x86/speculation: Fix redundant MDS mitigation message
[linux-2.6-block.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68         struct delayed_work     dwork;
69         u32                     last_bucket;
70         bool                    exiting;
71         bool                    early_drop;
72         long                    next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
80 #define GC_MAX_BUCKETS_DIV      128u
81 /* upper bound of full table scan */
82 #define GC_MAX_SCAN_JIFFIES     (16u * HZ)
83 /* desired ratio of entries found to be expired */
84 #define GC_EVICT_RATIO  50u
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90         /* 1) Acquire the lock */
91         spin_lock(lock);
92
93         /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94          * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95          */
96         if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97                 return;
98
99         /* fast path failed, unlock */
100         spin_unlock(lock);
101
102         /* Slow path 1) get global lock */
103         spin_lock(&nf_conntrack_locks_all_lock);
104
105         /* Slow path 2) get the lock we want */
106         spin_lock(lock);
107
108         /* Slow path 3) release the global lock */
109         spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115         h1 %= CONNTRACK_LOCKS;
116         h2 %= CONNTRACK_LOCKS;
117         spin_unlock(&nf_conntrack_locks[h1]);
118         if (h1 != h2)
119                 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124                                      unsigned int h2, unsigned int sequence)
125 {
126         h1 %= CONNTRACK_LOCKS;
127         h2 %= CONNTRACK_LOCKS;
128         if (h1 <= h2) {
129                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130                 if (h1 != h2)
131                         spin_lock_nested(&nf_conntrack_locks[h2],
132                                          SINGLE_DEPTH_NESTING);
133         } else {
134                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135                 spin_lock_nested(&nf_conntrack_locks[h1],
136                                  SINGLE_DEPTH_NESTING);
137         }
138         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139                 nf_conntrack_double_unlock(h1, h2);
140                 return true;
141         }
142         return false;
143 }
144
145 static void nf_conntrack_all_lock(void)
146 {
147         int i;
148
149         spin_lock(&nf_conntrack_locks_all_lock);
150
151         nf_conntrack_locks_all = true;
152
153         for (i = 0; i < CONNTRACK_LOCKS; i++) {
154                 spin_lock(&nf_conntrack_locks[i]);
155
156                 /* This spin_unlock provides the "release" to ensure that
157                  * nf_conntrack_locks_all==true is visible to everyone that
158                  * acquired spin_lock(&nf_conntrack_locks[]).
159                  */
160                 spin_unlock(&nf_conntrack_locks[i]);
161         }
162 }
163
164 static void nf_conntrack_all_unlock(void)
165 {
166         /* All prior stores must be complete before we clear
167          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
168          * might observe the false value but not the entire
169          * critical section.
170          * It pairs with the smp_load_acquire() in nf_conntrack_lock()
171          */
172         smp_store_release(&nf_conntrack_locks_all, false);
173         spin_unlock(&nf_conntrack_locks_all_lock);
174 }
175
176 unsigned int nf_conntrack_htable_size __read_mostly;
177 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
178
179 unsigned int nf_conntrack_max __read_mostly;
180 EXPORT_SYMBOL_GPL(nf_conntrack_max);
181 seqcount_t nf_conntrack_generation __read_mostly;
182 static unsigned int nf_conntrack_hash_rnd __read_mostly;
183
184 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
185                               const struct net *net)
186 {
187         unsigned int n;
188         u32 seed;
189
190         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
191
192         /* The direction must be ignored, so we hash everything up to the
193          * destination ports (which is a multiple of 4) and treat the last
194          * three bytes manually.
195          */
196         seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
197         n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
198         return jhash2((u32 *)tuple, n, seed ^
199                       (((__force __u16)tuple->dst.u.all << 16) |
200                       tuple->dst.protonum));
201 }
202
203 static u32 scale_hash(u32 hash)
204 {
205         return reciprocal_scale(hash, nf_conntrack_htable_size);
206 }
207
208 static u32 __hash_conntrack(const struct net *net,
209                             const struct nf_conntrack_tuple *tuple,
210                             unsigned int size)
211 {
212         return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
213 }
214
215 static u32 hash_conntrack(const struct net *net,
216                           const struct nf_conntrack_tuple *tuple)
217 {
218         return scale_hash(hash_conntrack_raw(tuple, net));
219 }
220
221 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
222                                   unsigned int dataoff,
223                                   struct nf_conntrack_tuple *tuple)
224 {       struct {
225                 __be16 sport;
226                 __be16 dport;
227         } _inet_hdr, *inet_hdr;
228
229         /* Actually only need first 4 bytes to get ports. */
230         inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
231         if (!inet_hdr)
232                 return false;
233
234         tuple->src.u.udp.port = inet_hdr->sport;
235         tuple->dst.u.udp.port = inet_hdr->dport;
236         return true;
237 }
238
239 static bool
240 nf_ct_get_tuple(const struct sk_buff *skb,
241                 unsigned int nhoff,
242                 unsigned int dataoff,
243                 u_int16_t l3num,
244                 u_int8_t protonum,
245                 struct net *net,
246                 struct nf_conntrack_tuple *tuple)
247 {
248         unsigned int size;
249         const __be32 *ap;
250         __be32 _addrs[8];
251
252         memset(tuple, 0, sizeof(*tuple));
253
254         tuple->src.l3num = l3num;
255         switch (l3num) {
256         case NFPROTO_IPV4:
257                 nhoff += offsetof(struct iphdr, saddr);
258                 size = 2 * sizeof(__be32);
259                 break;
260         case NFPROTO_IPV6:
261                 nhoff += offsetof(struct ipv6hdr, saddr);
262                 size = sizeof(_addrs);
263                 break;
264         default:
265                 return true;
266         }
267
268         ap = skb_header_pointer(skb, nhoff, size, _addrs);
269         if (!ap)
270                 return false;
271
272         switch (l3num) {
273         case NFPROTO_IPV4:
274                 tuple->src.u3.ip = ap[0];
275                 tuple->dst.u3.ip = ap[1];
276                 break;
277         case NFPROTO_IPV6:
278                 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
279                 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
280                 break;
281         }
282
283         tuple->dst.protonum = protonum;
284         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
285
286         switch (protonum) {
287 #if IS_ENABLED(CONFIG_IPV6)
288         case IPPROTO_ICMPV6:
289                 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
290 #endif
291         case IPPROTO_ICMP:
292                 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
293 #ifdef CONFIG_NF_CT_PROTO_GRE
294         case IPPROTO_GRE:
295                 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
296 #endif
297         case IPPROTO_TCP:
298         case IPPROTO_UDP: /* fallthrough */
299                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
300 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
301         case IPPROTO_UDPLITE:
302                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
303 #endif
304 #ifdef CONFIG_NF_CT_PROTO_SCTP
305         case IPPROTO_SCTP:
306                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
307 #endif
308 #ifdef CONFIG_NF_CT_PROTO_DCCP
309         case IPPROTO_DCCP:
310                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
311 #endif
312         default:
313                 break;
314         }
315
316         return true;
317 }
318
319 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
320                             u_int8_t *protonum)
321 {
322         int dataoff = -1;
323         const struct iphdr *iph;
324         struct iphdr _iph;
325
326         iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
327         if (!iph)
328                 return -1;
329
330         /* Conntrack defragments packets, we might still see fragments
331          * inside ICMP packets though.
332          */
333         if (iph->frag_off & htons(IP_OFFSET))
334                 return -1;
335
336         dataoff = nhoff + (iph->ihl << 2);
337         *protonum = iph->protocol;
338
339         /* Check bogus IP headers */
340         if (dataoff > skb->len) {
341                 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
342                          nhoff, iph->ihl << 2, skb->len);
343                 return -1;
344         }
345         return dataoff;
346 }
347
348 #if IS_ENABLED(CONFIG_IPV6)
349 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
350                             u8 *protonum)
351 {
352         int protoff = -1;
353         unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
354         __be16 frag_off;
355         u8 nexthdr;
356
357         if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
358                           &nexthdr, sizeof(nexthdr)) != 0) {
359                 pr_debug("can't get nexthdr\n");
360                 return -1;
361         }
362         protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
363         /*
364          * (protoff == skb->len) means the packet has not data, just
365          * IPv6 and possibly extensions headers, but it is tracked anyway
366          */
367         if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
368                 pr_debug("can't find proto in pkt\n");
369                 return -1;
370         }
371
372         *protonum = nexthdr;
373         return protoff;
374 }
375 #endif
376
377 static int get_l4proto(const struct sk_buff *skb,
378                        unsigned int nhoff, u8 pf, u8 *l4num)
379 {
380         switch (pf) {
381         case NFPROTO_IPV4:
382                 return ipv4_get_l4proto(skb, nhoff, l4num);
383 #if IS_ENABLED(CONFIG_IPV6)
384         case NFPROTO_IPV6:
385                 return ipv6_get_l4proto(skb, nhoff, l4num);
386 #endif
387         default:
388                 *l4num = 0;
389                 break;
390         }
391         return -1;
392 }
393
394 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
395                        u_int16_t l3num,
396                        struct net *net, struct nf_conntrack_tuple *tuple)
397 {
398         u8 protonum;
399         int protoff;
400
401         protoff = get_l4proto(skb, nhoff, l3num, &protonum);
402         if (protoff <= 0)
403                 return false;
404
405         return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
406 }
407 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
408
409 bool
410 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
411                    const struct nf_conntrack_tuple *orig)
412 {
413         memset(inverse, 0, sizeof(*inverse));
414
415         inverse->src.l3num = orig->src.l3num;
416
417         switch (orig->src.l3num) {
418         case NFPROTO_IPV4:
419                 inverse->src.u3.ip = orig->dst.u3.ip;
420                 inverse->dst.u3.ip = orig->src.u3.ip;
421                 break;
422         case NFPROTO_IPV6:
423                 inverse->src.u3.in6 = orig->dst.u3.in6;
424                 inverse->dst.u3.in6 = orig->src.u3.in6;
425                 break;
426         default:
427                 break;
428         }
429
430         inverse->dst.dir = !orig->dst.dir;
431
432         inverse->dst.protonum = orig->dst.protonum;
433
434         switch (orig->dst.protonum) {
435         case IPPROTO_ICMP:
436                 return nf_conntrack_invert_icmp_tuple(inverse, orig);
437 #if IS_ENABLED(CONFIG_IPV6)
438         case IPPROTO_ICMPV6:
439                 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
440 #endif
441         }
442
443         inverse->src.u.all = orig->dst.u.all;
444         inverse->dst.u.all = orig->src.u.all;
445         return true;
446 }
447 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
448
449 /* Generate a almost-unique pseudo-id for a given conntrack.
450  *
451  * intentionally doesn't re-use any of the seeds used for hash
452  * table location, we assume id gets exposed to userspace.
453  *
454  * Following nf_conn items do not change throughout lifetime
455  * of the nf_conn:
456  *
457  * 1. nf_conn address
458  * 2. nf_conn->master address (normally NULL)
459  * 3. the associated net namespace
460  * 4. the original direction tuple
461  */
462 u32 nf_ct_get_id(const struct nf_conn *ct)
463 {
464         static __read_mostly siphash_key_t ct_id_seed;
465         unsigned long a, b, c, d;
466
467         net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
468
469         a = (unsigned long)ct;
470         b = (unsigned long)ct->master;
471         c = (unsigned long)nf_ct_net(ct);
472         d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
473                                    sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
474                                    &ct_id_seed);
475 #ifdef CONFIG_64BIT
476         return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
477 #else
478         return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
479 #endif
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_get_id);
482
483 static void
484 clean_from_lists(struct nf_conn *ct)
485 {
486         pr_debug("clean_from_lists(%p)\n", ct);
487         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
488         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
489
490         /* Destroy all pending expectations */
491         nf_ct_remove_expectations(ct);
492 }
493
494 /* must be called with local_bh_disable */
495 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
496 {
497         struct ct_pcpu *pcpu;
498
499         /* add this conntrack to the (per cpu) dying list */
500         ct->cpu = smp_processor_id();
501         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
502
503         spin_lock(&pcpu->lock);
504         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
505                              &pcpu->dying);
506         spin_unlock(&pcpu->lock);
507 }
508
509 /* must be called with local_bh_disable */
510 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
511 {
512         struct ct_pcpu *pcpu;
513
514         /* add this conntrack to the (per cpu) unconfirmed list */
515         ct->cpu = smp_processor_id();
516         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
517
518         spin_lock(&pcpu->lock);
519         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
520                              &pcpu->unconfirmed);
521         spin_unlock(&pcpu->lock);
522 }
523
524 /* must be called with local_bh_disable */
525 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
526 {
527         struct ct_pcpu *pcpu;
528
529         /* We overload first tuple to link into unconfirmed or dying list.*/
530         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
531
532         spin_lock(&pcpu->lock);
533         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
534         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
535         spin_unlock(&pcpu->lock);
536 }
537
538 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
539
540 /* Released via destroy_conntrack() */
541 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
542                                  const struct nf_conntrack_zone *zone,
543                                  gfp_t flags)
544 {
545         struct nf_conn *tmpl, *p;
546
547         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
548                 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
549                 if (!tmpl)
550                         return NULL;
551
552                 p = tmpl;
553                 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
554                 if (tmpl != p) {
555                         tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
556                         tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
557                 }
558         } else {
559                 tmpl = kzalloc(sizeof(*tmpl), flags);
560                 if (!tmpl)
561                         return NULL;
562         }
563
564         tmpl->status = IPS_TEMPLATE;
565         write_pnet(&tmpl->ct_net, net);
566         nf_ct_zone_add(tmpl, zone);
567         atomic_set(&tmpl->ct_general.use, 0);
568
569         return tmpl;
570 }
571 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
572
573 void nf_ct_tmpl_free(struct nf_conn *tmpl)
574 {
575         nf_ct_ext_destroy(tmpl);
576         nf_ct_ext_free(tmpl);
577
578         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
579                 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
580         else
581                 kfree(tmpl);
582 }
583 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
584
585 static void destroy_gre_conntrack(struct nf_conn *ct)
586 {
587 #ifdef CONFIG_NF_CT_PROTO_GRE
588         struct nf_conn *master = ct->master;
589
590         if (master)
591                 nf_ct_gre_keymap_destroy(master);
592 #endif
593 }
594
595 static void
596 destroy_conntrack(struct nf_conntrack *nfct)
597 {
598         struct nf_conn *ct = (struct nf_conn *)nfct;
599
600         pr_debug("destroy_conntrack(%p)\n", ct);
601         WARN_ON(atomic_read(&nfct->use) != 0);
602
603         if (unlikely(nf_ct_is_template(ct))) {
604                 nf_ct_tmpl_free(ct);
605                 return;
606         }
607
608         if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
609                 destroy_gre_conntrack(ct);
610
611         local_bh_disable();
612         /* Expectations will have been removed in clean_from_lists,
613          * except TFTP can create an expectation on the first packet,
614          * before connection is in the list, so we need to clean here,
615          * too.
616          */
617         nf_ct_remove_expectations(ct);
618
619         nf_ct_del_from_dying_or_unconfirmed_list(ct);
620
621         local_bh_enable();
622
623         if (ct->master)
624                 nf_ct_put(ct->master);
625
626         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
627         nf_conntrack_free(ct);
628 }
629
630 static void nf_ct_delete_from_lists(struct nf_conn *ct)
631 {
632         struct net *net = nf_ct_net(ct);
633         unsigned int hash, reply_hash;
634         unsigned int sequence;
635
636         nf_ct_helper_destroy(ct);
637
638         local_bh_disable();
639         do {
640                 sequence = read_seqcount_begin(&nf_conntrack_generation);
641                 hash = hash_conntrack(net,
642                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
643                 reply_hash = hash_conntrack(net,
644                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
645         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
646
647         clean_from_lists(ct);
648         nf_conntrack_double_unlock(hash, reply_hash);
649
650         nf_ct_add_to_dying_list(ct);
651
652         local_bh_enable();
653 }
654
655 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
656 {
657         struct nf_conn_tstamp *tstamp;
658
659         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
660                 return false;
661
662         tstamp = nf_conn_tstamp_find(ct);
663         if (tstamp && tstamp->stop == 0)
664                 tstamp->stop = ktime_get_real_ns();
665
666         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
667                                     portid, report) < 0) {
668                 /* destroy event was not delivered. nf_ct_put will
669                  * be done by event cache worker on redelivery.
670                  */
671                 nf_ct_delete_from_lists(ct);
672                 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
673                 return false;
674         }
675
676         nf_conntrack_ecache_work(nf_ct_net(ct));
677         nf_ct_delete_from_lists(ct);
678         nf_ct_put(ct);
679         return true;
680 }
681 EXPORT_SYMBOL_GPL(nf_ct_delete);
682
683 static inline bool
684 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
685                 const struct nf_conntrack_tuple *tuple,
686                 const struct nf_conntrack_zone *zone,
687                 const struct net *net)
688 {
689         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
690
691         /* A conntrack can be recreated with the equal tuple,
692          * so we need to check that the conntrack is confirmed
693          */
694         return nf_ct_tuple_equal(tuple, &h->tuple) &&
695                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
696                nf_ct_is_confirmed(ct) &&
697                net_eq(net, nf_ct_net(ct));
698 }
699
700 static inline bool
701 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
702 {
703         return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
704                                  &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
705                nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
706                                  &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
707                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
708                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
709                net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
710 }
711
712 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
713 static void nf_ct_gc_expired(struct nf_conn *ct)
714 {
715         if (!atomic_inc_not_zero(&ct->ct_general.use))
716                 return;
717
718         if (nf_ct_should_gc(ct))
719                 nf_ct_kill(ct);
720
721         nf_ct_put(ct);
722 }
723
724 /*
725  * Warning :
726  * - Caller must take a reference on returned object
727  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
728  */
729 static struct nf_conntrack_tuple_hash *
730 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
731                       const struct nf_conntrack_tuple *tuple, u32 hash)
732 {
733         struct nf_conntrack_tuple_hash *h;
734         struct hlist_nulls_head *ct_hash;
735         struct hlist_nulls_node *n;
736         unsigned int bucket, hsize;
737
738 begin:
739         nf_conntrack_get_ht(&ct_hash, &hsize);
740         bucket = reciprocal_scale(hash, hsize);
741
742         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
743                 struct nf_conn *ct;
744
745                 ct = nf_ct_tuplehash_to_ctrack(h);
746                 if (nf_ct_is_expired(ct)) {
747                         nf_ct_gc_expired(ct);
748                         continue;
749                 }
750
751                 if (nf_ct_key_equal(h, tuple, zone, net))
752                         return h;
753         }
754         /*
755          * if the nulls value we got at the end of this lookup is
756          * not the expected one, we must restart lookup.
757          * We probably met an item that was moved to another chain.
758          */
759         if (get_nulls_value(n) != bucket) {
760                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
761                 goto begin;
762         }
763
764         return NULL;
765 }
766
767 /* Find a connection corresponding to a tuple. */
768 static struct nf_conntrack_tuple_hash *
769 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
770                         const struct nf_conntrack_tuple *tuple, u32 hash)
771 {
772         struct nf_conntrack_tuple_hash *h;
773         struct nf_conn *ct;
774
775         rcu_read_lock();
776
777         h = ____nf_conntrack_find(net, zone, tuple, hash);
778         if (h) {
779                 /* We have a candidate that matches the tuple we're interested
780                  * in, try to obtain a reference and re-check tuple
781                  */
782                 ct = nf_ct_tuplehash_to_ctrack(h);
783                 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
784                         if (likely(nf_ct_key_equal(h, tuple, zone, net)))
785                                 goto found;
786
787                         /* TYPESAFE_BY_RCU recycled the candidate */
788                         nf_ct_put(ct);
789                 }
790
791                 h = NULL;
792         }
793 found:
794         rcu_read_unlock();
795
796         return h;
797 }
798
799 struct nf_conntrack_tuple_hash *
800 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
801                       const struct nf_conntrack_tuple *tuple)
802 {
803         return __nf_conntrack_find_get(net, zone, tuple,
804                                        hash_conntrack_raw(tuple, net));
805 }
806 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
807
808 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
809                                        unsigned int hash,
810                                        unsigned int reply_hash)
811 {
812         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
813                            &nf_conntrack_hash[hash]);
814         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
815                            &nf_conntrack_hash[reply_hash]);
816 }
817
818 int
819 nf_conntrack_hash_check_insert(struct nf_conn *ct)
820 {
821         const struct nf_conntrack_zone *zone;
822         struct net *net = nf_ct_net(ct);
823         unsigned int hash, reply_hash;
824         struct nf_conntrack_tuple_hash *h;
825         struct hlist_nulls_node *n;
826         unsigned int sequence;
827
828         zone = nf_ct_zone(ct);
829
830         local_bh_disable();
831         do {
832                 sequence = read_seqcount_begin(&nf_conntrack_generation);
833                 hash = hash_conntrack(net,
834                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
835                 reply_hash = hash_conntrack(net,
836                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
837         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
838
839         /* See if there's one in the list already, including reverse */
840         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
841                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
842                                     zone, net))
843                         goto out;
844
845         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
846                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
847                                     zone, net))
848                         goto out;
849
850         smp_wmb();
851         /* The caller holds a reference to this object */
852         atomic_set(&ct->ct_general.use, 2);
853         __nf_conntrack_hash_insert(ct, hash, reply_hash);
854         nf_conntrack_double_unlock(hash, reply_hash);
855         NF_CT_STAT_INC(net, insert);
856         local_bh_enable();
857         return 0;
858
859 out:
860         nf_conntrack_double_unlock(hash, reply_hash);
861         NF_CT_STAT_INC(net, insert_failed);
862         local_bh_enable();
863         return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866
867 static inline void nf_ct_acct_update(struct nf_conn *ct,
868                                      enum ip_conntrack_info ctinfo,
869                                      unsigned int len)
870 {
871         struct nf_conn_acct *acct;
872
873         acct = nf_conn_acct_find(ct);
874         if (acct) {
875                 struct nf_conn_counter *counter = acct->counter;
876
877                 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
878                 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
879         }
880 }
881
882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883                              const struct nf_conn *loser_ct)
884 {
885         struct nf_conn_acct *acct;
886
887         acct = nf_conn_acct_find(loser_ct);
888         if (acct) {
889                 struct nf_conn_counter *counter = acct->counter;
890                 unsigned int bytes;
891
892                 /* u32 should be fine since we must have seen one packet. */
893                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894                 nf_ct_acct_update(ct, ctinfo, bytes);
895         }
896 }
897
898 /* Resolve race on insertion if this protocol allows this. */
899 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
900                                enum ip_conntrack_info ctinfo,
901                                struct nf_conntrack_tuple_hash *h)
902 {
903         /* This is the conntrack entry already in hashes that won race. */
904         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
905         const struct nf_conntrack_l4proto *l4proto;
906         enum ip_conntrack_info oldinfo;
907         struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
908
909         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
910         if (l4proto->allow_clash &&
911             !nf_ct_is_dying(ct) &&
912             atomic_inc_not_zero(&ct->ct_general.use)) {
913                 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
914                     nf_ct_match(ct, loser_ct)) {
915                         nf_ct_acct_merge(ct, ctinfo, loser_ct);
916                         nf_conntrack_put(&loser_ct->ct_general);
917                         nf_ct_set(skb, ct, oldinfo);
918                         return NF_ACCEPT;
919                 }
920                 nf_ct_put(ct);
921         }
922         NF_CT_STAT_INC(net, drop);
923         return NF_DROP;
924 }
925
926 /* Confirm a connection given skb; places it in hash table */
927 int
928 __nf_conntrack_confirm(struct sk_buff *skb)
929 {
930         const struct nf_conntrack_zone *zone;
931         unsigned int hash, reply_hash;
932         struct nf_conntrack_tuple_hash *h;
933         struct nf_conn *ct;
934         struct nf_conn_help *help;
935         struct nf_conn_tstamp *tstamp;
936         struct hlist_nulls_node *n;
937         enum ip_conntrack_info ctinfo;
938         struct net *net;
939         unsigned int sequence;
940         int ret = NF_DROP;
941
942         ct = nf_ct_get(skb, &ctinfo);
943         net = nf_ct_net(ct);
944
945         /* ipt_REJECT uses nf_conntrack_attach to attach related
946            ICMP/TCP RST packets in other direction.  Actual packet
947            which created connection will be IP_CT_NEW or for an
948            expected connection, IP_CT_RELATED. */
949         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
950                 return NF_ACCEPT;
951
952         zone = nf_ct_zone(ct);
953         local_bh_disable();
954
955         do {
956                 sequence = read_seqcount_begin(&nf_conntrack_generation);
957                 /* reuse the hash saved before */
958                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
959                 hash = scale_hash(hash);
960                 reply_hash = hash_conntrack(net,
961                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
962
963         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
964
965         /* We're not in hash table, and we refuse to set up related
966          * connections for unconfirmed conns.  But packet copies and
967          * REJECT will give spurious warnings here.
968          */
969
970         /* Another skb with the same unconfirmed conntrack may
971          * win the race. This may happen for bridge(br_flood)
972          * or broadcast/multicast packets do skb_clone with
973          * unconfirmed conntrack.
974          */
975         if (unlikely(nf_ct_is_confirmed(ct))) {
976                 WARN_ON_ONCE(1);
977                 nf_conntrack_double_unlock(hash, reply_hash);
978                 local_bh_enable();
979                 return NF_DROP;
980         }
981
982         pr_debug("Confirming conntrack %p\n", ct);
983         /* We have to check the DYING flag after unlink to prevent
984          * a race against nf_ct_get_next_corpse() possibly called from
985          * user context, else we insert an already 'dead' hash, blocking
986          * further use of that particular connection -JM.
987          */
988         nf_ct_del_from_dying_or_unconfirmed_list(ct);
989
990         if (unlikely(nf_ct_is_dying(ct))) {
991                 nf_ct_add_to_dying_list(ct);
992                 goto dying;
993         }
994
995         /* See if there's one in the list already, including reverse:
996            NAT could have grabbed it without realizing, since we're
997            not in the hash.  If there is, we lost race. */
998         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
999                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1000                                     zone, net))
1001                         goto out;
1002
1003         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1004                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1005                                     zone, net))
1006                         goto out;
1007
1008         /* Timer relative to confirmation time, not original
1009            setting time, otherwise we'd get timer wrap in
1010            weird delay cases. */
1011         ct->timeout += nfct_time_stamp;
1012         atomic_inc(&ct->ct_general.use);
1013         ct->status |= IPS_CONFIRMED;
1014
1015         /* set conntrack timestamp, if enabled. */
1016         tstamp = nf_conn_tstamp_find(ct);
1017         if (tstamp)
1018                 tstamp->start = ktime_get_real_ns();
1019
1020         /* Since the lookup is lockless, hash insertion must be done after
1021          * starting the timer and setting the CONFIRMED bit. The RCU barriers
1022          * guarantee that no other CPU can find the conntrack before the above
1023          * stores are visible.
1024          */
1025         __nf_conntrack_hash_insert(ct, hash, reply_hash);
1026         nf_conntrack_double_unlock(hash, reply_hash);
1027         local_bh_enable();
1028
1029         help = nfct_help(ct);
1030         if (help && help->helper)
1031                 nf_conntrack_event_cache(IPCT_HELPER, ct);
1032
1033         nf_conntrack_event_cache(master_ct(ct) ?
1034                                  IPCT_RELATED : IPCT_NEW, ct);
1035         return NF_ACCEPT;
1036
1037 out:
1038         nf_ct_add_to_dying_list(ct);
1039         ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1040 dying:
1041         nf_conntrack_double_unlock(hash, reply_hash);
1042         NF_CT_STAT_INC(net, insert_failed);
1043         local_bh_enable();
1044         return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1047
1048 /* Returns true if a connection correspondings to the tuple (required
1049    for NAT). */
1050 int
1051 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1052                          const struct nf_conn *ignored_conntrack)
1053 {
1054         struct net *net = nf_ct_net(ignored_conntrack);
1055         const struct nf_conntrack_zone *zone;
1056         struct nf_conntrack_tuple_hash *h;
1057         struct hlist_nulls_head *ct_hash;
1058         unsigned int hash, hsize;
1059         struct hlist_nulls_node *n;
1060         struct nf_conn *ct;
1061
1062         zone = nf_ct_zone(ignored_conntrack);
1063
1064         rcu_read_lock();
1065  begin:
1066         nf_conntrack_get_ht(&ct_hash, &hsize);
1067         hash = __hash_conntrack(net, tuple, hsize);
1068
1069         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1070                 ct = nf_ct_tuplehash_to_ctrack(h);
1071
1072                 if (ct == ignored_conntrack)
1073                         continue;
1074
1075                 if (nf_ct_is_expired(ct)) {
1076                         nf_ct_gc_expired(ct);
1077                         continue;
1078                 }
1079
1080                 if (nf_ct_key_equal(h, tuple, zone, net)) {
1081                         /* Tuple is taken already, so caller will need to find
1082                          * a new source port to use.
1083                          *
1084                          * Only exception:
1085                          * If the *original tuples* are identical, then both
1086                          * conntracks refer to the same flow.
1087                          * This is a rare situation, it can occur e.g. when
1088                          * more than one UDP packet is sent from same socket
1089                          * in different threads.
1090                          *
1091                          * Let nf_ct_resolve_clash() deal with this later.
1092                          */
1093                         if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1094                                               &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1095                                 continue;
1096
1097                         NF_CT_STAT_INC_ATOMIC(net, found);
1098                         rcu_read_unlock();
1099                         return 1;
1100                 }
1101         }
1102
1103         if (get_nulls_value(n) != hash) {
1104                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1105                 goto begin;
1106         }
1107
1108         rcu_read_unlock();
1109
1110         return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1113
1114 #define NF_CT_EVICTION_RANGE    8
1115
1116 /* There's a small race here where we may free a just-assured
1117    connection.  Too bad: we're in trouble anyway. */
1118 static unsigned int early_drop_list(struct net *net,
1119                                     struct hlist_nulls_head *head)
1120 {
1121         struct nf_conntrack_tuple_hash *h;
1122         struct hlist_nulls_node *n;
1123         unsigned int drops = 0;
1124         struct nf_conn *tmp;
1125
1126         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1127                 tmp = nf_ct_tuplehash_to_ctrack(h);
1128
1129                 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1130                         continue;
1131
1132                 if (nf_ct_is_expired(tmp)) {
1133                         nf_ct_gc_expired(tmp);
1134                         continue;
1135                 }
1136
1137                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1138                     !net_eq(nf_ct_net(tmp), net) ||
1139                     nf_ct_is_dying(tmp))
1140                         continue;
1141
1142                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1143                         continue;
1144
1145                 /* kill only if still in same netns -- might have moved due to
1146                  * SLAB_TYPESAFE_BY_RCU rules.
1147                  *
1148                  * We steal the timer reference.  If that fails timer has
1149                  * already fired or someone else deleted it. Just drop ref
1150                  * and move to next entry.
1151                  */
1152                 if (net_eq(nf_ct_net(tmp), net) &&
1153                     nf_ct_is_confirmed(tmp) &&
1154                     nf_ct_delete(tmp, 0, 0))
1155                         drops++;
1156
1157                 nf_ct_put(tmp);
1158         }
1159
1160         return drops;
1161 }
1162
1163 static noinline int early_drop(struct net *net, unsigned int hash)
1164 {
1165         unsigned int i, bucket;
1166
1167         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1168                 struct hlist_nulls_head *ct_hash;
1169                 unsigned int hsize, drops;
1170
1171                 rcu_read_lock();
1172                 nf_conntrack_get_ht(&ct_hash, &hsize);
1173                 if (!i)
1174                         bucket = reciprocal_scale(hash, hsize);
1175                 else
1176                         bucket = (bucket + 1) % hsize;
1177
1178                 drops = early_drop_list(net, &ct_hash[bucket]);
1179                 rcu_read_unlock();
1180
1181                 if (drops) {
1182                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1183                         return true;
1184                 }
1185         }
1186
1187         return false;
1188 }
1189
1190 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1191 {
1192         return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1193 }
1194
1195 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1196 {
1197         const struct nf_conntrack_l4proto *l4proto;
1198
1199         if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1200                 return true;
1201
1202         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1203         if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1204                 return true;
1205
1206         return false;
1207 }
1208
1209 #define DAY     (86400 * HZ)
1210
1211 /* Set an arbitrary timeout large enough not to ever expire, this save
1212  * us a check for the IPS_OFFLOAD_BIT from the packet path via
1213  * nf_ct_is_expired().
1214  */
1215 static void nf_ct_offload_timeout(struct nf_conn *ct)
1216 {
1217         if (nf_ct_expires(ct) < DAY / 2)
1218                 ct->timeout = nfct_time_stamp + DAY;
1219 }
1220
1221 static void gc_worker(struct work_struct *work)
1222 {
1223         unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1224         unsigned int i, goal, buckets = 0, expired_count = 0;
1225         unsigned int nf_conntrack_max95 = 0;
1226         struct conntrack_gc_work *gc_work;
1227         unsigned int ratio, scanned = 0;
1228         unsigned long next_run;
1229
1230         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1231
1232         goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1233         i = gc_work->last_bucket;
1234         if (gc_work->early_drop)
1235                 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1236
1237         do {
1238                 struct nf_conntrack_tuple_hash *h;
1239                 struct hlist_nulls_head *ct_hash;
1240                 struct hlist_nulls_node *n;
1241                 unsigned int hashsz;
1242                 struct nf_conn *tmp;
1243
1244                 i++;
1245                 rcu_read_lock();
1246
1247                 nf_conntrack_get_ht(&ct_hash, &hashsz);
1248                 if (i >= hashsz)
1249                         i = 0;
1250
1251                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1252                         struct net *net;
1253
1254                         tmp = nf_ct_tuplehash_to_ctrack(h);
1255
1256                         scanned++;
1257                         if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1258                                 nf_ct_offload_timeout(tmp);
1259                                 continue;
1260                         }
1261
1262                         if (nf_ct_is_expired(tmp)) {
1263                                 nf_ct_gc_expired(tmp);
1264                                 expired_count++;
1265                                 continue;
1266                         }
1267
1268                         if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1269                                 continue;
1270
1271                         net = nf_ct_net(tmp);
1272                         if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1273                                 continue;
1274
1275                         /* need to take reference to avoid possible races */
1276                         if (!atomic_inc_not_zero(&tmp->ct_general.use))
1277                                 continue;
1278
1279                         if (gc_worker_skip_ct(tmp)) {
1280                                 nf_ct_put(tmp);
1281                                 continue;
1282                         }
1283
1284                         if (gc_worker_can_early_drop(tmp))
1285                                 nf_ct_kill(tmp);
1286
1287                         nf_ct_put(tmp);
1288                 }
1289
1290                 /* could check get_nulls_value() here and restart if ct
1291                  * was moved to another chain.  But given gc is best-effort
1292                  * we will just continue with next hash slot.
1293                  */
1294                 rcu_read_unlock();
1295                 cond_resched();
1296         } while (++buckets < goal);
1297
1298         if (gc_work->exiting)
1299                 return;
1300
1301         /*
1302          * Eviction will normally happen from the packet path, and not
1303          * from this gc worker.
1304          *
1305          * This worker is only here to reap expired entries when system went
1306          * idle after a busy period.
1307          *
1308          * The heuristics below are supposed to balance conflicting goals:
1309          *
1310          * 1. Minimize time until we notice a stale entry
1311          * 2. Maximize scan intervals to not waste cycles
1312          *
1313          * Normally, expire ratio will be close to 0.
1314          *
1315          * As soon as a sizeable fraction of the entries have expired
1316          * increase scan frequency.
1317          */
1318         ratio = scanned ? expired_count * 100 / scanned : 0;
1319         if (ratio > GC_EVICT_RATIO) {
1320                 gc_work->next_gc_run = min_interval;
1321         } else {
1322                 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1323
1324                 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1325
1326                 gc_work->next_gc_run += min_interval;
1327                 if (gc_work->next_gc_run > max)
1328                         gc_work->next_gc_run = max;
1329         }
1330
1331         next_run = gc_work->next_gc_run;
1332         gc_work->last_bucket = i;
1333         gc_work->early_drop = false;
1334         queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1335 }
1336
1337 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1338 {
1339         INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1340         gc_work->next_gc_run = HZ;
1341         gc_work->exiting = false;
1342 }
1343
1344 static struct nf_conn *
1345 __nf_conntrack_alloc(struct net *net,
1346                      const struct nf_conntrack_zone *zone,
1347                      const struct nf_conntrack_tuple *orig,
1348                      const struct nf_conntrack_tuple *repl,
1349                      gfp_t gfp, u32 hash)
1350 {
1351         struct nf_conn *ct;
1352
1353         /* We don't want any race condition at early drop stage */
1354         atomic_inc(&net->ct.count);
1355
1356         if (nf_conntrack_max &&
1357             unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1358                 if (!early_drop(net, hash)) {
1359                         if (!conntrack_gc_work.early_drop)
1360                                 conntrack_gc_work.early_drop = true;
1361                         atomic_dec(&net->ct.count);
1362                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1363                         return ERR_PTR(-ENOMEM);
1364                 }
1365         }
1366
1367         /*
1368          * Do not use kmem_cache_zalloc(), as this cache uses
1369          * SLAB_TYPESAFE_BY_RCU.
1370          */
1371         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1372         if (ct == NULL)
1373                 goto out;
1374
1375         spin_lock_init(&ct->lock);
1376         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1377         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1378         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1379         /* save hash for reusing when confirming */
1380         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1381         ct->status = 0;
1382         ct->timeout = 0;
1383         write_pnet(&ct->ct_net, net);
1384         memset(&ct->__nfct_init_offset[0], 0,
1385                offsetof(struct nf_conn, proto) -
1386                offsetof(struct nf_conn, __nfct_init_offset[0]));
1387
1388         nf_ct_zone_add(ct, zone);
1389
1390         /* Because we use RCU lookups, we set ct_general.use to zero before
1391          * this is inserted in any list.
1392          */
1393         atomic_set(&ct->ct_general.use, 0);
1394         return ct;
1395 out:
1396         atomic_dec(&net->ct.count);
1397         return ERR_PTR(-ENOMEM);
1398 }
1399
1400 struct nf_conn *nf_conntrack_alloc(struct net *net,
1401                                    const struct nf_conntrack_zone *zone,
1402                                    const struct nf_conntrack_tuple *orig,
1403                                    const struct nf_conntrack_tuple *repl,
1404                                    gfp_t gfp)
1405 {
1406         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1407 }
1408 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1409
1410 void nf_conntrack_free(struct nf_conn *ct)
1411 {
1412         struct net *net = nf_ct_net(ct);
1413
1414         /* A freed object has refcnt == 0, that's
1415          * the golden rule for SLAB_TYPESAFE_BY_RCU
1416          */
1417         WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1418
1419         nf_ct_ext_destroy(ct);
1420         nf_ct_ext_free(ct);
1421         kmem_cache_free(nf_conntrack_cachep, ct);
1422         smp_mb__before_atomic();
1423         atomic_dec(&net->ct.count);
1424 }
1425 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1426
1427
1428 /* Allocate a new conntrack: we return -ENOMEM if classification
1429    failed due to stress.  Otherwise it really is unclassifiable. */
1430 static noinline struct nf_conntrack_tuple_hash *
1431 init_conntrack(struct net *net, struct nf_conn *tmpl,
1432                const struct nf_conntrack_tuple *tuple,
1433                struct sk_buff *skb,
1434                unsigned int dataoff, u32 hash)
1435 {
1436         struct nf_conn *ct;
1437         struct nf_conn_help *help;
1438         struct nf_conntrack_tuple repl_tuple;
1439         struct nf_conntrack_ecache *ecache;
1440         struct nf_conntrack_expect *exp = NULL;
1441         const struct nf_conntrack_zone *zone;
1442         struct nf_conn_timeout *timeout_ext;
1443         struct nf_conntrack_zone tmp;
1444
1445         if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1446                 pr_debug("Can't invert tuple.\n");
1447                 return NULL;
1448         }
1449
1450         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1451         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1452                                   hash);
1453         if (IS_ERR(ct))
1454                 return (struct nf_conntrack_tuple_hash *)ct;
1455
1456         if (!nf_ct_add_synproxy(ct, tmpl)) {
1457                 nf_conntrack_free(ct);
1458                 return ERR_PTR(-ENOMEM);
1459         }
1460
1461         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1462
1463         if (timeout_ext)
1464                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1465                                       GFP_ATOMIC);
1466
1467         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1468         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1469         nf_ct_labels_ext_add(ct);
1470
1471         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1472         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1473                                  ecache ? ecache->expmask : 0,
1474                              GFP_ATOMIC);
1475
1476         local_bh_disable();
1477         if (net->ct.expect_count) {
1478                 spin_lock(&nf_conntrack_expect_lock);
1479                 exp = nf_ct_find_expectation(net, zone, tuple);
1480                 if (exp) {
1481                         pr_debug("expectation arrives ct=%p exp=%p\n",
1482                                  ct, exp);
1483                         /* Welcome, Mr. Bond.  We've been expecting you... */
1484                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1485                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1486                         ct->master = exp->master;
1487                         if (exp->helper) {
1488                                 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1489                                 if (help)
1490                                         rcu_assign_pointer(help->helper, exp->helper);
1491                         }
1492
1493 #ifdef CONFIG_NF_CONNTRACK_MARK
1494                         ct->mark = exp->master->mark;
1495 #endif
1496 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1497                         ct->secmark = exp->master->secmark;
1498 #endif
1499                         NF_CT_STAT_INC(net, expect_new);
1500                 }
1501                 spin_unlock(&nf_conntrack_expect_lock);
1502         }
1503         if (!exp)
1504                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1505
1506         /* Now it is inserted into the unconfirmed list, bump refcount */
1507         nf_conntrack_get(&ct->ct_general);
1508         nf_ct_add_to_unconfirmed_list(ct);
1509
1510         local_bh_enable();
1511
1512         if (exp) {
1513                 if (exp->expectfn)
1514                         exp->expectfn(ct, exp);
1515                 nf_ct_expect_put(exp);
1516         }
1517
1518         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1519 }
1520
1521 /* On success, returns 0, sets skb->_nfct | ctinfo */
1522 static int
1523 resolve_normal_ct(struct nf_conn *tmpl,
1524                   struct sk_buff *skb,
1525                   unsigned int dataoff,
1526                   u_int8_t protonum,
1527                   const struct nf_hook_state *state)
1528 {
1529         const struct nf_conntrack_zone *zone;
1530         struct nf_conntrack_tuple tuple;
1531         struct nf_conntrack_tuple_hash *h;
1532         enum ip_conntrack_info ctinfo;
1533         struct nf_conntrack_zone tmp;
1534         struct nf_conn *ct;
1535         u32 hash;
1536
1537         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1538                              dataoff, state->pf, protonum, state->net,
1539                              &tuple)) {
1540                 pr_debug("Can't get tuple\n");
1541                 return 0;
1542         }
1543
1544         /* look for tuple match */
1545         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1546         hash = hash_conntrack_raw(&tuple, state->net);
1547         h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1548         if (!h) {
1549                 h = init_conntrack(state->net, tmpl, &tuple,
1550                                    skb, dataoff, hash);
1551                 if (!h)
1552                         return 0;
1553                 if (IS_ERR(h))
1554                         return PTR_ERR(h);
1555         }
1556         ct = nf_ct_tuplehash_to_ctrack(h);
1557
1558         /* It exists; we have (non-exclusive) reference. */
1559         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1560                 ctinfo = IP_CT_ESTABLISHED_REPLY;
1561         } else {
1562                 /* Once we've had two way comms, always ESTABLISHED. */
1563                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1564                         pr_debug("normal packet for %p\n", ct);
1565                         ctinfo = IP_CT_ESTABLISHED;
1566                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1567                         pr_debug("related packet for %p\n", ct);
1568                         ctinfo = IP_CT_RELATED;
1569                 } else {
1570                         pr_debug("new packet for %p\n", ct);
1571                         ctinfo = IP_CT_NEW;
1572                 }
1573         }
1574         nf_ct_set(skb, ct, ctinfo);
1575         return 0;
1576 }
1577
1578 /*
1579  * icmp packets need special treatment to handle error messages that are
1580  * related to a connection.
1581  *
1582  * Callers need to check if skb has a conntrack assigned when this
1583  * helper returns; in such case skb belongs to an already known connection.
1584  */
1585 static unsigned int __cold
1586 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1587                          struct sk_buff *skb,
1588                          unsigned int dataoff,
1589                          u8 protonum,
1590                          const struct nf_hook_state *state)
1591 {
1592         int ret;
1593
1594         if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1595                 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1596 #if IS_ENABLED(CONFIG_IPV6)
1597         else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1598                 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1599 #endif
1600         else
1601                 return NF_ACCEPT;
1602
1603         if (ret <= 0) {
1604                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1605                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1606         }
1607
1608         return ret;
1609 }
1610
1611 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1612                           enum ip_conntrack_info ctinfo)
1613 {
1614         const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1615
1616         if (!timeout)
1617                 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1618
1619         nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1620         return NF_ACCEPT;
1621 }
1622
1623 /* Returns verdict for packet, or -1 for invalid. */
1624 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1625                                       struct sk_buff *skb,
1626                                       unsigned int dataoff,
1627                                       enum ip_conntrack_info ctinfo,
1628                                       const struct nf_hook_state *state)
1629 {
1630         switch (nf_ct_protonum(ct)) {
1631         case IPPROTO_TCP:
1632                 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1633                                                ctinfo, state);
1634         case IPPROTO_UDP:
1635                 return nf_conntrack_udp_packet(ct, skb, dataoff,
1636                                                ctinfo, state);
1637         case IPPROTO_ICMP:
1638                 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1639 #if IS_ENABLED(CONFIG_IPV6)
1640         case IPPROTO_ICMPV6:
1641                 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1642 #endif
1643 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1644         case IPPROTO_UDPLITE:
1645                 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1646                                                    ctinfo, state);
1647 #endif
1648 #ifdef CONFIG_NF_CT_PROTO_SCTP
1649         case IPPROTO_SCTP:
1650                 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1651                                                 ctinfo, state);
1652 #endif
1653 #ifdef CONFIG_NF_CT_PROTO_DCCP
1654         case IPPROTO_DCCP:
1655                 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1656                                                 ctinfo, state);
1657 #endif
1658 #ifdef CONFIG_NF_CT_PROTO_GRE
1659         case IPPROTO_GRE:
1660                 return nf_conntrack_gre_packet(ct, skb, dataoff,
1661                                                ctinfo, state);
1662 #endif
1663         }
1664
1665         return generic_packet(ct, skb, ctinfo);
1666 }
1667
1668 unsigned int
1669 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1670 {
1671         enum ip_conntrack_info ctinfo;
1672         struct nf_conn *ct, *tmpl;
1673         u_int8_t protonum;
1674         int dataoff, ret;
1675
1676         tmpl = nf_ct_get(skb, &ctinfo);
1677         if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1678                 /* Previously seen (loopback or untracked)?  Ignore. */
1679                 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1680                      ctinfo == IP_CT_UNTRACKED) {
1681                         NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1682                         return NF_ACCEPT;
1683                 }
1684                 skb->_nfct = 0;
1685         }
1686
1687         /* rcu_read_lock()ed by nf_hook_thresh */
1688         dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1689         if (dataoff <= 0) {
1690                 pr_debug("not prepared to track yet or error occurred\n");
1691                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1692                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1693                 ret = NF_ACCEPT;
1694                 goto out;
1695         }
1696
1697         if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1698                 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1699                                                protonum, state);
1700                 if (ret <= 0) {
1701                         ret = -ret;
1702                         goto out;
1703                 }
1704                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1705                 if (skb->_nfct)
1706                         goto out;
1707         }
1708 repeat:
1709         ret = resolve_normal_ct(tmpl, skb, dataoff,
1710                                 protonum, state);
1711         if (ret < 0) {
1712                 /* Too stressed to deal. */
1713                 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1714                 ret = NF_DROP;
1715                 goto out;
1716         }
1717
1718         ct = nf_ct_get(skb, &ctinfo);
1719         if (!ct) {
1720                 /* Not valid part of a connection */
1721                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1722                 ret = NF_ACCEPT;
1723                 goto out;
1724         }
1725
1726         ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1727         if (ret <= 0) {
1728                 /* Invalid: inverse of the return code tells
1729                  * the netfilter core what to do */
1730                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1731                 nf_conntrack_put(&ct->ct_general);
1732                 skb->_nfct = 0;
1733                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1734                 if (ret == -NF_DROP)
1735                         NF_CT_STAT_INC_ATOMIC(state->net, drop);
1736                 /* Special case: TCP tracker reports an attempt to reopen a
1737                  * closed/aborted connection. We have to go back and create a
1738                  * fresh conntrack.
1739                  */
1740                 if (ret == -NF_REPEAT)
1741                         goto repeat;
1742                 ret = -ret;
1743                 goto out;
1744         }
1745
1746         if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1747             !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1748                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1749 out:
1750         if (tmpl)
1751                 nf_ct_put(tmpl);
1752
1753         return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1756
1757 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1758    implicitly racy: see __nf_conntrack_confirm */
1759 void nf_conntrack_alter_reply(struct nf_conn *ct,
1760                               const struct nf_conntrack_tuple *newreply)
1761 {
1762         struct nf_conn_help *help = nfct_help(ct);
1763
1764         /* Should be unconfirmed, so not in hash table yet */
1765         WARN_ON(nf_ct_is_confirmed(ct));
1766
1767         pr_debug("Altering reply tuple of %p to ", ct);
1768         nf_ct_dump_tuple(newreply);
1769
1770         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1771         if (ct->master || (help && !hlist_empty(&help->expectations)))
1772                 return;
1773
1774         rcu_read_lock();
1775         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1776         rcu_read_unlock();
1777 }
1778 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1779
1780 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1781 void __nf_ct_refresh_acct(struct nf_conn *ct,
1782                           enum ip_conntrack_info ctinfo,
1783                           const struct sk_buff *skb,
1784                           u32 extra_jiffies,
1785                           bool do_acct)
1786 {
1787         /* Only update if this is not a fixed timeout */
1788         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1789                 goto acct;
1790
1791         /* If not in hash table, timer will not be active yet */
1792         if (nf_ct_is_confirmed(ct))
1793                 extra_jiffies += nfct_time_stamp;
1794
1795         if (READ_ONCE(ct->timeout) != extra_jiffies)
1796                 WRITE_ONCE(ct->timeout, extra_jiffies);
1797 acct:
1798         if (do_acct)
1799                 nf_ct_acct_update(ct, ctinfo, skb->len);
1800 }
1801 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1802
1803 bool nf_ct_kill_acct(struct nf_conn *ct,
1804                      enum ip_conntrack_info ctinfo,
1805                      const struct sk_buff *skb)
1806 {
1807         nf_ct_acct_update(ct, ctinfo, skb->len);
1808
1809         return nf_ct_delete(ct, 0, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1812
1813 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1814
1815 #include <linux/netfilter/nfnetlink.h>
1816 #include <linux/netfilter/nfnetlink_conntrack.h>
1817 #include <linux/mutex.h>
1818
1819 /* Generic function for tcp/udp/sctp/dccp and alike. */
1820 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1821                                const struct nf_conntrack_tuple *tuple)
1822 {
1823         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1824             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1825                 goto nla_put_failure;
1826         return 0;
1827
1828 nla_put_failure:
1829         return -1;
1830 }
1831 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1832
1833 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1834         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1835         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1836 };
1837 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1838
1839 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1840                                struct nf_conntrack_tuple *t)
1841 {
1842         if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1843                 return -EINVAL;
1844
1845         t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1846         t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1847
1848         return 0;
1849 }
1850 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1851
1852 unsigned int nf_ct_port_nlattr_tuple_size(void)
1853 {
1854         static unsigned int size __read_mostly;
1855
1856         if (!size)
1857                 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1858
1859         return size;
1860 }
1861 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1862 #endif
1863
1864 /* Used by ipt_REJECT and ip6t_REJECT. */
1865 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1866 {
1867         struct nf_conn *ct;
1868         enum ip_conntrack_info ctinfo;
1869
1870         /* This ICMP is in reverse direction to the packet which caused it */
1871         ct = nf_ct_get(skb, &ctinfo);
1872         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1873                 ctinfo = IP_CT_RELATED_REPLY;
1874         else
1875                 ctinfo = IP_CT_RELATED;
1876
1877         /* Attach to new skbuff, and increment count */
1878         nf_ct_set(nskb, ct, ctinfo);
1879         nf_conntrack_get(skb_nfct(nskb));
1880 }
1881
1882 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1883 {
1884         struct nf_conntrack_tuple_hash *h;
1885         struct nf_conntrack_tuple tuple;
1886         enum ip_conntrack_info ctinfo;
1887         struct nf_nat_hook *nat_hook;
1888         unsigned int status;
1889         struct nf_conn *ct;
1890         int dataoff;
1891         u16 l3num;
1892         u8 l4num;
1893
1894         ct = nf_ct_get(skb, &ctinfo);
1895         if (!ct || nf_ct_is_confirmed(ct))
1896                 return 0;
1897
1898         l3num = nf_ct_l3num(ct);
1899
1900         dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1901         if (dataoff <= 0)
1902                 return -1;
1903
1904         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1905                              l4num, net, &tuple))
1906                 return -1;
1907
1908         if (ct->status & IPS_SRC_NAT) {
1909                 memcpy(tuple.src.u3.all,
1910                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1911                        sizeof(tuple.src.u3.all));
1912                 tuple.src.u.all =
1913                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1914         }
1915
1916         if (ct->status & IPS_DST_NAT) {
1917                 memcpy(tuple.dst.u3.all,
1918                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1919                        sizeof(tuple.dst.u3.all));
1920                 tuple.dst.u.all =
1921                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1922         }
1923
1924         h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1925         if (!h)
1926                 return 0;
1927
1928         /* Store status bits of the conntrack that is clashing to re-do NAT
1929          * mangling according to what it has been done already to this packet.
1930          */
1931         status = ct->status;
1932
1933         nf_ct_put(ct);
1934         ct = nf_ct_tuplehash_to_ctrack(h);
1935         nf_ct_set(skb, ct, ctinfo);
1936
1937         nat_hook = rcu_dereference(nf_nat_hook);
1938         if (!nat_hook)
1939                 return 0;
1940
1941         if (status & IPS_SRC_NAT &&
1942             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1943                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
1944                 return -1;
1945
1946         if (status & IPS_DST_NAT &&
1947             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1948                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
1949                 return -1;
1950
1951         return 0;
1952 }
1953
1954 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1955                                        const struct sk_buff *skb)
1956 {
1957         const struct nf_conntrack_tuple *src_tuple;
1958         const struct nf_conntrack_tuple_hash *hash;
1959         struct nf_conntrack_tuple srctuple;
1960         enum ip_conntrack_info ctinfo;
1961         struct nf_conn *ct;
1962
1963         ct = nf_ct_get(skb, &ctinfo);
1964         if (ct) {
1965                 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1966                 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1967                 return true;
1968         }
1969
1970         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1971                                NFPROTO_IPV4, dev_net(skb->dev),
1972                                &srctuple))
1973                 return false;
1974
1975         hash = nf_conntrack_find_get(dev_net(skb->dev),
1976                                      &nf_ct_zone_dflt,
1977                                      &srctuple);
1978         if (!hash)
1979                 return false;
1980
1981         ct = nf_ct_tuplehash_to_ctrack(hash);
1982         src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1983         memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1984         nf_ct_put(ct);
1985
1986         return true;
1987 }
1988
1989 /* Bring out ya dead! */
1990 static struct nf_conn *
1991 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1992                 void *data, unsigned int *bucket)
1993 {
1994         struct nf_conntrack_tuple_hash *h;
1995         struct nf_conn *ct;
1996         struct hlist_nulls_node *n;
1997         spinlock_t *lockp;
1998
1999         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2000                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2001                 local_bh_disable();
2002                 nf_conntrack_lock(lockp);
2003                 if (*bucket < nf_conntrack_htable_size) {
2004                         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2005                                 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2006                                         continue;
2007                                 ct = nf_ct_tuplehash_to_ctrack(h);
2008                                 if (iter(ct, data))
2009                                         goto found;
2010                         }
2011                 }
2012                 spin_unlock(lockp);
2013                 local_bh_enable();
2014                 cond_resched();
2015         }
2016
2017         return NULL;
2018 found:
2019         atomic_inc(&ct->ct_general.use);
2020         spin_unlock(lockp);
2021         local_bh_enable();
2022         return ct;
2023 }
2024
2025 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2026                                   void *data, u32 portid, int report)
2027 {
2028         unsigned int bucket = 0, sequence;
2029         struct nf_conn *ct;
2030
2031         might_sleep();
2032
2033         for (;;) {
2034                 sequence = read_seqcount_begin(&nf_conntrack_generation);
2035
2036                 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2037                         /* Time to push up daises... */
2038
2039                         nf_ct_delete(ct, portid, report);
2040                         nf_ct_put(ct);
2041                         cond_resched();
2042                 }
2043
2044                 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2045                         break;
2046                 bucket = 0;
2047         }
2048 }
2049
2050 struct iter_data {
2051         int (*iter)(struct nf_conn *i, void *data);
2052         void *data;
2053         struct net *net;
2054 };
2055
2056 static int iter_net_only(struct nf_conn *i, void *data)
2057 {
2058         struct iter_data *d = data;
2059
2060         if (!net_eq(d->net, nf_ct_net(i)))
2061                 return 0;
2062
2063         return d->iter(i, d->data);
2064 }
2065
2066 static void
2067 __nf_ct_unconfirmed_destroy(struct net *net)
2068 {
2069         int cpu;
2070
2071         for_each_possible_cpu(cpu) {
2072                 struct nf_conntrack_tuple_hash *h;
2073                 struct hlist_nulls_node *n;
2074                 struct ct_pcpu *pcpu;
2075
2076                 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2077
2078                 spin_lock_bh(&pcpu->lock);
2079                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2080                         struct nf_conn *ct;
2081
2082                         ct = nf_ct_tuplehash_to_ctrack(h);
2083
2084                         /* we cannot call iter() on unconfirmed list, the
2085                          * owning cpu can reallocate ct->ext at any time.
2086                          */
2087                         set_bit(IPS_DYING_BIT, &ct->status);
2088                 }
2089                 spin_unlock_bh(&pcpu->lock);
2090                 cond_resched();
2091         }
2092 }
2093
2094 void nf_ct_unconfirmed_destroy(struct net *net)
2095 {
2096         might_sleep();
2097
2098         if (atomic_read(&net->ct.count) > 0) {
2099                 __nf_ct_unconfirmed_destroy(net);
2100                 nf_queue_nf_hook_drop(net);
2101                 synchronize_net();
2102         }
2103 }
2104 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2105
2106 void nf_ct_iterate_cleanup_net(struct net *net,
2107                                int (*iter)(struct nf_conn *i, void *data),
2108                                void *data, u32 portid, int report)
2109 {
2110         struct iter_data d;
2111
2112         might_sleep();
2113
2114         if (atomic_read(&net->ct.count) == 0)
2115                 return;
2116
2117         d.iter = iter;
2118         d.data = data;
2119         d.net = net;
2120
2121         nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2122 }
2123 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2124
2125 /**
2126  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2127  * @iter: callback to invoke for each conntrack
2128  * @data: data to pass to @iter
2129  *
2130  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2131  * unconfirmed list as dying (so they will not be inserted into
2132  * main table).
2133  *
2134  * Can only be called in module exit path.
2135  */
2136 void
2137 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2138 {
2139         struct net *net;
2140
2141         down_read(&net_rwsem);
2142         for_each_net(net) {
2143                 if (atomic_read(&net->ct.count) == 0)
2144                         continue;
2145                 __nf_ct_unconfirmed_destroy(net);
2146                 nf_queue_nf_hook_drop(net);
2147         }
2148         up_read(&net_rwsem);
2149
2150         /* Need to wait for netns cleanup worker to finish, if its
2151          * running -- it might have deleted a net namespace from
2152          * the global list, so our __nf_ct_unconfirmed_destroy() might
2153          * not have affected all namespaces.
2154          */
2155         net_ns_barrier();
2156
2157         /* a conntrack could have been unlinked from unconfirmed list
2158          * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2159          * This makes sure its inserted into conntrack table.
2160          */
2161         synchronize_net();
2162
2163         nf_ct_iterate_cleanup(iter, data, 0, 0);
2164 }
2165 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2166
2167 static int kill_all(struct nf_conn *i, void *data)
2168 {
2169         return net_eq(nf_ct_net(i), data);
2170 }
2171
2172 void nf_conntrack_cleanup_start(void)
2173 {
2174         conntrack_gc_work.exiting = true;
2175         RCU_INIT_POINTER(ip_ct_attach, NULL);
2176 }
2177
2178 void nf_conntrack_cleanup_end(void)
2179 {
2180         RCU_INIT_POINTER(nf_ct_hook, NULL);
2181         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2182         kvfree(nf_conntrack_hash);
2183
2184         nf_conntrack_proto_fini();
2185         nf_conntrack_seqadj_fini();
2186         nf_conntrack_labels_fini();
2187         nf_conntrack_helper_fini();
2188         nf_conntrack_timeout_fini();
2189         nf_conntrack_ecache_fini();
2190         nf_conntrack_tstamp_fini();
2191         nf_conntrack_acct_fini();
2192         nf_conntrack_expect_fini();
2193
2194         kmem_cache_destroy(nf_conntrack_cachep);
2195 }
2196
2197 /*
2198  * Mishearing the voices in his head, our hero wonders how he's
2199  * supposed to kill the mall.
2200  */
2201 void nf_conntrack_cleanup_net(struct net *net)
2202 {
2203         LIST_HEAD(single);
2204
2205         list_add(&net->exit_list, &single);
2206         nf_conntrack_cleanup_net_list(&single);
2207 }
2208
2209 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2210 {
2211         int busy;
2212         struct net *net;
2213
2214         /*
2215          * This makes sure all current packets have passed through
2216          *  netfilter framework.  Roll on, two-stage module
2217          *  delete...
2218          */
2219         synchronize_net();
2220 i_see_dead_people:
2221         busy = 0;
2222         list_for_each_entry(net, net_exit_list, exit_list) {
2223                 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2224                 if (atomic_read(&net->ct.count) != 0)
2225                         busy = 1;
2226         }
2227         if (busy) {
2228                 schedule();
2229                 goto i_see_dead_people;
2230         }
2231
2232         list_for_each_entry(net, net_exit_list, exit_list) {
2233                 nf_conntrack_proto_pernet_fini(net);
2234                 nf_conntrack_ecache_pernet_fini(net);
2235                 nf_conntrack_expect_pernet_fini(net);
2236                 free_percpu(net->ct.stat);
2237                 free_percpu(net->ct.pcpu_lists);
2238         }
2239 }
2240
2241 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2242 {
2243         struct hlist_nulls_head *hash;
2244         unsigned int nr_slots, i;
2245
2246         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2247                 return NULL;
2248
2249         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2250         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2251
2252         hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2253                               GFP_KERNEL | __GFP_ZERO);
2254
2255         if (hash && nulls)
2256                 for (i = 0; i < nr_slots; i++)
2257                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
2258
2259         return hash;
2260 }
2261 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2262
2263 int nf_conntrack_hash_resize(unsigned int hashsize)
2264 {
2265         int i, bucket;
2266         unsigned int old_size;
2267         struct hlist_nulls_head *hash, *old_hash;
2268         struct nf_conntrack_tuple_hash *h;
2269         struct nf_conn *ct;
2270
2271         if (!hashsize)
2272                 return -EINVAL;
2273
2274         hash = nf_ct_alloc_hashtable(&hashsize, 1);
2275         if (!hash)
2276                 return -ENOMEM;
2277
2278         old_size = nf_conntrack_htable_size;
2279         if (old_size == hashsize) {
2280                 kvfree(hash);
2281                 return 0;
2282         }
2283
2284         local_bh_disable();
2285         nf_conntrack_all_lock();
2286         write_seqcount_begin(&nf_conntrack_generation);
2287
2288         /* Lookups in the old hash might happen in parallel, which means we
2289          * might get false negatives during connection lookup. New connections
2290          * created because of a false negative won't make it into the hash
2291          * though since that required taking the locks.
2292          */
2293
2294         for (i = 0; i < nf_conntrack_htable_size; i++) {
2295                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2296                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2297                                               struct nf_conntrack_tuple_hash, hnnode);
2298                         ct = nf_ct_tuplehash_to_ctrack(h);
2299                         hlist_nulls_del_rcu(&h->hnnode);
2300                         bucket = __hash_conntrack(nf_ct_net(ct),
2301                                                   &h->tuple, hashsize);
2302                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2303                 }
2304         }
2305         old_size = nf_conntrack_htable_size;
2306         old_hash = nf_conntrack_hash;
2307
2308         nf_conntrack_hash = hash;
2309         nf_conntrack_htable_size = hashsize;
2310
2311         write_seqcount_end(&nf_conntrack_generation);
2312         nf_conntrack_all_unlock();
2313         local_bh_enable();
2314
2315         synchronize_net();
2316         kvfree(old_hash);
2317         return 0;
2318 }
2319
2320 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2321 {
2322         unsigned int hashsize;
2323         int rc;
2324
2325         if (current->nsproxy->net_ns != &init_net)
2326                 return -EOPNOTSUPP;
2327
2328         /* On boot, we can set this without any fancy locking. */
2329         if (!nf_conntrack_hash)
2330                 return param_set_uint(val, kp);
2331
2332         rc = kstrtouint(val, 0, &hashsize);
2333         if (rc)
2334                 return rc;
2335
2336         return nf_conntrack_hash_resize(hashsize);
2337 }
2338 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2339
2340 static __always_inline unsigned int total_extension_size(void)
2341 {
2342         /* remember to add new extensions below */
2343         BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2344
2345         return sizeof(struct nf_ct_ext) +
2346                sizeof(struct nf_conn_help)
2347 #if IS_ENABLED(CONFIG_NF_NAT)
2348                 + sizeof(struct nf_conn_nat)
2349 #endif
2350                 + sizeof(struct nf_conn_seqadj)
2351                 + sizeof(struct nf_conn_acct)
2352 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2353                 + sizeof(struct nf_conntrack_ecache)
2354 #endif
2355 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2356                 + sizeof(struct nf_conn_tstamp)
2357 #endif
2358 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2359                 + sizeof(struct nf_conn_timeout)
2360 #endif
2361 #ifdef CONFIG_NF_CONNTRACK_LABELS
2362                 + sizeof(struct nf_conn_labels)
2363 #endif
2364 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2365                 + sizeof(struct nf_conn_synproxy)
2366 #endif
2367         ;
2368 };
2369
2370 int nf_conntrack_init_start(void)
2371 {
2372         unsigned long nr_pages = totalram_pages();
2373         int max_factor = 8;
2374         int ret = -ENOMEM;
2375         int i;
2376
2377         /* struct nf_ct_ext uses u8 to store offsets/size */
2378         BUILD_BUG_ON(total_extension_size() > 255u);
2379
2380         seqcount_init(&nf_conntrack_generation);
2381
2382         for (i = 0; i < CONNTRACK_LOCKS; i++)
2383                 spin_lock_init(&nf_conntrack_locks[i]);
2384
2385         if (!nf_conntrack_htable_size) {
2386                 /* Idea from tcp.c: use 1/16384 of memory.
2387                  * On i386: 32MB machine has 512 buckets.
2388                  * >= 1GB machines have 16384 buckets.
2389                  * >= 4GB machines have 65536 buckets.
2390                  */
2391                 nf_conntrack_htable_size
2392                         = (((nr_pages << PAGE_SHIFT) / 16384)
2393                            / sizeof(struct hlist_head));
2394                 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2395                         nf_conntrack_htable_size = 65536;
2396                 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2397                         nf_conntrack_htable_size = 16384;
2398                 if (nf_conntrack_htable_size < 32)
2399                         nf_conntrack_htable_size = 32;
2400
2401                 /* Use a max. factor of four by default to get the same max as
2402                  * with the old struct list_heads. When a table size is given
2403                  * we use the old value of 8 to avoid reducing the max.
2404                  * entries. */
2405                 max_factor = 4;
2406         }
2407
2408         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2409         if (!nf_conntrack_hash)
2410                 return -ENOMEM;
2411
2412         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2413
2414         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2415                                                 sizeof(struct nf_conn),
2416                                                 NFCT_INFOMASK + 1,
2417                                                 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2418         if (!nf_conntrack_cachep)
2419                 goto err_cachep;
2420
2421         ret = nf_conntrack_expect_init();
2422         if (ret < 0)
2423                 goto err_expect;
2424
2425         ret = nf_conntrack_acct_init();
2426         if (ret < 0)
2427                 goto err_acct;
2428
2429         ret = nf_conntrack_tstamp_init();
2430         if (ret < 0)
2431                 goto err_tstamp;
2432
2433         ret = nf_conntrack_ecache_init();
2434         if (ret < 0)
2435                 goto err_ecache;
2436
2437         ret = nf_conntrack_timeout_init();
2438         if (ret < 0)
2439                 goto err_timeout;
2440
2441         ret = nf_conntrack_helper_init();
2442         if (ret < 0)
2443                 goto err_helper;
2444
2445         ret = nf_conntrack_labels_init();
2446         if (ret < 0)
2447                 goto err_labels;
2448
2449         ret = nf_conntrack_seqadj_init();
2450         if (ret < 0)
2451                 goto err_seqadj;
2452
2453         ret = nf_conntrack_proto_init();
2454         if (ret < 0)
2455                 goto err_proto;
2456
2457         conntrack_gc_work_init(&conntrack_gc_work);
2458         queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2459
2460         return 0;
2461
2462 err_proto:
2463         nf_conntrack_seqadj_fini();
2464 err_seqadj:
2465         nf_conntrack_labels_fini();
2466 err_labels:
2467         nf_conntrack_helper_fini();
2468 err_helper:
2469         nf_conntrack_timeout_fini();
2470 err_timeout:
2471         nf_conntrack_ecache_fini();
2472 err_ecache:
2473         nf_conntrack_tstamp_fini();
2474 err_tstamp:
2475         nf_conntrack_acct_fini();
2476 err_acct:
2477         nf_conntrack_expect_fini();
2478 err_expect:
2479         kmem_cache_destroy(nf_conntrack_cachep);
2480 err_cachep:
2481         kvfree(nf_conntrack_hash);
2482         return ret;
2483 }
2484
2485 static struct nf_ct_hook nf_conntrack_hook = {
2486         .update         = nf_conntrack_update,
2487         .destroy        = destroy_conntrack,
2488         .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2489 };
2490
2491 void nf_conntrack_init_end(void)
2492 {
2493         /* For use by REJECT target */
2494         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2495         RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2496 }
2497
2498 /*
2499  * We need to use special "null" values, not used in hash table
2500  */
2501 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2502 #define DYING_NULLS_VAL         ((1<<30)+1)
2503 #define TEMPLATE_NULLS_VAL      ((1<<30)+2)
2504
2505 int nf_conntrack_init_net(struct net *net)
2506 {
2507         int ret = -ENOMEM;
2508         int cpu;
2509
2510         BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2511         BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2512         atomic_set(&net->ct.count, 0);
2513
2514         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2515         if (!net->ct.pcpu_lists)
2516                 goto err_stat;
2517
2518         for_each_possible_cpu(cpu) {
2519                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2520
2521                 spin_lock_init(&pcpu->lock);
2522                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2523                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2524         }
2525
2526         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2527         if (!net->ct.stat)
2528                 goto err_pcpu_lists;
2529
2530         ret = nf_conntrack_expect_pernet_init(net);
2531         if (ret < 0)
2532                 goto err_expect;
2533
2534         nf_conntrack_acct_pernet_init(net);
2535         nf_conntrack_tstamp_pernet_init(net);
2536         nf_conntrack_ecache_pernet_init(net);
2537         nf_conntrack_helper_pernet_init(net);
2538         nf_conntrack_proto_pernet_init(net);
2539
2540         return 0;
2541
2542 err_expect:
2543         free_percpu(net->ct.stat);
2544 err_pcpu_lists:
2545         free_percpu(net->ct.pcpu_lists);
2546 err_stat:
2547         return ret;
2548 }