
984                 goto out;
985         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
986                 goto out;
987
988         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
989         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
990         npages = mem->memory_size >> PAGE_SHIFT;
991
992         if (npages > KVM_MEM_MAX_NR_PAGES)
993                 goto out;
994
995         new = old = *slot;
996
997         new.id = id;
998         new.base_gfn = base_gfn;
999         new.npages = npages;
1000         new.flags = mem->flags;
1001
1002         if (npages) {
1003                 if (!old.npages)
1004                         change = KVM_MR_CREATE;
1005                 else { /* Modify an existing slot. */
1006                         if ((mem->userspace_addr != old.userspace_addr) ||
1007                             (npages != old.npages) ||
1008                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1009                                 goto out;
1010
1011                         if (base_gfn != old.base_gfn)
1012                                 change = KVM_MR_MOVE;
1013                         else if (new.flags != old.flags)
1014                                 change = KVM_MR_FLAGS_ONLY;
1015                         else { /* Nothing to change. */
1016                                 r = 0;
1017                                 goto out;
1018                         }
1019                 }
1020         } else {
1021                 if (!old.npages)
1022                         goto out;
1023
1024                 change = KVM_MR_DELETE;
1025                 new.base_gfn = 0;
1026                 new.flags = 0;
1027         }
1028
1029         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1030                 /* Check for overlaps */
1031                 r = -EEXIST;
1032                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1033                         if (slot->id == id)
1034                                 continue;
1035                         if (!((base_gfn + npages <= slot->base_gfn) ||
1036                               (base_gfn >= slot->base_gfn + slot->npages)))
1037                                 goto out;
1038                 }
1039         }
1040
1041         /* Free page dirty bitmap if unneeded */
1042         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1043                 new.dirty_bitmap = NULL;
1044
1045         r = -ENOMEM;
1046         if (change == KVM_MR_CREATE) {
1047                 new.userspace_addr = mem->userspace_addr;
1048
1049                 if (kvm_arch_create_memslot(kvm, &new, npages))
1050                         goto out_free;
1051         }
1052
1053         /* Allocate page dirty bitmap if needed */
1054         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1055                 if (kvm_create_dirty_bitmap(&new) < 0)
1056                         goto out_free;
1057         }
1058
1059         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1060         if (!slots)
1061                 goto out_free;
1062         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1063
1064         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1065                 slot = id_to_memslot(slots, id);
1066                 slot->flags |= KVM_MEMSLOT_INVALID;
1067
1068                 old_memslots = install_new_memslots(kvm, as_id, slots);
1069
1070                 /* From this point no new shadow pages pointing to a deleted,
1071                  * or moved, memslot will be created.
1072                  *
1073                  * validation of sp->gfn happens in:
1074                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1075                  *      - kvm_is_visible_gfn (mmu_check_roots)
1076                  */
1077                 kvm_arch_flush_shadow_memslot(kvm, slot);
1078
1079                 /*
1080                  * We can re-use the old_memslots from above, the only difference
1081                  * from the currently installed memslots is the invalid flag.  This
1082                  * will get overwritten by update_memslots anyway.
1083                  */
1084                 slots = old_memslots;
1085         }
1086
1087         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1088         if (r)
1089                 goto out_slots;
1090
1091         /* actual memory is freed via old in kvm_free_memslot below */
1092         if (change == KVM_MR_DELETE) {
1093                 new.dirty_bitmap = NULL;
1094                 memset(&new.arch, 0, sizeof(new.arch));
1095         }
1096
1097         update_memslots(slots, &new, change);
1098         old_memslots = install_new_memslots(kvm, as_id, slots);
1099
1100         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1101
1102         kvm_free_memslot(kvm, &old, &new);
1103         kvfree(old_memslots);
1104         return 0;
1105
1106 out_slots:
1107         kvfree(slots);
1108 out_free:
1109         kvm_free_memslot(kvm, &new, &old);
1110 out:
1111         return r;
1112 }
1113 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1114
1115 int kvm_set_memory_region(struct kvm *kvm,
1116                           const struct kvm_userspace_memory_region *mem)
1117 {
1118         int r;
1119
1120         mutex_lock(&kvm->slots_lock);
1121         r = __kvm_set_memory_region(kvm, mem);
1122         mutex_unlock(&kvm->slots_lock);
1123         return r;
1124 }
1125 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1126
1127 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1128                                           struct kvm_userspace_memory_region *mem)
1129 {
1130         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1131                 return -EINVAL;
1132
1133         return kvm_set_memory_region(kvm, mem);
1134 }
1135
1136 int kvm_get_dirty_log(struct kvm *kvm,
1137                         struct kvm_dirty_log *log, int *is_dirty)
1138 {
1139         struct kvm_memslots *slots;
1140         struct kvm_memory_slot *memslot;
1141         int i, as_id, id;
1142         unsigned long n;
1143         unsigned long any = 0;
1144
1145         as_id = log->slot >> 16;
1146         id = (u16)log->slot;
1147         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1148                 return -EINVAL;
1149
1150         slots = __kvm_memslots(kvm, as_id);
1151         memslot = id_to_memslot(slots, id);
1152         if (!memslot->dirty_bitmap)
1153                 return -ENOENT;
1154
1155         n = kvm_dirty_bitmap_bytes(memslot);
1156
1157         for (i = 0; !any && i < n/sizeof(long); ++i)
1158                 any = memslot->dirty_bitmap[i];
1159
1160         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1161                 return -EFAULT;
1162
1163         if (any)
1164                 *is_dirty = 1;
1165         return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1168
1169 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1170 /**
1171  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1172  *      and reenable dirty page tracking for the corresponding pages.
1173  * @kvm:        pointer to kvm instance
1174  * @log:        slot id and address to which we copy the log
1175  * @flush:      true if TLB flush is needed by caller
1176  *
1177  * We need to keep it in mind that VCPU threads can write to the bitmap
1178  * concurrently. So, to avoid losing track of dirty pages we keep the
1179  * following order:
1180  *
1181  *    1. Take a snapshot of the bit and clear it if needed.
1182  *    2. Write protect the corresponding page.
1183  *    3. Copy the snapshot to the userspace.
1184  *    4. Upon return caller flushes TLB's if needed.
1185  *
1186  * Between 2 and 4, the guest may write to the page using the remaining TLB
1187  * entry.  This is not a problem because the page is reported dirty using
1188  * the snapshot taken before and step 4 ensures that writes done after
1189  * exiting to userspace will be logged for the next call.
1190  *
1191  */
1192 int kvm_get_dirty_log_protect(struct kvm *kvm,
1193                         struct kvm_dirty_log *log, bool *flush)
1194 {
1195         struct kvm_memslots *slots;
1196         struct kvm_memory_slot *memslot;
1197         int i, as_id, id;
1198         unsigned long n;
1199         unsigned long *dirty_bitmap;
1200         unsigned long *dirty_bitmap_buffer;
1201
1202         as_id = log->slot >> 16;
1203         id = (u16)log->slot;
1204         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1205                 return -EINVAL;
1206
1207         slots = __kvm_memslots(kvm, as_id);
1208         memslot = id_to_memslot(slots, id);
1209
1210         dirty_bitmap = memslot->dirty_bitmap;
1211         if (!dirty_bitmap)
1212                 return -ENOENT;
1213
1214         n = kvm_dirty_bitmap_bytes(memslot);
1215         *flush = false;
1216         if (kvm->manual_dirty_log_protect) {
1217                 /*
1218                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1219                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1220                  * is some code duplication between this function and
1221                  * kvm_get_dirty_log, but hopefully all architecture
1222                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1223                  * can be eliminated.
1224                  */
1225                 dirty_bitmap_buffer = dirty_bitmap;
1226         } else {
1227                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1228                 memset(dirty_bitmap_buffer, 0, n);
1229
1230                 spin_lock(&kvm->mmu_lock);
1231                 for (i = 0; i < n / sizeof(long); i++) {
1232                         unsigned long mask;
1233                         gfn_t offset;
1234
1235                         if (!dirty_bitmap[i])
1236                                 continue;
1237
1238                         *flush = true;
1239                         mask = xchg(&dirty_bitmap[i], 0);
1240                         dirty_bitmap_buffer[i] = mask;
1241
1242                         offset = i * BITS_PER_LONG;
1243                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1244                                                                 offset, mask);
1245                 }
1246                 spin_unlock(&kvm->mmu_lock);
1247         }
1248
1249         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1250                 return -EFAULT;
1251         return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1254
1255 /**
1256  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1257  *      and reenable dirty page tracking for the corresponding pages.
1258  * @kvm:        pointer to kvm instance
1259  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1260  * @flush:      true if TLB flush is needed by caller
1261  */
1262 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1263                                 struct kvm_clear_dirty_log *log, bool *flush)
1264 {
1265         struct kvm_memslots *slots;
1266         struct kvm_memory_slot *memslot;
1267         int as_id, id;
1268         gfn_t offset;
1269         unsigned long i, n;
1270         unsigned long *dirty_bitmap;
1271         unsigned long *dirty_bitmap_buffer;
1272
1273         as_id = log->slot >> 16;
1274         id = (u16)log->slot;
1275         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1276                 return -EINVAL;
1277
1278         if (log->first_page & 63)
1279                 return -EINVAL;
1280
1281         slots = __kvm_memslots(kvm, as_id);
1282         memslot = id_to_memslot(slots, id);
1283
1284         dirty_bitmap = memslot->dirty_bitmap;
1285         if (!dirty_bitmap)
1286                 return -ENOENT;
1287
1288         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1289
1290         if (log->first_page > memslot->npages ||
1291             log->num_pages > memslot->npages - log->first_page ||
1292             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1293             return -EINVAL;
1294
1295         *flush = false;
1296         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1297         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1298                 return -EFAULT;
1299
1300         spin_lock(&kvm->mmu_lock);
1301         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1302                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1303              i++, offset += BITS_PER_LONG) {
1304                 unsigned long mask = *dirty_bitmap_buffer++;
1305                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1306                 if (!mask)
1307                         continue;
1308
1309                 mask &= atomic_long_fetch_andnot(mask, p);
1310
1311                 /*
1312                  * mask contains the bits that really have been cleared.  This
1313                  * never includes any bits beyond the length of the memslot (if
1314                  * the length is not aligned to 64 pages), therefore it is not
1315                  * a problem if userspace sets them in log->dirty_bitmap.
1316                 */
1317                 if (mask) {
1318                         *flush = true;
1319                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1320                                                                 offset, mask);
1321                 }
1322         }
1323         spin_unlock(&kvm->mmu_lock);
1324
1325         return 0;
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1328 #endif
1329
1330 bool kvm_largepages_enabled(void)
1331 {
1332         return largepages_enabled;
1333 }
1334
1335 void kvm_disable_largepages(void)
1336 {
1337         largepages_enabled = false;
1338 }
1339 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1340
1341 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1342 {
1343         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1344 }
1345 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1346
1347 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1348 {
1349         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1350 }
1351
1352 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1353 {
1354         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1355
1356         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1357               memslot->flags & KVM_MEMSLOT_INVALID)
1358                 return false;
1359
1360         return true;
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1363
1364 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1365 {
1366         struct vm_area_struct *vma;
1367         unsigned long addr, size;
1368
1369         size = PAGE_SIZE;
1370
1371         addr = gfn_to_hva(kvm, gfn);
1372         if (kvm_is_error_hva(addr))
1373                 return PAGE_SIZE;
1374
1375         down_read(&current->mm->mmap_sem);
1376         vma = find_vma(current->mm, addr);
1377         if (!vma)
1378                 goto out;
1379
1380         size = vma_kernel_pagesize(vma);
1381
1382 out:
1383         up_read(&current->mm->mmap_sem);
1384
1385         return size;
1386 }
1387
1388 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1389 {
1390         return slot->flags & KVM_MEM_READONLY;
1391 }
1392
1393 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1394                                        gfn_t *nr_pages, bool write)
1395 {
1396         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1397                 return KVM_HVA_ERR_BAD;
1398
1399         if (memslot_is_readonly(slot) && write)
1400                 return KVM_HVA_ERR_RO_BAD;
1401
1402         if (nr_pages)
1403                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1404
1405         return __gfn_to_hva_memslot(slot, gfn);
1406 }
1407
1408 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1409                                      gfn_t *nr_pages)
1410 {
1411         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1412 }
1413
1414 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1415                                         gfn_t gfn)
1416 {
1417         return gfn_to_hva_many(slot, gfn, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1420
1421 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1422 {
1423         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1424 }
1425 EXPORT_SYMBOL_GPL(gfn_to_hva);
1426
1427 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1428 {
1429         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1430 }
1431 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1432
1433 /*
1434  * Return the hva of a @gfn and the R/W attribute if possible.
1435  *
1436  * @slot: the kvm_memory_slot which contains @gfn
1437  * @gfn: the gfn to be translated
1438  * @writable: used to return the read/write attribute of the @slot if the hva
1439  * is valid and @writable is not NULL
1440  */
1441 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1442                                       gfn_t gfn, bool *writable)
1443 {
1444         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1445
1446         if (!kvm_is_error_hva(hva) && writable)
1447                 *writable = !memslot_is_readonly(slot);
1448
1449         return hva;
1450 }
1451
1452 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1453 {
1454         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1455
1456         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1457 }
1458
1459 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1460 {
1461         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1462
1463         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1464 }
1465
1466 static inline int check_user_page_hwpoison(unsigned long addr)
1467 {
1468         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1469
1470         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1471         return rc == -EHWPOISON;
1472 }
1473
1474 /*
1475  * The fast path to get the writable pfn which will be stored in @pfn,
1476  * true indicates success, otherwise false is returned.  It's also the
1477  * only part that runs if we can are in atomic context.
1478  */
1479 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1480                             bool *writable, kvm_pfn_t *pfn)
1481 {
1482         struct page *page[1];
1483         int npages;
1484
1485         /*
1486          * Fast pin a writable pfn only if it is a write fault request
1487          * or the caller allows to map a writable pfn for a read fault
1488          * request.
1489          */
1490         if (!(write_fault || writable))
1491                 return false;
1492
1493         npages = __get_user_pages_fast(addr, 1, 1, page);
1494         if (npages == 1) {
1495                 *pfn = page_to_pfn(page[0]);
1496
1497                 if (writable)
1498                         *writable = true;
1499                 return true;
1500         }
1501
1502         return false;
1503 }
1504
1505 /*
1506  * The slow path to get the pfn of the specified host virtual address,
1507  * 1 indicates success, -errno is returned if error is detected.
1508  */
1509 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1510                            bool *writable, kvm_pfn_t *pfn)
1511 {
1512         unsigned int flags = FOLL_HWPOISON;
1513         struct page *page;
1514         int npages = 0;
1515
1516         might_sleep();
1517
1518         if (writable)
1519                 *writable = write_fault;
1520
1521         if (write_fault)
1522                 flags |= FOLL_WRITE;
1523         if (async)
1524                 flags |= FOLL_NOWAIT;
1525
1526         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1527         if (npages != 1)
1528                 return npages;
1529
1530         /* map read fault as writable if possible */
1531         if (unlikely(!write_fault) && writable) {
1532                 struct page *wpage;
1533
1534                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1535                         *writable = true;
1536                         put_page(page);
1537                         page = wpage;
1538                 }
1539         }
1540         *pfn = page_to_pfn(page);
1541         return npages;
1542 }
1543
1544 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1545 {
1546         if (unlikely(!(vma->vm_flags & VM_READ)))
1547                 return false;
1548
1549         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1550                 return false;
1551
1552         return true;
1553 }
1554
1555 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1556                                unsigned long addr, bool *async,
1557                                bool write_fault, bool *writable,
1558                                kvm_pfn_t *p_pfn)
1559 {
1560         unsigned long pfn;
1561         int r;
1562
1563         r = follow_pfn(vma, addr, &pfn);
1564         if (r) {
1565                 /*
1566                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1567                  * not call the fault handler, so do it here.
1568                  */
1569                 bool unlocked = false;
1570                 r = fixup_user_fault(current, current->mm, addr,
1571                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1572                                      &unlocked);
1573                 if (unlocked)
1574                         return -EAGAIN;
1575                 if (r)
1576                         return r;
1577
1578                 r = follow_pfn(vma, addr, &pfn);
1579                 if (r)
1580                         return r;
1581
1582         }
1583
1584         if (writable)
1585                 *writable = true;
1586
1587         /*
1588          * Get a reference here because callers of *hva_to_pfn* and
1589          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1590          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1591          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1592          * simply do nothing for reserved pfns.
1593          *
1594          * Whoever called remap_pfn_range is also going to call e.g.
1595          * unmap_mapping_range before the underlying pages are freed,
1596          * causing a call to our MMU notifier.
1597          */ 
1598         kvm_get_pfn(pfn);
1599
1600         *p_pfn = pfn;
1601         return 0;
1602 }
1603
1604 /*
1605  * Pin guest page in memory and return its pfn.
1606  * @addr: host virtual address which maps memory to the guest
1607  * @atomic: whether this function can sleep
1608  * @async: whether this function need to wait IO complete if the
1609  *         host page is not in the memory
1610  * @write_fault: whether we should get a writable host page
1611  * @writable: whether it allows to map a writable host page for !@write_fault
1612  *
1613  * The function will map a writable host page for these two cases:
1614  * 1): @write_fault = true
1615  * 2): @write_fault = false && @writable, @writable will tell the caller
1616  *     whether the mapping is writable.
1617  */
1618 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1619                         bool write_fault, bool *writable)
1620 {
1621         struct vm_area_struct *vma;
1622         kvm_pfn_t pfn = 0;
1623         int npages, r;
1624
1625         /* we can do it either atomically or asynchronously, not both */
1626         BUG_ON(atomic && async);
1627
1628         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1629                 return pfn;
1630
1631         if (atomic)
1632                 return KVM_PFN_ERR_FAULT;
1633
1634         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1635         if (npages == 1)
1636                 return pfn;
1637
1638         down_read(&current->mm->mmap_sem);
1639         if (npages == -EHWPOISON ||
1640               (!async && check_user_page_hwpoison(addr))) {
1641                 pfn = KVM_PFN_ERR_HWPOISON;
1642                 goto exit;
1643         }
1644
1645 retry:
1646         vma = find_vma_intersection(current->mm, addr, addr + 1);
1647
1648         if (vma == NULL)
1649                 pfn = KVM_PFN_ERR_FAULT;
1650         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1651                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1652                 if (r == -EAGAIN)
1653                         goto retry;
1654                 if (r < 0)
1655                         pfn = KVM_PFN_ERR_FAULT;
1656         } else {
1657                 if (async && vma_is_valid(vma, write_fault))
1658                         *async = true;
1659                 pfn = KVM_PFN_ERR_FAULT;
1660         }
1661 exit:
1662         up_read(&current->mm->mmap_sem);
1663         return pfn;
1664 }
1665
1666 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1667                                bool atomic, bool *async, bool write_fault,
1668                                bool *writable)
1669 {
1670         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1671
1672         if (addr == KVM_HVA_ERR_RO_BAD) {
1673                 if (writable)
1674                         *writable = false;
1675                 return KVM_PFN_ERR_RO_FAULT;
1676         }
1677
1678         if (kvm_is_error_hva(addr)) {
1679                 if (writable)
1680                         *writable = false;
1681                 return KVM_PFN_NOSLOT;
1682         }
1683
1684         /* Do not map writable pfn in the readonly memslot. */
1685         if (writable && memslot_is_readonly(slot)) {
1686                 *writable = false;
1687                 writable = NULL;
1688         }
1689
1690         return hva_to_pfn(addr, atomic, async, write_fault,
1691                           writable);
1692 }
1693 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1694
1695 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1696                       bool *writable)
1697 {
1698         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1699                                     write_fault, writable);
1700 }
1701 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1702
1703 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1704 {
1705         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1706 }
1707 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1708
1709 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1710 {
1711         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1712 }
1713 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1714
1715 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1716 {
1717         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1718 }
1719 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1720
1721 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1722 {
1723         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1726
1727 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1728 {
1729         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1730 }
1731 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1732
1733 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1734 {
1735         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1736 }
1737 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1738
1739 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1740                             struct page **pages, int nr_pages)
1741 {
1742         unsigned long addr;
1743         gfn_t entry = 0;
1744
1745         addr = gfn_to_hva_many(slot, gfn, &entry);
1746         if (kvm_is_error_hva(addr))
1747                 return -1;
1748
1749         if (entry < nr_pages)
1750                 return 0;
1751
1752         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1753 }
1754 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1755
1756 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1757 {
1758         if (is_error_noslot_pfn(pfn))
1759                 return KVM_ERR_PTR_BAD_PAGE;
1760
1761         if (kvm_is_reserved_pfn(pfn)) {
1762                 WARN_ON(1);
1763                 return KVM_ERR_PTR_BAD_PAGE;
1764         }
1765
1766         return pfn_to_page(pfn);
1767 }
1768
1769 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1770 {
1771         kvm_pfn_t pfn;
1772
1773         pfn = gfn_to_pfn(kvm, gfn);
1774
1775         return kvm_pfn_to_page(pfn);
1776 }
1777 EXPORT_SYMBOL_GPL(gfn_to_page);
1778
1779 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1780                          struct kvm_host_map *map)
1781 {
1782         kvm_pfn_t pfn;
1783         void *hva = NULL;
1784         struct page *page = KVM_UNMAPPED_PAGE;
1785
1786         if (!map)
1787                 return -EINVAL;
1788
1789         pfn = gfn_to_pfn_memslot(slot, gfn);
1790         if (is_error_noslot_pfn(pfn))
1791                 return -EINVAL;
1792
1793         if (pfn_valid(pfn)) {
1794                 page = pfn_to_page(pfn);
1795                 hva = kmap(page);
1796 #ifdef CONFIG_HAS_IOMEM
1797         } else {
1798                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1799 #endif
1800         }
1801
1802         if (!hva)
1803                 return -EFAULT;
1804
1805         map->page = page;
1806         map->hva = hva;
1807         map->pfn = pfn;
1808         map->gfn = gfn;
1809
1810         return 0;
1811 }
1812
1813 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1814 {
1815         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1816 }
1817 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1818
1819 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1820                     bool dirty)
1821 {
1822         if (!map)
1823                 return;
1824
1825         if (!map->hva)
1826                 return;
1827
1828         if (map->page != KVM_UNMAPPED_PAGE)
1829                 kunmap(map->page);
1830 #ifdef CONFIG_HAS_IOMEM
1831         else
1832                 memunmap(map->hva);
1833 #endif
1834
1835         if (dirty) {
1836                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1837                 kvm_release_pfn_dirty(map->pfn);
1838         } else {
1839                 kvm_release_pfn_clean(map->pfn);
1840         }
1841
1842         map->hva = NULL;
1843         map->page = NULL;
1844 }
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1846
1847 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1848 {
1849         kvm_pfn_t pfn;
1850
1851         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1852
1853         return kvm_pfn_to_page(pfn);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1856
1857 void kvm_release_page_clean(struct page *page)
1858 {
1859         WARN_ON(is_error_page(page));
1860
1861         kvm_release_pfn_clean(page_to_pfn(page));
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1864
1865 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1866 {
1867         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1868                 put_page(pfn_to_page(pfn));
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1871
1872 void kvm_release_page_dirty(struct page *page)
1873 {
1874         WARN_ON(is_error_page(page));
1875
1876         kvm_release_pfn_dirty(page_to_pfn(page));
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1879
1880 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1881 {
1882         kvm_set_pfn_dirty(pfn);
1883         kvm_release_pfn_clean(pfn);
1884 }
1885 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1886
1887 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1888 {
1889         if (!kvm_is_reserved_pfn(pfn)) {
1890                 struct page *page = pfn_to_page(pfn);
1891
1892                 SetPageDirty(page);
1893         }
1894 }
1895 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1896
1897 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1898 {
1899         if (!kvm_is_reserved_pfn(pfn))
1900                 mark_page_accessed(pfn_to_page(pfn));
1901 }
1902 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1903
1904 void kvm_get_pfn(kvm_pfn_t pfn)
1905 {
1906         if (!kvm_is_reserved_pfn(pfn))
1907                 get_page(pfn_to_page(pfn));
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1910
1911 static int next_segment(unsigned long len, int offset)
1912 {
1913         if (len > PAGE_SIZE - offset)
1914                 return PAGE_SIZE - offset;
1915         else
1916                 return len;
1917 }
1918
1919 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1920                                  void *data, int offset, int len)
1921 {
1922         int r;
1923         unsigned long addr;
1924
1925         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1926         if (kvm_is_error_hva(addr))
1927                 return -EFAULT;
1928         r = __copy_from_user(data, (void __user *)addr + offset, len);
1929         if (r)
1930                 return -EFAULT;
1931         return 0;
1932 }
1933
1934 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1935                         int len)
1936 {
1937         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1938
1939         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1942
1943 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1944                              int offset, int len)
1945 {
1946         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1947
1948         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1951
1952 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1953 {
1954         gfn_t gfn = gpa >> PAGE_SHIFT;
1955         int seg;
1956         int offset = offset_in_page(gpa);
1957         int ret;
1958
1959         while ((seg = next_segment(len, offset)) != 0) {
1960                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1961                 if (ret < 0)
1962                         return ret;
1963                 offset = 0;
1964                 len -= seg;
1965                 data += seg;
1966                 ++gfn;
1967         }
1968         return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_read_guest);
1971
1972 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1973 {
1974         gfn_t gfn = gpa >> PAGE_SHIFT;
1975         int seg;
1976         int offset = offset_in_page(gpa);
1977         int ret;
1978
1979         while ((seg = next_segment(len, offset)) != 0) {
1980                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1981                 if (ret < 0)
1982                         return ret;
1983                 offset = 0;
1984                 len -= seg;
1985                 data += seg;
1986                 ++gfn;
1987         }
1988         return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1991
1992 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1993                                    void *data, int offset, unsigned long len)
1994 {
1995         int r;
1996         unsigned long addr;
1997
1998         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1999         if (kvm_is_error_hva(addr))
2000                 return -EFAULT;
2001         pagefault_disable();
2002         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2003         pagefault_enable();
2004         if (r)
2005                 return -EFAULT;
2006         return 0;
2007 }
2008
2009 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2010                           unsigned long len)
2011 {
2012         gfn_t gfn = gpa >> PAGE_SHIFT;
2013         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2014         int offset = offset_in_page(gpa);
2015
2016         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2019
2020 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2021                                void *data, unsigned long len)
2022 {
2023         gfn_t gfn = gpa >> PAGE_SHIFT;
2024         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2025         int offset = offset_in_page(gpa);
2026
2027         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2028 }
2029 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2030
2031 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2032                                   const void *data, int offset, int len)
2033 {
2034         int r;
2035         unsigned long addr;
2036
2037         addr = gfn_to_hva_memslot(memslot, gfn);
2038         if (kvm_is_error_hva(addr))
2039                 return -EFAULT;
2040         r = __copy_to_user((void __user *)addr + offset, data, len);
2041         if (r)
2042                 return -EFAULT;
2043         mark_page_dirty_in_slot(memslot, gfn);
2044         return 0;
2045 }
2046
2047 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2048                          const void *data, int offset, int len)
2049 {
2050         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2051
2052         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2053 }
2054 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2055
2056 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2057                               const void *data, int offset, int len)
2058 {
2059         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2060
2061         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2062 }
2063 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2064
2065 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2066                     unsigned long len)
2067 {
2068         gfn_t gfn = gpa >> PAGE_SHIFT;
2069         int seg;
2070         int offset = offset_in_page(gpa);
2071         int ret;
2072
2073         while ((seg = next_segment(len, offset)) != 0) {
2074                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2075                 if (ret < 0)
2076                         return ret;
2077                 offset = 0;
2078                 len -= seg;
2079                 data += seg;
2080                 ++gfn;
2081         }
2082         return 0;
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_write_guest);
2085
2086 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2087                          unsigned long len)
2088 {
2089         gfn_t gfn = gpa >> PAGE_SHIFT;
2090         int seg;
2091         int offset = offset_in_page(gpa);
2092         int ret;
2093
2094         while ((seg = next_segment(len, offset)) != 0) {
2095                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2096                 if (ret < 0)
2097                         return ret;
2098                 offset = 0;
2099                 len -= seg;
2100                 data += seg;
2101                 ++gfn;
2102         }
2103         return 0;
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2106
2107 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2108                                        struct gfn_to_hva_cache *ghc,
2109                                        gpa_t gpa, unsigned long len)
2110 {
2111         int offset = offset_in_page(gpa);
2112         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2113         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2114         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2115         gfn_t nr_pages_avail;
2116         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2117
2118         ghc->gpa = gpa;
2119         ghc->generation = slots->generation;
2120         ghc->len = len;
2121         ghc->hva = KVM_HVA_ERR_BAD;
2122
2123         /*
2124          * If the requested region crosses two memslots, we still
2125          * verify that the entire region is valid here.
2126          */
2127         while (!r && start_gfn <= end_gfn) {
2128                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2129                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2130                                            &nr_pages_avail);
2131                 if (kvm_is_error_hva(ghc->hva))
2132                         r = -EFAULT;
2133                 start_gfn += nr_pages_avail;
2134         }
2135
2136         /* Use the slow path for cross page reads and writes. */
2137         if (!r && nr_pages_needed == 1)
2138                 ghc->hva += offset;
2139         else
2140                 ghc->memslot = NULL;
2141
2142         return r;
2143 }
2144
2145 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2146                               gpa_t gpa, unsigned long len)
2147 {
2148         struct kvm_memslots *slots = kvm_memslots(kvm);
2149         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2152
2153 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2154                                   void *data, unsigned int offset,
2155                                   unsigned long len)
2156 {
2157         struct kvm_memslots *slots = kvm_memslots(kvm);
2158         int r;
2159         gpa_t gpa = ghc->gpa + offset;
2160
2161         BUG_ON(len + offset > ghc->len);
2162
2163         if (slots->generation != ghc->generation)
2164                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2165
2166         if (unlikely(!ghc->memslot))
2167                 return kvm_write_guest(kvm, gpa, data, len);
2168
2169         if (kvm_is_error_hva(ghc->hva))
2170                 return -EFAULT;
2171
2172         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2173         if (r)
2174                 return -EFAULT;
2175         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2176
2177         return 0;
2178 }
2179 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2180
2181 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2182                            void *data, unsigned long len)
2183 {
2184         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2185 }
2186 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2187
2188 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2189                            void *data, unsigned long len)
2190 {
2191         struct kvm_memslots *slots = kvm_memslots(kvm);
2192         int r;
2193
2194         BUG_ON(len > ghc->len);
2195
2196         if (slots->generation != ghc->generation)
2197                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2198
2199         if (unlikely(!ghc->memslot))
2200                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2201
2202         if (kvm_is_error_hva(ghc->hva))
2203                 return -EFAULT;
2204
2205         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2206         if (r)
2207                 return -EFAULT;
2208
2209         return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2212
2213 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2214 {
2215         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2216
2217         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2218 }
2219 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2220
2221 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2222 {
2223         gfn_t gfn = gpa >> PAGE_SHIFT;
2224         int seg;
2225         int offset = offset_in_page(gpa);
2226         int ret;
2227
2228         while ((seg = next_segment(len, offset)) != 0) {
2229                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2230                 if (ret < 0)
2231                         return ret;
2232                 offset = 0;
2233                 len -= seg;
2234                 ++gfn;
2235         }
2236         return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2239
2240 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2241                                     gfn_t gfn)
2242 {
2243         if (memslot && memslot->dirty_bitmap) {
2244                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2245
2246                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2247         }
2248 }
2249
2250 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2251 {
2252         struct kvm_memory_slot *memslot;
2253
2254         memslot = gfn_to_memslot(kvm, gfn);
2255         mark_page_dirty_in_slot(memslot, gfn);
2256 }
2257 EXPORT_SYMBOL_GPL(mark_page_dirty);
2258
2259 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2260 {
2261         struct kvm_memory_slot *memslot;
2262
2263         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2264         mark_page_dirty_in_slot(memslot, gfn);
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2267
2268 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2269 {
2270         if (!vcpu->sigset_active)
2271                 return;
2272
2273         /*
2274          * This does a lockless modification of ->real_blocked, which is fine
2275          * because, only current can change ->real_blocked and all readers of
2276          * ->real_blocked don't care as long ->real_blocked is always a subset
2277          * of ->blocked.
2278          */
2279         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2280 }
2281
2282 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2283 {
2284         if (!vcpu->sigset_active)
2285                 return;
2286
2287         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2288         sigemptyset(&current->real_blocked);
2289 }
2290
2291 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2292 {
2293         unsigned int old, val, grow, grow_start;
2294
2295         old = val = vcpu->halt_poll_ns;
2296         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2297         grow = READ_ONCE(halt_poll_ns_grow);
2298         if (!grow)
2299                 goto out;
2300
2301         val *= grow;
2302         if (val < grow_start)
2303                 val = grow_start;
2304
2305         if (val > halt_poll_ns)
2306                 val = halt_poll_ns;
2307
2308         vcpu->halt_poll_ns = val;
2309 out:
2310         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2311 }
2312
2313 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2314 {
2315         unsigned int old, val, shrink;
2316
2317         old = val = vcpu->halt_poll_ns;
2318         shrink = READ_ONCE(halt_poll_ns_shrink);
2319         if (shrink == 0)
2320                 val = 0;
2321         else
2322                 val /= shrink;
2323
2324         vcpu->halt_poll_ns = val;
2325         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2326 }
2327
2328 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2329 {
2330         int ret = -EINTR;
2331         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2332
2333         if (kvm_arch_vcpu_runnable(vcpu)) {
2334                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2335                 goto out;
2336         }
2337         if (kvm_cpu_has_pending_timer(vcpu))
2338                 goto out;
2339         if (signal_pending(current))
2340                 goto out;
2341
2342         ret = 0;
2343 out:
2344         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2345         return ret;
2346 }
2347
2348 /*
2349  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2350  */
2351 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2352 {
2353         ktime_t start, cur;
2354         DECLARE_SWAITQUEUE(wait);
2355         bool waited = false;
2356         u64 block_ns;
2357
2358         kvm_arch_vcpu_blocking(vcpu);
2359
2360         start = cur = ktime_get();
2361         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2362                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2363
2364                 ++vcpu->stat.halt_attempted_poll;
2365                 do {
2366                         /*
2367                          * This sets KVM_REQ_UNHALT if an interrupt
2368                          * arrives.
2369                          */
2370                         if (kvm_vcpu_check_block(vcpu) < 0) {
2371                                 ++vcpu->stat.halt_successful_poll;
2372                                 if (!vcpu_valid_wakeup(vcpu))
2373                                         ++vcpu->stat.halt_poll_invalid;
2374                                 goto out;
2375                         }
2376                         cur = ktime_get();
2377                 } while (single_task_running() && ktime_before(cur, stop));
2378         }
2379
2380         for (;;) {
2381                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2382
2383                 if (kvm_vcpu_check_block(vcpu) < 0)
2384                         break;
2385
2386                 waited = true;
2387                 schedule();
2388         }
2389
2390         finish_swait(&vcpu->wq, &wait);
2391         cur = ktime_get();
2392 out:
2393         kvm_arch_vcpu_unblocking(vcpu);
2394         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2395
2396         if (!kvm_arch_no_poll(vcpu)) {
2397                 if (!vcpu_valid_wakeup(vcpu)) {
2398                         shrink_halt_poll_ns(vcpu);
2399                 } else if (halt_poll_ns) {
2400                         if (block_ns <= vcpu->halt_poll_ns)
2401                                 ;
2402                         /* we had a long block, shrink polling */
2403                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2404                                 shrink_halt_poll_ns(vcpu);
2405                         /* we had a short halt and our poll time is too small */
2406                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2407                                 block_ns < halt_poll_ns)
2408                                 grow_halt_poll_ns(vcpu);
2409                 } else {
2410                         vcpu->halt_poll_ns = 0;
2411                 }
2412         }
2413
2414         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2415         kvm_arch_vcpu_block_finish(vcpu);
2416 }
2417 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2418
2419 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2420 {
2421         struct swait_queue_head *wqp;
2422
2423         wqp = kvm_arch_vcpu_wq(vcpu);
2424         if (swq_has_sleeper(wqp)) {
2425                 swake_up_one(wqp);
2426                 WRITE_ONCE(vcpu->ready, true);
2427                 ++vcpu->stat.halt_wakeup;
2428                 return true;
2429         }
2430
2431         return false;
2432 }
2433 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2434
2435 #ifndef CONFIG_S390
2436 /*
2437  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2438  */
2439 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2440 {
2441         int me;
2442         int cpu = vcpu->cpu;
2443
2444         if (kvm_vcpu_wake_up(vcpu))
2445                 return;
2446
2447         me = get_cpu();
2448         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2449                 if (kvm_arch_vcpu_should_kick(vcpu))
2450                         smp_send_reschedule(cpu);
2451         put_cpu();
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2454 #endif /* !CONFIG_S390 */
2455
2456 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2457 {
2458         struct pid *pid;
2459         struct task_struct *task = NULL;
2460         int ret = 0;
2461
2462         rcu_read_lock();
2463         pid = rcu_dereference(target->pid);
2464         if (pid)
2465                 task = get_pid_task(pid, PIDTYPE_PID);
2466         rcu_read_unlock();
2467         if (!task)
2468                 return ret;
2469         ret = yield_to(task, 1);
2470         put_task_struct(task);
2471
2472         return ret;
2473 }
2474 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2475
2476 /*
2477  * Helper that checks whether a VCPU is eligible for directed yield.
2478  * Most eligible candidate to yield is decided by following heuristics:
2479  *
2480  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2481  *  (preempted lock holder), indicated by @in_spin_loop.
2482  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2483  *
2484  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2485  *  chance last time (mostly it has become eligible now since we have probably
2486  *  yielded to lockholder in last iteration. This is done by toggling
2487  *  @dy_eligible each time a VCPU checked for eligibility.)
2488  *
2489  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2490  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2491  *  burning. Giving priority for a potential lock-holder increases lock
2492  *  progress.
2493  *
2494  *  Since algorithm is based on heuristics, accessing another VCPU data without
2495  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2496  *  and continue with next VCPU and so on.
2497  */
2498 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2499 {
2500 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2501         bool eligible;
2502
2503         eligible = !vcpu->spin_loop.in_spin_loop ||
2504                     vcpu->spin_loop.dy_eligible;
2505
2506         if (vcpu->spin_loop.in_spin_loop)
2507                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2508
2509         return eligible;
2510 #else
2511         return true;
2512 #endif
2513 }
2514
2515 /*
2516  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2517  * a vcpu_load/vcpu_put pair.  However, for most architectures
2518  * kvm_arch_vcpu_runnable does not require vcpu_load.
2519  */
2520 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2521 {
2522         return kvm_arch_vcpu_runnable(vcpu);
2523 }
2524
2525 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2526 {
2527         if (kvm_arch_dy_runnable(vcpu))
2528                 return true;
2529
2530 #ifdef CONFIG_KVM_ASYNC_PF
2531         if (!list_empty_careful(&vcpu->async_pf.done))
2532                 return true;
2533 #endif
2534
2535         return false;
2536 }
2537
2538 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2539 {
2540         struct kvm *kvm = me->kvm;
2541         struct kvm_vcpu *vcpu;
2542         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2543         int yielded = 0;
2544         int try = 3;
2545         int pass;
2546         int i;
2547
2548         kvm_vcpu_set_in_spin_loop(me, true);
2549         /*
2550          * We boost the priority of a VCPU that is runnable but not
2551          * currently running, because it got preempted by something
2552          * else and called schedule in __vcpu_run.  Hopefully that
2553          * VCPU is holding the lock that we need and will release it.
2554          * We approximate round-robin by starting at the last boosted VCPU.
2555          */
2556         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2557                 kvm_for_each_vcpu(i, vcpu, kvm) {
2558                         if (!pass && i <= last_boosted_vcpu) {
2559                                 i = last_boosted_vcpu;
2560                                 continue;
2561                         } else if (pass && i > last_boosted_vcpu)
2562                                 break;
2563                         if (!READ_ONCE(vcpu->ready))
2564                                 continue;
2565                         if (vcpu == me)
2566                                 continue;
2567                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2568                                 continue;
2569                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2570                                 !kvm_arch_vcpu_in_kernel(vcpu))
2571                                 continue;
2572                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2573                                 continue;
2574
2575                         yielded = kvm_vcpu_yield_to(vcpu);
2576                         if (yielded > 0) {
2577                                 kvm->last_boosted_vcpu = i;
2578                                 break;
2579                         } else if (yielded < 0) {
2580                                 try--;
2581                                 if (!try)
2582                                         break;
2583                         }
2584                 }
2585         }
2586         kvm_vcpu_set_in_spin_loop(me, false);
2587
2588         /* Ensure vcpu is not eligible during next spinloop */
2589         kvm_vcpu_set_dy_eligible(me, false);
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2592
2593 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2594 {
2595         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2596         struct page *page;
2597
2598         if (vmf->pgoff == 0)
2599                 page = virt_to_page(vcpu->run);
2600 #ifdef CONFIG_X86
2601         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2602                 page = virt_to_page(vcpu->arch.pio_data);
2603 #endif
2604 #ifdef CONFIG_KVM_MMIO
2605         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2606                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2607 #endif
2608         else
2609                 return kvm_arch_vcpu_fault(vcpu, vmf);
2610         get_page(page);
2611         vmf->page = page;
2612         return 0;
2613 }
2614
2615 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2616         .fault = kvm_vcpu_fault,
2617 };
2618
2619 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2620 {
2621         vma->vm_ops = &kvm_vcpu_vm_ops;
2622         return 0;
2623 }
2624
2625 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2626 {
2627         struct kvm_vcpu *vcpu = filp->private_data;
2628
2629         debugfs_remove_recursive(vcpu->debugfs_dentry);
2630         kvm_put_kvm(vcpu->kvm);
2631         return 0;
2632 }
2633
2634 static struct file_operations kvm_vcpu_fops = {
2635         .release        = kvm_vcpu_release,
2636         .unlocked_ioctl = kvm_vcpu_ioctl,
2637         .mmap           = kvm_vcpu_mmap,
2638         .llseek         = noop_llseek,
2639         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2640 };
2641
2642 /*
2643  * Allocates an inode for the vcpu.
2644  */
2645 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2646 {
2647         char name[8 + 1 + ITOA_MAX_LEN + 1];
2648
2649         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2650         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2651 }
2652
2653 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2654 {
2655 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2656         char dir_name[ITOA_MAX_LEN * 2];
2657
2658         if (!debugfs_initialized())
2659                 return;
2660
2661         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2662         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2663                                                   vcpu->kvm->debugfs_dentry);
2664
2665         kvm_arch_create_vcpu_debugfs(vcpu);
2666 #endif
2667 }
2668
2669 /*
2670  * Creates some virtual cpus.  Good luck creating more than one.
2671  */
2672 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2673 {
2674         int r;
2675         struct kvm_vcpu *vcpu;
2676
2677         if (id >= KVM_MAX_VCPU_ID)
2678                 return -EINVAL;
2679
2680         mutex_lock(&kvm->lock);
2681         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2682                 mutex_unlock(&kvm->lock);
2683                 return -EINVAL;
2684         }
2685
2686         kvm->created_vcpus++;
2687         mutex_unlock(&kvm->lock);
2688
2689         vcpu = kvm_arch_vcpu_create(kvm, id);
2690         if (IS_ERR(vcpu)) {
2691                 r = PTR_ERR(vcpu);
2692                 goto vcpu_decrement;
2693         }
2694
2695         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2696
2697         r = kvm_arch_vcpu_setup(vcpu);
2698         if (r)
2699                 goto vcpu_destroy;
2700
2701         kvm_create_vcpu_debugfs(vcpu);
2702
2703         mutex_lock(&kvm->lock);
2704         if (kvm_get_vcpu_by_id(kvm, id)) {
2705                 r = -EEXIST;
2706                 goto unlock_vcpu_destroy;
2707         }
2708
2709         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2710
2711         /* Now it's all set up, let userspace reach it */
2712         kvm_get_kvm(kvm);
2713         r = create_vcpu_fd(vcpu);
2714         if (r < 0) {
2715                 kvm_put_kvm(kvm);
2716                 goto unlock_vcpu_destroy;
2717         }
2718
2719         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2720
2721         /*
2722          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2723          * before kvm->online_vcpu's incremented value.
2724          */
2725         smp_wmb();
2726         atomic_inc(&kvm->online_vcpus);
2727
2728         mutex_unlock(&kvm->lock);
2729         kvm_arch_vcpu_postcreate(vcpu);
2730         return r;
2731
2732 unlock_vcpu_destroy:
2733         mutex_unlock(&kvm->lock);
2734         debugfs_remove_recursive(vcpu->debugfs_dentry);
2735 vcpu_destroy:
2736         kvm_arch_vcpu_destroy(vcpu);
2737 vcpu_decrement:
2738         mutex_lock(&kvm->lock);
2739         kvm->created_vcpus--;
2740         mutex_unlock(&kvm->lock);
2741         return r;
2742 }
2743
2744 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2745 {
2746         if (sigset) {
2747                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2748                 vcpu->sigset_active = 1;
2749                 vcpu->sigset = *sigset;
2750         } else
2751                 vcpu->sigset_active = 0;
2752         return 0;
2753 }
2754
2755 static long kvm_vcpu_ioctl(struct file *filp,
2756                            unsigned int ioctl, unsigned long arg)
2757 {
2758         struct kvm_vcpu *vcpu = filp->private_data;
2759         void __user *argp = (void __user *)arg;
2760         int r;
2761         struct kvm_fpu *fpu = NULL;
2762         struct kvm_sregs *kvm_sregs = NULL;
2763
2764         if (vcpu->kvm->mm != current->mm)
2765                 return -EIO;
2766
2767         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2768                 return -EINVAL;
2769
2770         /*
2771          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2772          * execution; mutex_lock() would break them.
2773          */
2774         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2775         if (r != -ENOIOCTLCMD)
2776                 return r;
2777
2778         if (mutex_lock_killable(&vcpu->mutex))
2779                 return -EINTR;
2780         switch (ioctl) {
2781         case KVM_RUN: {
2782                 struct pid *oldpid;
2783                 r = -EINVAL;
2784                 if (arg)
2785                         goto out;
2786                 oldpid = rcu_access_pointer(vcpu->pid);
2787                 if (unlikely(oldpid != task_pid(current))) {
2788                         /* The thread running this VCPU changed. */
2789                         struct pid *newpid;
2790
2791                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2792                         if (r)
2793                                 break;
2794
2795                         newpid = get_task_pid(current, PIDTYPE_PID);
2796                         rcu_assign_pointer(vcpu->pid, newpid);
2797                         if (oldpid)
2798                                 synchronize_rcu();
2799                         put_pid(oldpid);
2800                 }
2801                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2802                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2803                 break;
2804         }
2805         case KVM_GET_REGS: {
2806                 struct kvm_regs *kvm_regs;
2807
2808                 r = -ENOMEM;
2809                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2810                 if (!kvm_regs)
2811                         goto out;
2812                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2813                 if (r)
2814                         goto out_free1;
2815                 r = -EFAULT;
2816                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2817                         goto out_free1;
2818                 r = 0;
2819 out_free1:
2820                 kfree(kvm_regs);
2821                 break;
2822         }
2823         case KVM_SET_REGS: {
2824                 struct kvm_regs *kvm_regs;
2825
2826                 r = -ENOMEM;
2827                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2828                 if (IS_ERR(kvm_regs)) {
2829                         r = PTR_ERR(kvm_regs);
2830                         goto out;
2831                 }
2832                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2833                 kfree(kvm_regs);
2834                 break;
2835         }
2836         case KVM_GET_SREGS: {
2837                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2838                                     GFP_KERNEL_ACCOUNT);
2839                 r = -ENOMEM;
2840                 if (!kvm_sregs)
2841                         goto out;
2842                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2843                 if (r)
2844                         goto out;
2845                 r = -EFAULT;
2846                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2847                         goto out;
2848                 r = 0;
2849                 break;
2850         }
2851         case KVM_SET_SREGS: {
2852                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2853                 if (IS_ERR(kvm_sregs)) {
2854                         r = PTR_ERR(kvm_sregs);
2855                         kvm_sregs = NULL;
2856                         goto out;
2857                 }
2858                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2859                 break;
2860         }
2861         case KVM_GET_MP_STATE: {
2862                 struct kvm_mp_state mp_state;
2863
2864                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2865                 if (r)
2866                         goto out;
2867                 r = -EFAULT;
2868                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2869                         goto out;
2870                 r = 0;
2871                 break;
2872         }
2873         case KVM_SET_MP_STATE: {
2874                 struct kvm_mp_state mp_state;
2875
2876                 r = -EFAULT;
2877                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2878                         goto out;
2879                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2880                 break;
2881         }
2882         case KVM_TRANSLATE: {
2883                 struct kvm_translation tr;
2884
2885                 r = -EFAULT;
2886                 if (copy_from_user(&tr, argp, sizeof(tr)))
2887                         goto out;
2888                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2889                 if (r)
2890                         goto out;
2891                 r = -EFAULT;
2892                 if (copy_to_user(argp, &tr, sizeof(tr)))
2893                         goto out;
2894                 r = 0;
2895                 break;
2896         }
2897         case KVM_SET_GUEST_DEBUG: {
2898                 struct kvm_guest_debug dbg;
2899
2900                 r = -EFAULT;
2901                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2902                         goto out;
2903                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2904                 break;
2905         }
2906         case KVM_SET_SIGNAL_MASK: {
2907                 struct kvm_signal_mask __user *sigmask_arg = argp;
2908                 struct kvm_signal_mask kvm_sigmask;
2909                 sigset_t sigset, *p;
2910
2911                 p = NULL;
2912                 if (argp) {
2913                         r = -EFAULT;
2914                         if (copy_from_user(&kvm_sigmask, argp,
2915                                            sizeof(kvm_sigmask)))
2916                                 goto out;
2917                         r = -EINVAL;
2918                         if (kvm_sigmask.len != sizeof(sigset))
2919                                 goto out;
2920                         r = -EFAULT;
2921                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2922                                            sizeof(sigset)))
2923                                 goto out;
2924                         p = &sigset;
2925                 }
2926                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2927                 break;
2928         }
2929         case KVM_GET_FPU: {
2930                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2931                 r = -ENOMEM;
2932                 if (!fpu)
2933                         goto out;
2934                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2935                 if (r)
2936                         goto out;
2937                 r = -EFAULT;
2938                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2939                         goto out;
2940                 r = 0;
2941                 break;
2942         }
2943         case KVM_SET_FPU: {
2944                 fpu = memdup_user(argp, sizeof(*fpu));
2945                 if (IS_ERR(fpu)) {
2946                         r = PTR_ERR(fpu);
2947                         fpu = NULL;
2948                         goto out;
2949                 }
2950                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2951                 break;
2952         }
2953         default:
2954                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2955         }
2956 out:
2957         mutex_unlock(&vcpu->mutex);
2958         kfree(fpu);
2959         kfree(kvm_sregs);
2960         return r;
2961 }
2962
2963 #ifdef CONFIG_KVM_COMPAT
2964 static long kvm_vcpu_compat_ioctl(struct file *filp,
2965                                   unsigned int ioctl, unsigned long arg)
2966 {
2967         struct kvm_vcpu *vcpu = filp->private_data;
2968         void __user *argp = compat_ptr(arg);
2969         int r;
2970
2971         if (vcpu->kvm->mm != current->mm)
2972                 return -EIO;
2973
2974         switch (ioctl) {
2975         case KVM_SET_SIGNAL_MASK: {
2976                 struct kvm_signal_mask __user *sigmask_arg = argp;
2977                 struct kvm_signal_mask kvm_sigmask;
2978                 sigset_t sigset;
2979
2980                 if (argp) {
2981                         r = -EFAULT;
2982                         if (copy_from_user(&kvm_sigmask, argp,
2983                                            sizeof(kvm_sigmask)))
2984                                 goto out;
2985                         r = -EINVAL;
2986                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2987                                 goto out;
2988                         r = -EFAULT;
2989                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2990                                 goto out;
2991                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2992                 } else
2993                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2994                 break;
2995         }
2996         default:
2997                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2998         }
2999
3000 out:
3001         return r;
3002 }
3003 #endif
3004
3005 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3006 {
3007         struct kvm_device *dev = filp->private_data;
3008
3009         if (dev->ops->mmap)
3010                 return dev->ops->mmap(dev, vma);
3011
3012         return -ENODEV;
3013 }
3014
3015 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3016                                  int (*accessor)(struct kvm_device *dev,
3017                                                  struct kvm_device_attr *attr),
3018                                  unsigned long arg)
3019 {
3020         struct kvm_device_attr attr;
3021
3022         if (!accessor)
3023                 return -EPERM;
3024
3025         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3026                 return -EFAULT;
3027
3028         return accessor(dev, &attr);
3029 }
3030
3031 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3032                              unsigned long arg)
3033 {
3034         struct kvm_device *dev = filp->private_data;
3035
3036         if (dev->kvm->mm != current->mm)
3037                 return -EIO;
3038
3039         switch (ioctl) {
3040         case KVM_SET_DEVICE_ATTR:
3041                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3042         case KVM_GET_DEVICE_ATTR:
3043                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3044         case KVM_HAS_DEVICE_ATTR:
3045                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3046         default:
3047                 if (dev->ops->ioctl)
3048                         return dev->ops->ioctl(dev, ioctl, arg);
3049
3050                 return -ENOTTY;
3051         }
3052 }
3053
3054 static int kvm_device_release(struct inode *inode, struct file *filp)
3055 {
3056         struct kvm_device *dev = filp->private_data;
3057         struct kvm *kvm = dev->kvm;
3058
3059         if (dev->ops->release) {
3060                 mutex_lock(&kvm->lock);
3061                 list_del(&dev->vm_node);
3062                 dev->ops->release(dev);
3063                 mutex_unlock(&kvm->lock);
3064         }
3065
3066         kvm_put_kvm(kvm);
3067         return 0;
3068 }
3069
3070 static const struct file_operations kvm_device_fops = {
3071         .unlocked_ioctl = kvm_device_ioctl,
3072         .release = kvm_device_release,
3073         KVM_COMPAT(kvm_device_ioctl),
3074         .mmap = kvm_device_mmap,
3075 };
3076
3077 struct kvm_device *kvm_device_from_filp(struct file *filp)
3078 {
3079         if (filp->f_op != &kvm_device_fops)
3080                 return NULL;
3081
3082         return filp->private_data;
3083 }
3084
3085 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3086 #ifdef CONFIG_KVM_MPIC
3087         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3088         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3089 #endif
3090 };
3091
3092 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3093 {
3094         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3095                 return -ENOSPC;
3096
3097         if (kvm_device_ops_table[type] != NULL)
3098                 return -EEXIST;
3099
3100         kvm_device_ops_table[type] = ops;
3101         return 0;
3102 }
3103
3104 void kvm_unregister_device_ops(u32 type)
3105 {
3106         if (kvm_device_ops_table[type] != NULL)
3107                 kvm_device_ops_table[type] = NULL;
3108 }
3109
3110 static int kvm_ioctl_create_device(struct kvm *kvm,
3111                                    struct kvm_create_device *cd)
3112 {
3113         struct kvm_device_ops *ops = NULL;
3114         struct kvm_device *dev;
3115         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3116         int type;
3117         int ret;
3118
3119         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3120                 return -ENODEV;
3121
3122         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3123         ops = kvm_device_ops_table[type];
3124         if (ops == NULL)
3125                 return -ENODEV;
3126
3127         if (test)
3128                 return 0;
3129
3130         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3131         if (!dev)
3132                 return -ENOMEM;
3133
3134         dev->ops = ops;
3135         dev->kvm = kvm;
3136
3137         mutex_lock(&kvm->lock);
3138         ret = ops->create(dev, type);
3139         if (ret < 0) {
3140                 mutex_unlock(&kvm->lock);
3141                 kfree(dev);
3142                 return ret;
3143         }
3144         list_add(&dev->vm_node, &kvm->devices);
3145         mutex_unlock(&kvm->lock);
3146
3147         if (ops->init)
3148                 ops->init(dev);
3149
3150         kvm_get_kvm(kvm);
3151         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3152         if (ret < 0) {
3153                 kvm_put_kvm(kvm);
3154                 mutex_lock(&kvm->lock);
3155                 list_del(&dev->vm_node);
3156                 mutex_unlock(&kvm->lock);
3157                 ops->destroy(dev);
3158                 return ret;
3159         }
3160
3161         cd->fd = ret;
3162         return 0;
3163 }
3164
3165 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3166 {
3167         switch (arg) {
3168         case KVM_CAP_USER_MEMORY:
3169         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3170         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3171         case KVM_CAP_INTERNAL_ERROR_DATA:
3172 #ifdef CONFIG_HAVE_KVM_MSI
3173         case KVM_CAP_SIGNAL_MSI:
3174 #endif
3175 #ifdef CONFIG_HAVE_KVM_IRQFD
3176         case KVM_CAP_IRQFD:
3177         case KVM_CAP_IRQFD_RESAMPLE:
3178 #endif
3179         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3180         case KVM_CAP_CHECK_EXTENSION_VM:
3181         case KVM_CAP_ENABLE_CAP_VM:
3182 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3183         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3184 #endif
3185                 return 1;
3186 #ifdef CONFIG_KVM_MMIO
3187         case KVM_CAP_COALESCED_MMIO:
3188                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3189         case KVM_CAP_COALESCED_PIO:
3190                 return 1;
3191 #endif
3192 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3193         case KVM_CAP_IRQ_ROUTING:
3194                 return KVM_MAX_IRQ_ROUTES;
3195 #endif
3196 #if KVM_ADDRESS_SPACE_NUM > 1
3197         case KVM_CAP_MULTI_ADDRESS_SPACE:
3198                 return KVM_ADDRESS_SPACE_NUM;
3199 #endif
3200         case KVM_CAP_NR_MEMSLOTS:
3201                 return KVM_USER_MEM_SLOTS;
3202         default:
3203                 break;
3204         }
3205         return kvm_vm_ioctl_check_extension(kvm, arg);
3206 }
3207
3208 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3209                                                   struct kvm_enable_cap *cap)
3210 {
3211         return -EINVAL;
3212 }
3213
3214 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3215                                            struct kvm_enable_cap *cap)
3216 {
3217         switch (cap->cap) {
3218 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3219         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3220                 if (cap->flags || (cap->args[0] & ~1))
3221                         return -EINVAL;
3222                 kvm->manual_dirty_log_protect = cap->args[0];
3223                 return 0;
3224 #endif
3225         default:
3226                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3227         }
3228 }
3229
3230 static long kvm_vm_ioctl(struct file *filp,
3231                            unsigned int ioctl, unsigned long arg)
3232 {
3233         struct kvm *kvm = filp->private_data;
3234         void __user *argp = (void __user *)arg;
3235         int r;
3236
3237         if (kvm->mm != current->mm)
3238                 return -EIO;
3239         switch (ioctl) {
3240         case KVM_CREATE_VCPU:
3241                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3242                 break;
3243         case KVM_ENABLE_CAP: {
3244                 struct kvm_enable_cap cap;
3245
3246                 r = -EFAULT;
3247                 if (copy_from_user(&cap, argp, sizeof(cap)))
3248                         goto out;
3249                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3250                 break;
3251         }
3252         case KVM_SET_USER_MEMORY_REGION: {
3253                 struct kvm_userspace_memory_region kvm_userspace_mem;
3254
3255                 r = -EFAULT;
3256                 if (copy_from_user(&kvm_userspace_mem, argp,
3257                                                 sizeof(kvm_userspace_mem)))
3258                         goto out;
3259
3260                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3261                 break;
3262         }
3263         case KVM_GET_DIRTY_LOG: {
3264                 struct kvm_dirty_log log;
3265
3266                 r = -EFAULT;
3267                 if (copy_from_user(&log, argp, sizeof(log)))
3268                         goto out;
3269                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3270                 break;
3271         }
3272 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3273         case KVM_CLEAR_DIRTY_LOG: {
3274                 struct kvm_clear_dirty_log log;
3275
3276                 r = -EFAULT;
3277                 if (copy_from_user(&log, argp, sizeof(log)))
3278                         goto out;
3279                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3280                 break;
3281         }
3282 #endif
3283 #ifdef CONFIG_KVM_MMIO
3284         case KVM_REGISTER_COALESCED_MMIO: {
3285                 struct kvm_coalesced_mmio_zone zone;
3286
3287                 r = -EFAULT;
3288                 if (copy_from_user(&zone, argp, sizeof(zone)))
3289                         goto out;
3290                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3291                 break;
3292         }
3293         case KVM_UNREGISTER_COALESCED_MMIO: {
3294                 struct kvm_coalesced_mmio_zone zone;
3295
3296                 r = -EFAULT;
3297                 if (copy_from_user(&zone, argp, sizeof(zone)))
3298                         goto out;
3299                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3300                 break;
3301         }
3302 #endif
3303         case KVM_IRQFD: {
3304                 struct kvm_irqfd data;
3305
3306                 r = -EFAULT;
3307                 if (copy_from_user(&data, argp, sizeof(data)))
3308                         goto out;
3309                 r = kvm_irqfd(kvm, &data);
3310                 break;
3311         }
3312         case KVM_IOEVENTFD: {
3313                 struct kvm_ioeventfd data;
3314
3315                 r = -EFAULT;
3316                 if (copy_from_user(&data, argp, sizeof(data)))
3317                         goto out;
3318                 r = kvm_ioeventfd(kvm, &data);
3319                 break;
3320         }
3321 #ifdef CONFIG_HAVE_KVM_MSI
3322         case KVM_SIGNAL_MSI: {
3323                 struct kvm_msi msi;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&msi, argp, sizeof(msi)))
3327                         goto out;
3328                 r = kvm_send_userspace_msi(kvm, &msi);
3329                 break;
3330         }
3331 #endif
3332 #ifdef __KVM_HAVE_IRQ_LINE
3333         case KVM_IRQ_LINE_STATUS:
3334         case KVM_IRQ_LINE: {
3335                 struct kvm_irq_level irq_event;
3336
3337                 r = -EFAULT;
3338                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3339                         goto out;
3340
3341                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3342                                         ioctl == KVM_IRQ_LINE_STATUS);
3343                 if (r)
3344                         goto out;
3345
3346                 r = -EFAULT;
3347                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3348                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3349                                 goto out;
3350                 }
3351
3352                 r = 0;
3353                 break;
3354         }
3355 #endif
3356 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3357         case KVM_SET_GSI_ROUTING: {
3358                 struct kvm_irq_routing routing;
3359                 struct kvm_irq_routing __user *urouting;
3360                 struct kvm_irq_routing_entry *entries = NULL;
3361
3362                 r = -EFAULT;
3363                 if (copy_from_user(&routing, argp, sizeof(routing)))
3364                         goto out;
3365                 r = -EINVAL;
3366                 if (!kvm_arch_can_set_irq_routing(kvm))
3367                         goto out;
3368                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3369                         goto out;
3370                 if (routing.flags)
3371                         goto out;
3372                 if (routing.nr) {
3373                         r = -ENOMEM;
3374                         entries = vmalloc(array_size(sizeof(*entries),
3375                                                      routing.nr));
3376                         if (!entries)
3377                                 goto out;
3378                         r = -EFAULT;
3379                         urouting = argp;
3380                         if (copy_from_user(entries, urouting->entries,
3381                                            routing.nr * sizeof(*entries)))
3382                                 goto out_free_irq_routing;
3383                 }
3384                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3385                                         routing.flags);
3386 out_free_irq_routing:
3387                 vfree(entries);
3388                 break;
3389         }
3390 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3391         case KVM_CREATE_DEVICE: {
3392                 struct kvm_create_device cd;
3393
3394                 r = -EFAULT;
3395                 if (copy_from_user(&cd, argp, sizeof(cd)))
3396                         goto out;
3397
3398                 r = kvm_ioctl_create_device(kvm, &cd);
3399                 if (r)
3400                         goto out;
3401
3402                 r = -EFAULT;
3403                 if (copy_to_user(argp, &cd, sizeof(cd)))
3404                         goto out;
3405
3406                 r = 0;
3407                 break;
3408         }
3409         case KVM_CHECK_EXTENSION:
3410                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3411                 break;
3412         default:
3413                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3414         }
3415 out:
3416         return r;
3417 }
3418
3419 #ifdef CONFIG_KVM_COMPAT
3420 struct compat_kvm_dirty_log {
3421         __u32 slot;
3422         __u32 padding1;
3423         union {
3424                 compat_uptr_t dirty_bitmap; /* one bit per page */
3425                 __u64 padding2;
3426         };
3427 };
3428
3429 static long kvm_vm_compat_ioctl(struct file *filp,
3430                            unsigned int ioctl, unsigned long arg)
3431 {
3432         struct kvm *kvm = filp->private_data;
3433         int r;
3434
3435         if (kvm->mm != current->mm)
3436                 return -EIO;
3437         switch (ioctl) {
3438         case KVM_GET_DIRTY_LOG: {
3439                 struct compat_kvm_dirty_log compat_log;
3440                 struct kvm_dirty_log log;
3441
3442                 if (copy_from_user(&compat_log, (void __user *)arg,
3443                                    sizeof(compat_log)))
3444                         return -EFAULT;
3445                 log.slot         = compat_log.slot;
3446                 log.padding1     = compat_log.padding1;
3447                 log.padding2     = compat_log.padding2;
3448                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3449
3450                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3451                 break;
3452         }
3453         default:
3454                 r = kvm_vm_ioctl(filp, ioctl, arg);
3455         }
3456         return r;
3457 }
3458 #endif
3459
3460 static struct file_operations kvm_vm_fops = {
3461         .release        = kvm_vm_release,
3462         .unlocked_ioctl = kvm_vm_ioctl,
3463         .llseek         = noop_llseek,
3464         KVM_COMPAT(kvm_vm_compat_ioctl),
3465 };
3466
3467 static int kvm_dev_ioctl_create_vm(unsigned long type)
3468 {
3469         int r;
3470         struct kvm *kvm;
3471         struct file *file;
3472
3473         kvm = kvm_create_vm(type);
3474         if (IS_ERR(kvm))
3475                 return PTR_ERR(kvm);
3476 #ifdef CONFIG_KVM_MMIO
3477         r = kvm_coalesced_mmio_init(kvm);
3478         if (r < 0)
3479                 goto put_kvm;
3480 #endif
3481         r = get_unused_fd_flags(O_CLOEXEC);
3482         if (r < 0)
3483                 goto put_kvm;
3484
3485         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3486         if (IS_ERR(file)) {
3487                 put_unused_fd(r);
3488                 r = PTR_ERR(file);
3489                 goto put_kvm;
3490         }
3491
3492         /*
3493          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3494          * already set, with ->release() being kvm_vm_release().  In error
3495          * cases it will be called by the final fput(file) and will take
3496          * care of doing kvm_put_kvm(kvm).
3497          */
3498         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3499                 put_unused_fd(r);
3500                 fput(file);
3501                 return -ENOMEM;
3502         }
3503         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3504
3505         fd_install(r, file);
3506         return r;
3507
3508 put_kvm:
3509         kvm_put_kvm(kvm);
3510         return r;
3511 }
3512
3513 static long kvm_dev_ioctl(struct file *filp,
3514                           unsigned int ioctl, unsigned long arg)
3515 {
3516         long r = -EINVAL;
3517
3518         switch (ioctl) {
3519         case KVM_GET_API_VERSION:
3520                 if (arg)
3521                         goto out;
3522                 r = KVM_API_VERSION;
3523                 break;
3524         case KVM_CREATE_VM:
3525                 r = kvm_dev_ioctl_create_vm(arg);
3526                 break;
3527         case KVM_CHECK_EXTENSION:
3528                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3529                 break;
3530         case KVM_GET_VCPU_MMAP_SIZE:
3531                 if (arg)
3532                         goto out;
3533                 r = PAGE_SIZE;     /* struct kvm_run */
3534 #ifdef CONFIG_X86
3535                 r += PAGE_SIZE;    /* pio data page */
3536 #endif
3537 #ifdef CONFIG_KVM_MMIO
3538                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3539 #endif
3540                 break;
3541         case KVM_TRACE_ENABLE:
3542         case KVM_TRACE_PAUSE:
3543         case KVM_TRACE_DISABLE:
3544                 r = -EOPNOTSUPP;
3545                 break;
3546         default:
3547                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3548         }
3549 out:
3550         return r;
3551 }
3552
3553 static struct file_operations kvm_chardev_ops = {
3554         .unlocked_ioctl = kvm_dev_ioctl,
3555         .llseek         = noop_llseek,
3556         KVM_COMPAT(kvm_dev_ioctl),
3557 };
3558
3559 static struct miscdevice kvm_dev = {
3560         KVM_MINOR,
3561         "kvm",
3562         &kvm_chardev_ops,
3563 };
3564
3565 static void hardware_enable_nolock(void *junk)
3566 {
3567         int cpu = raw_smp_processor_id();
3568         int r;
3569
3570         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3571                 return;
3572
3573         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3574
3575         r = kvm_arch_hardware_enable();
3576
3577         if (r) {
3578                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3579                 atomic_inc(&hardware_enable_failed);
3580                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3581         }
3582 }
3583
3584 static int kvm_starting_cpu(unsigned int cpu)
3585 {
3586         raw_spin_lock(&kvm_count_lock);
3587         if (kvm_usage_count)
3588                 hardware_enable_nolock(NULL);
3589         raw_spin_unlock(&kvm_count_lock);
3590         return 0;
3591 }
3592
3593 static void hardware_disable_nolock(void *junk)
3594 {
3595         int cpu = raw_smp_processor_id();
3596
3597         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3598                 return;
3599         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3600         kvm_arch_hardware_disable();
3601 }
3602
3603 static int kvm_dying_cpu(unsigned int cpu)
3604 {
3605         raw_spin_lock(&kvm_count_lock);
3606         if (kvm_usage_count)
3607                 hardware_disable_nolock(NULL);
3608         raw_spin_unlock(&kvm_count_lock);
3609         return 0;
3610 }
3611
3612 static void hardware_disable_all_nolock(void)
3613 {
3614         BUG_ON(!kvm_usage_count);
3615
3616         kvm_usage_count--;
3617         if (!kvm_usage_count)
3618                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3619 }
3620
3621 static void hardware_disable_all(void)
3622 {
3623         raw_spin_lock(&kvm_count_lock);
3624         hardware_disable_all_nolock();
3625         raw_spin_unlock(&kvm_count_lock);
3626 }
3627
3628 static int hardware_enable_all(void)
3629 {
3630         int r = 0;
3631
3632         raw_spin_lock(&kvm_count_lock);
3633
3634         kvm_usage_count++;
3635         if (kvm_usage_count == 1) {
3636                 atomic_set(&hardware_enable_failed, 0);
3637                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3638
3639                 if (atomic_read(&hardware_enable_failed)) {
3640                         hardware_disable_all_nolock();
3641                         r = -EBUSY;
3642                 }
3643         }
3644
3645         raw_spin_unlock(&kvm_count_lock);
3646
3647         return r;
3648 }
3649
3650 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3651                       void *v)
3652 {
3653         /*
3654          * Some (well, at least mine) BIOSes hang on reboot if
3655          * in vmx root mode.
3656          *
3657          * And Intel TXT required VMX off for all cpu when system shutdown.
3658          */
3659         pr_info("kvm: exiting hardware virtualization\n");
3660         kvm_rebooting = true;
3661         on_each_cpu(hardware_disable_nolock, NULL, 1);
3662         return NOTIFY_OK;
3663 }
3664
3665 static struct notifier_block kvm_reboot_notifier = {
3666         .notifier_call = kvm_reboot,
3667         .priority = 0,
3668 };
3669
3670 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3671 {
3672         int i;
3673
3674         for (i = 0; i < bus->dev_count; i++) {
3675                 struct kvm_io_device *pos = bus->range[i].dev;
3676
3677                 kvm_iodevice_destructor(pos);
3678         }
3679         kfree(bus);
3680 }
3681
3682 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3683                                  const struct kvm_io_range *r2)
3684 {
3685         gpa_t addr1 = r1->addr;
3686         gpa_t addr2 = r2->addr;
3687
3688         if (addr1 < addr2)
3689                 return -1;
3690
3691         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3692          * accept any overlapping write.  Any order is acceptable for
3693          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3694          * we process all of them.
3695          */
3696         if (r2->len) {
3697                 addr1 += r1->len;
3698                 addr2 += r2->len;
3699         }
3700
3701         if (addr1 > addr2)
3702                 return 1;
3703
3704         return 0;
3705 }
3706
3707 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3708 {
3709         return kvm_io_bus_cmp(p1, p2);
3710 }
3711
3712 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3713                              gpa_t addr, int len)
3714 {
3715         struct kvm_io_range *range, key;
3716         int off;
3717
3718         key = (struct kvm_io_range) {
3719                 .addr = addr,
3720                 .len = len,
3721         };
3722
3723         range = bsearch(&key, bus->range, bus->dev_count,
3724                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3725         if (range == NULL)
3726                 return -ENOENT;
3727
3728         off = range - bus->range;
3729
3730         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3731                 off--;
3732
3733         return off;
3734 }
3735
3736 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3737                               struct kvm_io_range *range, const void *val)
3738 {
3739         int idx;
3740
3741         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3742         if (idx < 0)
3743                 return -EOPNOTSUPP;
3744
3745         while (idx < bus->dev_count &&
3746                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3747                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3748                                         range->len, val))
3749                         return idx;
3750                 idx++;
3751         }
3752
3753         return -EOPNOTSUPP;
3754 }
3755
3756 /* kvm_io_bus_write - called under kvm->slots_lock */
3757 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3758                      int len, const void *val)
3759 {
3760         struct kvm_io_bus *bus;
3761         struct kvm_io_range range;
3762         int r;
3763
3764         range = (struct kvm_io_range) {
3765                 .addr = addr,
3766                 .len = len,
3767         };
3768
3769         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3770         if (!bus)
3771                 return -ENOMEM;
3772         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3773         return r < 0 ? r : 0;
3774 }
3775 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3776
3777 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3778 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3779                             gpa_t addr, int len, const void *val, long cookie)
3780 {
3781         struct kvm_io_bus *bus;
3782         struct kvm_io_range range;
3783
3784         range = (struct kvm_io_range) {
3785                 .addr = addr,
3786                 .len = len,
3787         };
3788
3789         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3790         if (!bus)
3791                 return -ENOMEM;
3792
3793         /* First try the device referenced by cookie. */
3794         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3795             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3796                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3797                                         val))
3798                         return cookie;
3799
3800         /*
3801          * cookie contained garbage; fall back to search and return the
3802          * correct cookie value.
3803          */
3804         return __kvm_io_bus_write(vcpu, bus, &range, val);
3805 }
3806
3807 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3808                              struct kvm_io_range *range, void *val)
3809 {
3810         int idx;
3811
3812         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3813         if (idx < 0)
3814                 return -EOPNOTSUPP;
3815
3816         while (idx < bus->dev_count &&
3817                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3818                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3819                                        range->len, val))
3820                         return idx;
3821                 idx++;
3822         }
3823
3824         return -EOPNOTSUPP;
3825 }
3826
3827 /* kvm_io_bus_read - called under kvm->slots_lock */
3828 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3829                     int len, void *val)
3830 {
3831         struct kvm_io_bus *bus;
3832         struct kvm_io_range range;
3833         int r;
3834
3835         range = (struct kvm_io_range) {
3836                 .addr = addr,
3837                 .len = len,
3838         };
3839
3840         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3841         if (!bus)
3842                 return -ENOMEM;
3843         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3844         return r < 0 ? r : 0;
3845 }
3846
3847 /* Caller must hold slots_lock. */
3848 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3849                             int len, struct kvm_io_device *dev)
3850 {
3851         int i;
3852         struct kvm_io_bus *new_bus, *bus;
3853         struct kvm_io_range range;
3854
3855         bus = kvm_get_bus(kvm, bus_idx);
3856         if (!bus)
3857                 return -ENOMEM;
3858
3859         /* exclude ioeventfd which is limited by maximum fd */
3860         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3861                 return -ENOSPC;
3862
3863         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3864                           GFP_KERNEL_ACCOUNT);
3865         if (!new_bus)
3866                 return -ENOMEM;
3867
3868         range = (struct kvm_io_range) {
3869                 .addr = addr,
3870                 .len = len,
3871                 .dev = dev,
3872         };
3873
3874         for (i = 0; i < bus->dev_count; i++)
3875                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3876                         break;
3877
3878         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3879         new_bus->dev_count++;
3880         new_bus->range[i] = range;
3881         memcpy(new_bus->range + i + 1, bus->range + i,
3882                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3883         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3884         synchronize_srcu_expedited(&kvm->srcu);
3885         kfree(bus);
3886
3887         return 0;
3888 }
3889
3890 /* Caller must hold slots_lock. */
3891 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3892                                struct kvm_io_device *dev)
3893 {
3894         int i;
3895         struct kvm_io_bus *new_bus, *bus;
3896
3897         bus = kvm_get_bus(kvm, bus_idx);
3898         if (!bus)
3899                 return;
3900
3901         for (i = 0; i < bus->dev_count; i++)
3902                 if (bus->range[i].dev == dev) {
3903                         break;
3904                 }
3905
3906         if (i == bus->dev_count)
3907                 return;
3908
3909         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3910                           GFP_KERNEL_ACCOUNT);
3911         if (!new_bus)  {
3912                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3913                 goto broken;
3914         }
3915
3916         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3917         new_bus->dev_count--;
3918         memcpy(new_bus->range + i, bus->range + i + 1,
3919                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3920
3921 broken:
3922         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3923         synchronize_srcu_expedited(&kvm->srcu);
3924         kfree(bus);
3925         return;
3926 }
3927
3928 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3929                                          gpa_t addr)
3930 {
3931         struct kvm_io_bus *bus;
3932         int dev_idx, srcu_idx;
3933         struct kvm_io_device *iodev = NULL;
3934
3935         srcu_idx = srcu_read_lock(&kvm->srcu);
3936
3937         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3938         if (!bus)
3939                 goto out_unlock;
3940
3941         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3942         if (dev_idx < 0)
3943                 goto out_unlock;
3944
3945         iodev = bus->range[dev_idx].dev;
3946
3947 out_unlock:
3948         srcu_read_unlock(&kvm->srcu, srcu_idx);
3949
3950         return iodev;
3951 }
3952 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3953
3954 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3955                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3956                            const char *fmt)
3957 {
3958         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3959                                           inode->i_private;
3960
3961         /* The debugfs files are a reference to the kvm struct which
3962          * is still valid when kvm_destroy_vm is called.
3963          * To avoid the race between open and the removal of the debugfs
3964          * directory we test against the users count.
3965          */
3966         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3967                 return -ENOENT;
3968
3969         if (simple_attr_open(inode, file, get,
3970                              stat_data->mode & S_IWUGO ? set : NULL,
3971                              fmt)) {
3972                 kvm_put_kvm(stat_data->kvm);
3973                 return -ENOMEM;
3974         }
3975
3976         return 0;
3977 }
3978
3979 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3980 {
3981         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3982                                           inode->i_private;
3983
3984         simple_attr_release(inode, file);
3985         kvm_put_kvm(stat_data->kvm);
3986
3987         return 0;
3988 }
3989
3990 static int vm_stat_get_per_vm(void *data, u64 *val)
3991 {
3992         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3993
3994         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3995
3996         return 0;
3997 }
3998
3999 static int vm_stat_clear_per_vm(void *data, u64 val)
4000 {
4001         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4002
4003         if (val)
4004                 return -EINVAL;
4005
4006         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4007
4008         return 0;
4009 }
4010
4011 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4012 {
4013         __simple_attr_check_format("%llu\n", 0ull);
4014         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4015                                 vm_stat_clear_per_vm, "%llu\n");
4016 }
4017
4018 static const struct file_operations vm_stat_get_per_vm_fops = {
4019         .owner   = THIS_MODULE,
4020         .open    = vm_stat_get_per_vm_open,
4021         .release = kvm_debugfs_release,
4022         .read    = simple_attr_read,
4023         .write   = simple_attr_write,
4024         .llseek  = no_llseek,
4025 };
4026
4027 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4028 {
4029         int i;
4030         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4031         struct kvm_vcpu *vcpu;
4032
4033         *val = 0;
4034
4035         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4036                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4037
4038         return 0;
4039 }
4040
4041 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4042 {
4043         int i;
4044         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4045         struct kvm_vcpu *vcpu;
4046
4047         if (val)
4048                 return -EINVAL;
4049
4050         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4051                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4052
4053         return 0;
4054 }
4055
4056 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4057 {
4058         __simple_attr_check_format("%llu\n", 0ull);
4059         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4060                                  vcpu_stat_clear_per_vm, "%llu\n");
4061 }
4062
4063 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4064         .owner   = THIS_MODULE,
4065         .open    = vcpu_stat_get_per_vm_open,
4066         .release = kvm_debugfs_release,
4067         .read    = simple_attr_read,
4068         .write   = simple_attr_write,
4069         .llseek  = no_llseek,
4070 };
4071
4072 static const struct file_operations *stat_fops_per_vm[] = {
4073         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4074         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4075 };
4076
4077 static int vm_stat_get(void *_offset, u64 *val)
4078 {
4079         unsigned offset = (long)_offset;
4080         struct kvm *kvm;
4081         struct kvm_stat_data stat_tmp = {.offset = offset};
4082         u64 tmp_val;
4083
4084         *val = 0;
4085         mutex_lock(&kvm_lock);
4086         list_for_each_entry(kvm, &vm_list, vm_list) {
4087                 stat_tmp.kvm = kvm;
4088                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4089                 *val += tmp_val;
4090         }
4091         mutex_unlock(&kvm_lock);
4092         return 0;
4093 }
4094
4095 static int vm_stat_clear(void *_offset, u64 val)
4096 {
4097         unsigned offset = (long)_offset;
4098         struct kvm *kvm;
4099         struct kvm_stat_data stat_tmp = {.offset = offset};
4100
4101         if (val)
4102                 return -EINVAL;
4103
4104         mutex_lock(&kvm_lock);
4105         list_for_each_entry(kvm, &vm_list, vm_list) {
4106                 stat_tmp.kvm = kvm;
4107                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4108         }
4109         mutex_unlock(&kvm_lock);
4110
4111         return 0;
4112 }
4113
4114 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4115
4116 static int vcpu_stat_get(void *_offset, u64 *val)
4117 {
4118         unsigned offset = (long)_offset;
4119         struct kvm *kvm;
4120         struct kvm_stat_data stat_tmp = {.offset = offset};
4121         u64 tmp_val;
4122
4123         *val = 0;
4124         mutex_lock(&kvm_lock);
4125         list_for_each_entry(kvm, &vm_list, vm_list) {
4126                 stat_tmp.kvm = kvm;
4127                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4128                 *val += tmp_val;
4129         }
4130         mutex_unlock(&kvm_lock);
4131         return 0;
4132 }
4133
4134 static int vcpu_stat_clear(void *_offset, u64 val)
4135 {
4136         unsigned offset = (long)_offset;
4137         struct kvm *kvm;
4138         struct kvm_stat_data stat_tmp = {.offset = offset};
4139
4140         if (val)
4141                 return -EINVAL;
4142
4143         mutex_lock(&kvm_lock);
4144         list_for_each_entry(kvm, &vm_list, vm_list) {
4145                 stat_tmp.kvm = kvm;
4146                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4147         }
4148         mutex_unlock(&kvm_lock);
4149
4150         return 0;
4151 }
4152
4153 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4154                         "%llu\n");
4155
4156 static const struct file_operations *stat_fops[] = {
4157         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4158         [KVM_STAT_VM]   = &vm_stat_fops,
4159 };
4160
4161 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4162 {
4163         struct kobj_uevent_env *env;
4164         unsigned long long created, active;
4165
4166         if (!kvm_dev.this_device || !kvm)
4167                 return;
4168
4169         mutex_lock(&kvm_lock);
4170         if (type == KVM_EVENT_CREATE_VM) {
4171                 kvm_createvm_count++;
4172                 kvm_active_vms++;
4173         } else if (type == KVM_EVENT_DESTROY_VM) {
4174                 kvm_active_vms--;
4175         }
4176         created = kvm_createvm_count;
4177         active = kvm_active_vms;
4178         mutex_unlock(&kvm_lock);
4179
4180         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4181         if (!env)
4182                 return;
4183
4184         add_uevent_var(env, "CREATED=%llu", created);
4185         add_uevent_var(env, "COUNT=%llu", active);
4186
4187         if (type == KVM_EVENT_CREATE_VM) {
4188                 add_uevent_var(env, "EVENT=create");
4189                 kvm->userspace_pid = task_pid_nr(current);
4190         } else if (type == KVM_EVENT_DESTROY_VM) {
4191                 add_uevent_var(env, "EVENT=destroy");
4192         }
4193         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4194
4195         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4196                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4197
4198                 if (p) {
4199                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4200                         if (!IS_ERR(tmp))
4201                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4202                         kfree(p);
4203                 }
4204         }
4205         /* no need for checks, since we are adding at most only 5 keys */
4206         env->envp[env->envp_idx++] = NULL;
4207         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4208         kfree(env);
4209 }
4210
4211 static void kvm_init_debug(void)
4212 {
4213         struct kvm_stats_debugfs_item *p;
4214
4215         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4216
4217         kvm_debugfs_num_entries = 0;
4218         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4219                 int mode = p->mode ? p->mode : 0644;
4220                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4221                                     (void *)(long)p->offset,
4222                                     stat_fops[p->kind]);
4223         }
4224 }
4225
4226 static int kvm_suspend(void)
4227 {
4228         if (kvm_usage_count)
4229                 hardware_disable_nolock(NULL);
4230         return 0;
4231 }
4232
4233 static void kvm_resume(void)
4234 {
4235         if (kvm_usage_count) {
4236 #ifdef CONFIG_LOCKDEP
4237                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4238 #endif
4239                 hardware_enable_nolock(NULL);
4240         }
4241 }
4242
4243 static struct syscore_ops kvm_syscore_ops = {
4244         .suspend = kvm_suspend,
4245         .resume = kvm_resume,
4246 };
4247
4248 static inline
4249 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4250 {
4251         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4252 }
4253
4254 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4255 {
4256         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4257
4258         WRITE_ONCE(vcpu->preempted, false);
4259         WRITE_ONCE(vcpu->ready, false);
4260
4261         kvm_arch_sched_in(vcpu, cpu);
4262
4263         kvm_arch_vcpu_load(vcpu, cpu);
4264 }
4265
4266 static void kvm_sched_out(struct preempt_notifier *pn,
4267                           struct task_struct *next)
4268 {
4269         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4270
4271         if (current->state == TASK_RUNNING) {
4272                 WRITE_ONCE(vcpu->preempted, true);
4273                 WRITE_ONCE(vcpu->ready, true);
4274         }
4275         kvm_arch_vcpu_put(vcpu);
4276 }
4277
4278 static void check_processor_compat(void *rtn)
4279 {
4280         *(int *)rtn = kvm_arch_check_processor_compat();
4281 }
4282
4283 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4284                   struct module *module)
4285 {
4286         int r;
4287         int cpu;
4288
4289         r = kvm_arch_init(opaque);
4290         if (r)
4291                 goto out_fail;
4292
4293         /*
4294          * kvm_arch_init makes sure there's at most one caller
4295          * for architectures that support multiple implementations,
4296          * like intel and amd on x86.
4297          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4298          * conflicts in case kvm is already setup for another implementation.
4299          */
4300         r = kvm_irqfd_init();
4301         if (r)
4302                 goto out_irqfd;
4303
4304         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4305                 r = -ENOMEM;
4306                 goto out_free_0;
4307         }
4308
4309         r = kvm_arch_hardware_setup();
4310         if (r < 0)
4311                 goto out_free_0a;
4312
4313         for_each_online_cpu(cpu) {
4314                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4315                 if (r < 0)
4316                         goto out_free_1;
4317         }
4318
4319         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4320                                       kvm_starting_cpu, kvm_dying_cpu);
4321         if (r)
4322                 goto out_free_2;
4323         register_reboot_notifier(&kvm_reboot_notifier);
4324
4325         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4326         if (!vcpu_align)
4327                 vcpu_align = __alignof__(struct kvm_vcpu);
4328         kvm_vcpu_cache =
4329                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4330                                            SLAB_ACCOUNT,
4331                                            offsetof(struct kvm_vcpu, arch),
4332                                            sizeof_field(struct kvm_vcpu, arch),
4333                                            NULL);
4334         if (!kvm_vcpu_cache) {
4335                 r = -ENOMEM;
4336                 goto out_free_3;
4337         }
4338
4339         r = kvm_async_pf_init();
4340         if (r)
4341                 goto out_free;
4342
4343         kvm_chardev_ops.owner = module;
4344         kvm_vm_fops.owner = module;
4345         kvm_vcpu_fops.owner = module;
4346
4347         r = misc_register(&kvm_dev);
4348         if (r) {
4349                 pr_err("kvm: misc device register failed\n");
4350                 goto out_unreg;
4351         }
4352
4353         register_syscore_ops(&kvm_syscore_ops);
4354
4355         kvm_preempt_ops.sched_in = kvm_sched_in;
4356         kvm_preempt_ops.sched_out = kvm_sched_out;
4357
4358         kvm_init_debug();
4359
4360         r = kvm_vfio_ops_init();
4361         WARN_ON(r);
4362
4363         return 0;
4364
4365 out_unreg:
4366         kvm_async_pf_deinit();
4367 out_free:
4368         kmem_cache_destroy(kvm_vcpu_cache);
4369 out_free_3:
4370         unregister_reboot_notifier(&kvm_reboot_notifier);
4371         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4372 out_free_2:
4373 out_free_1:
4374         kvm_arch_hardware_unsetup();
4375 out_free_0a:
4376         free_cpumask_var(cpus_hardware_enabled);
4377 out_free_0:
4378         kvm_irqfd_exit();
4379 out_irqfd:
4380         kvm_arch_exit();
4381 out_fail:
4382         return r;
4383 }
4384 EXPORT_SYMBOL_GPL(kvm_init);
4385
4386 void kvm_exit(void)
4387 {
4388         debugfs_remove_recursive(kvm_debugfs_dir);
4389         misc_deregister(&kvm_dev);
4390         kmem_cache_destroy(kvm_vcpu_cache);
4391         kvm_async_pf_deinit();
4392         unregister_syscore_ops(&kvm_syscore_ops);
4393         unregister_reboot_notifier(&kvm_reboot_notifier);
4394         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4395         on_each_cpu(hardware_disable_nolock, NULL, 1);
4396         kvm_arch_hardware_unsetup();
4397         kvm_arch_exit();
4398         kvm_irqfd_exit();
4399         free_cpumask_var(cpus_hardware_enabled);
4400         kvm_vfio_ops_exit();
4401 }
4402 EXPORT_SYMBOL_GPL(kvm_exit);
4403
4404 struct kvm_vm_worker_thread_context {
4405         struct kvm *kvm;
4406         struct task_struct *parent;
4407         struct completion init_done;
4408         kvm_vm_thread_fn_t thread_fn;
4409         uintptr_t data;
4410         int err;
4411 };
4412
4413 static int kvm_vm_worker_thread(void *context)
4414 {
4415         /*
4416          * The init_context is allocated on the stack of the parent thread, so
4417          * we have to locally copy anything that is needed beyond initialization
4418          */
4419         struct kvm_vm_worker_thread_context *init_context = context;
4420         struct kvm *kvm = init_context->kvm;
4421         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4422         uintptr_t data = init_context->data;
4423         int err;
4424
4425         err = kthread_park(current);
4426         /* kthread_park(current) is never supposed to return an error */
4427         WARN_ON(err != 0);
4428         if (err)
4429                 goto init_complete;
4430
4431         err = cgroup_attach_task_all(init_context->parent, current);
4432         if (err) {
4433                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4434                         __func__, err);
4435                 goto init_complete;
4436         }
4437
4438         set_user_nice(current, task_nice(init_context->parent));
4439
4440 init_complete:
4441         init_context->err = err;
4442         complete(&init_context->init_done);
4443         init_context = NULL;
4444
4445         if (err)
4446                 return err;
4447
4448         /* Wait to be woken up by the spawner before proceeding. */
4449         kthread_parkme();
4450
4451         if (!kthread_should_stop())
4452                 err = thread_fn(kvm, data);
4453
4454         return err;
4455 }
4456
4457 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4458                                 uintptr_t data, const char *name,
4459                                 struct task_struct **thread_ptr)
4460 {
4461         struct kvm_vm_worker_thread_context init_context = {};
4462         struct task_struct *thread;
4463
4464         *thread_ptr = NULL;
4465         init_context.kvm = kvm;
4466         init_context.parent = current;
4467         init_context.thread_fn = thread_fn;
4468         init_context.data = data;
4469         init_completion(&init_context.init_done);
4470
4471         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4472                              "%s-%d", name, task_pid_nr(current));
4473         if (IS_ERR(thread))
4474                 return PTR_ERR(thread);
4475
4476         /* kthread_run is never supposed to return NULL */
4477         WARN_ON(thread == NULL);
4478
4479         wait_for_completion(&init_context.init_done);
4480
4481         if (!init_context.err)
4482                 *thread_ptr = thread;
4483
4484         return init_context.err;
4485 }