security: Support early LSMs
[linux-2.6-block.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
40
41 static struct kmem_cache *lsm_file_cache;
42 static struct kmem_cache *lsm_inode_cache;
43
44 char *lsm_names;
45 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47 /* Boot-time LSM user choice */
48 static __initdata const char *chosen_lsm_order;
49 static __initdata const char *chosen_major_lsm;
50
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55 static __initdata struct lsm_info *exclusive;
56
57 static __initdata bool debug;
58 #define init_debug(...)                                         \
59         do {                                                    \
60                 if (debug)                                      \
61                         pr_info(__VA_ARGS__);                   \
62         } while (0)
63
64 static bool __init is_enabled(struct lsm_info *lsm)
65 {
66         if (!lsm->enabled)
67                 return false;
68
69         return *lsm->enabled;
70 }
71
72 /* Mark an LSM's enabled flag. */
73 static int lsm_enabled_true __initdata = 1;
74 static int lsm_enabled_false __initdata = 0;
75 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76 {
77         /*
78          * When an LSM hasn't configured an enable variable, we can use
79          * a hard-coded location for storing the default enabled state.
80          */
81         if (!lsm->enabled) {
82                 if (enabled)
83                         lsm->enabled = &lsm_enabled_true;
84                 else
85                         lsm->enabled = &lsm_enabled_false;
86         } else if (lsm->enabled == &lsm_enabled_true) {
87                 if (!enabled)
88                         lsm->enabled = &lsm_enabled_false;
89         } else if (lsm->enabled == &lsm_enabled_false) {
90                 if (enabled)
91                         lsm->enabled = &lsm_enabled_true;
92         } else {
93                 *lsm->enabled = enabled;
94         }
95 }
96
97 /* Is an LSM already listed in the ordered LSMs list? */
98 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99 {
100         struct lsm_info **check;
101
102         for (check = ordered_lsms; *check; check++)
103                 if (*check == lsm)
104                         return true;
105
106         return false;
107 }
108
109 /* Append an LSM to the list of ordered LSMs to initialize. */
110 static int last_lsm __initdata;
111 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112 {
113         /* Ignore duplicate selections. */
114         if (exists_ordered_lsm(lsm))
115                 return;
116
117         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118                 return;
119
120         /* Enable this LSM, if it is not already set. */
121         if (!lsm->enabled)
122                 lsm->enabled = &lsm_enabled_true;
123         ordered_lsms[last_lsm++] = lsm;
124
125         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126                    is_enabled(lsm) ? "en" : "dis");
127 }
128
129 /* Is an LSM allowed to be initialized? */
130 static bool __init lsm_allowed(struct lsm_info *lsm)
131 {
132         /* Skip if the LSM is disabled. */
133         if (!is_enabled(lsm))
134                 return false;
135
136         /* Not allowed if another exclusive LSM already initialized. */
137         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138                 init_debug("exclusive disabled: %s\n", lsm->name);
139                 return false;
140         }
141
142         return true;
143 }
144
145 static void __init lsm_set_blob_size(int *need, int *lbs)
146 {
147         int offset;
148
149         if (*need > 0) {
150                 offset = *lbs;
151                 *lbs += *need;
152                 *need = offset;
153         }
154 }
155
156 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157 {
158         if (!needed)
159                 return;
160
161         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163         /*
164          * The inode blob gets an rcu_head in addition to
165          * what the modules might need.
166          */
167         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173 }
174
175 /* Prepare LSM for initialization. */
176 static void __init prepare_lsm(struct lsm_info *lsm)
177 {
178         int enabled = lsm_allowed(lsm);
179
180         /* Record enablement (to handle any following exclusive LSMs). */
181         set_enabled(lsm, enabled);
182
183         /* If enabled, do pre-initialization work. */
184         if (enabled) {
185                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186                         exclusive = lsm;
187                         init_debug("exclusive chosen: %s\n", lsm->name);
188                 }
189
190                 lsm_set_blob_sizes(lsm->blobs);
191         }
192 }
193
194 /* Initialize a given LSM, if it is enabled. */
195 static void __init initialize_lsm(struct lsm_info *lsm)
196 {
197         if (is_enabled(lsm)) {
198                 int ret;
199
200                 init_debug("initializing %s\n", lsm->name);
201                 ret = lsm->init();
202                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203         }
204 }
205
206 /* Populate ordered LSMs list from comma-separated LSM name list. */
207 static void __init ordered_lsm_parse(const char *order, const char *origin)
208 {
209         struct lsm_info *lsm;
210         char *sep, *name, *next;
211
212         /* LSM_ORDER_FIRST is always first. */
213         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214                 if (lsm->order == LSM_ORDER_FIRST)
215                         append_ordered_lsm(lsm, "first");
216         }
217
218         /* Process "security=", if given. */
219         if (chosen_major_lsm) {
220                 struct lsm_info *major;
221
222                 /*
223                  * To match the original "security=" behavior, this
224                  * explicitly does NOT fallback to another Legacy Major
225                  * if the selected one was separately disabled: disable
226                  * all non-matching Legacy Major LSMs.
227                  */
228                 for (major = __start_lsm_info; major < __end_lsm_info;
229                      major++) {
230                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231                             strcmp(major->name, chosen_major_lsm) != 0) {
232                                 set_enabled(major, false);
233                                 init_debug("security=%s disabled: %s\n",
234                                            chosen_major_lsm, major->name);
235                         }
236                 }
237         }
238
239         sep = kstrdup(order, GFP_KERNEL);
240         next = sep;
241         /* Walk the list, looking for matching LSMs. */
242         while ((name = strsep(&next, ",")) != NULL) {
243                 bool found = false;
244
245                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246                         if (lsm->order == LSM_ORDER_MUTABLE &&
247                             strcmp(lsm->name, name) == 0) {
248                                 append_ordered_lsm(lsm, origin);
249                                 found = true;
250                         }
251                 }
252
253                 if (!found)
254                         init_debug("%s ignored: %s\n", origin, name);
255         }
256
257         /* Process "security=", if given. */
258         if (chosen_major_lsm) {
259                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260                         if (exists_ordered_lsm(lsm))
261                                 continue;
262                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
263                                 append_ordered_lsm(lsm, "security=");
264                 }
265         }
266
267         /* Disable all LSMs not in the ordered list. */
268         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269                 if (exists_ordered_lsm(lsm))
270                         continue;
271                 set_enabled(lsm, false);
272                 init_debug("%s disabled: %s\n", origin, lsm->name);
273         }
274
275         kfree(sep);
276 }
277
278 static void __init lsm_early_cred(struct cred *cred);
279 static void __init lsm_early_task(struct task_struct *task);
280
281 static int lsm_append(const char *new, char **result);
282
283 static void __init ordered_lsm_init(void)
284 {
285         struct lsm_info **lsm;
286
287         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288                                 GFP_KERNEL);
289
290         if (chosen_lsm_order) {
291                 if (chosen_major_lsm) {
292                         pr_info("security= is ignored because it is superseded by lsm=\n");
293                         chosen_major_lsm = NULL;
294                 }
295                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296         } else
297                 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299         for (lsm = ordered_lsms; *lsm; lsm++)
300                 prepare_lsm(*lsm);
301
302         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
303         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
304         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
305         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
306         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
307         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
308
309         /*
310          * Create any kmem_caches needed for blobs
311          */
312         if (blob_sizes.lbs_file)
313                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314                                                    blob_sizes.lbs_file, 0,
315                                                    SLAB_PANIC, NULL);
316         if (blob_sizes.lbs_inode)
317                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318                                                     blob_sizes.lbs_inode, 0,
319                                                     SLAB_PANIC, NULL);
320
321         lsm_early_cred((struct cred *) current->cred);
322         lsm_early_task(current);
323         for (lsm = ordered_lsms; *lsm; lsm++)
324                 initialize_lsm(*lsm);
325
326         kfree(ordered_lsms);
327 }
328
329 int __init early_security_init(void)
330 {
331         int i;
332         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333         struct lsm_info *lsm;
334
335         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336              i++)
337                 INIT_HLIST_HEAD(&list[i]);
338
339         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340                 if (!lsm->enabled)
341                         lsm->enabled = &lsm_enabled_true;
342                 prepare_lsm(lsm);
343                 initialize_lsm(lsm);
344         }
345
346         return 0;
347 }
348
349 /**
350  * security_init - initializes the security framework
351  *
352  * This should be called early in the kernel initialization sequence.
353  */
354 int __init security_init(void)
355 {
356         struct lsm_info *lsm;
357
358         pr_info("Security Framework initializing\n");
359
360         /*
361          * Append the names of the early LSM modules now that kmalloc() is
362          * available
363          */
364         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365                 if (lsm->enabled)
366                         lsm_append(lsm->name, &lsm_names);
367         }
368
369         /* Load LSMs in specified order. */
370         ordered_lsm_init();
371
372         return 0;
373 }
374
375 /* Save user chosen LSM */
376 static int __init choose_major_lsm(char *str)
377 {
378         chosen_major_lsm = str;
379         return 1;
380 }
381 __setup("security=", choose_major_lsm);
382
383 /* Explicitly choose LSM initialization order. */
384 static int __init choose_lsm_order(char *str)
385 {
386         chosen_lsm_order = str;
387         return 1;
388 }
389 __setup("lsm=", choose_lsm_order);
390
391 /* Enable LSM order debugging. */
392 static int __init enable_debug(char *str)
393 {
394         debug = true;
395         return 1;
396 }
397 __setup("lsm.debug", enable_debug);
398
399 static bool match_last_lsm(const char *list, const char *lsm)
400 {
401         const char *last;
402
403         if (WARN_ON(!list || !lsm))
404                 return false;
405         last = strrchr(list, ',');
406         if (last)
407                 /* Pass the comma, strcmp() will check for '\0' */
408                 last++;
409         else
410                 last = list;
411         return !strcmp(last, lsm);
412 }
413
414 static int lsm_append(const char *new, char **result)
415 {
416         char *cp;
417
418         if (*result == NULL) {
419                 *result = kstrdup(new, GFP_KERNEL);
420                 if (*result == NULL)
421                         return -ENOMEM;
422         } else {
423                 /* Check if it is the last registered name */
424                 if (match_last_lsm(*result, new))
425                         return 0;
426                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427                 if (cp == NULL)
428                         return -ENOMEM;
429                 kfree(*result);
430                 *result = cp;
431         }
432         return 0;
433 }
434
435 /**
436  * security_add_hooks - Add a modules hooks to the hook lists.
437  * @hooks: the hooks to add
438  * @count: the number of hooks to add
439  * @lsm: the name of the security module
440  *
441  * Each LSM has to register its hooks with the infrastructure.
442  */
443 void __init security_add_hooks(struct security_hook_list *hooks, int count,
444                                 char *lsm)
445 {
446         int i;
447
448         for (i = 0; i < count; i++) {
449                 hooks[i].lsm = lsm;
450                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451         }
452
453         /*
454          * Don't try to append during early_security_init(), we'll come back
455          * and fix this up afterwards.
456          */
457         if (slab_is_available()) {
458                 if (lsm_append(lsm, &lsm_names) < 0)
459                         panic("%s - Cannot get early memory.\n", __func__);
460         }
461 }
462
463 int call_lsm_notifier(enum lsm_event event, void *data)
464 {
465         return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
466 }
467 EXPORT_SYMBOL(call_lsm_notifier);
468
469 int register_lsm_notifier(struct notifier_block *nb)
470 {
471         return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
472 }
473 EXPORT_SYMBOL(register_lsm_notifier);
474
475 int unregister_lsm_notifier(struct notifier_block *nb)
476 {
477         return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
478 }
479 EXPORT_SYMBOL(unregister_lsm_notifier);
480
481 /**
482  * lsm_cred_alloc - allocate a composite cred blob
483  * @cred: the cred that needs a blob
484  * @gfp: allocation type
485  *
486  * Allocate the cred blob for all the modules
487  *
488  * Returns 0, or -ENOMEM if memory can't be allocated.
489  */
490 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
491 {
492         if (blob_sizes.lbs_cred == 0) {
493                 cred->security = NULL;
494                 return 0;
495         }
496
497         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
498         if (cred->security == NULL)
499                 return -ENOMEM;
500         return 0;
501 }
502
503 /**
504  * lsm_early_cred - during initialization allocate a composite cred blob
505  * @cred: the cred that needs a blob
506  *
507  * Allocate the cred blob for all the modules
508  */
509 static void __init lsm_early_cred(struct cred *cred)
510 {
511         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
512
513         if (rc)
514                 panic("%s: Early cred alloc failed.\n", __func__);
515 }
516
517 /**
518  * lsm_file_alloc - allocate a composite file blob
519  * @file: the file that needs a blob
520  *
521  * Allocate the file blob for all the modules
522  *
523  * Returns 0, or -ENOMEM if memory can't be allocated.
524  */
525 static int lsm_file_alloc(struct file *file)
526 {
527         if (!lsm_file_cache) {
528                 file->f_security = NULL;
529                 return 0;
530         }
531
532         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
533         if (file->f_security == NULL)
534                 return -ENOMEM;
535         return 0;
536 }
537
538 /**
539  * lsm_inode_alloc - allocate a composite inode blob
540  * @inode: the inode that needs a blob
541  *
542  * Allocate the inode blob for all the modules
543  *
544  * Returns 0, or -ENOMEM if memory can't be allocated.
545  */
546 int lsm_inode_alloc(struct inode *inode)
547 {
548         if (!lsm_inode_cache) {
549                 inode->i_security = NULL;
550                 return 0;
551         }
552
553         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
554         if (inode->i_security == NULL)
555                 return -ENOMEM;
556         return 0;
557 }
558
559 /**
560  * lsm_task_alloc - allocate a composite task blob
561  * @task: the task that needs a blob
562  *
563  * Allocate the task blob for all the modules
564  *
565  * Returns 0, or -ENOMEM if memory can't be allocated.
566  */
567 static int lsm_task_alloc(struct task_struct *task)
568 {
569         if (blob_sizes.lbs_task == 0) {
570                 task->security = NULL;
571                 return 0;
572         }
573
574         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
575         if (task->security == NULL)
576                 return -ENOMEM;
577         return 0;
578 }
579
580 /**
581  * lsm_ipc_alloc - allocate a composite ipc blob
582  * @kip: the ipc that needs a blob
583  *
584  * Allocate the ipc blob for all the modules
585  *
586  * Returns 0, or -ENOMEM if memory can't be allocated.
587  */
588 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
589 {
590         if (blob_sizes.lbs_ipc == 0) {
591                 kip->security = NULL;
592                 return 0;
593         }
594
595         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
596         if (kip->security == NULL)
597                 return -ENOMEM;
598         return 0;
599 }
600
601 /**
602  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
603  * @mp: the msg_msg that needs a blob
604  *
605  * Allocate the ipc blob for all the modules
606  *
607  * Returns 0, or -ENOMEM if memory can't be allocated.
608  */
609 static int lsm_msg_msg_alloc(struct msg_msg *mp)
610 {
611         if (blob_sizes.lbs_msg_msg == 0) {
612                 mp->security = NULL;
613                 return 0;
614         }
615
616         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
617         if (mp->security == NULL)
618                 return -ENOMEM;
619         return 0;
620 }
621
622 /**
623  * lsm_early_task - during initialization allocate a composite task blob
624  * @task: the task that needs a blob
625  *
626  * Allocate the task blob for all the modules
627  */
628 static void __init lsm_early_task(struct task_struct *task)
629 {
630         int rc = lsm_task_alloc(task);
631
632         if (rc)
633                 panic("%s: Early task alloc failed.\n", __func__);
634 }
635
636 /*
637  * Hook list operation macros.
638  *
639  * call_void_hook:
640  *      This is a hook that does not return a value.
641  *
642  * call_int_hook:
643  *      This is a hook that returns a value.
644  */
645
646 #define call_void_hook(FUNC, ...)                               \
647         do {                                                    \
648                 struct security_hook_list *P;                   \
649                                                                 \
650                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
651                         P->hook.FUNC(__VA_ARGS__);              \
652         } while (0)
653
654 #define call_int_hook(FUNC, IRC, ...) ({                        \
655         int RC = IRC;                                           \
656         do {                                                    \
657                 struct security_hook_list *P;                   \
658                                                                 \
659                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
660                         RC = P->hook.FUNC(__VA_ARGS__);         \
661                         if (RC != 0)                            \
662                                 break;                          \
663                 }                                               \
664         } while (0);                                            \
665         RC;                                                     \
666 })
667
668 /* Security operations */
669
670 int security_binder_set_context_mgr(struct task_struct *mgr)
671 {
672         return call_int_hook(binder_set_context_mgr, 0, mgr);
673 }
674
675 int security_binder_transaction(struct task_struct *from,
676                                 struct task_struct *to)
677 {
678         return call_int_hook(binder_transaction, 0, from, to);
679 }
680
681 int security_binder_transfer_binder(struct task_struct *from,
682                                     struct task_struct *to)
683 {
684         return call_int_hook(binder_transfer_binder, 0, from, to);
685 }
686
687 int security_binder_transfer_file(struct task_struct *from,
688                                   struct task_struct *to, struct file *file)
689 {
690         return call_int_hook(binder_transfer_file, 0, from, to, file);
691 }
692
693 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
694 {
695         return call_int_hook(ptrace_access_check, 0, child, mode);
696 }
697
698 int security_ptrace_traceme(struct task_struct *parent)
699 {
700         return call_int_hook(ptrace_traceme, 0, parent);
701 }
702
703 int security_capget(struct task_struct *target,
704                      kernel_cap_t *effective,
705                      kernel_cap_t *inheritable,
706                      kernel_cap_t *permitted)
707 {
708         return call_int_hook(capget, 0, target,
709                                 effective, inheritable, permitted);
710 }
711
712 int security_capset(struct cred *new, const struct cred *old,
713                     const kernel_cap_t *effective,
714                     const kernel_cap_t *inheritable,
715                     const kernel_cap_t *permitted)
716 {
717         return call_int_hook(capset, 0, new, old,
718                                 effective, inheritable, permitted);
719 }
720
721 int security_capable(const struct cred *cred,
722                      struct user_namespace *ns,
723                      int cap,
724                      unsigned int opts)
725 {
726         return call_int_hook(capable, 0, cred, ns, cap, opts);
727 }
728
729 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
730 {
731         return call_int_hook(quotactl, 0, cmds, type, id, sb);
732 }
733
734 int security_quota_on(struct dentry *dentry)
735 {
736         return call_int_hook(quota_on, 0, dentry);
737 }
738
739 int security_syslog(int type)
740 {
741         return call_int_hook(syslog, 0, type);
742 }
743
744 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
745 {
746         return call_int_hook(settime, 0, ts, tz);
747 }
748
749 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
750 {
751         struct security_hook_list *hp;
752         int cap_sys_admin = 1;
753         int rc;
754
755         /*
756          * The module will respond with a positive value if
757          * it thinks the __vm_enough_memory() call should be
758          * made with the cap_sys_admin set. If all of the modules
759          * agree that it should be set it will. If any module
760          * thinks it should not be set it won't.
761          */
762         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
763                 rc = hp->hook.vm_enough_memory(mm, pages);
764                 if (rc <= 0) {
765                         cap_sys_admin = 0;
766                         break;
767                 }
768         }
769         return __vm_enough_memory(mm, pages, cap_sys_admin);
770 }
771
772 int security_bprm_set_creds(struct linux_binprm *bprm)
773 {
774         return call_int_hook(bprm_set_creds, 0, bprm);
775 }
776
777 int security_bprm_check(struct linux_binprm *bprm)
778 {
779         int ret;
780
781         ret = call_int_hook(bprm_check_security, 0, bprm);
782         if (ret)
783                 return ret;
784         return ima_bprm_check(bprm);
785 }
786
787 void security_bprm_committing_creds(struct linux_binprm *bprm)
788 {
789         call_void_hook(bprm_committing_creds, bprm);
790 }
791
792 void security_bprm_committed_creds(struct linux_binprm *bprm)
793 {
794         call_void_hook(bprm_committed_creds, bprm);
795 }
796
797 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
798 {
799         return call_int_hook(fs_context_dup, 0, fc, src_fc);
800 }
801
802 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
803 {
804         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
805 }
806
807 int security_sb_alloc(struct super_block *sb)
808 {
809         return call_int_hook(sb_alloc_security, 0, sb);
810 }
811
812 void security_sb_free(struct super_block *sb)
813 {
814         call_void_hook(sb_free_security, sb);
815 }
816
817 void security_free_mnt_opts(void **mnt_opts)
818 {
819         if (!*mnt_opts)
820                 return;
821         call_void_hook(sb_free_mnt_opts, *mnt_opts);
822         *mnt_opts = NULL;
823 }
824 EXPORT_SYMBOL(security_free_mnt_opts);
825
826 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
827 {
828         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
829 }
830 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
831
832 int security_sb_remount(struct super_block *sb,
833                         void *mnt_opts)
834 {
835         return call_int_hook(sb_remount, 0, sb, mnt_opts);
836 }
837 EXPORT_SYMBOL(security_sb_remount);
838
839 int security_sb_kern_mount(struct super_block *sb)
840 {
841         return call_int_hook(sb_kern_mount, 0, sb);
842 }
843
844 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
845 {
846         return call_int_hook(sb_show_options, 0, m, sb);
847 }
848
849 int security_sb_statfs(struct dentry *dentry)
850 {
851         return call_int_hook(sb_statfs, 0, dentry);
852 }
853
854 int security_sb_mount(const char *dev_name, const struct path *path,
855                        const char *type, unsigned long flags, void *data)
856 {
857         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
858 }
859
860 int security_sb_umount(struct vfsmount *mnt, int flags)
861 {
862         return call_int_hook(sb_umount, 0, mnt, flags);
863 }
864
865 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
866 {
867         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
868 }
869
870 int security_sb_set_mnt_opts(struct super_block *sb,
871                                 void *mnt_opts,
872                                 unsigned long kern_flags,
873                                 unsigned long *set_kern_flags)
874 {
875         return call_int_hook(sb_set_mnt_opts,
876                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
877                                 mnt_opts, kern_flags, set_kern_flags);
878 }
879 EXPORT_SYMBOL(security_sb_set_mnt_opts);
880
881 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
882                                 struct super_block *newsb,
883                                 unsigned long kern_flags,
884                                 unsigned long *set_kern_flags)
885 {
886         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
887                                 kern_flags, set_kern_flags);
888 }
889 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
890
891 int security_add_mnt_opt(const char *option, const char *val, int len,
892                          void **mnt_opts)
893 {
894         return call_int_hook(sb_add_mnt_opt, -EINVAL,
895                                         option, val, len, mnt_opts);
896 }
897 EXPORT_SYMBOL(security_add_mnt_opt);
898
899 int security_move_mount(const struct path *from_path, const struct path *to_path)
900 {
901         return call_int_hook(move_mount, 0, from_path, to_path);
902 }
903
904 int security_inode_alloc(struct inode *inode)
905 {
906         int rc = lsm_inode_alloc(inode);
907
908         if (unlikely(rc))
909                 return rc;
910         rc = call_int_hook(inode_alloc_security, 0, inode);
911         if (unlikely(rc))
912                 security_inode_free(inode);
913         return rc;
914 }
915
916 static void inode_free_by_rcu(struct rcu_head *head)
917 {
918         /*
919          * The rcu head is at the start of the inode blob
920          */
921         kmem_cache_free(lsm_inode_cache, head);
922 }
923
924 void security_inode_free(struct inode *inode)
925 {
926         integrity_inode_free(inode);
927         call_void_hook(inode_free_security, inode);
928         /*
929          * The inode may still be referenced in a path walk and
930          * a call to security_inode_permission() can be made
931          * after inode_free_security() is called. Ideally, the VFS
932          * wouldn't do this, but fixing that is a much harder
933          * job. For now, simply free the i_security via RCU, and
934          * leave the current inode->i_security pointer intact.
935          * The inode will be freed after the RCU grace period too.
936          */
937         if (inode->i_security)
938                 call_rcu((struct rcu_head *)inode->i_security,
939                                 inode_free_by_rcu);
940 }
941
942 int security_dentry_init_security(struct dentry *dentry, int mode,
943                                         const struct qstr *name, void **ctx,
944                                         u32 *ctxlen)
945 {
946         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
947                                 name, ctx, ctxlen);
948 }
949 EXPORT_SYMBOL(security_dentry_init_security);
950
951 int security_dentry_create_files_as(struct dentry *dentry, int mode,
952                                     struct qstr *name,
953                                     const struct cred *old, struct cred *new)
954 {
955         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
956                                 name, old, new);
957 }
958 EXPORT_SYMBOL(security_dentry_create_files_as);
959
960 int security_inode_init_security(struct inode *inode, struct inode *dir,
961                                  const struct qstr *qstr,
962                                  const initxattrs initxattrs, void *fs_data)
963 {
964         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
965         struct xattr *lsm_xattr, *evm_xattr, *xattr;
966         int ret;
967
968         if (unlikely(IS_PRIVATE(inode)))
969                 return 0;
970
971         if (!initxattrs)
972                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
973                                      dir, qstr, NULL, NULL, NULL);
974         memset(new_xattrs, 0, sizeof(new_xattrs));
975         lsm_xattr = new_xattrs;
976         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
977                                                 &lsm_xattr->name,
978                                                 &lsm_xattr->value,
979                                                 &lsm_xattr->value_len);
980         if (ret)
981                 goto out;
982
983         evm_xattr = lsm_xattr + 1;
984         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
985         if (ret)
986                 goto out;
987         ret = initxattrs(inode, new_xattrs, fs_data);
988 out:
989         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
990                 kfree(xattr->value);
991         return (ret == -EOPNOTSUPP) ? 0 : ret;
992 }
993 EXPORT_SYMBOL(security_inode_init_security);
994
995 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
996                                      const struct qstr *qstr, const char **name,
997                                      void **value, size_t *len)
998 {
999         if (unlikely(IS_PRIVATE(inode)))
1000                 return -EOPNOTSUPP;
1001         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1002                              qstr, name, value, len);
1003 }
1004 EXPORT_SYMBOL(security_old_inode_init_security);
1005
1006 #ifdef CONFIG_SECURITY_PATH
1007 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1008                         unsigned int dev)
1009 {
1010         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1011                 return 0;
1012         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1013 }
1014 EXPORT_SYMBOL(security_path_mknod);
1015
1016 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1017 {
1018         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1019                 return 0;
1020         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1021 }
1022 EXPORT_SYMBOL(security_path_mkdir);
1023
1024 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1025 {
1026         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1027                 return 0;
1028         return call_int_hook(path_rmdir, 0, dir, dentry);
1029 }
1030
1031 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1032 {
1033         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1034                 return 0;
1035         return call_int_hook(path_unlink, 0, dir, dentry);
1036 }
1037 EXPORT_SYMBOL(security_path_unlink);
1038
1039 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1040                           const char *old_name)
1041 {
1042         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043                 return 0;
1044         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1045 }
1046
1047 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1048                        struct dentry *new_dentry)
1049 {
1050         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1051                 return 0;
1052         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1053 }
1054
1055 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1056                          const struct path *new_dir, struct dentry *new_dentry,
1057                          unsigned int flags)
1058 {
1059         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1060                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1061                 return 0;
1062
1063         if (flags & RENAME_EXCHANGE) {
1064                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1065                                         old_dir, old_dentry);
1066                 if (err)
1067                         return err;
1068         }
1069
1070         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1071                                 new_dentry);
1072 }
1073 EXPORT_SYMBOL(security_path_rename);
1074
1075 int security_path_truncate(const struct path *path)
1076 {
1077         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1078                 return 0;
1079         return call_int_hook(path_truncate, 0, path);
1080 }
1081
1082 int security_path_chmod(const struct path *path, umode_t mode)
1083 {
1084         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1085                 return 0;
1086         return call_int_hook(path_chmod, 0, path, mode);
1087 }
1088
1089 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1090 {
1091         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1092                 return 0;
1093         return call_int_hook(path_chown, 0, path, uid, gid);
1094 }
1095
1096 int security_path_chroot(const struct path *path)
1097 {
1098         return call_int_hook(path_chroot, 0, path);
1099 }
1100 #endif
1101
1102 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1103 {
1104         if (unlikely(IS_PRIVATE(dir)))
1105                 return 0;
1106         return call_int_hook(inode_create, 0, dir, dentry, mode);
1107 }
1108 EXPORT_SYMBOL_GPL(security_inode_create);
1109
1110 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1111                          struct dentry *new_dentry)
1112 {
1113         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1114                 return 0;
1115         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1116 }
1117
1118 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1119 {
1120         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1121                 return 0;
1122         return call_int_hook(inode_unlink, 0, dir, dentry);
1123 }
1124
1125 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1126                             const char *old_name)
1127 {
1128         if (unlikely(IS_PRIVATE(dir)))
1129                 return 0;
1130         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1131 }
1132
1133 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1134 {
1135         if (unlikely(IS_PRIVATE(dir)))
1136                 return 0;
1137         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1138 }
1139 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1140
1141 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1142 {
1143         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1144                 return 0;
1145         return call_int_hook(inode_rmdir, 0, dir, dentry);
1146 }
1147
1148 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1149 {
1150         if (unlikely(IS_PRIVATE(dir)))
1151                 return 0;
1152         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1153 }
1154
1155 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1156                            struct inode *new_dir, struct dentry *new_dentry,
1157                            unsigned int flags)
1158 {
1159         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1160             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1161                 return 0;
1162
1163         if (flags & RENAME_EXCHANGE) {
1164                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1165                                                      old_dir, old_dentry);
1166                 if (err)
1167                         return err;
1168         }
1169
1170         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1171                                            new_dir, new_dentry);
1172 }
1173
1174 int security_inode_readlink(struct dentry *dentry)
1175 {
1176         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1177                 return 0;
1178         return call_int_hook(inode_readlink, 0, dentry);
1179 }
1180
1181 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1182                                bool rcu)
1183 {
1184         if (unlikely(IS_PRIVATE(inode)))
1185                 return 0;
1186         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1187 }
1188
1189 int security_inode_permission(struct inode *inode, int mask)
1190 {
1191         if (unlikely(IS_PRIVATE(inode)))
1192                 return 0;
1193         return call_int_hook(inode_permission, 0, inode, mask);
1194 }
1195
1196 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1197 {
1198         int ret;
1199
1200         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1201                 return 0;
1202         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1203         if (ret)
1204                 return ret;
1205         return evm_inode_setattr(dentry, attr);
1206 }
1207 EXPORT_SYMBOL_GPL(security_inode_setattr);
1208
1209 int security_inode_getattr(const struct path *path)
1210 {
1211         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212                 return 0;
1213         return call_int_hook(inode_getattr, 0, path);
1214 }
1215
1216 int security_inode_setxattr(struct dentry *dentry, const char *name,
1217                             const void *value, size_t size, int flags)
1218 {
1219         int ret;
1220
1221         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1222                 return 0;
1223         /*
1224          * SELinux and Smack integrate the cap call,
1225          * so assume that all LSMs supplying this call do so.
1226          */
1227         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1228                                 flags);
1229
1230         if (ret == 1)
1231                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1232         if (ret)
1233                 return ret;
1234         ret = ima_inode_setxattr(dentry, name, value, size);
1235         if (ret)
1236                 return ret;
1237         return evm_inode_setxattr(dentry, name, value, size);
1238 }
1239
1240 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1241                                   const void *value, size_t size, int flags)
1242 {
1243         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1244                 return;
1245         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1246         evm_inode_post_setxattr(dentry, name, value, size);
1247 }
1248
1249 int security_inode_getxattr(struct dentry *dentry, const char *name)
1250 {
1251         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252                 return 0;
1253         return call_int_hook(inode_getxattr, 0, dentry, name);
1254 }
1255
1256 int security_inode_listxattr(struct dentry *dentry)
1257 {
1258         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1259                 return 0;
1260         return call_int_hook(inode_listxattr, 0, dentry);
1261 }
1262
1263 int security_inode_removexattr(struct dentry *dentry, const char *name)
1264 {
1265         int ret;
1266
1267         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268                 return 0;
1269         /*
1270          * SELinux and Smack integrate the cap call,
1271          * so assume that all LSMs supplying this call do so.
1272          */
1273         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1274         if (ret == 1)
1275                 ret = cap_inode_removexattr(dentry, name);
1276         if (ret)
1277                 return ret;
1278         ret = ima_inode_removexattr(dentry, name);
1279         if (ret)
1280                 return ret;
1281         return evm_inode_removexattr(dentry, name);
1282 }
1283
1284 int security_inode_need_killpriv(struct dentry *dentry)
1285 {
1286         return call_int_hook(inode_need_killpriv, 0, dentry);
1287 }
1288
1289 int security_inode_killpriv(struct dentry *dentry)
1290 {
1291         return call_int_hook(inode_killpriv, 0, dentry);
1292 }
1293
1294 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1295 {
1296         struct security_hook_list *hp;
1297         int rc;
1298
1299         if (unlikely(IS_PRIVATE(inode)))
1300                 return -EOPNOTSUPP;
1301         /*
1302          * Only one module will provide an attribute with a given name.
1303          */
1304         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1305                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1306                 if (rc != -EOPNOTSUPP)
1307                         return rc;
1308         }
1309         return -EOPNOTSUPP;
1310 }
1311
1312 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1313 {
1314         struct security_hook_list *hp;
1315         int rc;
1316
1317         if (unlikely(IS_PRIVATE(inode)))
1318                 return -EOPNOTSUPP;
1319         /*
1320          * Only one module will provide an attribute with a given name.
1321          */
1322         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1323                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1324                                                                 flags);
1325                 if (rc != -EOPNOTSUPP)
1326                         return rc;
1327         }
1328         return -EOPNOTSUPP;
1329 }
1330
1331 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1332 {
1333         if (unlikely(IS_PRIVATE(inode)))
1334                 return 0;
1335         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1336 }
1337 EXPORT_SYMBOL(security_inode_listsecurity);
1338
1339 void security_inode_getsecid(struct inode *inode, u32 *secid)
1340 {
1341         call_void_hook(inode_getsecid, inode, secid);
1342 }
1343
1344 int security_inode_copy_up(struct dentry *src, struct cred **new)
1345 {
1346         return call_int_hook(inode_copy_up, 0, src, new);
1347 }
1348 EXPORT_SYMBOL(security_inode_copy_up);
1349
1350 int security_inode_copy_up_xattr(const char *name)
1351 {
1352         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1353 }
1354 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1355
1356 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1357                                   struct kernfs_node *kn)
1358 {
1359         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1360 }
1361
1362 int security_file_permission(struct file *file, int mask)
1363 {
1364         int ret;
1365
1366         ret = call_int_hook(file_permission, 0, file, mask);
1367         if (ret)
1368                 return ret;
1369
1370         return fsnotify_perm(file, mask);
1371 }
1372
1373 int security_file_alloc(struct file *file)
1374 {
1375         int rc = lsm_file_alloc(file);
1376
1377         if (rc)
1378                 return rc;
1379         rc = call_int_hook(file_alloc_security, 0, file);
1380         if (unlikely(rc))
1381                 security_file_free(file);
1382         return rc;
1383 }
1384
1385 void security_file_free(struct file *file)
1386 {
1387         void *blob;
1388
1389         call_void_hook(file_free_security, file);
1390
1391         blob = file->f_security;
1392         if (blob) {
1393                 file->f_security = NULL;
1394                 kmem_cache_free(lsm_file_cache, blob);
1395         }
1396 }
1397
1398 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1399 {
1400         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1401 }
1402
1403 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1404 {
1405         /*
1406          * Does we have PROT_READ and does the application expect
1407          * it to imply PROT_EXEC?  If not, nothing to talk about...
1408          */
1409         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1410                 return prot;
1411         if (!(current->personality & READ_IMPLIES_EXEC))
1412                 return prot;
1413         /*
1414          * if that's an anonymous mapping, let it.
1415          */
1416         if (!file)
1417                 return prot | PROT_EXEC;
1418         /*
1419          * ditto if it's not on noexec mount, except that on !MMU we need
1420          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1421          */
1422         if (!path_noexec(&file->f_path)) {
1423 #ifndef CONFIG_MMU
1424                 if (file->f_op->mmap_capabilities) {
1425                         unsigned caps = file->f_op->mmap_capabilities(file);
1426                         if (!(caps & NOMMU_MAP_EXEC))
1427                                 return prot;
1428                 }
1429 #endif
1430                 return prot | PROT_EXEC;
1431         }
1432         /* anything on noexec mount won't get PROT_EXEC */
1433         return prot;
1434 }
1435
1436 int security_mmap_file(struct file *file, unsigned long prot,
1437                         unsigned long flags)
1438 {
1439         int ret;
1440         ret = call_int_hook(mmap_file, 0, file, prot,
1441                                         mmap_prot(file, prot), flags);
1442         if (ret)
1443                 return ret;
1444         return ima_file_mmap(file, prot);
1445 }
1446
1447 int security_mmap_addr(unsigned long addr)
1448 {
1449         return call_int_hook(mmap_addr, 0, addr);
1450 }
1451
1452 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1453                             unsigned long prot)
1454 {
1455         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1456 }
1457
1458 int security_file_lock(struct file *file, unsigned int cmd)
1459 {
1460         return call_int_hook(file_lock, 0, file, cmd);
1461 }
1462
1463 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1464 {
1465         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1466 }
1467
1468 void security_file_set_fowner(struct file *file)
1469 {
1470         call_void_hook(file_set_fowner, file);
1471 }
1472
1473 int security_file_send_sigiotask(struct task_struct *tsk,
1474                                   struct fown_struct *fown, int sig)
1475 {
1476         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1477 }
1478
1479 int security_file_receive(struct file *file)
1480 {
1481         return call_int_hook(file_receive, 0, file);
1482 }
1483
1484 int security_file_open(struct file *file)
1485 {
1486         int ret;
1487
1488         ret = call_int_hook(file_open, 0, file);
1489         if (ret)
1490                 return ret;
1491
1492         return fsnotify_perm(file, MAY_OPEN);
1493 }
1494
1495 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1496 {
1497         int rc = lsm_task_alloc(task);
1498
1499         if (rc)
1500                 return rc;
1501         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1502         if (unlikely(rc))
1503                 security_task_free(task);
1504         return rc;
1505 }
1506
1507 void security_task_free(struct task_struct *task)
1508 {
1509         call_void_hook(task_free, task);
1510
1511         kfree(task->security);
1512         task->security = NULL;
1513 }
1514
1515 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1516 {
1517         int rc = lsm_cred_alloc(cred, gfp);
1518
1519         if (rc)
1520                 return rc;
1521
1522         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1523         if (unlikely(rc))
1524                 security_cred_free(cred);
1525         return rc;
1526 }
1527
1528 void security_cred_free(struct cred *cred)
1529 {
1530         /*
1531          * There is a failure case in prepare_creds() that
1532          * may result in a call here with ->security being NULL.
1533          */
1534         if (unlikely(cred->security == NULL))
1535                 return;
1536
1537         call_void_hook(cred_free, cred);
1538
1539         kfree(cred->security);
1540         cred->security = NULL;
1541 }
1542
1543 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1544 {
1545         int rc = lsm_cred_alloc(new, gfp);
1546
1547         if (rc)
1548                 return rc;
1549
1550         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1551         if (unlikely(rc))
1552                 security_cred_free(new);
1553         return rc;
1554 }
1555
1556 void security_transfer_creds(struct cred *new, const struct cred *old)
1557 {
1558         call_void_hook(cred_transfer, new, old);
1559 }
1560
1561 void security_cred_getsecid(const struct cred *c, u32 *secid)
1562 {
1563         *secid = 0;
1564         call_void_hook(cred_getsecid, c, secid);
1565 }
1566 EXPORT_SYMBOL(security_cred_getsecid);
1567
1568 int security_kernel_act_as(struct cred *new, u32 secid)
1569 {
1570         return call_int_hook(kernel_act_as, 0, new, secid);
1571 }
1572
1573 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1574 {
1575         return call_int_hook(kernel_create_files_as, 0, new, inode);
1576 }
1577
1578 int security_kernel_module_request(char *kmod_name)
1579 {
1580         int ret;
1581
1582         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1583         if (ret)
1584                 return ret;
1585         return integrity_kernel_module_request(kmod_name);
1586 }
1587
1588 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1589 {
1590         int ret;
1591
1592         ret = call_int_hook(kernel_read_file, 0, file, id);
1593         if (ret)
1594                 return ret;
1595         return ima_read_file(file, id);
1596 }
1597 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1598
1599 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1600                                    enum kernel_read_file_id id)
1601 {
1602         int ret;
1603
1604         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1605         if (ret)
1606                 return ret;
1607         return ima_post_read_file(file, buf, size, id);
1608 }
1609 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1610
1611 int security_kernel_load_data(enum kernel_load_data_id id)
1612 {
1613         int ret;
1614
1615         ret = call_int_hook(kernel_load_data, 0, id);
1616         if (ret)
1617                 return ret;
1618         return ima_load_data(id);
1619 }
1620 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1621
1622 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1623                              int flags)
1624 {
1625         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1626 }
1627
1628 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1629 {
1630         return call_int_hook(task_setpgid, 0, p, pgid);
1631 }
1632
1633 int security_task_getpgid(struct task_struct *p)
1634 {
1635         return call_int_hook(task_getpgid, 0, p);
1636 }
1637
1638 int security_task_getsid(struct task_struct *p)
1639 {
1640         return call_int_hook(task_getsid, 0, p);
1641 }
1642
1643 void security_task_getsecid(struct task_struct *p, u32 *secid)
1644 {
1645         *secid = 0;
1646         call_void_hook(task_getsecid, p, secid);
1647 }
1648 EXPORT_SYMBOL(security_task_getsecid);
1649
1650 int security_task_setnice(struct task_struct *p, int nice)
1651 {
1652         return call_int_hook(task_setnice, 0, p, nice);
1653 }
1654
1655 int security_task_setioprio(struct task_struct *p, int ioprio)
1656 {
1657         return call_int_hook(task_setioprio, 0, p, ioprio);
1658 }
1659
1660 int security_task_getioprio(struct task_struct *p)
1661 {
1662         return call_int_hook(task_getioprio, 0, p);
1663 }
1664
1665 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1666                           unsigned int flags)
1667 {
1668         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1669 }
1670
1671 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1672                 struct rlimit *new_rlim)
1673 {
1674         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1675 }
1676
1677 int security_task_setscheduler(struct task_struct *p)
1678 {
1679         return call_int_hook(task_setscheduler, 0, p);
1680 }
1681
1682 int security_task_getscheduler(struct task_struct *p)
1683 {
1684         return call_int_hook(task_getscheduler, 0, p);
1685 }
1686
1687 int security_task_movememory(struct task_struct *p)
1688 {
1689         return call_int_hook(task_movememory, 0, p);
1690 }
1691
1692 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1693                         int sig, const struct cred *cred)
1694 {
1695         return call_int_hook(task_kill, 0, p, info, sig, cred);
1696 }
1697
1698 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1699                          unsigned long arg4, unsigned long arg5)
1700 {
1701         int thisrc;
1702         int rc = -ENOSYS;
1703         struct security_hook_list *hp;
1704
1705         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1706                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1707                 if (thisrc != -ENOSYS) {
1708                         rc = thisrc;
1709                         if (thisrc != 0)
1710                                 break;
1711                 }
1712         }
1713         return rc;
1714 }
1715
1716 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1717 {
1718         call_void_hook(task_to_inode, p, inode);
1719 }
1720
1721 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1722 {
1723         return call_int_hook(ipc_permission, 0, ipcp, flag);
1724 }
1725
1726 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1727 {
1728         *secid = 0;
1729         call_void_hook(ipc_getsecid, ipcp, secid);
1730 }
1731
1732 int security_msg_msg_alloc(struct msg_msg *msg)
1733 {
1734         int rc = lsm_msg_msg_alloc(msg);
1735
1736         if (unlikely(rc))
1737                 return rc;
1738         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1739         if (unlikely(rc))
1740                 security_msg_msg_free(msg);
1741         return rc;
1742 }
1743
1744 void security_msg_msg_free(struct msg_msg *msg)
1745 {
1746         call_void_hook(msg_msg_free_security, msg);
1747         kfree(msg->security);
1748         msg->security = NULL;
1749 }
1750
1751 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1752 {
1753         int rc = lsm_ipc_alloc(msq);
1754
1755         if (unlikely(rc))
1756                 return rc;
1757         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1758         if (unlikely(rc))
1759                 security_msg_queue_free(msq);
1760         return rc;
1761 }
1762
1763 void security_msg_queue_free(struct kern_ipc_perm *msq)
1764 {
1765         call_void_hook(msg_queue_free_security, msq);
1766         kfree(msq->security);
1767         msq->security = NULL;
1768 }
1769
1770 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1771 {
1772         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1773 }
1774
1775 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1776 {
1777         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1778 }
1779
1780 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1781                                struct msg_msg *msg, int msqflg)
1782 {
1783         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1784 }
1785
1786 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1787                                struct task_struct *target, long type, int mode)
1788 {
1789         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1790 }
1791
1792 int security_shm_alloc(struct kern_ipc_perm *shp)
1793 {
1794         int rc = lsm_ipc_alloc(shp);
1795
1796         if (unlikely(rc))
1797                 return rc;
1798         rc = call_int_hook(shm_alloc_security, 0, shp);
1799         if (unlikely(rc))
1800                 security_shm_free(shp);
1801         return rc;
1802 }
1803
1804 void security_shm_free(struct kern_ipc_perm *shp)
1805 {
1806         call_void_hook(shm_free_security, shp);
1807         kfree(shp->security);
1808         shp->security = NULL;
1809 }
1810
1811 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1812 {
1813         return call_int_hook(shm_associate, 0, shp, shmflg);
1814 }
1815
1816 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1817 {
1818         return call_int_hook(shm_shmctl, 0, shp, cmd);
1819 }
1820
1821 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1822 {
1823         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1824 }
1825
1826 int security_sem_alloc(struct kern_ipc_perm *sma)
1827 {
1828         int rc = lsm_ipc_alloc(sma);
1829
1830         if (unlikely(rc))
1831                 return rc;
1832         rc = call_int_hook(sem_alloc_security, 0, sma);
1833         if (unlikely(rc))
1834                 security_sem_free(sma);
1835         return rc;
1836 }
1837
1838 void security_sem_free(struct kern_ipc_perm *sma)
1839 {
1840         call_void_hook(sem_free_security, sma);
1841         kfree(sma->security);
1842         sma->security = NULL;
1843 }
1844
1845 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1846 {
1847         return call_int_hook(sem_associate, 0, sma, semflg);
1848 }
1849
1850 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1851 {
1852         return call_int_hook(sem_semctl, 0, sma, cmd);
1853 }
1854
1855 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1856                         unsigned nsops, int alter)
1857 {
1858         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1859 }
1860
1861 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1862 {
1863         if (unlikely(inode && IS_PRIVATE(inode)))
1864                 return;
1865         call_void_hook(d_instantiate, dentry, inode);
1866 }
1867 EXPORT_SYMBOL(security_d_instantiate);
1868
1869 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1870                                 char **value)
1871 {
1872         struct security_hook_list *hp;
1873
1874         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1875                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1876                         continue;
1877                 return hp->hook.getprocattr(p, name, value);
1878         }
1879         return -EINVAL;
1880 }
1881
1882 int security_setprocattr(const char *lsm, const char *name, void *value,
1883                          size_t size)
1884 {
1885         struct security_hook_list *hp;
1886
1887         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1888                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1889                         continue;
1890                 return hp->hook.setprocattr(name, value, size);
1891         }
1892         return -EINVAL;
1893 }
1894
1895 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1896 {
1897         return call_int_hook(netlink_send, 0, sk, skb);
1898 }
1899
1900 int security_ismaclabel(const char *name)
1901 {
1902         return call_int_hook(ismaclabel, 0, name);
1903 }
1904 EXPORT_SYMBOL(security_ismaclabel);
1905
1906 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1907 {
1908         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1909                                 seclen);
1910 }
1911 EXPORT_SYMBOL(security_secid_to_secctx);
1912
1913 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1914 {
1915         *secid = 0;
1916         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1917 }
1918 EXPORT_SYMBOL(security_secctx_to_secid);
1919
1920 void security_release_secctx(char *secdata, u32 seclen)
1921 {
1922         call_void_hook(release_secctx, secdata, seclen);
1923 }
1924 EXPORT_SYMBOL(security_release_secctx);
1925
1926 void security_inode_invalidate_secctx(struct inode *inode)
1927 {
1928         call_void_hook(inode_invalidate_secctx, inode);
1929 }
1930 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1931
1932 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1933 {
1934         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1935 }
1936 EXPORT_SYMBOL(security_inode_notifysecctx);
1937
1938 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1939 {
1940         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1941 }
1942 EXPORT_SYMBOL(security_inode_setsecctx);
1943
1944 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1945 {
1946         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1947 }
1948 EXPORT_SYMBOL(security_inode_getsecctx);
1949
1950 #ifdef CONFIG_SECURITY_NETWORK
1951
1952 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1953 {
1954         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1955 }
1956 EXPORT_SYMBOL(security_unix_stream_connect);
1957
1958 int security_unix_may_send(struct socket *sock,  struct socket *other)
1959 {
1960         return call_int_hook(unix_may_send, 0, sock, other);
1961 }
1962 EXPORT_SYMBOL(security_unix_may_send);
1963
1964 int security_socket_create(int family, int type, int protocol, int kern)
1965 {
1966         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1967 }
1968
1969 int security_socket_post_create(struct socket *sock, int family,
1970                                 int type, int protocol, int kern)
1971 {
1972         return call_int_hook(socket_post_create, 0, sock, family, type,
1973                                                 protocol, kern);
1974 }
1975
1976 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1977 {
1978         return call_int_hook(socket_socketpair, 0, socka, sockb);
1979 }
1980 EXPORT_SYMBOL(security_socket_socketpair);
1981
1982 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1983 {
1984         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1985 }
1986
1987 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1988 {
1989         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1990 }
1991
1992 int security_socket_listen(struct socket *sock, int backlog)
1993 {
1994         return call_int_hook(socket_listen, 0, sock, backlog);
1995 }
1996
1997 int security_socket_accept(struct socket *sock, struct socket *newsock)
1998 {
1999         return call_int_hook(socket_accept, 0, sock, newsock);
2000 }
2001
2002 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2003 {
2004         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2005 }
2006
2007 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2008                             int size, int flags)
2009 {
2010         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2011 }
2012
2013 int security_socket_getsockname(struct socket *sock)
2014 {
2015         return call_int_hook(socket_getsockname, 0, sock);
2016 }
2017
2018 int security_socket_getpeername(struct socket *sock)
2019 {
2020         return call_int_hook(socket_getpeername, 0, sock);
2021 }
2022
2023 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2024 {
2025         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2026 }
2027
2028 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2029 {
2030         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2031 }
2032
2033 int security_socket_shutdown(struct socket *sock, int how)
2034 {
2035         return call_int_hook(socket_shutdown, 0, sock, how);
2036 }
2037
2038 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2039 {
2040         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2041 }
2042 EXPORT_SYMBOL(security_sock_rcv_skb);
2043
2044 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2045                                       int __user *optlen, unsigned len)
2046 {
2047         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2048                                 optval, optlen, len);
2049 }
2050
2051 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2052 {
2053         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2054                              skb, secid);
2055 }
2056 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2057
2058 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2059 {
2060         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2061 }
2062
2063 void security_sk_free(struct sock *sk)
2064 {
2065         call_void_hook(sk_free_security, sk);
2066 }
2067
2068 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2069 {
2070         call_void_hook(sk_clone_security, sk, newsk);
2071 }
2072 EXPORT_SYMBOL(security_sk_clone);
2073
2074 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2075 {
2076         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2077 }
2078 EXPORT_SYMBOL(security_sk_classify_flow);
2079
2080 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2081 {
2082         call_void_hook(req_classify_flow, req, fl);
2083 }
2084 EXPORT_SYMBOL(security_req_classify_flow);
2085
2086 void security_sock_graft(struct sock *sk, struct socket *parent)
2087 {
2088         call_void_hook(sock_graft, sk, parent);
2089 }
2090 EXPORT_SYMBOL(security_sock_graft);
2091
2092 int security_inet_conn_request(struct sock *sk,
2093                         struct sk_buff *skb, struct request_sock *req)
2094 {
2095         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2096 }
2097 EXPORT_SYMBOL(security_inet_conn_request);
2098
2099 void security_inet_csk_clone(struct sock *newsk,
2100                         const struct request_sock *req)
2101 {
2102         call_void_hook(inet_csk_clone, newsk, req);
2103 }
2104
2105 void security_inet_conn_established(struct sock *sk,
2106                         struct sk_buff *skb)
2107 {
2108         call_void_hook(inet_conn_established, sk, skb);
2109 }
2110 EXPORT_SYMBOL(security_inet_conn_established);
2111
2112 int security_secmark_relabel_packet(u32 secid)
2113 {
2114         return call_int_hook(secmark_relabel_packet, 0, secid);
2115 }
2116 EXPORT_SYMBOL(security_secmark_relabel_packet);
2117
2118 void security_secmark_refcount_inc(void)
2119 {
2120         call_void_hook(secmark_refcount_inc);
2121 }
2122 EXPORT_SYMBOL(security_secmark_refcount_inc);
2123
2124 void security_secmark_refcount_dec(void)
2125 {
2126         call_void_hook(secmark_refcount_dec);
2127 }
2128 EXPORT_SYMBOL(security_secmark_refcount_dec);
2129
2130 int security_tun_dev_alloc_security(void **security)
2131 {
2132         return call_int_hook(tun_dev_alloc_security, 0, security);
2133 }
2134 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2135
2136 void security_tun_dev_free_security(void *security)
2137 {
2138         call_void_hook(tun_dev_free_security, security);
2139 }
2140 EXPORT_SYMBOL(security_tun_dev_free_security);
2141
2142 int security_tun_dev_create(void)
2143 {
2144         return call_int_hook(tun_dev_create, 0);
2145 }
2146 EXPORT_SYMBOL(security_tun_dev_create);
2147
2148 int security_tun_dev_attach_queue(void *security)
2149 {
2150         return call_int_hook(tun_dev_attach_queue, 0, security);
2151 }
2152 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2153
2154 int security_tun_dev_attach(struct sock *sk, void *security)
2155 {
2156         return call_int_hook(tun_dev_attach, 0, sk, security);
2157 }
2158 EXPORT_SYMBOL(security_tun_dev_attach);
2159
2160 int security_tun_dev_open(void *security)
2161 {
2162         return call_int_hook(tun_dev_open, 0, security);
2163 }
2164 EXPORT_SYMBOL(security_tun_dev_open);
2165
2166 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2167 {
2168         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2169 }
2170 EXPORT_SYMBOL(security_sctp_assoc_request);
2171
2172 int security_sctp_bind_connect(struct sock *sk, int optname,
2173                                struct sockaddr *address, int addrlen)
2174 {
2175         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2176                              address, addrlen);
2177 }
2178 EXPORT_SYMBOL(security_sctp_bind_connect);
2179
2180 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2181                             struct sock *newsk)
2182 {
2183         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2184 }
2185 EXPORT_SYMBOL(security_sctp_sk_clone);
2186
2187 #endif  /* CONFIG_SECURITY_NETWORK */
2188
2189 #ifdef CONFIG_SECURITY_INFINIBAND
2190
2191 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2192 {
2193         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2194 }
2195 EXPORT_SYMBOL(security_ib_pkey_access);
2196
2197 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2198 {
2199         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2200 }
2201 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2202
2203 int security_ib_alloc_security(void **sec)
2204 {
2205         return call_int_hook(ib_alloc_security, 0, sec);
2206 }
2207 EXPORT_SYMBOL(security_ib_alloc_security);
2208
2209 void security_ib_free_security(void *sec)
2210 {
2211         call_void_hook(ib_free_security, sec);
2212 }
2213 EXPORT_SYMBOL(security_ib_free_security);
2214 #endif  /* CONFIG_SECURITY_INFINIBAND */
2215
2216 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2217
2218 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2219                                struct xfrm_user_sec_ctx *sec_ctx,
2220                                gfp_t gfp)
2221 {
2222         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2223 }
2224 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2225
2226 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2227                               struct xfrm_sec_ctx **new_ctxp)
2228 {
2229         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2230 }
2231
2232 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2233 {
2234         call_void_hook(xfrm_policy_free_security, ctx);
2235 }
2236 EXPORT_SYMBOL(security_xfrm_policy_free);
2237
2238 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2239 {
2240         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2241 }
2242
2243 int security_xfrm_state_alloc(struct xfrm_state *x,
2244                               struct xfrm_user_sec_ctx *sec_ctx)
2245 {
2246         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2247 }
2248 EXPORT_SYMBOL(security_xfrm_state_alloc);
2249
2250 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2251                                       struct xfrm_sec_ctx *polsec, u32 secid)
2252 {
2253         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2254 }
2255
2256 int security_xfrm_state_delete(struct xfrm_state *x)
2257 {
2258         return call_int_hook(xfrm_state_delete_security, 0, x);
2259 }
2260 EXPORT_SYMBOL(security_xfrm_state_delete);
2261
2262 void security_xfrm_state_free(struct xfrm_state *x)
2263 {
2264         call_void_hook(xfrm_state_free_security, x);
2265 }
2266
2267 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2268 {
2269         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2270 }
2271
2272 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2273                                        struct xfrm_policy *xp,
2274                                        const struct flowi *fl)
2275 {
2276         struct security_hook_list *hp;
2277         int rc = 1;
2278
2279         /*
2280          * Since this function is expected to return 0 or 1, the judgment
2281          * becomes difficult if multiple LSMs supply this call. Fortunately,
2282          * we can use the first LSM's judgment because currently only SELinux
2283          * supplies this call.
2284          *
2285          * For speed optimization, we explicitly break the loop rather than
2286          * using the macro
2287          */
2288         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2289                                 list) {
2290                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2291                 break;
2292         }
2293         return rc;
2294 }
2295
2296 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2297 {
2298         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2299 }
2300
2301 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2302 {
2303         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2304                                 0);
2305
2306         BUG_ON(rc);
2307 }
2308 EXPORT_SYMBOL(security_skb_classify_flow);
2309
2310 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2311
2312 #ifdef CONFIG_KEYS
2313
2314 int security_key_alloc(struct key *key, const struct cred *cred,
2315                        unsigned long flags)
2316 {
2317         return call_int_hook(key_alloc, 0, key, cred, flags);
2318 }
2319
2320 void security_key_free(struct key *key)
2321 {
2322         call_void_hook(key_free, key);
2323 }
2324
2325 int security_key_permission(key_ref_t key_ref,
2326                             const struct cred *cred, unsigned perm)
2327 {
2328         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2329 }
2330
2331 int security_key_getsecurity(struct key *key, char **_buffer)
2332 {
2333         *_buffer = NULL;
2334         return call_int_hook(key_getsecurity, 0, key, _buffer);
2335 }
2336
2337 #endif  /* CONFIG_KEYS */
2338
2339 #ifdef CONFIG_AUDIT
2340
2341 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2342 {
2343         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2344 }
2345
2346 int security_audit_rule_known(struct audit_krule *krule)
2347 {
2348         return call_int_hook(audit_rule_known, 0, krule);
2349 }
2350
2351 void security_audit_rule_free(void *lsmrule)
2352 {
2353         call_void_hook(audit_rule_free, lsmrule);
2354 }
2355
2356 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2357 {
2358         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2359 }
2360 #endif /* CONFIG_AUDIT */
2361
2362 #ifdef CONFIG_BPF_SYSCALL
2363 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2364 {
2365         return call_int_hook(bpf, 0, cmd, attr, size);
2366 }
2367 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2368 {
2369         return call_int_hook(bpf_map, 0, map, fmode);
2370 }
2371 int security_bpf_prog(struct bpf_prog *prog)
2372 {
2373         return call_int_hook(bpf_prog, 0, prog);
2374 }
2375 int security_bpf_map_alloc(struct bpf_map *map)
2376 {
2377         return call_int_hook(bpf_map_alloc_security, 0, map);
2378 }
2379 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2380 {
2381         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2382 }
2383 void security_bpf_map_free(struct bpf_map *map)
2384 {
2385         call_void_hook(bpf_map_free_security, map);
2386 }
2387 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2388 {
2389         call_void_hook(bpf_prog_free_security, aux);
2390 }
2391 #endif /* CONFIG_BPF_SYSCALL */