960494f437ac34e27b2c8a55575003e273f9e1fc
[linux-2.6-block.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 ctx->async_wait.err = err;
172                 tls_err_abort(skb->sk, err);
173         } else {
174                 struct strp_msg *rxm = strp_msg(skb);
175                 int pad;
176
177                 pad = padding_length(ctx, prot, skb);
178                 if (pad < 0) {
179                         ctx->async_wait.err = pad;
180                         tls_err_abort(skb->sk, pad);
181                 } else {
182                         rxm->full_len -= pad;
183                         rxm->offset += prot->prepend_size;
184                         rxm->full_len -= prot->overhead_size;
185                 }
186         }
187
188         /* After using skb->sk to propagate sk through crypto async callback
189          * we need to NULL it again.
190          */
191         skb->sk = NULL;
192
193
194         /* Free the destination pages if skb was not decrypted inplace */
195         if (sgout != sgin) {
196                 /* Skip the first S/G entry as it points to AAD */
197                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198                         if (!sg)
199                                 break;
200                         put_page(sg_page(sg));
201                 }
202         }
203
204         kfree(aead_req);
205
206         pending = atomic_dec_return(&ctx->decrypt_pending);
207
208         if (!pending && READ_ONCE(ctx->async_notify))
209                 complete(&ctx->async_wait.completion);
210 }
211
212 static int tls_do_decryption(struct sock *sk,
213                              struct sk_buff *skb,
214                              struct scatterlist *sgin,
215                              struct scatterlist *sgout,
216                              char *iv_recv,
217                              size_t data_len,
218                              struct aead_request *aead_req,
219                              bool async)
220 {
221         struct tls_context *tls_ctx = tls_get_ctx(sk);
222         struct tls_prot_info *prot = &tls_ctx->prot_info;
223         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224         int ret;
225
226         aead_request_set_tfm(aead_req, ctx->aead_recv);
227         aead_request_set_ad(aead_req, prot->aad_size);
228         aead_request_set_crypt(aead_req, sgin, sgout,
229                                data_len + prot->tag_size,
230                                (u8 *)iv_recv);
231
232         if (async) {
233                 /* Using skb->sk to push sk through to crypto async callback
234                  * handler. This allows propagating errors up to the socket
235                  * if needed. It _must_ be cleared in the async handler
236                  * before consume_skb is called. We _know_ skb->sk is NULL
237                  * because it is a clone from strparser.
238                  */
239                 skb->sk = sk;
240                 aead_request_set_callback(aead_req,
241                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
242                                           tls_decrypt_done, skb);
243                 atomic_inc(&ctx->decrypt_pending);
244         } else {
245                 aead_request_set_callback(aead_req,
246                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
247                                           crypto_req_done, &ctx->async_wait);
248         }
249
250         ret = crypto_aead_decrypt(aead_req);
251         if (ret == -EINPROGRESS) {
252                 if (async)
253                         return ret;
254
255                 ret = crypto_wait_req(ret, &ctx->async_wait);
256         }
257
258         if (async)
259                 atomic_dec(&ctx->decrypt_pending);
260
261         return ret;
262 }
263
264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 {
266         struct tls_context *tls_ctx = tls_get_ctx(sk);
267         struct tls_prot_info *prot = &tls_ctx->prot_info;
268         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269         struct tls_rec *rec = ctx->open_rec;
270
271         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272         if (target_size > 0)
273                 target_size += prot->overhead_size;
274         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275 }
276
277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 {
279         struct tls_context *tls_ctx = tls_get_ctx(sk);
280         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281         struct tls_rec *rec = ctx->open_rec;
282         struct sk_msg *msg_en = &rec->msg_encrypted;
283
284         return sk_msg_alloc(sk, msg_en, len, 0);
285 }
286
287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 {
289         struct tls_context *tls_ctx = tls_get_ctx(sk);
290         struct tls_prot_info *prot = &tls_ctx->prot_info;
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_pl = &rec->msg_plaintext;
294         struct sk_msg *msg_en = &rec->msg_encrypted;
295         int skip, len;
296
297         /* We add page references worth len bytes from encrypted sg
298          * at the end of plaintext sg. It is guaranteed that msg_en
299          * has enough required room (ensured by caller).
300          */
301         len = required - msg_pl->sg.size;
302
303         /* Skip initial bytes in msg_en's data to be able to use
304          * same offset of both plain and encrypted data.
305          */
306         skip = prot->prepend_size + msg_pl->sg.size;
307
308         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309 }
310
311 static struct tls_rec *tls_get_rec(struct sock *sk)
312 {
313         struct tls_context *tls_ctx = tls_get_ctx(sk);
314         struct tls_prot_info *prot = &tls_ctx->prot_info;
315         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316         struct sk_msg *msg_pl, *msg_en;
317         struct tls_rec *rec;
318         int mem_size;
319
320         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322         rec = kzalloc(mem_size, sk->sk_allocation);
323         if (!rec)
324                 return NULL;
325
326         msg_pl = &rec->msg_plaintext;
327         msg_en = &rec->msg_encrypted;
328
329         sk_msg_init(msg_pl);
330         sk_msg_init(msg_en);
331
332         sg_init_table(rec->sg_aead_in, 2);
333         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334         sg_unmark_end(&rec->sg_aead_in[1]);
335
336         sg_init_table(rec->sg_aead_out, 2);
337         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338         sg_unmark_end(&rec->sg_aead_out[1]);
339
340         return rec;
341 }
342
343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 {
345         sk_msg_free(sk, &rec->msg_encrypted);
346         sk_msg_free(sk, &rec->msg_plaintext);
347         kfree(rec);
348 }
349
350 static void tls_free_open_rec(struct sock *sk)
351 {
352         struct tls_context *tls_ctx = tls_get_ctx(sk);
353         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354         struct tls_rec *rec = ctx->open_rec;
355
356         if (rec) {
357                 tls_free_rec(sk, rec);
358                 ctx->open_rec = NULL;
359         }
360 }
361
362 int tls_tx_records(struct sock *sk, int flags)
363 {
364         struct tls_context *tls_ctx = tls_get_ctx(sk);
365         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366         struct tls_rec *rec, *tmp;
367         struct sk_msg *msg_en;
368         int tx_flags, rc = 0;
369
370         if (tls_is_partially_sent_record(tls_ctx)) {
371                 rec = list_first_entry(&ctx->tx_list,
372                                        struct tls_rec, list);
373
374                 if (flags == -1)
375                         tx_flags = rec->tx_flags;
376                 else
377                         tx_flags = flags;
378
379                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380                 if (rc)
381                         goto tx_err;
382
383                 /* Full record has been transmitted.
384                  * Remove the head of tx_list
385                  */
386                 list_del(&rec->list);
387                 sk_msg_free(sk, &rec->msg_plaintext);
388                 kfree(rec);
389         }
390
391         /* Tx all ready records */
392         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393                 if (READ_ONCE(rec->tx_ready)) {
394                         if (flags == -1)
395                                 tx_flags = rec->tx_flags;
396                         else
397                                 tx_flags = flags;
398
399                         msg_en = &rec->msg_encrypted;
400                         rc = tls_push_sg(sk, tls_ctx,
401                                          &msg_en->sg.data[msg_en->sg.curr],
402                                          0, tx_flags);
403                         if (rc)
404                                 goto tx_err;
405
406                         list_del(&rec->list);
407                         sk_msg_free(sk, &rec->msg_plaintext);
408                         kfree(rec);
409                 } else {
410                         break;
411                 }
412         }
413
414 tx_err:
415         if (rc < 0 && rc != -EAGAIN)
416                 tls_err_abort(sk, EBADMSG);
417
418         return rc;
419 }
420
421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 {
423         struct aead_request *aead_req = (struct aead_request *)req;
424         struct sock *sk = req->data;
425         struct tls_context *tls_ctx = tls_get_ctx(sk);
426         struct tls_prot_info *prot = &tls_ctx->prot_info;
427         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428         struct scatterlist *sge;
429         struct sk_msg *msg_en;
430         struct tls_rec *rec;
431         bool ready = false;
432         int pending;
433
434         rec = container_of(aead_req, struct tls_rec, aead_req);
435         msg_en = &rec->msg_encrypted;
436
437         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438         sge->offset -= prot->prepend_size;
439         sge->length += prot->prepend_size;
440
441         /* Check if error is previously set on socket */
442         if (err || sk->sk_err) {
443                 rec = NULL;
444
445                 /* If err is already set on socket, return the same code */
446                 if (sk->sk_err) {
447                         ctx->async_wait.err = sk->sk_err;
448                 } else {
449                         ctx->async_wait.err = err;
450                         tls_err_abort(sk, err);
451                 }
452         }
453
454         if (rec) {
455                 struct tls_rec *first_rec;
456
457                 /* Mark the record as ready for transmission */
458                 smp_store_mb(rec->tx_ready, true);
459
460                 /* If received record is at head of tx_list, schedule tx */
461                 first_rec = list_first_entry(&ctx->tx_list,
462                                              struct tls_rec, list);
463                 if (rec == first_rec)
464                         ready = true;
465         }
466
467         pending = atomic_dec_return(&ctx->encrypt_pending);
468
469         if (!pending && READ_ONCE(ctx->async_notify))
470                 complete(&ctx->async_wait.completion);
471
472         if (!ready)
473                 return;
474
475         /* Schedule the transmission */
476         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477                 schedule_delayed_work(&ctx->tx_work.work, 1);
478 }
479
480 static int tls_do_encryption(struct sock *sk,
481                              struct tls_context *tls_ctx,
482                              struct tls_sw_context_tx *ctx,
483                              struct aead_request *aead_req,
484                              size_t data_len, u32 start)
485 {
486         struct tls_prot_info *prot = &tls_ctx->prot_info;
487         struct tls_rec *rec = ctx->open_rec;
488         struct sk_msg *msg_en = &rec->msg_encrypted;
489         struct scatterlist *sge = sk_msg_elem(msg_en, start);
490         int rc, iv_offset = 0;
491
492         /* For CCM based ciphers, first byte of IV is a constant */
493         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495                 iv_offset = 1;
496         }
497
498         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499                prot->iv_size + prot->salt_size);
500
501         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502
503         sge->offset += prot->prepend_size;
504         sge->length -= prot->prepend_size;
505
506         msg_en->sg.curr = start;
507
508         aead_request_set_tfm(aead_req, ctx->aead_send);
509         aead_request_set_ad(aead_req, prot->aad_size);
510         aead_request_set_crypt(aead_req, rec->sg_aead_in,
511                                rec->sg_aead_out,
512                                data_len, rec->iv_data);
513
514         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515                                   tls_encrypt_done, sk);
516
517         /* Add the record in tx_list */
518         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519         atomic_inc(&ctx->encrypt_pending);
520
521         rc = crypto_aead_encrypt(aead_req);
522         if (!rc || rc != -EINPROGRESS) {
523                 atomic_dec(&ctx->encrypt_pending);
524                 sge->offset -= prot->prepend_size;
525                 sge->length += prot->prepend_size;
526         }
527
528         if (!rc) {
529                 WRITE_ONCE(rec->tx_ready, true);
530         } else if (rc != -EINPROGRESS) {
531                 list_del(&rec->list);
532                 return rc;
533         }
534
535         /* Unhook the record from context if encryption is not failure */
536         ctx->open_rec = NULL;
537         tls_advance_record_sn(sk, &tls_ctx->tx, prot->version);
538         return rc;
539 }
540
541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542                                  struct tls_rec **to, struct sk_msg *msg_opl,
543                                  struct sk_msg *msg_oen, u32 split_point,
544                                  u32 tx_overhead_size, u32 *orig_end)
545 {
546         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547         struct scatterlist *sge, *osge, *nsge;
548         u32 orig_size = msg_opl->sg.size;
549         struct scatterlist tmp = { };
550         struct sk_msg *msg_npl;
551         struct tls_rec *new;
552         int ret;
553
554         new = tls_get_rec(sk);
555         if (!new)
556                 return -ENOMEM;
557         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558                            tx_overhead_size, 0);
559         if (ret < 0) {
560                 tls_free_rec(sk, new);
561                 return ret;
562         }
563
564         *orig_end = msg_opl->sg.end;
565         i = msg_opl->sg.start;
566         sge = sk_msg_elem(msg_opl, i);
567         while (apply && sge->length) {
568                 if (sge->length > apply) {
569                         u32 len = sge->length - apply;
570
571                         get_page(sg_page(sge));
572                         sg_set_page(&tmp, sg_page(sge), len,
573                                     sge->offset + apply);
574                         sge->length = apply;
575                         bytes += apply;
576                         apply = 0;
577                 } else {
578                         apply -= sge->length;
579                         bytes += sge->length;
580                 }
581
582                 sk_msg_iter_var_next(i);
583                 if (i == msg_opl->sg.end)
584                         break;
585                 sge = sk_msg_elem(msg_opl, i);
586         }
587
588         msg_opl->sg.end = i;
589         msg_opl->sg.curr = i;
590         msg_opl->sg.copybreak = 0;
591         msg_opl->apply_bytes = 0;
592         msg_opl->sg.size = bytes;
593
594         msg_npl = &new->msg_plaintext;
595         msg_npl->apply_bytes = apply;
596         msg_npl->sg.size = orig_size - bytes;
597
598         j = msg_npl->sg.start;
599         nsge = sk_msg_elem(msg_npl, j);
600         if (tmp.length) {
601                 memcpy(nsge, &tmp, sizeof(*nsge));
602                 sk_msg_iter_var_next(j);
603                 nsge = sk_msg_elem(msg_npl, j);
604         }
605
606         osge = sk_msg_elem(msg_opl, i);
607         while (osge->length) {
608                 memcpy(nsge, osge, sizeof(*nsge));
609                 sg_unmark_end(nsge);
610                 sk_msg_iter_var_next(i);
611                 sk_msg_iter_var_next(j);
612                 if (i == *orig_end)
613                         break;
614                 osge = sk_msg_elem(msg_opl, i);
615                 nsge = sk_msg_elem(msg_npl, j);
616         }
617
618         msg_npl->sg.end = j;
619         msg_npl->sg.curr = j;
620         msg_npl->sg.copybreak = 0;
621
622         *to = new;
623         return 0;
624 }
625
626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627                                   struct tls_rec *from, u32 orig_end)
628 {
629         struct sk_msg *msg_npl = &from->msg_plaintext;
630         struct sk_msg *msg_opl = &to->msg_plaintext;
631         struct scatterlist *osge, *nsge;
632         u32 i, j;
633
634         i = msg_opl->sg.end;
635         sk_msg_iter_var_prev(i);
636         j = msg_npl->sg.start;
637
638         osge = sk_msg_elem(msg_opl, i);
639         nsge = sk_msg_elem(msg_npl, j);
640
641         if (sg_page(osge) == sg_page(nsge) &&
642             osge->offset + osge->length == nsge->offset) {
643                 osge->length += nsge->length;
644                 put_page(sg_page(nsge));
645         }
646
647         msg_opl->sg.end = orig_end;
648         msg_opl->sg.curr = orig_end;
649         msg_opl->sg.copybreak = 0;
650         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651         msg_opl->sg.size += msg_npl->sg.size;
652
653         sk_msg_free(sk, &to->msg_encrypted);
654         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656         kfree(from);
657 }
658
659 static int tls_push_record(struct sock *sk, int flags,
660                            unsigned char record_type)
661 {
662         struct tls_context *tls_ctx = tls_get_ctx(sk);
663         struct tls_prot_info *prot = &tls_ctx->prot_info;
664         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666         u32 i, split_point, uninitialized_var(orig_end);
667         struct sk_msg *msg_pl, *msg_en;
668         struct aead_request *req;
669         bool split;
670         int rc;
671
672         if (!rec)
673                 return 0;
674
675         msg_pl = &rec->msg_plaintext;
676         msg_en = &rec->msg_encrypted;
677
678         split_point = msg_pl->apply_bytes;
679         split = split_point && split_point < msg_pl->sg.size;
680         if (split) {
681                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
682                                            split_point, prot->overhead_size,
683                                            &orig_end);
684                 if (rc < 0)
685                         return rc;
686                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
687                             prot->overhead_size);
688         }
689
690         rec->tx_flags = flags;
691         req = &rec->aead_req;
692
693         i = msg_pl->sg.end;
694         sk_msg_iter_var_prev(i);
695
696         rec->content_type = record_type;
697         if (prot->version == TLS_1_3_VERSION) {
698                 /* Add content type to end of message.  No padding added */
699                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700                 sg_mark_end(&rec->sg_content_type);
701                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702                          &rec->sg_content_type);
703         } else {
704                 sg_mark_end(sk_msg_elem(msg_pl, i));
705         }
706
707         i = msg_pl->sg.start;
708         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
709                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
710
711         i = msg_en->sg.end;
712         sk_msg_iter_var_prev(i);
713         sg_mark_end(sk_msg_elem(msg_en, i));
714
715         i = msg_en->sg.start;
716         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
717
718         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
719                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
720                      record_type, prot->version);
721
722         tls_fill_prepend(tls_ctx,
723                          page_address(sg_page(&msg_en->sg.data[i])) +
724                          msg_en->sg.data[i].offset,
725                          msg_pl->sg.size + prot->tail_size,
726                          record_type, prot->version);
727
728         tls_ctx->pending_open_record_frags = false;
729
730         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
731                                msg_pl->sg.size + prot->tail_size, i);
732         if (rc < 0) {
733                 if (rc != -EINPROGRESS) {
734                         tls_err_abort(sk, EBADMSG);
735                         if (split) {
736                                 tls_ctx->pending_open_record_frags = true;
737                                 tls_merge_open_record(sk, rec, tmp, orig_end);
738                         }
739                 }
740                 ctx->async_capable = 1;
741                 return rc;
742         } else if (split) {
743                 msg_pl = &tmp->msg_plaintext;
744                 msg_en = &tmp->msg_encrypted;
745                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
746                 tls_ctx->pending_open_record_frags = true;
747                 ctx->open_rec = tmp;
748         }
749
750         return tls_tx_records(sk, flags);
751 }
752
753 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
754                                bool full_record, u8 record_type,
755                                size_t *copied, int flags)
756 {
757         struct tls_context *tls_ctx = tls_get_ctx(sk);
758         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
759         struct sk_msg msg_redir = { };
760         struct sk_psock *psock;
761         struct sock *sk_redir;
762         struct tls_rec *rec;
763         bool enospc, policy;
764         int err = 0, send;
765         u32 delta = 0;
766
767         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
768         psock = sk_psock_get(sk);
769         if (!psock || !policy)
770                 return tls_push_record(sk, flags, record_type);
771 more_data:
772         enospc = sk_msg_full(msg);
773         if (psock->eval == __SK_NONE) {
774                 delta = msg->sg.size;
775                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
776                 if (delta < msg->sg.size)
777                         delta -= msg->sg.size;
778                 else
779                         delta = 0;
780         }
781         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
782             !enospc && !full_record) {
783                 err = -ENOSPC;
784                 goto out_err;
785         }
786         msg->cork_bytes = 0;
787         send = msg->sg.size;
788         if (msg->apply_bytes && msg->apply_bytes < send)
789                 send = msg->apply_bytes;
790
791         switch (psock->eval) {
792         case __SK_PASS:
793                 err = tls_push_record(sk, flags, record_type);
794                 if (err < 0) {
795                         *copied -= sk_msg_free(sk, msg);
796                         tls_free_open_rec(sk);
797                         goto out_err;
798                 }
799                 break;
800         case __SK_REDIRECT:
801                 sk_redir = psock->sk_redir;
802                 memcpy(&msg_redir, msg, sizeof(*msg));
803                 if (msg->apply_bytes < send)
804                         msg->apply_bytes = 0;
805                 else
806                         msg->apply_bytes -= send;
807                 sk_msg_return_zero(sk, msg, send);
808                 msg->sg.size -= send;
809                 release_sock(sk);
810                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
811                 lock_sock(sk);
812                 if (err < 0) {
813                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
814                         msg->sg.size = 0;
815                 }
816                 if (msg->sg.size == 0)
817                         tls_free_open_rec(sk);
818                 break;
819         case __SK_DROP:
820         default:
821                 sk_msg_free_partial(sk, msg, send);
822                 if (msg->apply_bytes < send)
823                         msg->apply_bytes = 0;
824                 else
825                         msg->apply_bytes -= send;
826                 if (msg->sg.size == 0)
827                         tls_free_open_rec(sk);
828                 *copied -= (send + delta);
829                 err = -EACCES;
830         }
831
832         if (likely(!err)) {
833                 bool reset_eval = !ctx->open_rec;
834
835                 rec = ctx->open_rec;
836                 if (rec) {
837                         msg = &rec->msg_plaintext;
838                         if (!msg->apply_bytes)
839                                 reset_eval = true;
840                 }
841                 if (reset_eval) {
842                         psock->eval = __SK_NONE;
843                         if (psock->sk_redir) {
844                                 sock_put(psock->sk_redir);
845                                 psock->sk_redir = NULL;
846                         }
847                 }
848                 if (rec)
849                         goto more_data;
850         }
851  out_err:
852         sk_psock_put(sk, psock);
853         return err;
854 }
855
856 static int tls_sw_push_pending_record(struct sock *sk, int flags)
857 {
858         struct tls_context *tls_ctx = tls_get_ctx(sk);
859         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
860         struct tls_rec *rec = ctx->open_rec;
861         struct sk_msg *msg_pl;
862         size_t copied;
863
864         if (!rec)
865                 return 0;
866
867         msg_pl = &rec->msg_plaintext;
868         copied = msg_pl->sg.size;
869         if (!copied)
870                 return 0;
871
872         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
873                                    &copied, flags);
874 }
875
876 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
877 {
878         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
879         struct tls_context *tls_ctx = tls_get_ctx(sk);
880         struct tls_prot_info *prot = &tls_ctx->prot_info;
881         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
882         bool async_capable = ctx->async_capable;
883         unsigned char record_type = TLS_RECORD_TYPE_DATA;
884         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
885         bool eor = !(msg->msg_flags & MSG_MORE);
886         size_t try_to_copy, copied = 0;
887         struct sk_msg *msg_pl, *msg_en;
888         struct tls_rec *rec;
889         int required_size;
890         int num_async = 0;
891         bool full_record;
892         int record_room;
893         int num_zc = 0;
894         int orig_size;
895         int ret = 0;
896
897         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
898                 return -ENOTSUPP;
899
900         lock_sock(sk);
901
902         /* Wait till there is any pending write on socket */
903         if (unlikely(sk->sk_write_pending)) {
904                 ret = wait_on_pending_writer(sk, &timeo);
905                 if (unlikely(ret))
906                         goto send_end;
907         }
908
909         if (unlikely(msg->msg_controllen)) {
910                 ret = tls_proccess_cmsg(sk, msg, &record_type);
911                 if (ret) {
912                         if (ret == -EINPROGRESS)
913                                 num_async++;
914                         else if (ret != -EAGAIN)
915                                 goto send_end;
916                 }
917         }
918
919         while (msg_data_left(msg)) {
920                 if (sk->sk_err) {
921                         ret = -sk->sk_err;
922                         goto send_end;
923                 }
924
925                 if (ctx->open_rec)
926                         rec = ctx->open_rec;
927                 else
928                         rec = ctx->open_rec = tls_get_rec(sk);
929                 if (!rec) {
930                         ret = -ENOMEM;
931                         goto send_end;
932                 }
933
934                 msg_pl = &rec->msg_plaintext;
935                 msg_en = &rec->msg_encrypted;
936
937                 orig_size = msg_pl->sg.size;
938                 full_record = false;
939                 try_to_copy = msg_data_left(msg);
940                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
941                 if (try_to_copy >= record_room) {
942                         try_to_copy = record_room;
943                         full_record = true;
944                 }
945
946                 required_size = msg_pl->sg.size + try_to_copy +
947                                 prot->overhead_size;
948
949                 if (!sk_stream_memory_free(sk))
950                         goto wait_for_sndbuf;
951
952 alloc_encrypted:
953                 ret = tls_alloc_encrypted_msg(sk, required_size);
954                 if (ret) {
955                         if (ret != -ENOSPC)
956                                 goto wait_for_memory;
957
958                         /* Adjust try_to_copy according to the amount that was
959                          * actually allocated. The difference is due
960                          * to max sg elements limit
961                          */
962                         try_to_copy -= required_size - msg_en->sg.size;
963                         full_record = true;
964                 }
965
966                 if (!is_kvec && (full_record || eor) && !async_capable) {
967                         u32 first = msg_pl->sg.end;
968
969                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
970                                                         msg_pl, try_to_copy);
971                         if (ret)
972                                 goto fallback_to_reg_send;
973
974                         rec->inplace_crypto = 0;
975
976                         num_zc++;
977                         copied += try_to_copy;
978
979                         sk_msg_sg_copy_set(msg_pl, first);
980                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
981                                                   record_type, &copied,
982                                                   msg->msg_flags);
983                         if (ret) {
984                                 if (ret == -EINPROGRESS)
985                                         num_async++;
986                                 else if (ret == -ENOMEM)
987                                         goto wait_for_memory;
988                                 else if (ret == -ENOSPC)
989                                         goto rollback_iter;
990                                 else if (ret != -EAGAIN)
991                                         goto send_end;
992                         }
993                         continue;
994 rollback_iter:
995                         copied -= try_to_copy;
996                         sk_msg_sg_copy_clear(msg_pl, first);
997                         iov_iter_revert(&msg->msg_iter,
998                                         msg_pl->sg.size - orig_size);
999 fallback_to_reg_send:
1000                         sk_msg_trim(sk, msg_pl, orig_size);
1001                 }
1002
1003                 required_size = msg_pl->sg.size + try_to_copy;
1004
1005                 ret = tls_clone_plaintext_msg(sk, required_size);
1006                 if (ret) {
1007                         if (ret != -ENOSPC)
1008                                 goto send_end;
1009
1010                         /* Adjust try_to_copy according to the amount that was
1011                          * actually allocated. The difference is due
1012                          * to max sg elements limit
1013                          */
1014                         try_to_copy -= required_size - msg_pl->sg.size;
1015                         full_record = true;
1016                         sk_msg_trim(sk, msg_en,
1017                                     msg_pl->sg.size + prot->overhead_size);
1018                 }
1019
1020                 if (try_to_copy) {
1021                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1022                                                        msg_pl, try_to_copy);
1023                         if (ret < 0)
1024                                 goto trim_sgl;
1025                 }
1026
1027                 /* Open records defined only if successfully copied, otherwise
1028                  * we would trim the sg but not reset the open record frags.
1029                  */
1030                 tls_ctx->pending_open_record_frags = true;
1031                 copied += try_to_copy;
1032                 if (full_record || eor) {
1033                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1034                                                   record_type, &copied,
1035                                                   msg->msg_flags);
1036                         if (ret) {
1037                                 if (ret == -EINPROGRESS)
1038                                         num_async++;
1039                                 else if (ret == -ENOMEM)
1040                                         goto wait_for_memory;
1041                                 else if (ret != -EAGAIN) {
1042                                         if (ret == -ENOSPC)
1043                                                 ret = 0;
1044                                         goto send_end;
1045                                 }
1046                         }
1047                 }
1048
1049                 continue;
1050
1051 wait_for_sndbuf:
1052                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1053 wait_for_memory:
1054                 ret = sk_stream_wait_memory(sk, &timeo);
1055                 if (ret) {
1056 trim_sgl:
1057                         tls_trim_both_msgs(sk, orig_size);
1058                         goto send_end;
1059                 }
1060
1061                 if (msg_en->sg.size < required_size)
1062                         goto alloc_encrypted;
1063         }
1064
1065         if (!num_async) {
1066                 goto send_end;
1067         } else if (num_zc) {
1068                 /* Wait for pending encryptions to get completed */
1069                 smp_store_mb(ctx->async_notify, true);
1070
1071                 if (atomic_read(&ctx->encrypt_pending))
1072                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1073                 else
1074                         reinit_completion(&ctx->async_wait.completion);
1075
1076                 WRITE_ONCE(ctx->async_notify, false);
1077
1078                 if (ctx->async_wait.err) {
1079                         ret = ctx->async_wait.err;
1080                         copied = 0;
1081                 }
1082         }
1083
1084         /* Transmit if any encryptions have completed */
1085         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1086                 cancel_delayed_work(&ctx->tx_work.work);
1087                 tls_tx_records(sk, msg->msg_flags);
1088         }
1089
1090 send_end:
1091         ret = sk_stream_error(sk, msg->msg_flags, ret);
1092
1093         release_sock(sk);
1094         return copied ? copied : ret;
1095 }
1096
1097 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1098                               int offset, size_t size, int flags)
1099 {
1100         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1101         struct tls_context *tls_ctx = tls_get_ctx(sk);
1102         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1103         struct tls_prot_info *prot = &tls_ctx->prot_info;
1104         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1105         struct sk_msg *msg_pl;
1106         struct tls_rec *rec;
1107         int num_async = 0;
1108         size_t copied = 0;
1109         bool full_record;
1110         int record_room;
1111         int ret = 0;
1112         bool eor;
1113
1114         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1115         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1116
1117         /* Wait till there is any pending write on socket */
1118         if (unlikely(sk->sk_write_pending)) {
1119                 ret = wait_on_pending_writer(sk, &timeo);
1120                 if (unlikely(ret))
1121                         goto sendpage_end;
1122         }
1123
1124         /* Call the sk_stream functions to manage the sndbuf mem. */
1125         while (size > 0) {
1126                 size_t copy, required_size;
1127
1128                 if (sk->sk_err) {
1129                         ret = -sk->sk_err;
1130                         goto sendpage_end;
1131                 }
1132
1133                 if (ctx->open_rec)
1134                         rec = ctx->open_rec;
1135                 else
1136                         rec = ctx->open_rec = tls_get_rec(sk);
1137                 if (!rec) {
1138                         ret = -ENOMEM;
1139                         goto sendpage_end;
1140                 }
1141
1142                 msg_pl = &rec->msg_plaintext;
1143
1144                 full_record = false;
1145                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1146                 copied = 0;
1147                 copy = size;
1148                 if (copy >= record_room) {
1149                         copy = record_room;
1150                         full_record = true;
1151                 }
1152
1153                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1154
1155                 if (!sk_stream_memory_free(sk))
1156                         goto wait_for_sndbuf;
1157 alloc_payload:
1158                 ret = tls_alloc_encrypted_msg(sk, required_size);
1159                 if (ret) {
1160                         if (ret != -ENOSPC)
1161                                 goto wait_for_memory;
1162
1163                         /* Adjust copy according to the amount that was
1164                          * actually allocated. The difference is due
1165                          * to max sg elements limit
1166                          */
1167                         copy -= required_size - msg_pl->sg.size;
1168                         full_record = true;
1169                 }
1170
1171                 sk_msg_page_add(msg_pl, page, copy, offset);
1172                 sk_mem_charge(sk, copy);
1173
1174                 offset += copy;
1175                 size -= copy;
1176                 copied += copy;
1177
1178                 tls_ctx->pending_open_record_frags = true;
1179                 if (full_record || eor || sk_msg_full(msg_pl)) {
1180                         rec->inplace_crypto = 0;
1181                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1182                                                   record_type, &copied, flags);
1183                         if (ret) {
1184                                 if (ret == -EINPROGRESS)
1185                                         num_async++;
1186                                 else if (ret == -ENOMEM)
1187                                         goto wait_for_memory;
1188                                 else if (ret != -EAGAIN) {
1189                                         if (ret == -ENOSPC)
1190                                                 ret = 0;
1191                                         goto sendpage_end;
1192                                 }
1193                         }
1194                 }
1195                 continue;
1196 wait_for_sndbuf:
1197                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1198 wait_for_memory:
1199                 ret = sk_stream_wait_memory(sk, &timeo);
1200                 if (ret) {
1201                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1202                         goto sendpage_end;
1203                 }
1204
1205                 goto alloc_payload;
1206         }
1207
1208         if (num_async) {
1209                 /* Transmit if any encryptions have completed */
1210                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1211                         cancel_delayed_work(&ctx->tx_work.work);
1212                         tls_tx_records(sk, flags);
1213                 }
1214         }
1215 sendpage_end:
1216         ret = sk_stream_error(sk, flags, ret);
1217         return copied ? copied : ret;
1218 }
1219
1220 int tls_sw_sendpage(struct sock *sk, struct page *page,
1221                     int offset, size_t size, int flags)
1222 {
1223         int ret;
1224
1225         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1226                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1227                 return -ENOTSUPP;
1228
1229         lock_sock(sk);
1230         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1231         release_sock(sk);
1232         return ret;
1233 }
1234
1235 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1236                                      int flags, long timeo, int *err)
1237 {
1238         struct tls_context *tls_ctx = tls_get_ctx(sk);
1239         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1240         struct sk_buff *skb;
1241         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1242
1243         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1244                 if (sk->sk_err) {
1245                         *err = sock_error(sk);
1246                         return NULL;
1247                 }
1248
1249                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1250                         return NULL;
1251
1252                 if (sock_flag(sk, SOCK_DONE))
1253                         return NULL;
1254
1255                 if ((flags & MSG_DONTWAIT) || !timeo) {
1256                         *err = -EAGAIN;
1257                         return NULL;
1258                 }
1259
1260                 add_wait_queue(sk_sleep(sk), &wait);
1261                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1262                 sk_wait_event(sk, &timeo,
1263                               ctx->recv_pkt != skb ||
1264                               !sk_psock_queue_empty(psock),
1265                               &wait);
1266                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1267                 remove_wait_queue(sk_sleep(sk), &wait);
1268
1269                 /* Handle signals */
1270                 if (signal_pending(current)) {
1271                         *err = sock_intr_errno(timeo);
1272                         return NULL;
1273                 }
1274         }
1275
1276         return skb;
1277 }
1278
1279 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1280                                int length, int *pages_used,
1281                                unsigned int *size_used,
1282                                struct scatterlist *to,
1283                                int to_max_pages)
1284 {
1285         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1286         struct page *pages[MAX_SKB_FRAGS];
1287         unsigned int size = *size_used;
1288         ssize_t copied, use;
1289         size_t offset;
1290
1291         while (length > 0) {
1292                 i = 0;
1293                 maxpages = to_max_pages - num_elem;
1294                 if (maxpages == 0) {
1295                         rc = -EFAULT;
1296                         goto out;
1297                 }
1298                 copied = iov_iter_get_pages(from, pages,
1299                                             length,
1300                                             maxpages, &offset);
1301                 if (copied <= 0) {
1302                         rc = -EFAULT;
1303                         goto out;
1304                 }
1305
1306                 iov_iter_advance(from, copied);
1307
1308                 length -= copied;
1309                 size += copied;
1310                 while (copied) {
1311                         use = min_t(int, copied, PAGE_SIZE - offset);
1312
1313                         sg_set_page(&to[num_elem],
1314                                     pages[i], use, offset);
1315                         sg_unmark_end(&to[num_elem]);
1316                         /* We do not uncharge memory from this API */
1317
1318                         offset = 0;
1319                         copied -= use;
1320
1321                         i++;
1322                         num_elem++;
1323                 }
1324         }
1325         /* Mark the end in the last sg entry if newly added */
1326         if (num_elem > *pages_used)
1327                 sg_mark_end(&to[num_elem - 1]);
1328 out:
1329         if (rc)
1330                 iov_iter_revert(from, size - *size_used);
1331         *size_used = size;
1332         *pages_used = num_elem;
1333
1334         return rc;
1335 }
1336
1337 /* This function decrypts the input skb into either out_iov or in out_sg
1338  * or in skb buffers itself. The input parameter 'zc' indicates if
1339  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1340  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1341  * NULL, then the decryption happens inside skb buffers itself, i.e.
1342  * zero-copy gets disabled and 'zc' is updated.
1343  */
1344
1345 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1346                             struct iov_iter *out_iov,
1347                             struct scatterlist *out_sg,
1348                             int *chunk, bool *zc, bool async)
1349 {
1350         struct tls_context *tls_ctx = tls_get_ctx(sk);
1351         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1352         struct tls_prot_info *prot = &tls_ctx->prot_info;
1353         struct strp_msg *rxm = strp_msg(skb);
1354         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1355         struct aead_request *aead_req;
1356         struct sk_buff *unused;
1357         u8 *aad, *iv, *mem = NULL;
1358         struct scatterlist *sgin = NULL;
1359         struct scatterlist *sgout = NULL;
1360         const int data_len = rxm->full_len - prot->overhead_size +
1361                              prot->tail_size;
1362         int iv_offset = 0;
1363
1364         if (*zc && (out_iov || out_sg)) {
1365                 if (out_iov)
1366                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1367                 else
1368                         n_sgout = sg_nents(out_sg);
1369                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1370                                  rxm->full_len - prot->prepend_size);
1371         } else {
1372                 n_sgout = 0;
1373                 *zc = false;
1374                 n_sgin = skb_cow_data(skb, 0, &unused);
1375         }
1376
1377         if (n_sgin < 1)
1378                 return -EBADMSG;
1379
1380         /* Increment to accommodate AAD */
1381         n_sgin = n_sgin + 1;
1382
1383         nsg = n_sgin + n_sgout;
1384
1385         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1386         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1387         mem_size = mem_size + prot->aad_size;
1388         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1389
1390         /* Allocate a single block of memory which contains
1391          * aead_req || sgin[] || sgout[] || aad || iv.
1392          * This order achieves correct alignment for aead_req, sgin, sgout.
1393          */
1394         mem = kmalloc(mem_size, sk->sk_allocation);
1395         if (!mem)
1396                 return -ENOMEM;
1397
1398         /* Segment the allocated memory */
1399         aead_req = (struct aead_request *)mem;
1400         sgin = (struct scatterlist *)(mem + aead_size);
1401         sgout = sgin + n_sgin;
1402         aad = (u8 *)(sgout + n_sgout);
1403         iv = aad + prot->aad_size;
1404
1405         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1406         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1407                 iv[0] = 2;
1408                 iv_offset = 1;
1409         }
1410
1411         /* Prepare IV */
1412         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1413                             iv + iv_offset + prot->salt_size,
1414                             prot->iv_size);
1415         if (err < 0) {
1416                 kfree(mem);
1417                 return err;
1418         }
1419         if (prot->version == TLS_1_3_VERSION)
1420                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1421                        crypto_aead_ivsize(ctx->aead_recv));
1422         else
1423                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1424
1425         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1426
1427         /* Prepare AAD */
1428         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1429                      prot->tail_size,
1430                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1431                      ctx->control, prot->version);
1432
1433         /* Prepare sgin */
1434         sg_init_table(sgin, n_sgin);
1435         sg_set_buf(&sgin[0], aad, prot->aad_size);
1436         err = skb_to_sgvec(skb, &sgin[1],
1437                            rxm->offset + prot->prepend_size,
1438                            rxm->full_len - prot->prepend_size);
1439         if (err < 0) {
1440                 kfree(mem);
1441                 return err;
1442         }
1443
1444         if (n_sgout) {
1445                 if (out_iov) {
1446                         sg_init_table(sgout, n_sgout);
1447                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1448
1449                         *chunk = 0;
1450                         err = tls_setup_from_iter(sk, out_iov, data_len,
1451                                                   &pages, chunk, &sgout[1],
1452                                                   (n_sgout - 1));
1453                         if (err < 0)
1454                                 goto fallback_to_reg_recv;
1455                 } else if (out_sg) {
1456                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1457                 } else {
1458                         goto fallback_to_reg_recv;
1459                 }
1460         } else {
1461 fallback_to_reg_recv:
1462                 sgout = sgin;
1463                 pages = 0;
1464                 *chunk = data_len;
1465                 *zc = false;
1466         }
1467
1468         /* Prepare and submit AEAD request */
1469         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1470                                 data_len, aead_req, async);
1471         if (err == -EINPROGRESS)
1472                 return err;
1473
1474         /* Release the pages in case iov was mapped to pages */
1475         for (; pages > 0; pages--)
1476                 put_page(sg_page(&sgout[pages]));
1477
1478         kfree(mem);
1479         return err;
1480 }
1481
1482 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1483                               struct iov_iter *dest, int *chunk, bool *zc,
1484                               bool async)
1485 {
1486         struct tls_context *tls_ctx = tls_get_ctx(sk);
1487         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1488         struct tls_prot_info *prot = &tls_ctx->prot_info;
1489         int version = prot->version;
1490         struct strp_msg *rxm = strp_msg(skb);
1491         int pad, err = 0;
1492
1493         if (!ctx->decrypted) {
1494 #ifdef CONFIG_TLS_DEVICE
1495                 err = tls_device_decrypted(sk, skb);
1496                 if (err < 0)
1497                         return err;
1498 #endif
1499                 /* Still not decrypted after tls_device */
1500                 if (!ctx->decrypted) {
1501                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1502                                                async);
1503                         if (err < 0) {
1504                                 if (err == -EINPROGRESS)
1505                                         tls_advance_record_sn(sk, &tls_ctx->rx,
1506                                                               version);
1507
1508                                 return err;
1509                         }
1510                 } else {
1511                         *zc = false;
1512                 }
1513
1514                 pad = padding_length(ctx, prot, skb);
1515                 if (pad < 0)
1516                         return pad;
1517
1518                 rxm->full_len -= pad;
1519                 rxm->offset += prot->prepend_size;
1520                 rxm->full_len -= prot->overhead_size;
1521                 tls_advance_record_sn(sk, &tls_ctx->rx, version);
1522                 ctx->decrypted = true;
1523                 ctx->saved_data_ready(sk);
1524         } else {
1525                 *zc = false;
1526         }
1527
1528         return err;
1529 }
1530
1531 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1532                 struct scatterlist *sgout)
1533 {
1534         bool zc = true;
1535         int chunk;
1536
1537         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1538 }
1539
1540 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1541                                unsigned int len)
1542 {
1543         struct tls_context *tls_ctx = tls_get_ctx(sk);
1544         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1545
1546         if (skb) {
1547                 struct strp_msg *rxm = strp_msg(skb);
1548
1549                 if (len < rxm->full_len) {
1550                         rxm->offset += len;
1551                         rxm->full_len -= len;
1552                         return false;
1553                 }
1554                 consume_skb(skb);
1555         }
1556
1557         /* Finished with message */
1558         ctx->recv_pkt = NULL;
1559         __strp_unpause(&ctx->strp);
1560
1561         return true;
1562 }
1563
1564 /* This function traverses the rx_list in tls receive context to copies the
1565  * decrypted records into the buffer provided by caller zero copy is not
1566  * true. Further, the records are removed from the rx_list if it is not a peek
1567  * case and the record has been consumed completely.
1568  */
1569 static int process_rx_list(struct tls_sw_context_rx *ctx,
1570                            struct msghdr *msg,
1571                            u8 *control,
1572                            bool *cmsg,
1573                            size_t skip,
1574                            size_t len,
1575                            bool zc,
1576                            bool is_peek)
1577 {
1578         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1579         u8 ctrl = *control;
1580         u8 msgc = *cmsg;
1581         struct tls_msg *tlm;
1582         ssize_t copied = 0;
1583
1584         /* Set the record type in 'control' if caller didn't pass it */
1585         if (!ctrl && skb) {
1586                 tlm = tls_msg(skb);
1587                 ctrl = tlm->control;
1588         }
1589
1590         while (skip && skb) {
1591                 struct strp_msg *rxm = strp_msg(skb);
1592                 tlm = tls_msg(skb);
1593
1594                 /* Cannot process a record of different type */
1595                 if (ctrl != tlm->control)
1596                         return 0;
1597
1598                 if (skip < rxm->full_len)
1599                         break;
1600
1601                 skip = skip - rxm->full_len;
1602                 skb = skb_peek_next(skb, &ctx->rx_list);
1603         }
1604
1605         while (len && skb) {
1606                 struct sk_buff *next_skb;
1607                 struct strp_msg *rxm = strp_msg(skb);
1608                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1609
1610                 tlm = tls_msg(skb);
1611
1612                 /* Cannot process a record of different type */
1613                 if (ctrl != tlm->control)
1614                         return 0;
1615
1616                 /* Set record type if not already done. For a non-data record,
1617                  * do not proceed if record type could not be copied.
1618                  */
1619                 if (!msgc) {
1620                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1621                                             sizeof(ctrl), &ctrl);
1622                         msgc = true;
1623                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1624                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1625                                         return -EIO;
1626
1627                                 *cmsg = msgc;
1628                         }
1629                 }
1630
1631                 if (!zc || (rxm->full_len - skip) > len) {
1632                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1633                                                     msg, chunk);
1634                         if (err < 0)
1635                                 return err;
1636                 }
1637
1638                 len = len - chunk;
1639                 copied = copied + chunk;
1640
1641                 /* Consume the data from record if it is non-peek case*/
1642                 if (!is_peek) {
1643                         rxm->offset = rxm->offset + chunk;
1644                         rxm->full_len = rxm->full_len - chunk;
1645
1646                         /* Return if there is unconsumed data in the record */
1647                         if (rxm->full_len - skip)
1648                                 break;
1649                 }
1650
1651                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1652                  * So from the 2nd record, 'skip' should be 0.
1653                  */
1654                 skip = 0;
1655
1656                 if (msg)
1657                         msg->msg_flags |= MSG_EOR;
1658
1659                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1660
1661                 if (!is_peek) {
1662                         skb_unlink(skb, &ctx->rx_list);
1663                         consume_skb(skb);
1664                 }
1665
1666                 skb = next_skb;
1667         }
1668
1669         *control = ctrl;
1670         return copied;
1671 }
1672
1673 int tls_sw_recvmsg(struct sock *sk,
1674                    struct msghdr *msg,
1675                    size_t len,
1676                    int nonblock,
1677                    int flags,
1678                    int *addr_len)
1679 {
1680         struct tls_context *tls_ctx = tls_get_ctx(sk);
1681         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1682         struct tls_prot_info *prot = &tls_ctx->prot_info;
1683         struct sk_psock *psock;
1684         unsigned char control = 0;
1685         ssize_t decrypted = 0;
1686         struct strp_msg *rxm;
1687         struct tls_msg *tlm;
1688         struct sk_buff *skb;
1689         ssize_t copied = 0;
1690         bool cmsg = false;
1691         int target, err = 0;
1692         long timeo;
1693         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1694         bool is_peek = flags & MSG_PEEK;
1695         int num_async = 0;
1696
1697         flags |= nonblock;
1698
1699         if (unlikely(flags & MSG_ERRQUEUE))
1700                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1701
1702         psock = sk_psock_get(sk);
1703         lock_sock(sk);
1704
1705         /* Process pending decrypted records. It must be non-zero-copy */
1706         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1707                               is_peek);
1708         if (err < 0) {
1709                 tls_err_abort(sk, err);
1710                 goto end;
1711         } else {
1712                 copied = err;
1713         }
1714
1715         if (len <= copied)
1716                 goto recv_end;
1717
1718         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1719         len = len - copied;
1720         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1721
1722         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1723                 bool retain_skb = false;
1724                 bool zc = false;
1725                 int to_decrypt;
1726                 int chunk = 0;
1727                 bool async_capable;
1728                 bool async = false;
1729
1730                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1731                 if (!skb) {
1732                         if (psock) {
1733                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1734                                                             msg, len, flags);
1735
1736                                 if (ret > 0) {
1737                                         decrypted += ret;
1738                                         len -= ret;
1739                                         continue;
1740                                 }
1741                         }
1742                         goto recv_end;
1743                 } else {
1744                         tlm = tls_msg(skb);
1745                         if (prot->version == TLS_1_3_VERSION)
1746                                 tlm->control = 0;
1747                         else
1748                                 tlm->control = ctx->control;
1749                 }
1750
1751                 rxm = strp_msg(skb);
1752
1753                 to_decrypt = rxm->full_len - prot->overhead_size;
1754
1755                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1756                     ctx->control == TLS_RECORD_TYPE_DATA &&
1757                     prot->version != TLS_1_3_VERSION)
1758                         zc = true;
1759
1760                 /* Do not use async mode if record is non-data */
1761                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1762                         async_capable = ctx->async_capable;
1763                 else
1764                         async_capable = false;
1765
1766                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1767                                          &chunk, &zc, async_capable);
1768                 if (err < 0 && err != -EINPROGRESS) {
1769                         tls_err_abort(sk, EBADMSG);
1770                         goto recv_end;
1771                 }
1772
1773                 if (err == -EINPROGRESS) {
1774                         async = true;
1775                         num_async++;
1776                 } else if (prot->version == TLS_1_3_VERSION) {
1777                         tlm->control = ctx->control;
1778                 }
1779
1780                 /* If the type of records being processed is not known yet,
1781                  * set it to record type just dequeued. If it is already known,
1782                  * but does not match the record type just dequeued, go to end.
1783                  * We always get record type here since for tls1.2, record type
1784                  * is known just after record is dequeued from stream parser.
1785                  * For tls1.3, we disable async.
1786                  */
1787
1788                 if (!control)
1789                         control = tlm->control;
1790                 else if (control != tlm->control)
1791                         goto recv_end;
1792
1793                 if (!cmsg) {
1794                         int cerr;
1795
1796                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1797                                         sizeof(control), &control);
1798                         cmsg = true;
1799                         if (control != TLS_RECORD_TYPE_DATA) {
1800                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1801                                         err = -EIO;
1802                                         goto recv_end;
1803                                 }
1804                         }
1805                 }
1806
1807                 if (async)
1808                         goto pick_next_record;
1809
1810                 if (!zc) {
1811                         if (rxm->full_len > len) {
1812                                 retain_skb = true;
1813                                 chunk = len;
1814                         } else {
1815                                 chunk = rxm->full_len;
1816                         }
1817
1818                         err = skb_copy_datagram_msg(skb, rxm->offset,
1819                                                     msg, chunk);
1820                         if (err < 0)
1821                                 goto recv_end;
1822
1823                         if (!is_peek) {
1824                                 rxm->offset = rxm->offset + chunk;
1825                                 rxm->full_len = rxm->full_len - chunk;
1826                         }
1827                 }
1828
1829 pick_next_record:
1830                 if (chunk > len)
1831                         chunk = len;
1832
1833                 decrypted += chunk;
1834                 len -= chunk;
1835
1836                 /* For async or peek case, queue the current skb */
1837                 if (async || is_peek || retain_skb) {
1838                         skb_queue_tail(&ctx->rx_list, skb);
1839                         skb = NULL;
1840                 }
1841
1842                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1843                         /* Return full control message to
1844                          * userspace before trying to parse
1845                          * another message type
1846                          */
1847                         msg->msg_flags |= MSG_EOR;
1848                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1849                                 goto recv_end;
1850                 } else {
1851                         break;
1852                 }
1853         }
1854
1855 recv_end:
1856         if (num_async) {
1857                 /* Wait for all previously submitted records to be decrypted */
1858                 smp_store_mb(ctx->async_notify, true);
1859                 if (atomic_read(&ctx->decrypt_pending)) {
1860                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1861                         if (err) {
1862                                 /* one of async decrypt failed */
1863                                 tls_err_abort(sk, err);
1864                                 copied = 0;
1865                                 decrypted = 0;
1866                                 goto end;
1867                         }
1868                 } else {
1869                         reinit_completion(&ctx->async_wait.completion);
1870                 }
1871                 WRITE_ONCE(ctx->async_notify, false);
1872
1873                 /* Drain records from the rx_list & copy if required */
1874                 if (is_peek || is_kvec)
1875                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1876                                               decrypted, false, is_peek);
1877                 else
1878                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1879                                               decrypted, true, is_peek);
1880                 if (err < 0) {
1881                         tls_err_abort(sk, err);
1882                         copied = 0;
1883                         goto end;
1884                 }
1885         }
1886
1887         copied += decrypted;
1888
1889 end:
1890         release_sock(sk);
1891         if (psock)
1892                 sk_psock_put(sk, psock);
1893         return copied ? : err;
1894 }
1895
1896 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1897                            struct pipe_inode_info *pipe,
1898                            size_t len, unsigned int flags)
1899 {
1900         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1901         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1902         struct strp_msg *rxm = NULL;
1903         struct sock *sk = sock->sk;
1904         struct sk_buff *skb;
1905         ssize_t copied = 0;
1906         int err = 0;
1907         long timeo;
1908         int chunk;
1909         bool zc = false;
1910
1911         lock_sock(sk);
1912
1913         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1914
1915         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1916         if (!skb)
1917                 goto splice_read_end;
1918
1919         if (!ctx->decrypted) {
1920                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1921
1922                 /* splice does not support reading control messages */
1923                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1924                         err = -ENOTSUPP;
1925                         goto splice_read_end;
1926                 }
1927
1928                 if (err < 0) {
1929                         tls_err_abort(sk, EBADMSG);
1930                         goto splice_read_end;
1931                 }
1932                 ctx->decrypted = true;
1933         }
1934         rxm = strp_msg(skb);
1935
1936         chunk = min_t(unsigned int, rxm->full_len, len);
1937         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1938         if (copied < 0)
1939                 goto splice_read_end;
1940
1941         if (likely(!(flags & MSG_PEEK)))
1942                 tls_sw_advance_skb(sk, skb, copied);
1943
1944 splice_read_end:
1945         release_sock(sk);
1946         return copied ? : err;
1947 }
1948
1949 bool tls_sw_stream_read(const struct sock *sk)
1950 {
1951         struct tls_context *tls_ctx = tls_get_ctx(sk);
1952         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1953         bool ingress_empty = true;
1954         struct sk_psock *psock;
1955
1956         rcu_read_lock();
1957         psock = sk_psock(sk);
1958         if (psock)
1959                 ingress_empty = list_empty(&psock->ingress_msg);
1960         rcu_read_unlock();
1961
1962         return !ingress_empty || ctx->recv_pkt;
1963 }
1964
1965 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1966 {
1967         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1968         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1969         struct tls_prot_info *prot = &tls_ctx->prot_info;
1970         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1971         struct strp_msg *rxm = strp_msg(skb);
1972         size_t cipher_overhead;
1973         size_t data_len = 0;
1974         int ret;
1975
1976         /* Verify that we have a full TLS header, or wait for more data */
1977         if (rxm->offset + prot->prepend_size > skb->len)
1978                 return 0;
1979
1980         /* Sanity-check size of on-stack buffer. */
1981         if (WARN_ON(prot->prepend_size > sizeof(header))) {
1982                 ret = -EINVAL;
1983                 goto read_failure;
1984         }
1985
1986         /* Linearize header to local buffer */
1987         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1988
1989         if (ret < 0)
1990                 goto read_failure;
1991
1992         ctx->control = header[0];
1993
1994         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1995
1996         cipher_overhead = prot->tag_size;
1997         if (prot->version != TLS_1_3_VERSION)
1998                 cipher_overhead += prot->iv_size;
1999
2000         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2001             prot->tail_size) {
2002                 ret = -EMSGSIZE;
2003                 goto read_failure;
2004         }
2005         if (data_len < cipher_overhead) {
2006                 ret = -EBADMSG;
2007                 goto read_failure;
2008         }
2009
2010         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2011         if (header[1] != TLS_1_2_VERSION_MINOR ||
2012             header[2] != TLS_1_2_VERSION_MAJOR) {
2013                 ret = -EINVAL;
2014                 goto read_failure;
2015         }
2016 #ifdef CONFIG_TLS_DEVICE
2017         handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
2018                              *(u64*)tls_ctx->rx.rec_seq);
2019 #endif
2020         return data_len + TLS_HEADER_SIZE;
2021
2022 read_failure:
2023         tls_err_abort(strp->sk, ret);
2024
2025         return ret;
2026 }
2027
2028 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2029 {
2030         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2031         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2032
2033         ctx->decrypted = false;
2034
2035         ctx->recv_pkt = skb;
2036         strp_pause(strp);
2037
2038         ctx->saved_data_ready(strp->sk);
2039 }
2040
2041 static void tls_data_ready(struct sock *sk)
2042 {
2043         struct tls_context *tls_ctx = tls_get_ctx(sk);
2044         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045         struct sk_psock *psock;
2046
2047         strp_data_ready(&ctx->strp);
2048
2049         psock = sk_psock_get(sk);
2050         if (psock && !list_empty(&psock->ingress_msg)) {
2051                 ctx->saved_data_ready(sk);
2052                 sk_psock_put(sk, psock);
2053         }
2054 }
2055
2056 void tls_sw_free_resources_tx(struct sock *sk)
2057 {
2058         struct tls_context *tls_ctx = tls_get_ctx(sk);
2059         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2060         struct tls_rec *rec, *tmp;
2061
2062         /* Wait for any pending async encryptions to complete */
2063         smp_store_mb(ctx->async_notify, true);
2064         if (atomic_read(&ctx->encrypt_pending))
2065                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2066
2067         release_sock(sk);
2068         cancel_delayed_work_sync(&ctx->tx_work.work);
2069         lock_sock(sk);
2070
2071         /* Tx whatever records we can transmit and abandon the rest */
2072         tls_tx_records(sk, -1);
2073
2074         /* Free up un-sent records in tx_list. First, free
2075          * the partially sent record if any at head of tx_list.
2076          */
2077         if (tls_free_partial_record(sk, tls_ctx)) {
2078                 rec = list_first_entry(&ctx->tx_list,
2079                                        struct tls_rec, list);
2080                 list_del(&rec->list);
2081                 sk_msg_free(sk, &rec->msg_plaintext);
2082                 kfree(rec);
2083         }
2084
2085         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2086                 list_del(&rec->list);
2087                 sk_msg_free(sk, &rec->msg_encrypted);
2088                 sk_msg_free(sk, &rec->msg_plaintext);
2089                 kfree(rec);
2090         }
2091
2092         crypto_free_aead(ctx->aead_send);
2093         tls_free_open_rec(sk);
2094
2095         kfree(ctx);
2096 }
2097
2098 void tls_sw_release_resources_rx(struct sock *sk)
2099 {
2100         struct tls_context *tls_ctx = tls_get_ctx(sk);
2101         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2102
2103         kfree(tls_ctx->rx.rec_seq);
2104         kfree(tls_ctx->rx.iv);
2105
2106         if (ctx->aead_recv) {
2107                 kfree_skb(ctx->recv_pkt);
2108                 ctx->recv_pkt = NULL;
2109                 skb_queue_purge(&ctx->rx_list);
2110                 crypto_free_aead(ctx->aead_recv);
2111                 strp_stop(&ctx->strp);
2112                 write_lock_bh(&sk->sk_callback_lock);
2113                 sk->sk_data_ready = ctx->saved_data_ready;
2114                 write_unlock_bh(&sk->sk_callback_lock);
2115                 release_sock(sk);
2116                 strp_done(&ctx->strp);
2117                 lock_sock(sk);
2118         }
2119 }
2120
2121 void tls_sw_free_resources_rx(struct sock *sk)
2122 {
2123         struct tls_context *tls_ctx = tls_get_ctx(sk);
2124         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2125
2126         tls_sw_release_resources_rx(sk);
2127
2128         kfree(ctx);
2129 }
2130
2131 /* The work handler to transmitt the encrypted records in tx_list */
2132 static void tx_work_handler(struct work_struct *work)
2133 {
2134         struct delayed_work *delayed_work = to_delayed_work(work);
2135         struct tx_work *tx_work = container_of(delayed_work,
2136                                                struct tx_work, work);
2137         struct sock *sk = tx_work->sk;
2138         struct tls_context *tls_ctx = tls_get_ctx(sk);
2139         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2140
2141         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2142                 return;
2143
2144         lock_sock(sk);
2145         tls_tx_records(sk, -1);
2146         release_sock(sk);
2147 }
2148
2149 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2150 {
2151         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2152
2153         /* Schedule the transmission if tx list is ready */
2154         if (is_tx_ready(tx_ctx) && !sk->sk_write_pending) {
2155                 /* Schedule the transmission */
2156                 if (!test_and_set_bit(BIT_TX_SCHEDULED,
2157                                       &tx_ctx->tx_bitmask))
2158                         schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2159         }
2160 }
2161
2162 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2163 {
2164         struct tls_context *tls_ctx = tls_get_ctx(sk);
2165         struct tls_prot_info *prot = &tls_ctx->prot_info;
2166         struct tls_crypto_info *crypto_info;
2167         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2168         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2169         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2170         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2171         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2172         struct cipher_context *cctx;
2173         struct crypto_aead **aead;
2174         struct strp_callbacks cb;
2175         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2176         struct crypto_tfm *tfm;
2177         char *iv, *rec_seq, *key, *salt, *cipher_name;
2178         size_t keysize;
2179         int rc = 0;
2180
2181         if (!ctx) {
2182                 rc = -EINVAL;
2183                 goto out;
2184         }
2185
2186         if (tx) {
2187                 if (!ctx->priv_ctx_tx) {
2188                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2189                         if (!sw_ctx_tx) {
2190                                 rc = -ENOMEM;
2191                                 goto out;
2192                         }
2193                         ctx->priv_ctx_tx = sw_ctx_tx;
2194                 } else {
2195                         sw_ctx_tx =
2196                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2197                 }
2198         } else {
2199                 if (!ctx->priv_ctx_rx) {
2200                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2201                         if (!sw_ctx_rx) {
2202                                 rc = -ENOMEM;
2203                                 goto out;
2204                         }
2205                         ctx->priv_ctx_rx = sw_ctx_rx;
2206                 } else {
2207                         sw_ctx_rx =
2208                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2209                 }
2210         }
2211
2212         if (tx) {
2213                 crypto_init_wait(&sw_ctx_tx->async_wait);
2214                 crypto_info = &ctx->crypto_send.info;
2215                 cctx = &ctx->tx;
2216                 aead = &sw_ctx_tx->aead_send;
2217                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2218                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2219                 sw_ctx_tx->tx_work.sk = sk;
2220         } else {
2221                 crypto_init_wait(&sw_ctx_rx->async_wait);
2222                 crypto_info = &ctx->crypto_recv.info;
2223                 cctx = &ctx->rx;
2224                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2225                 aead = &sw_ctx_rx->aead_recv;
2226         }
2227
2228         switch (crypto_info->cipher_type) {
2229         case TLS_CIPHER_AES_GCM_128: {
2230                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2231                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2232                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2233                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2234                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2235                 rec_seq =
2236                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2237                 gcm_128_info =
2238                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2239                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2240                 key = gcm_128_info->key;
2241                 salt = gcm_128_info->salt;
2242                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2243                 cipher_name = "gcm(aes)";
2244                 break;
2245         }
2246         case TLS_CIPHER_AES_GCM_256: {
2247                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2248                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2249                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2250                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2251                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2252                 rec_seq =
2253                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2254                 gcm_256_info =
2255                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2256                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2257                 key = gcm_256_info->key;
2258                 salt = gcm_256_info->salt;
2259                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2260                 cipher_name = "gcm(aes)";
2261                 break;
2262         }
2263         case TLS_CIPHER_AES_CCM_128: {
2264                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2265                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2266                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2267                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2268                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2269                 rec_seq =
2270                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2271                 ccm_128_info =
2272                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2273                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2274                 key = ccm_128_info->key;
2275                 salt = ccm_128_info->salt;
2276                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2277                 cipher_name = "ccm(aes)";
2278                 break;
2279         }
2280         default:
2281                 rc = -EINVAL;
2282                 goto free_priv;
2283         }
2284
2285         /* Sanity-check the IV size for stack allocations. */
2286         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
2287                 rc = -EINVAL;
2288                 goto free_priv;
2289         }
2290
2291         if (crypto_info->version == TLS_1_3_VERSION) {
2292                 nonce_size = 0;
2293                 prot->aad_size = TLS_HEADER_SIZE;
2294                 prot->tail_size = 1;
2295         } else {
2296                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2297                 prot->tail_size = 0;
2298         }
2299
2300         prot->version = crypto_info->version;
2301         prot->cipher_type = crypto_info->cipher_type;
2302         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2303         prot->tag_size = tag_size;
2304         prot->overhead_size = prot->prepend_size +
2305                               prot->tag_size + prot->tail_size;
2306         prot->iv_size = iv_size;
2307         prot->salt_size = salt_size;
2308         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2309         if (!cctx->iv) {
2310                 rc = -ENOMEM;
2311                 goto free_priv;
2312         }
2313         /* Note: 128 & 256 bit salt are the same size */
2314         prot->rec_seq_size = rec_seq_size;
2315         memcpy(cctx->iv, salt, salt_size);
2316         memcpy(cctx->iv + salt_size, iv, iv_size);
2317         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2318         if (!cctx->rec_seq) {
2319                 rc = -ENOMEM;
2320                 goto free_iv;
2321         }
2322
2323         if (!*aead) {
2324                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2325                 if (IS_ERR(*aead)) {
2326                         rc = PTR_ERR(*aead);
2327                         *aead = NULL;
2328                         goto free_rec_seq;
2329                 }
2330         }
2331
2332         ctx->push_pending_record = tls_sw_push_pending_record;
2333
2334         rc = crypto_aead_setkey(*aead, key, keysize);
2335
2336         if (rc)
2337                 goto free_aead;
2338
2339         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2340         if (rc)
2341                 goto free_aead;
2342
2343         if (sw_ctx_rx) {
2344                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2345
2346                 if (crypto_info->version == TLS_1_3_VERSION)
2347                         sw_ctx_rx->async_capable = false;
2348                 else
2349                         sw_ctx_rx->async_capable =
2350                                 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2351
2352                 /* Set up strparser */
2353                 memset(&cb, 0, sizeof(cb));
2354                 cb.rcv_msg = tls_queue;
2355                 cb.parse_msg = tls_read_size;
2356
2357                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2358
2359                 write_lock_bh(&sk->sk_callback_lock);
2360                 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2361                 sk->sk_data_ready = tls_data_ready;
2362                 write_unlock_bh(&sk->sk_callback_lock);
2363
2364                 strp_check_rcv(&sw_ctx_rx->strp);
2365         }
2366
2367         goto out;
2368
2369 free_aead:
2370         crypto_free_aead(*aead);
2371         *aead = NULL;
2372 free_rec_seq:
2373         kfree(cctx->rec_seq);
2374         cctx->rec_seq = NULL;
2375 free_iv:
2376         kfree(cctx->iv);
2377         cctx->iv = NULL;
2378 free_priv:
2379         if (tx) {
2380                 kfree(ctx->priv_ctx_tx);
2381                 ctx->priv_ctx_tx = NULL;
2382         } else {
2383                 kfree(ctx->priv_ctx_rx);
2384                 ctx->priv_ctx_rx = NULL;
2385         }
2386 out:
2387         return rc;
2388 }