Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6-block.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183
1184         /* Some auto-enslaved devices e.g. failover slaves are
1185          * special, as userspace might rename the device after
1186          * the interface had been brought up and running since
1187          * the point kernel initiated auto-enslavement. Allow
1188          * live name change even when these slave devices are
1189          * up and running.
1190          *
1191          * Typically, users of these auto-enslaving devices
1192          * don't actually care about slave name change, as
1193          * they are supposed to operate on master interface
1194          * directly.
1195          */
1196         if (dev->flags & IFF_UP &&
1197             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198                 return -EBUSY;
1199
1200         write_seqcount_begin(&devnet_rename_seq);
1201
1202         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return 0;
1205         }
1206
1207         memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209         err = dev_get_valid_name(net, dev, newname);
1210         if (err < 0) {
1211                 write_seqcount_end(&devnet_rename_seq);
1212                 return err;
1213         }
1214
1215         if (oldname[0] && !strchr(oldname, '%'))
1216                 netdev_info(dev, "renamed from %s\n", oldname);
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 write_seqcount_end(&devnet_rename_seq);
1227                 return ret;
1228         }
1229
1230         write_seqcount_end(&devnet_rename_seq);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_del_rcu(&dev->name_hlist);
1236         write_unlock_bh(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock_bh(&dev_base_lock);
1241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242         write_unlock_bh(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         write_seqcount_begin(&devnet_rename_seq);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         pr_err("%s: name change rollback failed: %d\n",
1259                                dev->name, ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         rcu_swap_protected(dev->ifalias, new_alias,
1292                            mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371         rtnl_lock();
1372         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380         const struct net_device_ops *ops = dev->netdev_ops;
1381         int ret;
1382
1383         ASSERT_RTNL();
1384
1385         if (!netif_device_present(dev))
1386                 return -ENODEV;
1387
1388         /* Block netpoll from trying to do any rx path servicing.
1389          * If we don't do this there is a chance ndo_poll_controller
1390          * or ndo_poll may be running while we open the device
1391          */
1392         netpoll_poll_disable(dev);
1393
1394         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395         ret = notifier_to_errno(ret);
1396         if (ret)
1397                 return ret;
1398
1399         set_bit(__LINK_STATE_START, &dev->state);
1400
1401         if (ops->ndo_validate_addr)
1402                 ret = ops->ndo_validate_addr(dev);
1403
1404         if (!ret && ops->ndo_open)
1405                 ret = ops->ndo_open(dev);
1406
1407         netpoll_poll_enable(dev);
1408
1409         if (ret)
1410                 clear_bit(__LINK_STATE_START, &dev->state);
1411         else {
1412                 dev->flags |= IFF_UP;
1413                 dev_set_rx_mode(dev);
1414                 dev_activate(dev);
1415                 add_device_randomness(dev->dev_addr, dev->addr_len);
1416         }
1417
1418         return ret;
1419 }
1420
1421 /**
1422  *      dev_open        - prepare an interface for use.
1423  *      @dev: device to open
1424  *      @extack: netlink extended ack
1425  *
1426  *      Takes a device from down to up state. The device's private open
1427  *      function is invoked and then the multicast lists are loaded. Finally
1428  *      the device is moved into the up state and a %NETDEV_UP message is
1429  *      sent to the netdev notifier chain.
1430  *
1431  *      Calling this function on an active interface is a nop. On a failure
1432  *      a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436         int ret;
1437
1438         if (dev->flags & IFF_UP)
1439                 return 0;
1440
1441         ret = __dev_open(dev, extack);
1442         if (ret < 0)
1443                 return ret;
1444
1445         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446         call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448         return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454         struct net_device *dev;
1455
1456         ASSERT_RTNL();
1457         might_sleep();
1458
1459         list_for_each_entry(dev, head, close_list) {
1460                 /* Temporarily disable netpoll until the interface is down */
1461                 netpoll_poll_disable(dev);
1462
1463                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465                 clear_bit(__LINK_STATE_START, &dev->state);
1466
1467                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468                  * can be even on different cpu. So just clear netif_running().
1469                  *
1470                  * dev->stop() will invoke napi_disable() on all of it's
1471                  * napi_struct instances on this device.
1472                  */
1473                 smp_mb__after_atomic(); /* Commit netif_running(). */
1474         }
1475
1476         dev_deactivate_many(head);
1477
1478         list_for_each_entry(dev, head, close_list) {
1479                 const struct net_device_ops *ops = dev->netdev_ops;
1480
1481                 /*
1482                  *      Call the device specific close. This cannot fail.
1483                  *      Only if device is UP
1484                  *
1485                  *      We allow it to be called even after a DETACH hot-plug
1486                  *      event.
1487                  */
1488                 if (ops->ndo_stop)
1489                         ops->ndo_stop(dev);
1490
1491                 dev->flags &= ~IFF_UP;
1492                 netpoll_poll_enable(dev);
1493         }
1494 }
1495
1496 static void __dev_close(struct net_device *dev)
1497 {
1498         LIST_HEAD(single);
1499
1500         list_add(&dev->close_list, &single);
1501         __dev_close_many(&single);
1502         list_del(&single);
1503 }
1504
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507         struct net_device *dev, *tmp;
1508
1509         /* Remove the devices that don't need to be closed */
1510         list_for_each_entry_safe(dev, tmp, head, close_list)
1511                 if (!(dev->flags & IFF_UP))
1512                         list_del_init(&dev->close_list);
1513
1514         __dev_close_many(head);
1515
1516         list_for_each_entry_safe(dev, tmp, head, close_list) {
1517                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519                 if (unlink)
1520                         list_del_init(&dev->close_list);
1521         }
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524
1525 /**
1526  *      dev_close - shutdown an interface.
1527  *      @dev: device to shutdown
1528  *
1529  *      This function moves an active device into down state. A
1530  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *      chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536         if (dev->flags & IFF_UP) {
1537                 LIST_HEAD(single);
1538
1539                 list_add(&dev->close_list, &single);
1540                 dev_close_many(&single, true);
1541                 list_del(&single);
1542         }
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545
1546
1547 /**
1548  *      dev_disable_lro - disable Large Receive Offload on a device
1549  *      @dev: device
1550  *
1551  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *      called under RTNL.  This is needed if received packets may be
1553  *      forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557         struct net_device *lower_dev;
1558         struct list_head *iter;
1559
1560         dev->wanted_features &= ~NETIF_F_LRO;
1561         netdev_update_features(dev);
1562
1563         if (unlikely(dev->features & NETIF_F_LRO))
1564                 netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566         netdev_for_each_lower_dev(dev, lower_dev, iter)
1567                 dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570
1571 /**
1572  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *      @dev: device
1574  *
1575  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *      called under RTNL.  This is needed if Generic XDP is installed on
1577  *      the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581         dev->wanted_features &= ~NETIF_F_GRO_HW;
1582         netdev_update_features(dev);
1583
1584         if (unlikely(dev->features & NETIF_F_GRO_HW))
1585                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val)                                          \
1591         case NETDEV_##val:                              \
1592                 return "NETDEV_" __stringify(val);
1593         switch (cmd) {
1594         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603         N(PRE_CHANGEADDR)
1604         }
1605 #undef N
1606         return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611                                    struct net_device *dev)
1612 {
1613         struct netdev_notifier_info info = {
1614                 .dev = dev,
1615         };
1616
1617         return nb->notifier_call(nb, val, &info);
1618 }
1619
1620 static int dev_boot_phase = 1;
1621
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638         struct net_device *dev;
1639         struct net_device *last;
1640         struct net *net;
1641         int err;
1642
1643         /* Close race with setup_net() and cleanup_net() */
1644         down_write(&pernet_ops_rwsem);
1645         rtnl_lock();
1646         err = raw_notifier_chain_register(&netdev_chain, nb);
1647         if (err)
1648                 goto unlock;
1649         if (dev_boot_phase)
1650                 goto unlock;
1651         for_each_net(net) {
1652                 for_each_netdev(net, dev) {
1653                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654                         err = notifier_to_errno(err);
1655                         if (err)
1656                                 goto rollback;
1657
1658                         if (!(dev->flags & IFF_UP))
1659                                 continue;
1660
1661                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662                 }
1663         }
1664
1665 unlock:
1666         rtnl_unlock();
1667         up_write(&pernet_ops_rwsem);
1668         return err;
1669
1670 rollback:
1671         last = dev;
1672         for_each_net(net) {
1673                 for_each_netdev(net, dev) {
1674                         if (dev == last)
1675                                 goto outroll;
1676
1677                         if (dev->flags & IFF_UP) {
1678                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679                                                         dev);
1680                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681                         }
1682                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683                 }
1684         }
1685
1686 outroll:
1687         raw_notifier_chain_unregister(&netdev_chain, nb);
1688         goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708         struct net_device *dev;
1709         struct net *net;
1710         int err;
1711
1712         /* Close race with setup_net() and cleanup_net() */
1713         down_write(&pernet_ops_rwsem);
1714         rtnl_lock();
1715         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716         if (err)
1717                 goto unlock;
1718
1719         for_each_net(net) {
1720                 for_each_netdev(net, dev) {
1721                         if (dev->flags & IFF_UP) {
1722                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                                         dev);
1724                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725                         }
1726                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727                 }
1728         }
1729 unlock:
1730         rtnl_unlock();
1731         up_write(&pernet_ops_rwsem);
1732         return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736 /**
1737  *      call_netdevice_notifiers_info - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @info: notifier information data
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746                                          struct netdev_notifier_info *info)
1747 {
1748         ASSERT_RTNL();
1749         return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753                                            struct net_device *dev,
1754                                            struct netlink_ext_ack *extack)
1755 {
1756         struct netdev_notifier_info info = {
1757                 .dev = dev,
1758                 .extack = extack,
1759         };
1760
1761         return call_netdevice_notifiers_info(val, &info);
1762 }
1763
1764 /**
1765  *      call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *      Call all network notifier blocks.  Parameters and return value
1770  *      are as for raw_notifier_call_chain().
1771  */
1772
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775         return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779 /**
1780  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *      @val: value passed unmodified to notifier function
1782  *      @dev: net_device pointer passed unmodified to notifier function
1783  *      @arg: additional u32 argument passed to the notifier function
1784  *
1785  *      Call all network notifier blocks.  Parameters and return value
1786  *      are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789                                         struct net_device *dev, u32 arg)
1790 {
1791         struct netdev_notifier_info_ext info = {
1792                 .info.dev = dev,
1793                 .ext.mtu = arg,
1794         };
1795
1796         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798         return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804 void net_inc_ingress_queue(void)
1805 {
1806         static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810 void net_dec_ingress_queue(void)
1811 {
1812         static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820 void net_inc_egress_queue(void)
1821 {
1822         static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826 void net_dec_egress_queue(void)
1827 {
1828         static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840         int wanted;
1841
1842         wanted = atomic_add_return(deferred, &netstamp_wanted);
1843         if (wanted > 0)
1844                 static_branch_enable(&netstamp_needed_key);
1845         else
1846                 static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854         int wanted;
1855
1856         while (1) {
1857                 wanted = atomic_read(&netstamp_wanted);
1858                 if (wanted <= 0)
1859                         break;
1860                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861                         return;
1862         }
1863         atomic_inc(&netstamp_needed_deferred);
1864         schedule_work(&netstamp_work);
1865 #else
1866         static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874         int wanted;
1875
1876         while (1) {
1877                 wanted = atomic_read(&netstamp_wanted);
1878                 if (wanted <= 1)
1879                         break;
1880                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881                         return;
1882         }
1883         atomic_dec(&netstamp_needed_deferred);
1884         schedule_work(&netstamp_work);
1885 #else
1886         static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893         skb->tstamp = 0;
1894         if (static_branch_unlikely(&netstamp_needed_key))
1895                 __net_timestamp(skb);
1896 }
1897
1898 #define net_timestamp_check(COND, SKB)                          \
1899         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1900                 if ((COND) && !(SKB)->tstamp)                   \
1901                         __net_timestamp(SKB);                   \
1902         }                                                       \
1903
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906         unsigned int len;
1907
1908         if (!(dev->flags & IFF_UP))
1909                 return false;
1910
1911         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912         if (skb->len <= len)
1913                 return true;
1914
1915         /* if TSO is enabled, we don't care about the length as the packet
1916          * could be forwarded without being segmented before
1917          */
1918         if (skb_is_gso(skb))
1919                 return true;
1920
1921         return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927         int ret = ____dev_forward_skb(dev, skb);
1928
1929         if (likely(!ret)) {
1930                 skb->protocol = eth_type_trans(skb, dev);
1931                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932         }
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *      NET_RX_SUCCESS  (no congestion)
1946  *      NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962 static inline int deliver_skb(struct sk_buff *skb,
1963                               struct packet_type *pt_prev,
1964                               struct net_device *orig_dev)
1965 {
1966         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967                 return -ENOMEM;
1968         refcount_inc(&skb->users);
1969         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973                                           struct packet_type **pt,
1974                                           struct net_device *orig_dev,
1975                                           __be16 type,
1976                                           struct list_head *ptype_list)
1977 {
1978         struct packet_type *ptype, *pt_prev = *pt;
1979
1980         list_for_each_entry_rcu(ptype, ptype_list, list) {
1981                 if (ptype->type != type)
1982                         continue;
1983                 if (pt_prev)
1984                         deliver_skb(skb, pt_prev, orig_dev);
1985                 pt_prev = ptype;
1986         }
1987         *pt = pt_prev;
1988 }
1989
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992         if (!ptype->af_packet_priv || !skb->sk)
1993                 return false;
1994
1995         if (ptype->id_match)
1996                 return ptype->id_match(ptype, skb->sk);
1997         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998                 return true;
1999
2000         return false;
2001 }
2002
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014 /*
2015  *      Support routine. Sends outgoing frames to any network
2016  *      taps currently in use.
2017  */
2018
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021         struct packet_type *ptype;
2022         struct sk_buff *skb2 = NULL;
2023         struct packet_type *pt_prev = NULL;
2024         struct list_head *ptype_list = &ptype_all;
2025
2026         rcu_read_lock();
2027 again:
2028         list_for_each_entry_rcu(ptype, ptype_list, list) {
2029                 if (ptype->ignore_outgoing)
2030                         continue;
2031
2032                 /* Never send packets back to the socket
2033                  * they originated from - MvS (miquels@drinkel.ow.org)
2034                  */
2035                 if (skb_loop_sk(ptype, skb))
2036                         continue;
2037
2038                 if (pt_prev) {
2039                         deliver_skb(skb2, pt_prev, skb->dev);
2040                         pt_prev = ptype;
2041                         continue;
2042                 }
2043
2044                 /* need to clone skb, done only once */
2045                 skb2 = skb_clone(skb, GFP_ATOMIC);
2046                 if (!skb2)
2047                         goto out_unlock;
2048
2049                 net_timestamp_set(skb2);
2050
2051                 /* skb->nh should be correctly
2052                  * set by sender, so that the second statement is
2053                  * just protection against buggy protocols.
2054                  */
2055                 skb_reset_mac_header(skb2);
2056
2057                 if (skb_network_header(skb2) < skb2->data ||
2058                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060                                              ntohs(skb2->protocol),
2061                                              dev->name);
2062                         skb_reset_network_header(skb2);
2063                 }
2064
2065                 skb2->transport_header = skb2->network_header;
2066                 skb2->pkt_type = PACKET_OUTGOING;
2067                 pt_prev = ptype;
2068         }
2069
2070         if (ptype_list == &ptype_all) {
2071                 ptype_list = &dev->ptype_all;
2072                 goto again;
2073         }
2074 out_unlock:
2075         if (pt_prev) {
2076                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078                 else
2079                         kfree_skb(skb2);
2080         }
2081         rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100         int i;
2101         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103         /* If TC0 is invalidated disable TC mapping */
2104         if (tc->offset + tc->count > txq) {
2105                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106                 dev->num_tc = 0;
2107                 return;
2108         }
2109
2110         /* Invalidated prio to tc mappings set to TC0 */
2111         for (i = 1; i < TC_BITMASK + 1; i++) {
2112                 int q = netdev_get_prio_tc_map(dev, i);
2113
2114                 tc = &dev->tc_to_txq[q];
2115                 if (tc->offset + tc->count > txq) {
2116                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117                                 i, q);
2118                         netdev_set_prio_tc_map(dev, i, 0);
2119                 }
2120         }
2121 }
2122
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125         if (dev->num_tc) {
2126                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127                 int i;
2128
2129                 /* walk through the TCs and see if it falls into any of them */
2130                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131                         if ((txq - tc->offset) < tc->count)
2132                                 return i;
2133                 }
2134
2135                 /* didn't find it, just return -1 to indicate no match */
2136                 return -1;
2137         }
2138
2139         return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)             \
2150         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153                              int tci, u16 index)
2154 {
2155         struct xps_map *map = NULL;
2156         int pos;
2157
2158         if (dev_maps)
2159                 map = xmap_dereference(dev_maps->attr_map[tci]);
2160         if (!map)
2161                 return false;
2162
2163         for (pos = map->len; pos--;) {
2164                 if (map->queues[pos] != index)
2165                         continue;
2166
2167                 if (map->len > 1) {
2168                         map->queues[pos] = map->queues[--map->len];
2169                         break;
2170                 }
2171
2172                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173                 kfree_rcu(map, rcu);
2174                 return false;
2175         }
2176
2177         return true;
2178 }
2179
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181                                  struct xps_dev_maps *dev_maps,
2182                                  int cpu, u16 offset, u16 count)
2183 {
2184         int num_tc = dev->num_tc ? : 1;
2185         bool active = false;
2186         int tci;
2187
2188         for (tci = cpu * num_tc; num_tc--; tci++) {
2189                 int i, j;
2190
2191                 for (i = count, j = offset; i--; j++) {
2192                         if (!remove_xps_queue(dev_maps, tci, j))
2193                                 break;
2194                 }
2195
2196                 active |= i < 0;
2197         }
2198
2199         return active;
2200 }
2201
2202 static void reset_xps_maps(struct net_device *dev,
2203                            struct xps_dev_maps *dev_maps,
2204                            bool is_rxqs_map)
2205 {
2206         if (is_rxqs_map) {
2207                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209         } else {
2210                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211         }
2212         static_key_slow_dec_cpuslocked(&xps_needed);
2213         kfree_rcu(dev_maps, rcu);
2214 }
2215
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218                            u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220         bool active = false;
2221         int i, j;
2222
2223         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224              j < nr_ids;)
2225                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226                                                count);
2227         if (!active)
2228                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230         if (!is_rxqs_map) {
2231                 for (i = offset + (count - 1); count--; i--) {
2232                         netdev_queue_numa_node_write(
2233                                 netdev_get_tx_queue(dev, i),
2234                                 NUMA_NO_NODE);
2235                 }
2236         }
2237 }
2238
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240                                    u16 count)
2241 {
2242         const unsigned long *possible_mask = NULL;
2243         struct xps_dev_maps *dev_maps;
2244         unsigned int nr_ids;
2245
2246         if (!static_key_false(&xps_needed))
2247                 return;
2248
2249         cpus_read_lock();
2250         mutex_lock(&xps_map_mutex);
2251
2252         if (static_key_false(&xps_rxqs_needed)) {
2253                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254                 if (dev_maps) {
2255                         nr_ids = dev->num_rx_queues;
2256                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257                                        offset, count, true);
2258                 }
2259         }
2260
2261         dev_maps = xmap_dereference(dev->xps_cpus_map);
2262         if (!dev_maps)
2263                 goto out_no_maps;
2264
2265         if (num_possible_cpus() > 1)
2266                 possible_mask = cpumask_bits(cpu_possible_mask);
2267         nr_ids = nr_cpu_ids;
2268         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269                        false);
2270
2271 out_no_maps:
2272         mutex_unlock(&xps_map_mutex);
2273         cpus_read_unlock();
2274 }
2275
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282                                       u16 index, bool is_rxqs_map)
2283 {
2284         struct xps_map *new_map;
2285         int alloc_len = XPS_MIN_MAP_ALLOC;
2286         int i, pos;
2287
2288         for (pos = 0; map && pos < map->len; pos++) {
2289                 if (map->queues[pos] != index)
2290                         continue;
2291                 return map;
2292         }
2293
2294         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295         if (map) {
2296                 if (pos < map->alloc_len)
2297                         return map;
2298
2299                 alloc_len = map->alloc_len * 2;
2300         }
2301
2302         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303          *  map
2304          */
2305         if (is_rxqs_map)
2306                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307         else
2308                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309                                        cpu_to_node(attr_index));
2310         if (!new_map)
2311                 return NULL;
2312
2313         for (i = 0; i < pos; i++)
2314                 new_map->queues[i] = map->queues[i];
2315         new_map->alloc_len = alloc_len;
2316         new_map->len = pos;
2317
2318         return new_map;
2319 }
2320
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323                           u16 index, bool is_rxqs_map)
2324 {
2325         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327         int i, j, tci, numa_node_id = -2;
2328         int maps_sz, num_tc = 1, tc = 0;
2329         struct xps_map *map, *new_map;
2330         bool active = false;
2331         unsigned int nr_ids;
2332
2333         if (dev->num_tc) {
2334                 /* Do not allow XPS on subordinate device directly */
2335                 num_tc = dev->num_tc;
2336                 if (num_tc < 0)
2337                         return -EINVAL;
2338
2339                 /* If queue belongs to subordinate dev use its map */
2340                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342                 tc = netdev_txq_to_tc(dev, index);
2343                 if (tc < 0)
2344                         return -EINVAL;
2345         }
2346
2347         mutex_lock(&xps_map_mutex);
2348         if (is_rxqs_map) {
2349                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351                 nr_ids = dev->num_rx_queues;
2352         } else {
2353                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354                 if (num_possible_cpus() > 1) {
2355                         online_mask = cpumask_bits(cpu_online_mask);
2356                         possible_mask = cpumask_bits(cpu_possible_mask);
2357                 }
2358                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359                 nr_ids = nr_cpu_ids;
2360         }
2361
2362         if (maps_sz < L1_CACHE_BYTES)
2363                 maps_sz = L1_CACHE_BYTES;
2364
2365         /* allocate memory for queue storage */
2366         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367              j < nr_ids;) {
2368                 if (!new_dev_maps)
2369                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370                 if (!new_dev_maps) {
2371                         mutex_unlock(&xps_map_mutex);
2372                         return -ENOMEM;
2373                 }
2374
2375                 tci = j * num_tc + tc;
2376                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377                                  NULL;
2378
2379                 map = expand_xps_map(map, j, index, is_rxqs_map);
2380                 if (!map)
2381                         goto error;
2382
2383                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384         }
2385
2386         if (!new_dev_maps)
2387                 goto out_no_new_maps;
2388
2389         if (!dev_maps) {
2390                 /* Increment static keys at most once per type */
2391                 static_key_slow_inc_cpuslocked(&xps_needed);
2392                 if (is_rxqs_map)
2393                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394         }
2395
2396         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397              j < nr_ids;) {
2398                 /* copy maps belonging to foreign traffic classes */
2399                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400                         /* fill in the new device map from the old device map */
2401                         map = xmap_dereference(dev_maps->attr_map[tci]);
2402                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403                 }
2404
2405                 /* We need to explicitly update tci as prevous loop
2406                  * could break out early if dev_maps is NULL.
2407                  */
2408                 tci = j * num_tc + tc;
2409
2410                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411                     netif_attr_test_online(j, online_mask, nr_ids)) {
2412                         /* add tx-queue to CPU/rx-queue maps */
2413                         int pos = 0;
2414
2415                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416                         while ((pos < map->len) && (map->queues[pos] != index))
2417                                 pos++;
2418
2419                         if (pos == map->len)
2420                                 map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422                         if (!is_rxqs_map) {
2423                                 if (numa_node_id == -2)
2424                                         numa_node_id = cpu_to_node(j);
2425                                 else if (numa_node_id != cpu_to_node(j))
2426                                         numa_node_id = -1;
2427                         }
2428 #endif
2429                 } else if (dev_maps) {
2430                         /* fill in the new device map from the old device map */
2431                         map = xmap_dereference(dev_maps->attr_map[tci]);
2432                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433                 }
2434
2435                 /* copy maps belonging to foreign traffic classes */
2436                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437                         /* fill in the new device map from the old device map */
2438                         map = xmap_dereference(dev_maps->attr_map[tci]);
2439                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440                 }
2441         }
2442
2443         if (is_rxqs_map)
2444                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445         else
2446                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448         /* Cleanup old maps */
2449         if (!dev_maps)
2450                 goto out_no_old_maps;
2451
2452         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453              j < nr_ids;) {
2454                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456                         map = xmap_dereference(dev_maps->attr_map[tci]);
2457                         if (map && map != new_map)
2458                                 kfree_rcu(map, rcu);
2459                 }
2460         }
2461
2462         kfree_rcu(dev_maps, rcu);
2463
2464 out_no_old_maps:
2465         dev_maps = new_dev_maps;
2466         active = true;
2467
2468 out_no_new_maps:
2469         if (!is_rxqs_map) {
2470                 /* update Tx queue numa node */
2471                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472                                              (numa_node_id >= 0) ?
2473                                              numa_node_id : NUMA_NO_NODE);
2474         }
2475
2476         if (!dev_maps)
2477                 goto out_no_maps;
2478
2479         /* removes tx-queue from unused CPUs/rx-queues */
2480         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481              j < nr_ids;) {
2482                 for (i = tc, tci = j * num_tc; i--; tci++)
2483                         active |= remove_xps_queue(dev_maps, tci, index);
2484                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485                     !netif_attr_test_online(j, online_mask, nr_ids))
2486                         active |= remove_xps_queue(dev_maps, tci, index);
2487                 for (i = num_tc - tc, tci++; --i; tci++)
2488                         active |= remove_xps_queue(dev_maps, tci, index);
2489         }
2490
2491         /* free map if not active */
2492         if (!active)
2493                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495 out_no_maps:
2496         mutex_unlock(&xps_map_mutex);
2497
2498         return 0;
2499 error:
2500         /* remove any maps that we added */
2501         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502              j < nr_ids;) {
2503                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505                         map = dev_maps ?
2506                               xmap_dereference(dev_maps->attr_map[tci]) :
2507                               NULL;
2508                         if (new_map && new_map != map)
2509                                 kfree(new_map);
2510                 }
2511         }
2512
2513         mutex_unlock(&xps_map_mutex);
2514
2515         kfree(new_dev_maps);
2516         return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521                         u16 index)
2522 {
2523         int ret;
2524
2525         cpus_read_lock();
2526         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527         cpus_read_unlock();
2528
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538         /* Unbind any subordinate channels */
2539         while (txq-- != &dev->_tx[0]) {
2540                 if (txq->sb_dev)
2541                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2542         }
2543 }
2544
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548         netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550         netdev_unbind_all_sb_channels(dev);
2551
2552         /* Reset TC configuration of device */
2553         dev->num_tc = 0;
2554         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561         if (tc >= dev->num_tc)
2562                 return -EINVAL;
2563
2564 #ifdef CONFIG_XPS
2565         netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567         dev->tc_to_txq[tc].count = count;
2568         dev->tc_to_txq[tc].offset = offset;
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575         if (num_tc > TC_MAX_QUEUE)
2576                 return -EINVAL;
2577
2578 #ifdef CONFIG_XPS
2579         netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581         netdev_unbind_all_sb_channels(dev);
2582
2583         dev->num_tc = num_tc;
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589                               struct net_device *sb_dev)
2590 {
2591         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593 #ifdef CONFIG_XPS
2594         netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599         while (txq-- != &dev->_tx[0]) {
2600                 if (txq->sb_dev == sb_dev)
2601                         txq->sb_dev = NULL;
2602         }
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607                                  struct net_device *sb_dev,
2608                                  u8 tc, u16 count, u16 offset)
2609 {
2610         /* Make certain the sb_dev and dev are already configured */
2611         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612                 return -EINVAL;
2613
2614         /* We cannot hand out queues we don't have */
2615         if ((offset + count) > dev->real_num_tx_queues)
2616                 return -EINVAL;
2617
2618         /* Record the mapping */
2619         sb_dev->tc_to_txq[tc].count = count;
2620         sb_dev->tc_to_txq[tc].offset = offset;
2621
2622         /* Provide a way for Tx queue to find the tc_to_txq map or
2623          * XPS map for itself.
2624          */
2625         while (count--)
2626                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628         return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634         /* Do not use a multiqueue device to represent a subordinate channel */
2635         if (netif_is_multiqueue(dev))
2636                 return -ENODEV;
2637
2638         /* We allow channels 1 - 32767 to be used for subordinate channels.
2639          * Channel 0 is meant to be "native" mode and used only to represent
2640          * the main root device. We allow writing 0 to reset the device back
2641          * to normal mode after being used as a subordinate channel.
2642          */
2643         if (channel > S16_MAX)
2644                 return -EINVAL;
2645
2646         dev->num_tc = -channel;
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658         bool disabling;
2659         int rc;
2660
2661         disabling = txq < dev->real_num_tx_queues;
2662
2663         if (txq < 1 || txq > dev->num_tx_queues)
2664                 return -EINVAL;
2665
2666         if (dev->reg_state == NETREG_REGISTERED ||
2667             dev->reg_state == NETREG_UNREGISTERING) {
2668                 ASSERT_RTNL();
2669
2670                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671                                                   txq);
2672                 if (rc)
2673                         return rc;
2674
2675                 if (dev->num_tc)
2676                         netif_setup_tc(dev, txq);
2677
2678                 dev->real_num_tx_queues = txq;
2679
2680                 if (disabling) {
2681                         synchronize_net();
2682                         qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684                         netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686                 }
2687         } else {
2688                 dev->real_num_tx_queues = txq;
2689         }
2690
2691         return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *      @dev: Network device
2699  *      @rxq: Actual number of RX queues
2700  *
2701  *      This must be called either with the rtnl_lock held or before
2702  *      registration of the net device.  Returns 0 on success, or a
2703  *      negative error code.  If called before registration, it always
2704  *      succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708         int rc;
2709
2710         if (rxq < 1 || rxq > dev->num_rx_queues)
2711                 return -EINVAL;
2712
2713         if (dev->reg_state == NETREG_REGISTERED) {
2714                 ASSERT_RTNL();
2715
2716                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717                                                   rxq);
2718                 if (rc)
2719                         return rc;
2720         }
2721
2722         dev->real_num_rx_queues = rxq;
2723         return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736         return is_kdump_kernel() ?
2737                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743         struct softnet_data *sd;
2744         unsigned long flags;
2745
2746         local_irq_save(flags);
2747         sd = this_cpu_ptr(&softnet_data);
2748         q->next_sched = NULL;
2749         *sd->output_queue_tailp = q;
2750         sd->output_queue_tailp = &q->next_sched;
2751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752         local_irq_restore(flags);
2753 }
2754
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758                 __netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761
2762 struct dev_kfree_skb_cb {
2763         enum skb_free_reason reason;
2764 };
2765
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768         return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773         rcu_read_lock();
2774         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777                 __netif_schedule(q);
2778         }
2779         rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786                 struct Qdisc *q;
2787
2788                 rcu_read_lock();
2789                 q = rcu_dereference(dev_queue->qdisc);
2790                 __netif_schedule(q);
2791                 rcu_read_unlock();
2792         }
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798         unsigned long flags;
2799
2800         if (unlikely(!skb))
2801                 return;
2802
2803         if (likely(refcount_read(&skb->users) == 1)) {
2804                 smp_rmb();
2805                 refcount_set(&skb->users, 0);
2806         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807                 return;
2808         }
2809         get_kfree_skb_cb(skb)->reason = reason;
2810         local_irq_save(flags);
2811         skb->next = __this_cpu_read(softnet_data.completion_queue);
2812         __this_cpu_write(softnet_data.completion_queue, skb);
2813         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814         local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820         if (in_irq() || irqs_disabled())
2821                 __dev_kfree_skb_irq(skb, reason);
2822         else
2823                 dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837             netif_running(dev)) {
2838                 netif_tx_stop_all_queues(dev);
2839         }
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852             netif_running(dev)) {
2853                 netif_tx_wake_all_queues(dev);
2854                 __netdev_watchdog_up(dev);
2855         }
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864                        const struct net_device *sb_dev,
2865                        struct sk_buff *skb)
2866 {
2867         u32 hash;
2868         u16 qoffset = 0;
2869         u16 qcount = dev->real_num_tx_queues;
2870
2871         if (dev->num_tc) {
2872                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874                 qoffset = sb_dev->tc_to_txq[tc].offset;
2875                 qcount = sb_dev->tc_to_txq[tc].count;
2876         }
2877
2878         if (skb_rx_queue_recorded(skb)) {
2879                 hash = skb_get_rx_queue(skb);
2880                 while (unlikely(hash >= qcount))
2881                         hash -= qcount;
2882                 return hash + qoffset;
2883         }
2884
2885         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890         static const netdev_features_t null_features;
2891         struct net_device *dev = skb->dev;
2892         const char *name = "";
2893
2894         if (!net_ratelimit())
2895                 return;
2896
2897         if (dev) {
2898                 if (dev->dev.parent)
2899                         name = dev_driver_string(dev->dev.parent);
2900                 else
2901                         name = netdev_name(dev);
2902         }
2903         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904              "gso_type=%d ip_summed=%d\n",
2905              name, dev ? &dev->features : &null_features,
2906              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908              skb_shinfo(skb)->gso_type, skb->ip_summed);
2909 }
2910
2911 /*
2912  * Invalidate hardware checksum when packet is to be mangled, and
2913  * complete checksum manually on outgoing path.
2914  */
2915 int skb_checksum_help(struct sk_buff *skb)
2916 {
2917         __wsum csum;
2918         int ret = 0, offset;
2919
2920         if (skb->ip_summed == CHECKSUM_COMPLETE)
2921                 goto out_set_summed;
2922
2923         if (unlikely(skb_shinfo(skb)->gso_size)) {
2924                 skb_warn_bad_offload(skb);
2925                 return -EINVAL;
2926         }
2927
2928         /* Before computing a checksum, we should make sure no frag could
2929          * be modified by an external entity : checksum could be wrong.
2930          */
2931         if (skb_has_shared_frag(skb)) {
2932                 ret = __skb_linearize(skb);
2933                 if (ret)
2934                         goto out;
2935         }
2936
2937         offset = skb_checksum_start_offset(skb);
2938         BUG_ON(offset >= skb_headlen(skb));
2939         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940
2941         offset += skb->csum_offset;
2942         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943
2944         if (skb_cloned(skb) &&
2945             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947                 if (ret)
2948                         goto out;
2949         }
2950
2951         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952 out_set_summed:
2953         skb->ip_summed = CHECKSUM_NONE;
2954 out:
2955         return ret;
2956 }
2957 EXPORT_SYMBOL(skb_checksum_help);
2958
2959 int skb_crc32c_csum_help(struct sk_buff *skb)
2960 {
2961         __le32 crc32c_csum;
2962         int ret = 0, offset, start;
2963
2964         if (skb->ip_summed != CHECKSUM_PARTIAL)
2965                 goto out;
2966
2967         if (unlikely(skb_is_gso(skb)))
2968                 goto out;
2969
2970         /* Before computing a checksum, we should make sure no frag could
2971          * be modified by an external entity : checksum could be wrong.
2972          */
2973         if (unlikely(skb_has_shared_frag(skb))) {
2974                 ret = __skb_linearize(skb);
2975                 if (ret)
2976                         goto out;
2977         }
2978         start = skb_checksum_start_offset(skb);
2979         offset = start + offsetof(struct sctphdr, checksum);
2980         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981                 ret = -EINVAL;
2982                 goto out;
2983         }
2984         if (skb_cloned(skb) &&
2985             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987                 if (ret)
2988                         goto out;
2989         }
2990         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991                                                   skb->len - start, ~(__u32)0,
2992                                                   crc32c_csum_stub));
2993         *(__le32 *)(skb->data + offset) = crc32c_csum;
2994         skb->ip_summed = CHECKSUM_NONE;
2995         skb->csum_not_inet = 0;
2996 out:
2997         return ret;
2998 }
2999
3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3001 {
3002         __be16 type = skb->protocol;
3003
3004         /* Tunnel gso handlers can set protocol to ethernet. */
3005         if (type == htons(ETH_P_TEB)) {
3006                 struct ethhdr *eth;
3007
3008                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009                         return 0;
3010
3011                 eth = (struct ethhdr *)skb->data;
3012                 type = eth->h_proto;
3013         }
3014
3015         return __vlan_get_protocol(skb, type, depth);
3016 }
3017
3018 /**
3019  *      skb_mac_gso_segment - mac layer segmentation handler.
3020  *      @skb: buffer to segment
3021  *      @features: features for the output path (see dev->features)
3022  */
3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024                                     netdev_features_t features)
3025 {
3026         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027         struct packet_offload *ptype;
3028         int vlan_depth = skb->mac_len;
3029         __be16 type = skb_network_protocol(skb, &vlan_depth);
3030
3031         if (unlikely(!type))
3032                 return ERR_PTR(-EINVAL);
3033
3034         __skb_pull(skb, vlan_depth);
3035
3036         rcu_read_lock();
3037         list_for_each_entry_rcu(ptype, &offload_base, list) {
3038                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3039                         segs = ptype->callbacks.gso_segment(skb, features);
3040                         break;
3041                 }
3042         }
3043         rcu_read_unlock();
3044
3045         __skb_push(skb, skb->data - skb_mac_header(skb));
3046
3047         return segs;
3048 }
3049 EXPORT_SYMBOL(skb_mac_gso_segment);
3050
3051
3052 /* openvswitch calls this on rx path, so we need a different check.
3053  */
3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055 {
3056         if (tx_path)
3057                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3058                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3059
3060         return skb->ip_summed == CHECKSUM_NONE;
3061 }
3062
3063 /**
3064  *      __skb_gso_segment - Perform segmentation on skb.
3065  *      @skb: buffer to segment
3066  *      @features: features for the output path (see dev->features)
3067  *      @tx_path: whether it is called in TX path
3068  *
3069  *      This function segments the given skb and returns a list of segments.
3070  *
3071  *      It may return NULL if the skb requires no segmentation.  This is
3072  *      only possible when GSO is used for verifying header integrity.
3073  *
3074  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3075  */
3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077                                   netdev_features_t features, bool tx_path)
3078 {
3079         struct sk_buff *segs;
3080
3081         if (unlikely(skb_needs_check(skb, tx_path))) {
3082                 int err;
3083
3084                 /* We're going to init ->check field in TCP or UDP header */
3085                 err = skb_cow_head(skb, 0);
3086                 if (err < 0)
3087                         return ERR_PTR(err);
3088         }
3089
3090         /* Only report GSO partial support if it will enable us to
3091          * support segmentation on this frame without needing additional
3092          * work.
3093          */
3094         if (features & NETIF_F_GSO_PARTIAL) {
3095                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096                 struct net_device *dev = skb->dev;
3097
3098                 partial_features |= dev->features & dev->gso_partial_features;
3099                 if (!skb_gso_ok(skb, features | partial_features))
3100                         features &= ~NETIF_F_GSO_PARTIAL;
3101         }
3102
3103         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105
3106         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107         SKB_GSO_CB(skb)->encap_level = 0;
3108
3109         skb_reset_mac_header(skb);
3110         skb_reset_mac_len(skb);
3111
3112         segs = skb_mac_gso_segment(skb, features);
3113
3114         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115                 skb_warn_bad_offload(skb);
3116
3117         return segs;
3118 }
3119 EXPORT_SYMBOL(__skb_gso_segment);
3120
3121 /* Take action when hardware reception checksum errors are detected. */
3122 #ifdef CONFIG_BUG
3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3124 {
3125         if (net_ratelimit()) {
3126                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127                 if (dev)
3128                         pr_err("dev features: %pNF\n", &dev->features);
3129                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130                        skb->len, skb->data_len, skb->pkt_type,
3131                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134                 dump_stack();
3135         }
3136 }
3137 EXPORT_SYMBOL(netdev_rx_csum_fault);
3138 #endif
3139
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3142 {
3143 #ifdef CONFIG_HIGHMEM
3144         int i;
3145
3146         if (!(dev->features & NETIF_F_HIGHDMA)) {
3147                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3149
3150                         if (PageHighMem(skb_frag_page(frag)))
3151                                 return 1;
3152                 }
3153         }
3154 #endif
3155         return 0;
3156 }
3157
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159  * instead of standard features for the netdev.
3160  */
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163                                            netdev_features_t features,
3164                                            __be16 type)
3165 {
3166         if (eth_p_mpls(type))
3167                 features &= skb->dev->mpls_features;
3168
3169         return features;
3170 }
3171 #else
3172 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173                                            netdev_features_t features,
3174                                            __be16 type)
3175 {
3176         return features;
3177 }
3178 #endif
3179
3180 static netdev_features_t harmonize_features(struct sk_buff *skb,
3181         netdev_features_t features)
3182 {
3183         int tmp;
3184         __be16 type;
3185
3186         type = skb_network_protocol(skb, &tmp);
3187         features = net_mpls_features(skb, features, type);
3188
3189         if (skb->ip_summed != CHECKSUM_NONE &&
3190             !can_checksum_protocol(features, type)) {
3191                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3192         }
3193         if (illegal_highdma(skb->dev, skb))
3194                 features &= ~NETIF_F_SG;
3195
3196         return features;
3197 }
3198
3199 netdev_features_t passthru_features_check(struct sk_buff *skb,
3200                                           struct net_device *dev,
3201                                           netdev_features_t features)
3202 {
3203         return features;
3204 }
3205 EXPORT_SYMBOL(passthru_features_check);
3206
3207 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208                                              struct net_device *dev,
3209                                              netdev_features_t features)
3210 {
3211         return vlan_features_check(skb, features);
3212 }
3213
3214 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215                                             struct net_device *dev,
3216                                             netdev_features_t features)
3217 {
3218         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219
3220         if (gso_segs > dev->gso_max_segs)
3221                 return features & ~NETIF_F_GSO_MASK;
3222
3223         /* Support for GSO partial features requires software
3224          * intervention before we can actually process the packets
3225          * so we need to strip support for any partial features now
3226          * and we can pull them back in after we have partially
3227          * segmented the frame.
3228          */
3229         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230                 features &= ~dev->gso_partial_features;
3231
3232         /* Make sure to clear the IPv4 ID mangling feature if the
3233          * IPv4 header has the potential to be fragmented.
3234          */
3235         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236                 struct iphdr *iph = skb->encapsulation ?
3237                                     inner_ip_hdr(skb) : ip_hdr(skb);
3238
3239                 if (!(iph->frag_off & htons(IP_DF)))
3240                         features &= ~NETIF_F_TSO_MANGLEID;
3241         }
3242
3243         return features;
3244 }
3245
3246 netdev_features_t netif_skb_features(struct sk_buff *skb)
3247 {
3248         struct net_device *dev = skb->dev;
3249         netdev_features_t features = dev->features;
3250
3251         if (skb_is_gso(skb))
3252                 features = gso_features_check(skb, dev, features);
3253
3254         /* If encapsulation offload request, verify we are testing
3255          * hardware encapsulation features instead of standard
3256          * features for the netdev
3257          */
3258         if (skb->encapsulation)
3259                 features &= dev->hw_enc_features;
3260
3261         if (skb_vlan_tagged(skb))
3262                 features = netdev_intersect_features(features,
3263                                                      dev->vlan_features |
3264                                                      NETIF_F_HW_VLAN_CTAG_TX |
3265                                                      NETIF_F_HW_VLAN_STAG_TX);
3266
3267         if (dev->netdev_ops->ndo_features_check)
3268                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269                                                                 features);
3270         else
3271                 features &= dflt_features_check(skb, dev, features);
3272
3273         return harmonize_features(skb, features);
3274 }
3275 EXPORT_SYMBOL(netif_skb_features);
3276
3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278                     struct netdev_queue *txq, bool more)
3279 {
3280         unsigned int len;
3281         int rc;
3282
3283         if (dev_nit_active(dev))
3284                 dev_queue_xmit_nit(skb, dev);
3285
3286         len = skb->len;
3287         trace_net_dev_start_xmit(skb, dev);
3288         rc = netdev_start_xmit(skb, dev, txq, more);
3289         trace_net_dev_xmit(skb, rc, dev, len);
3290
3291         return rc;
3292 }
3293
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295                                     struct netdev_queue *txq, int *ret)
3296 {
3297         struct sk_buff *skb = first;
3298         int rc = NETDEV_TX_OK;
3299
3300         while (skb) {
3301                 struct sk_buff *next = skb->next;
3302
3303                 skb_mark_not_on_list(skb);
3304                 rc = xmit_one(skb, dev, txq, next != NULL);
3305                 if (unlikely(!dev_xmit_complete(rc))) {
3306                         skb->next = next;
3307                         goto out;
3308                 }
3309
3310                 skb = next;
3311                 if (netif_tx_queue_stopped(txq) && skb) {
3312                         rc = NETDEV_TX_BUSY;
3313                         break;
3314                 }
3315         }
3316
3317 out:
3318         *ret = rc;
3319         return skb;
3320 }
3321
3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323                                           netdev_features_t features)
3324 {
3325         if (skb_vlan_tag_present(skb) &&
3326             !vlan_hw_offload_capable(features, skb->vlan_proto))
3327                 skb = __vlan_hwaccel_push_inside(skb);
3328         return skb;
3329 }
3330
3331 int skb_csum_hwoffload_help(struct sk_buff *skb,
3332                             const netdev_features_t features)
3333 {
3334         if (unlikely(skb->csum_not_inet))
3335                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336                         skb_crc32c_csum_help(skb);
3337
3338         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339 }
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341
3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3343 {
3344         netdev_features_t features;
3345
3346         features = netif_skb_features(skb);
3347         skb = validate_xmit_vlan(skb, features);
3348         if (unlikely(!skb))
3349                 goto out_null;
3350
3351         skb = sk_validate_xmit_skb(skb, dev);
3352         if (unlikely(!skb))
3353                 goto out_null;
3354
3355         if (netif_needs_gso(skb, features)) {
3356                 struct sk_buff *segs;
3357
3358                 segs = skb_gso_segment(skb, features);
3359                 if (IS_ERR(segs)) {
3360                         goto out_kfree_skb;
3361                 } else if (segs) {
3362                         consume_skb(skb);
3363                         skb = segs;
3364                 }
3365         } else {
3366                 if (skb_needs_linearize(skb, features) &&
3367                     __skb_linearize(skb))
3368                         goto out_kfree_skb;
3369
3370                 /* If packet is not checksummed and device does not
3371                  * support checksumming for this protocol, complete
3372                  * checksumming here.
3373                  */
3374                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375                         if (skb->encapsulation)
3376                                 skb_set_inner_transport_header(skb,
3377                                                                skb_checksum_start_offset(skb));
3378                         else
3379                                 skb_set_transport_header(skb,
3380                                                          skb_checksum_start_offset(skb));
3381                         if (skb_csum_hwoffload_help(skb, features))
3382                                 goto out_kfree_skb;
3383                 }
3384         }
3385
3386         skb = validate_xmit_xfrm(skb, features, again);
3387
3388         return skb;
3389
3390 out_kfree_skb:
3391         kfree_skb(skb);
3392 out_null:
3393         atomic_long_inc(&dev->tx_dropped);
3394         return NULL;
3395 }
3396
3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3398 {
3399         struct sk_buff *next, *head = NULL, *tail;
3400
3401         for (; skb != NULL; skb = next) {
3402                 next = skb->next;
3403                 skb_mark_not_on_list(skb);
3404
3405                 /* in case skb wont be segmented, point to itself */
3406                 skb->prev = skb;
3407
3408                 skb = validate_xmit_skb(skb, dev, again);
3409                 if (!skb)
3410                         continue;
3411
3412                 if (!head)
3413                         head = skb;
3414                 else
3415                         tail->next = skb;
3416                 /* If skb was segmented, skb->prev points to
3417                  * the last segment. If not, it still contains skb.
3418                  */
3419                 tail = skb->prev;
3420         }
3421         return head;
3422 }
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3424
3425 static void qdisc_pkt_len_init(struct sk_buff *skb)
3426 {
3427         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428
3429         qdisc_skb_cb(skb)->pkt_len = skb->len;
3430
3431         /* To get more precise estimation of bytes sent on wire,
3432          * we add to pkt_len the headers size of all segments
3433          */
3434         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435                 unsigned int hdr_len;
3436                 u16 gso_segs = shinfo->gso_segs;
3437
3438                 /* mac layer + network layer */
3439                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440
3441                 /* + transport layer */
3442                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443                         const struct tcphdr *th;
3444                         struct tcphdr _tcphdr;
3445
3446                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3447                                                 sizeof(_tcphdr), &_tcphdr);
3448                         if (likely(th))
3449                                 hdr_len += __tcp_hdrlen(th);
3450                 } else {
3451                         struct udphdr _udphdr;
3452
3453                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3454                                                sizeof(_udphdr), &_udphdr))
3455                                 hdr_len += sizeof(struct udphdr);
3456                 }
3457
3458                 if (shinfo->gso_type & SKB_GSO_DODGY)
3459                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460                                                 shinfo->gso_size);
3461
3462                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3463         }
3464 }
3465
3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467                                  struct net_device *dev,
3468                                  struct netdev_queue *txq)
3469 {
3470         spinlock_t *root_lock = qdisc_lock(q);
3471         struct sk_buff *to_free = NULL;
3472         bool contended;
3473         int rc;
3474
3475         qdisc_calculate_pkt_len(skb, q);
3476
3477         if (q->flags & TCQ_F_NOLOCK) {
3478                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479                         __qdisc_drop(skb, &to_free);
3480                         rc = NET_XMIT_DROP;
3481                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482                            qdisc_run_begin(q)) {
3483                         qdisc_bstats_cpu_update(q, skb);
3484
3485                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486                                 __qdisc_run(q);
3487
3488                         qdisc_run_end(q);
3489                         rc = NET_XMIT_SUCCESS;
3490                 } else {
3491                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492                         qdisc_run(q);
3493                 }
3494
3495                 if (unlikely(to_free))
3496                         kfree_skb_list(to_free);
3497                 return rc;
3498         }
3499
3500         /*
3501          * Heuristic to force contended enqueues to serialize on a
3502          * separate lock before trying to get qdisc main lock.
3503          * This permits qdisc->running owner to get the lock more
3504          * often and dequeue packets faster.
3505          */
3506         contended = qdisc_is_running(q);
3507         if (unlikely(contended))
3508                 spin_lock(&q->busylock);
3509
3510         spin_lock(root_lock);
3511         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512                 __qdisc_drop(skb, &to_free);
3513                 rc = NET_XMIT_DROP;
3514         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515                    qdisc_run_begin(q)) {
3516                 /*
3517                  * This is a work-conserving queue; there are no old skbs
3518                  * waiting to be sent out; and the qdisc is not running -
3519                  * xmit the skb directly.
3520                  */
3521
3522                 qdisc_bstats_update(q, skb);
3523
3524                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525                         if (unlikely(contended)) {
3526                                 spin_unlock(&q->busylock);
3527                                 contended = false;
3528                         }
3529                         __qdisc_run(q);
3530                 }
3531
3532                 qdisc_run_end(q);
3533                 rc = NET_XMIT_SUCCESS;
3534         } else {
3535                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536                 if (qdisc_run_begin(q)) {
3537                         if (unlikely(contended)) {
3538                                 spin_unlock(&q->busylock);
3539                                 contended = false;
3540                         }
3541                         __qdisc_run(q);
3542                         qdisc_run_end(q);
3543                 }
3544         }
3545         spin_unlock(root_lock);
3546         if (unlikely(to_free))
3547                 kfree_skb_list(to_free);
3548         if (unlikely(contended))
3549                 spin_unlock(&q->busylock);
3550         return rc;
3551 }
3552
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff *skb)
3555 {
3556         const struct netprio_map *map;
3557         const struct sock *sk;
3558         unsigned int prioidx;
3559
3560         if (skb->priority)
3561                 return;
3562         map = rcu_dereference_bh(skb->dev->priomap);
3563         if (!map)
3564                 return;
3565         sk = skb_to_full_sk(skb);
3566         if (!sk)
3567                 return;
3568
3569         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570
3571         if (prioidx < map->priomap_len)
3572                 skb->priority = map->priomap[prioidx];
3573 }
3574 #else
3575 #define skb_update_prio(skb)
3576 #endif
3577
3578 /**
3579  *      dev_loopback_xmit - loop back @skb
3580  *      @net: network namespace this loopback is happening in
3581  *      @sk:  sk needed to be a netfilter okfn
3582  *      @skb: buffer to transmit
3583  */
3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3585 {
3586         skb_reset_mac_header(skb);
3587         __skb_pull(skb, skb_network_offset(skb));
3588         skb->pkt_type = PACKET_LOOPBACK;
3589         skb->ip_summed = CHECKSUM_UNNECESSARY;
3590         WARN_ON(!skb_dst(skb));
3591         skb_dst_force(skb);
3592         netif_rx_ni(skb);
3593         return 0;
3594 }
3595 EXPORT_SYMBOL(dev_loopback_xmit);
3596
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff *
3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600 {
3601         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602         struct tcf_result cl_res;
3603
3604         if (!miniq)
3605                 return skb;
3606
3607         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608         mini_qdisc_bstats_cpu_update(miniq, skb);
3609
3610         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611         case TC_ACT_OK:
3612         case TC_ACT_RECLASSIFY:
3613                 skb->tc_index = TC_H_MIN(cl_res.classid);
3614                 break;
3615         case TC_ACT_SHOT:
3616                 mini_qdisc_qstats_cpu_drop(miniq);
3617                 *ret = NET_XMIT_DROP;
3618                 kfree_skb(skb);
3619                 return NULL;
3620         case TC_ACT_STOLEN:
3621         case TC_ACT_QUEUED:
3622         case TC_ACT_TRAP:
3623                 *ret = NET_XMIT_SUCCESS;
3624                 consume_skb(skb);
3625                 return NULL;
3626         case TC_ACT_REDIRECT:
3627                 /* No need to push/pop skb's mac_header here on egress! */
3628                 skb_do_redirect(skb);
3629                 *ret = NET_XMIT_SUCCESS;
3630                 return NULL;
3631         default:
3632                 break;
3633         }
3634
3635         return skb;
3636 }
3637 #endif /* CONFIG_NET_EGRESS */
3638
3639 #ifdef CONFIG_XPS
3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641                                struct xps_dev_maps *dev_maps, unsigned int tci)
3642 {
3643         struct xps_map *map;
3644         int queue_index = -1;
3645
3646         if (dev->num_tc) {
3647                 tci *= dev->num_tc;
3648                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3649         }
3650
3651         map = rcu_dereference(dev_maps->attr_map[tci]);
3652         if (map) {
3653                 if (map->len == 1)
3654                         queue_index = map->queues[0];
3655                 else
3656                         queue_index = map->queues[reciprocal_scale(
3657                                                 skb_get_hash(skb), map->len)];
3658                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3659                         queue_index = -1;
3660         }
3661         return queue_index;
3662 }
3663 #endif
3664
3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666                          struct sk_buff *skb)
3667 {
3668 #ifdef CONFIG_XPS
3669         struct xps_dev_maps *dev_maps;
3670         struct sock *sk = skb->sk;
3671         int queue_index = -1;
3672
3673         if (!static_key_false(&xps_needed))
3674                 return -1;
3675
3676         rcu_read_lock();
3677         if (!static_key_false(&xps_rxqs_needed))
3678                 goto get_cpus_map;
3679
3680         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681         if (dev_maps) {
3682                 int tci = sk_rx_queue_get(sk);
3683
3684                 if (tci >= 0 && tci < dev->num_rx_queues)
3685                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686                                                           tci);
3687         }
3688
3689 get_cpus_map:
3690         if (queue_index < 0) {
3691                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692                 if (dev_maps) {
3693                         unsigned int tci = skb->sender_cpu - 1;
3694
3695                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696                                                           tci);
3697                 }
3698         }
3699         rcu_read_unlock();
3700
3701         return queue_index;
3702 #else
3703         return -1;
3704 #endif
3705 }
3706
3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708                      struct net_device *sb_dev)
3709 {
3710         return 0;
3711 }
3712 EXPORT_SYMBOL(dev_pick_tx_zero);
3713
3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715                        struct net_device *sb_dev)
3716 {
3717         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718 }
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720
3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722                      struct net_device *sb_dev)
3723 {
3724         struct sock *sk = skb->sk;
3725         int queue_index = sk_tx_queue_get(sk);
3726
3727         sb_dev = sb_dev ? : dev;
3728
3729         if (queue_index < 0 || skb->ooo_okay ||
3730             queue_index >= dev->real_num_tx_queues) {
3731                 int new_index = get_xps_queue(dev, sb_dev, skb);
3732
3733                 if (new_index < 0)
3734                         new_index = skb_tx_hash(dev, sb_dev, skb);
3735
3736                 if (queue_index != new_index && sk &&
3737                     sk_fullsock(sk) &&
3738                     rcu_access_pointer(sk->sk_dst_cache))
3739                         sk_tx_queue_set(sk, new_index);
3740
3741                 queue_index = new_index;
3742         }
3743
3744         return queue_index;
3745 }
3746 EXPORT_SYMBOL(netdev_pick_tx);
3747
3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749                                          struct sk_buff *skb,
3750                                          struct net_device *sb_dev)
3751 {
3752         int queue_index = 0;
3753
3754 #ifdef CONFIG_XPS
3755         u32 sender_cpu = skb->sender_cpu - 1;
3756
3757         if (sender_cpu >= (u32)NR_CPUS)
3758                 skb->sender_cpu = raw_smp_processor_id() + 1;
3759 #endif
3760
3761         if (dev->real_num_tx_queues != 1) {
3762                 const struct net_device_ops *ops = dev->netdev_ops;
3763
3764                 if (ops->ndo_select_queue)
3765                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766                 else
3767                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3768
3769                 queue_index = netdev_cap_txqueue(dev, queue_index);
3770         }
3771
3772         skb_set_queue_mapping(skb, queue_index);
3773         return netdev_get_tx_queue(dev, queue_index);
3774 }
3775
3776 /**
3777  *      __dev_queue_xmit - transmit a buffer
3778  *      @skb: buffer to transmit
3779  *      @sb_dev: suboordinate device used for L2 forwarding offload
3780  *
3781  *      Queue a buffer for transmission to a network device. The caller must
3782  *      have set the device and priority and built the buffer before calling
3783  *      this function. The function can be called from an interrupt.
3784  *
3785  *      A negative errno code is returned on a failure. A success does not
3786  *      guarantee the frame will be transmitted as it may be dropped due
3787  *      to congestion or traffic shaping.
3788  *
3789  * -----------------------------------------------------------------------------------
3790  *      I notice this method can also return errors from the queue disciplines,
3791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3792  *      be positive.
3793  *
3794  *      Regardless of the return value, the skb is consumed, so it is currently
3795  *      difficult to retry a send to this method.  (You can bump the ref count
3796  *      before sending to hold a reference for retry if you are careful.)
3797  *
3798  *      When calling this method, interrupts MUST be enabled.  This is because
3799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3800  *          --BLG
3801  */
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803 {
3804         struct net_device *dev = skb->dev;
3805         struct netdev_queue *txq;
3806         struct Qdisc *q;
3807         int rc = -ENOMEM;
3808         bool again = false;
3809
3810         skb_reset_mac_header(skb);
3811
3812         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814
3815         /* Disable soft irqs for various locks below. Also
3816          * stops preemption for RCU.
3817          */
3818         rcu_read_lock_bh();
3819
3820         skb_update_prio(skb);
3821
3822         qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824         skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826         if (static_branch_unlikely(&egress_needed_key)) {
3827                 skb = sch_handle_egress(skb, &rc, dev);
3828                 if (!skb)
3829                         goto out;
3830         }
3831 # endif
3832 #endif
3833         /* If device/qdisc don't need skb->dst, release it right now while
3834          * its hot in this cpu cache.
3835          */
3836         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837                 skb_dst_drop(skb);
3838         else
3839                 skb_dst_force(skb);
3840
3841         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842         q = rcu_dereference_bh(txq->qdisc);
3843
3844         trace_net_dev_queue(skb);
3845         if (q->enqueue) {
3846                 rc = __dev_xmit_skb(skb, q, dev, txq);
3847                 goto out;
3848         }
3849
3850         /* The device has no queue. Common case for software devices:
3851          * loopback, all the sorts of tunnels...
3852
3853          * Really, it is unlikely that netif_tx_lock protection is necessary
3854          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3855          * counters.)
3856          * However, it is possible, that they rely on protection
3857          * made by us here.
3858
3859          * Check this and shot the lock. It is not prone from deadlocks.
3860          *Either shot noqueue qdisc, it is even simpler 8)
3861          */
3862         if (dev->flags & IFF_UP) {
3863                 int cpu = smp_processor_id(); /* ok because BHs are off */
3864
3865                 if (txq->xmit_lock_owner != cpu) {
3866                         if (dev_xmit_recursion())
3867                                 goto recursion_alert;
3868
3869                         skb = validate_xmit_skb(skb, dev, &again);
3870                         if (!skb)
3871                                 goto out;
3872
3873                         HARD_TX_LOCK(dev, txq, cpu);
3874
3875                         if (!netif_xmit_stopped(txq)) {
3876                                 dev_xmit_recursion_inc();
3877                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878                                 dev_xmit_recursion_dec();
3879                                 if (dev_xmit_complete(rc)) {
3880                                         HARD_TX_UNLOCK(dev, txq);
3881                                         goto out;
3882                                 }
3883                         }
3884                         HARD_TX_UNLOCK(dev, txq);
3885                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886                                              dev->name);
3887                 } else {
3888                         /* Recursion is detected! It is possible,
3889                          * unfortunately
3890                          */
3891 recursion_alert:
3892                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893                                              dev->name);
3894                 }
3895         }
3896
3897         rc = -ENETDOWN;
3898         rcu_read_unlock_bh();
3899
3900         atomic_long_inc(&dev->tx_dropped);
3901         kfree_skb_list(skb);
3902         return rc;
3903 out:
3904         rcu_read_unlock_bh();
3905         return rc;
3906 }
3907
3908 int dev_queue_xmit(struct sk_buff *skb)
3909 {
3910         return __dev_queue_xmit(skb, NULL);
3911 }
3912 EXPORT_SYMBOL(dev_queue_xmit);
3913
3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3915 {
3916         return __dev_queue_xmit(skb, sb_dev);
3917 }
3918 EXPORT_SYMBOL(dev_queue_xmit_accel);
3919
3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921 {
3922         struct net_device *dev = skb->dev;
3923         struct sk_buff *orig_skb = skb;
3924         struct netdev_queue *txq;
3925         int ret = NETDEV_TX_BUSY;
3926         bool again = false;
3927
3928         if (unlikely(!netif_running(dev) ||
3929                      !netif_carrier_ok(dev)))
3930                 goto drop;
3931
3932         skb = validate_xmit_skb_list(skb, dev, &again);
3933         if (skb != orig_skb)
3934                 goto drop;
3935
3936         skb_set_queue_mapping(skb, queue_id);
3937         txq = skb_get_tx_queue(dev, skb);
3938
3939         local_bh_disable();
3940
3941         HARD_TX_LOCK(dev, txq, smp_processor_id());
3942         if (!netif_xmit_frozen_or_drv_stopped(txq))
3943                 ret = netdev_start_xmit(skb, dev, txq, false);
3944         HARD_TX_UNLOCK(dev, txq);
3945
3946         local_bh_enable();
3947
3948         if (!dev_xmit_complete(ret))
3949                 kfree_skb(skb);
3950
3951         return ret;
3952 drop:
3953         atomic_long_inc(&dev->tx_dropped);
3954         kfree_skb_list(skb);
3955         return NET_XMIT_DROP;
3956 }
3957 EXPORT_SYMBOL(dev_direct_xmit);
3958
3959 /*************************************************************************
3960  *                      Receiver routines
3961  *************************************************************************/
3962
3963 int netdev_max_backlog __read_mostly = 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog);
3965
3966 int netdev_tstamp_prequeue __read_mostly = 1;
3967 int netdev_budget __read_mostly = 300;
3968 unsigned int __read_mostly netdev_budget_usecs = 2000;
3969 int weight_p __read_mostly = 64;           /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly = 64;
3973 int dev_tx_weight __read_mostly = 64;
3974
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data *sd,
3977                                      struct napi_struct *napi)
3978 {
3979         list_add_tail(&napi->poll_list, &sd->poll_list);
3980         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981 }
3982
3983 #ifdef CONFIG_RPS
3984
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987 EXPORT_SYMBOL(rps_sock_flow_table);
3988 u32 rps_cpu_mask __read_mostly;
3989 EXPORT_SYMBOL(rps_cpu_mask);
3990
3991 struct static_key_false rps_needed __read_mostly;
3992 EXPORT_SYMBOL(rps_needed);
3993 struct static_key_false rfs_needed __read_mostly;
3994 EXPORT_SYMBOL(rfs_needed);
3995
3996 static struct rps_dev_flow *
3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998             struct rps_dev_flow *rflow, u16 next_cpu)
3999 {
4000         if (next_cpu < nr_cpu_ids) {
4001 #ifdef CONFIG_RFS_ACCEL
4002                 struct netdev_rx_queue *rxqueue;
4003                 struct rps_dev_flow_table *flow_table;
4004                 struct rps_dev_flow *old_rflow;
4005                 u32 flow_id;
4006                 u16 rxq_index;
4007                 int rc;
4008
4009                 /* Should we steer this flow to a different hardware queue? */
4010                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011                     !(dev->features & NETIF_F_NTUPLE))
4012                         goto out;
4013                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014                 if (rxq_index == skb_get_rx_queue(skb))
4015                         goto out;
4016
4017                 rxqueue = dev->_rx + rxq_index;
4018                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019                 if (!flow_table)
4020                         goto out;
4021                 flow_id = skb_get_hash(skb) & flow_table->mask;
4022                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023                                                         rxq_index, flow_id);
4024                 if (rc < 0)
4025                         goto out;
4026                 old_rflow = rflow;
4027                 rflow = &flow_table->flows[flow_id];
4028                 rflow->filter = rc;
4029                 if (old_rflow->filter == rflow->filter)
4030                         old_rflow->filter = RPS_NO_FILTER;
4031         out:
4032 #endif
4033                 rflow->last_qtail =
4034                         per_cpu(softnet_data, next_cpu).input_queue_head;
4035         }
4036
4037         rflow->cpu = next_cpu;
4038         return rflow;
4039 }
4040
4041 /*
4042  * get_rps_cpu is called from netif_receive_skb and returns the target
4043  * CPU from the RPS map of the receiving queue for a given skb.
4044  * rcu_read_lock must be held on entry.
4045  */
4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047                        struct rps_dev_flow **rflowp)
4048 {
4049         const struct rps_sock_flow_table *sock_flow_table;
4050         struct netdev_rx_queue *rxqueue = dev->_rx;
4051         struct rps_dev_flow_table *flow_table;
4052         struct rps_map *map;
4053         int cpu = -1;
4054         u32 tcpu;
4055         u32 hash;
4056
4057         if (skb_rx_queue_recorded(skb)) {
4058                 u16 index = skb_get_rx_queue(skb);
4059
4060                 if (unlikely(index >= dev->real_num_rx_queues)) {
4061                         WARN_ONCE(dev->real_num_rx_queues > 1,
4062                                   "%s received packet on queue %u, but number "
4063                                   "of RX queues is %u\n",
4064                                   dev->name, index, dev->real_num_rx_queues);
4065                         goto done;
4066                 }
4067                 rxqueue += index;
4068         }
4069
4070         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071
4072         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073         map = rcu_dereference(rxqueue->rps_map);
4074         if (!flow_table && !map)
4075                 goto done;
4076
4077         skb_reset_network_header(skb);
4078         hash = skb_get_hash(skb);
4079         if (!hash)
4080                 goto done;
4081
4082         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083         if (flow_table && sock_flow_table) {
4084                 struct rps_dev_flow *rflow;
4085                 u32 next_cpu;
4086                 u32 ident;
4087
4088                 /* First check into global flow table if there is a match */
4089                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090                 if ((ident ^ hash) & ~rps_cpu_mask)
4091                         goto try_rps;
4092
4093                 next_cpu = ident & rps_cpu_mask;
4094
4095                 /* OK, now we know there is a match,
4096                  * we can look at the local (per receive queue) flow table
4097                  */
4098                 rflow = &flow_table->flows[hash & flow_table->mask];
4099                 tcpu = rflow->cpu;
4100
4101                 /*
4102                  * If the desired CPU (where last recvmsg was done) is
4103                  * different from current CPU (one in the rx-queue flow
4104                  * table entry), switch if one of the following holds:
4105                  *   - Current CPU is unset (>= nr_cpu_ids).
4106                  *   - Current CPU is offline.
4107                  *   - The current CPU's queue tail has advanced beyond the
4108                  *     last packet that was enqueued using this table entry.
4109                  *     This guarantees that all previous packets for the flow
4110                  *     have been dequeued, thus preserving in order delivery.
4111                  */
4112                 if (unlikely(tcpu != next_cpu) &&
4113                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115                       rflow->last_qtail)) >= 0)) {
4116                         tcpu = next_cpu;
4117                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118                 }
4119
4120                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121                         *rflowp = rflow;
4122                         cpu = tcpu;
4123                         goto done;
4124                 }
4125         }
4126
4127 try_rps:
4128
4129         if (map) {
4130                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131                 if (cpu_online(tcpu)) {
4132                         cpu = tcpu;
4133                         goto done;
4134                 }
4135         }
4136
4137 done:
4138         return cpu;
4139 }
4140
4141 #ifdef CONFIG_RFS_ACCEL
4142
4143 /**
4144  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145  * @dev: Device on which the filter was set
4146  * @rxq_index: RX queue index
4147  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149  *
4150  * Drivers that implement ndo_rx_flow_steer() should periodically call
4151  * this function for each installed filter and remove the filters for
4152  * which it returns %true.
4153  */
4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155                          u32 flow_id, u16 filter_id)
4156 {
4157         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158         struct rps_dev_flow_table *flow_table;
4159         struct rps_dev_flow *rflow;
4160         bool expire = true;
4161         unsigned int cpu;
4162
4163         rcu_read_lock();
4164         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165         if (flow_table && flow_id <= flow_table->mask) {
4166                 rflow = &flow_table->flows[flow_id];
4167                 cpu = READ_ONCE(rflow->cpu);
4168                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170                            rflow->last_qtail) <
4171                      (int)(10 * flow_table->mask)))
4172                         expire = false;
4173         }
4174         rcu_read_unlock();
4175         return expire;
4176 }
4177 EXPORT_SYMBOL(rps_may_expire_flow);
4178
4179 #endif /* CONFIG_RFS_ACCEL */
4180
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data)
4183 {
4184         struct softnet_data *sd = data;
4185
4186         ____napi_schedule(sd, &sd->backlog);
4187         sd->received_rps++;
4188 }
4189
4190 #endif /* CONFIG_RPS */
4191
4192 /*
4193  * Check if this softnet_data structure is another cpu one
4194  * If yes, queue it to our IPI list and return 1
4195  * If no, return 0
4196  */
4197 static int rps_ipi_queued(struct softnet_data *sd)
4198 {
4199 #ifdef CONFIG_RPS
4200         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201
4202         if (sd != mysd) {
4203                 sd->rps_ipi_next = mysd->rps_ipi_list;
4204                 mysd->rps_ipi_list = sd;
4205
4206                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207                 return 1;
4208         }
4209 #endif /* CONFIG_RPS */
4210         return 0;
4211 }
4212
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 #endif
4216
4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218 {
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220         struct sd_flow_limit *fl;
4221         struct softnet_data *sd;
4222         unsigned int old_flow, new_flow;
4223
4224         if (qlen < (netdev_max_backlog >> 1))
4225                 return false;
4226
4227         sd = this_cpu_ptr(&softnet_data);
4228
4229         rcu_read_lock();
4230         fl = rcu_dereference(sd->flow_limit);
4231         if (fl) {
4232                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233                 old_flow = fl->history[fl->history_head];
4234                 fl->history[fl->history_head] = new_flow;
4235
4236                 fl->history_head++;
4237                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238
4239                 if (likely(fl->buckets[old_flow]))
4240                         fl->buckets[old_flow]--;
4241
4242                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243                         fl->count++;
4244                         rcu_read_unlock();
4245                         return true;
4246                 }
4247         }
4248         rcu_read_unlock();
4249 #endif
4250         return false;
4251 }
4252
4253 /*
4254  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255  * queue (may be a remote CPU queue).
4256  */
4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258                               unsigned int *qtail)
4259 {
4260         struct softnet_data *sd;
4261         unsigned long flags;
4262         unsigned int qlen;
4263
4264         sd = &per_cpu(softnet_data, cpu);
4265
4266         local_irq_save(flags);
4267
4268         rps_lock(sd);
4269         if (!netif_running(skb->dev))
4270                 goto drop;
4271         qlen = skb_queue_len(&sd->input_pkt_queue);
4272         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273                 if (qlen) {
4274 enqueue:
4275                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4276                         input_queue_tail_incr_save(sd, qtail);
4277                         rps_unlock(sd);
4278                         local_irq_restore(flags);
4279                         return NET_RX_SUCCESS;
4280                 }
4281
4282                 /* Schedule NAPI for backlog device
4283                  * We can use non atomic operation since we own the queue lock
4284                  */
4285                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286                         if (!rps_ipi_queued(sd))
4287                                 ____napi_schedule(sd, &sd->backlog);
4288                 }
4289                 goto enqueue;
4290         }
4291
4292 drop:
4293         sd->dropped++;
4294         rps_unlock(sd);
4295
4296         local_irq_restore(flags);
4297
4298         atomic_long_inc(&skb->dev->rx_dropped);
4299         kfree_skb(skb);
4300         return NET_RX_DROP;
4301 }
4302
4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304 {
4305         struct net_device *dev = skb->dev;
4306         struct netdev_rx_queue *rxqueue;
4307
4308         rxqueue = dev->_rx;
4309
4310         if (skb_rx_queue_recorded(skb)) {
4311                 u16 index = skb_get_rx_queue(skb);
4312
4313                 if (unlikely(index >= dev->real_num_rx_queues)) {
4314                         WARN_ONCE(dev->real_num_rx_queues > 1,
4315                                   "%s received packet on queue %u, but number "
4316                                   "of RX queues is %u\n",
4317                                   dev->name, index, dev->real_num_rx_queues);
4318
4319                         return rxqueue; /* Return first rxqueue */
4320                 }
4321                 rxqueue += index;
4322         }
4323         return rxqueue;
4324 }
4325
4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327                                      struct xdp_buff *xdp,
4328                                      struct bpf_prog *xdp_prog)
4329 {
4330         struct netdev_rx_queue *rxqueue;
4331         void *orig_data, *orig_data_end;
4332         u32 metalen, act = XDP_DROP;
4333         __be16 orig_eth_type;
4334         struct ethhdr *eth;
4335         bool orig_bcast;
4336         int hlen, off;
4337         u32 mac_len;
4338
4339         /* Reinjected packets coming from act_mirred or similar should
4340          * not get XDP generic processing.
4341          */
4342         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343                 return XDP_PASS;
4344
4345         /* XDP packets must be linear and must have sufficient headroom
4346          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347          * native XDP provides, thus we need to do it here as well.
4348          */
4349         if (skb_is_nonlinear(skb) ||
4350             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352                 int troom = skb->tail + skb->data_len - skb->end;
4353
4354                 /* In case we have to go down the path and also linearize,
4355                  * then lets do the pskb_expand_head() work just once here.
4356                  */
4357                 if (pskb_expand_head(skb,
4358                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360                         goto do_drop;
4361                 if (skb_linearize(skb))
4362                         goto do_drop;
4363         }
4364
4365         /* The XDP program wants to see the packet starting at the MAC
4366          * header.
4367          */
4368         mac_len = skb->data - skb_mac_header(skb);
4369         hlen = skb_headlen(skb) + mac_len;
4370         xdp->data = skb->data - mac_len;
4371         xdp->data_meta = xdp->data;
4372         xdp->data_end = xdp->data + hlen;
4373         xdp->data_hard_start = skb->data - skb_headroom(skb);
4374         orig_data_end = xdp->data_end;
4375         orig_data = xdp->data;
4376         eth = (struct ethhdr *)xdp->data;
4377         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378         orig_eth_type = eth->h_proto;
4379
4380         rxqueue = netif_get_rxqueue(skb);
4381         xdp->rxq = &rxqueue->xdp_rxq;
4382
4383         act = bpf_prog_run_xdp(xdp_prog, xdp);
4384
4385         off = xdp->data - orig_data;
4386         if (off > 0)
4387                 __skb_pull(skb, off);
4388         else if (off < 0)
4389                 __skb_push(skb, -off);
4390         skb->mac_header += off;
4391
4392         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393          * pckt.
4394          */
4395         off = orig_data_end - xdp->data_end;
4396         if (off != 0) {
4397                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398                 skb->len -= off;
4399
4400         }
4401
4402         /* check if XDP changed eth hdr such SKB needs update */
4403         eth = (struct ethhdr *)xdp->data;
4404         if ((orig_eth_type != eth->h_proto) ||
4405             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406                 __skb_push(skb, ETH_HLEN);
4407                 skb->protocol = eth_type_trans(skb, skb->dev);
4408         }
4409
4410         switch (act) {
4411         case XDP_REDIRECT:
4412         case XDP_TX:
4413                 __skb_push(skb, mac_len);
4414                 break;
4415         case XDP_PASS:
4416                 metalen = xdp->data - xdp->data_meta;
4417                 if (metalen)
4418                         skb_metadata_set(skb, metalen);
4419                 break;
4420         default:
4421                 bpf_warn_invalid_xdp_action(act);
4422                 /* fall through */
4423         case XDP_ABORTED:
4424                 trace_xdp_exception(skb->dev, xdp_prog, act);
4425                 /* fall through */
4426         case XDP_DROP:
4427         do_drop:
4428                 kfree_skb(skb);
4429                 break;
4430         }
4431
4432         return act;
4433 }
4434
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436  * network taps in order to match in-driver-XDP behavior.
4437  */
4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4439 {
4440         struct net_device *dev = skb->dev;
4441         struct netdev_queue *txq;
4442         bool free_skb = true;
4443         int cpu, rc;
4444
4445         txq = netdev_core_pick_tx(dev, skb, NULL);
4446         cpu = smp_processor_id();
4447         HARD_TX_LOCK(dev, txq, cpu);
4448         if (!netif_xmit_stopped(txq)) {
4449                 rc = netdev_start_xmit(skb, dev, txq, 0);
4450                 if (dev_xmit_complete(rc))
4451                         free_skb = false;
4452         }
4453         HARD_TX_UNLOCK(dev, txq);
4454         if (free_skb) {
4455                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456                 kfree_skb(skb);
4457         }
4458 }
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4460
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4462
4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4464 {
4465         if (xdp_prog) {
4466                 struct xdp_buff xdp;
4467                 u32 act;
4468                 int err;
4469
4470                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471                 if (act != XDP_PASS) {
4472                         switch (act) {
4473                         case XDP_REDIRECT:
4474                                 err = xdp_do_generic_redirect(skb->dev, skb,
4475                                                               &xdp, xdp_prog);
4476                                 if (err)
4477                                         goto out_redir;
4478                                 break;
4479                         case XDP_TX:
4480                                 generic_xdp_tx(skb, xdp_prog);
4481                                 break;
4482                         }
4483                         return XDP_DROP;
4484                 }
4485         }
4486         return XDP_PASS;
4487 out_redir:
4488         kfree_skb(skb);
4489         return XDP_DROP;
4490 }
4491 EXPORT_SYMBOL_GPL(do_xdp_generic);
4492
4493 static int netif_rx_internal(struct sk_buff *skb)
4494 {
4495         int ret;
4496
4497         net_timestamp_check(netdev_tstamp_prequeue, skb);
4498
4499         trace_netif_rx(skb);
4500
4501 #ifdef CONFIG_RPS
4502         if (static_branch_unlikely(&rps_needed)) {
4503                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4504                 int cpu;
4505
4506                 preempt_disable();
4507                 rcu_read_lock();
4508
4509                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4510                 if (cpu < 0)
4511                         cpu = smp_processor_id();
4512
4513                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4514
4515                 rcu_read_unlock();
4516                 preempt_enable();
4517         } else
4518 #endif
4519         {
4520                 unsigned int qtail;
4521
4522                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523                 put_cpu();
4524         }
4525         return ret;
4526 }
4527
4528 /**
4529  *      netif_rx        -       post buffer to the network code
4530  *      @skb: buffer to post
4531  *
4532  *      This function receives a packet from a device driver and queues it for
4533  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4534  *      may be dropped during processing for congestion control or by the
4535  *      protocol layers.
4536  *
4537  *      return values:
4538  *      NET_RX_SUCCESS  (no congestion)
4539  *      NET_RX_DROP     (packet was dropped)
4540  *
4541  */
4542
4543 int netif_rx(struct sk_buff *skb)
4544 {
4545         int ret;
4546
4547         trace_netif_rx_entry(skb);
4548
4549         ret = netif_rx_internal(skb);
4550         trace_netif_rx_exit(ret);
4551
4552         return ret;
4553 }
4554 EXPORT_SYMBOL(netif_rx);
4555
4556 int netif_rx_ni(struct sk_buff *skb)
4557 {
4558         int err;
4559
4560         trace_netif_rx_ni_entry(skb);
4561
4562         preempt_disable();
4563         err = netif_rx_internal(skb);
4564         if (local_softirq_pending())
4565                 do_softirq();
4566         preempt_enable();
4567         trace_netif_rx_ni_exit(err);
4568
4569         return err;
4570 }
4571 EXPORT_SYMBOL(netif_rx_ni);
4572
4573 static __latent_entropy void net_tx_action(struct softirq_action *h)
4574 {
4575         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4576
4577         if (sd->completion_queue) {
4578                 struct sk_buff *clist;
4579
4580                 local_irq_disable();
4581                 clist = sd->completion_queue;
4582                 sd->completion_queue = NULL;
4583                 local_irq_enable();
4584
4585                 while (clist) {
4586                         struct sk_buff *skb = clist;
4587
4588                         clist = clist->next;
4589
4590                         WARN_ON(refcount_read(&skb->users));
4591                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592                                 trace_consume_skb(skb);
4593                         else
4594                                 trace_kfree_skb(skb, net_tx_action);
4595
4596                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597                                 __kfree_skb(skb);
4598                         else
4599                                 __kfree_skb_defer(skb);
4600                 }
4601
4602                 __kfree_skb_flush();
4603         }
4604
4605         if (sd->output_queue) {
4606                 struct Qdisc *head;
4607
4608                 local_irq_disable();
4609                 head = sd->output_queue;
4610                 sd->output_queue = NULL;
4611                 sd->output_queue_tailp = &sd->output_queue;
4612                 local_irq_enable();
4613
4614                 while (head) {
4615                         struct Qdisc *q = head;
4616                         spinlock_t *root_lock = NULL;
4617
4618                         head = head->next_sched;
4619
4620                         if (!(q->flags & TCQ_F_NOLOCK)) {
4621                                 root_lock = qdisc_lock(q);
4622                                 spin_lock(root_lock);
4623                         }
4624                         /* We need to make sure head->next_sched is read
4625                          * before clearing __QDISC_STATE_SCHED
4626                          */
4627                         smp_mb__before_atomic();
4628                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4629                         qdisc_run(q);
4630                         if (root_lock)
4631                                 spin_unlock(root_lock);
4632                 }
4633         }
4634
4635         xfrm_dev_backlog(sd);
4636 }
4637
4638 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639 /* This hook is defined here for ATM LANE */
4640 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641                              unsigned char *addr) __read_mostly;
4642 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4643 #endif
4644
4645 static inline struct sk_buff *
4646 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647                    struct net_device *orig_dev)
4648 {
4649 #ifdef CONFIG_NET_CLS_ACT
4650         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4651         struct tcf_result cl_res;
4652
4653         /* If there's at least one ingress present somewhere (so
4654          * we get here via enabled static key), remaining devices
4655          * that are not configured with an ingress qdisc will bail
4656          * out here.
4657          */
4658         if (!miniq)
4659                 return skb;
4660
4661         if (*pt_prev) {
4662                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4663                 *pt_prev = NULL;
4664         }
4665
4666         qdisc_skb_cb(skb)->pkt_len = skb->len;
4667         skb->tc_at_ingress = 1;
4668         mini_qdisc_bstats_cpu_update(miniq, skb);
4669
4670         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4671         case TC_ACT_OK:
4672         case TC_ACT_RECLASSIFY:
4673                 skb->tc_index = TC_H_MIN(cl_res.classid);
4674                 break;
4675         case TC_ACT_SHOT:
4676                 mini_qdisc_qstats_cpu_drop(miniq);
4677                 kfree_skb(skb);
4678                 return NULL;
4679         case TC_ACT_STOLEN:
4680         case TC_ACT_QUEUED:
4681         case TC_ACT_TRAP:
4682                 consume_skb(skb);
4683                 return NULL;
4684         case TC_ACT_REDIRECT:
4685                 /* skb_mac_header check was done by cls/act_bpf, so
4686                  * we can safely push the L2 header back before
4687                  * redirecting to another netdev
4688                  */
4689                 __skb_push(skb, skb->mac_len);
4690                 skb_do_redirect(skb);
4691                 return NULL;
4692         case TC_ACT_REINSERT:
4693                 /* this does not scrub the packet, and updates stats on error */
4694                 skb_tc_reinsert(skb, &cl_res);
4695                 return NULL;
4696         default:
4697                 break;
4698         }
4699 #endif /* CONFIG_NET_CLS_ACT */
4700         return skb;
4701 }
4702
4703 /**
4704  *      netdev_is_rx_handler_busy - check if receive handler is registered
4705  *      @dev: device to check
4706  *
4707  *      Check if a receive handler is already registered for a given device.
4708  *      Return true if there one.
4709  *
4710  *      The caller must hold the rtnl_mutex.
4711  */
4712 bool netdev_is_rx_handler_busy(struct net_device *dev)
4713 {
4714         ASSERT_RTNL();
4715         return dev && rtnl_dereference(dev->rx_handler);
4716 }
4717 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4718
4719 /**
4720  *      netdev_rx_handler_register - register receive handler
4721  *      @dev: device to register a handler for
4722  *      @rx_handler: receive handler to register
4723  *      @rx_handler_data: data pointer that is used by rx handler
4724  *
4725  *      Register a receive handler for a device. This handler will then be
4726  *      called from __netif_receive_skb. A negative errno code is returned
4727  *      on a failure.
4728  *
4729  *      The caller must hold the rtnl_mutex.
4730  *
4731  *      For a general description of rx_handler, see enum rx_handler_result.
4732  */
4733 int netdev_rx_handler_register(struct net_device *dev,
4734                                rx_handler_func_t *rx_handler,
4735                                void *rx_handler_data)
4736 {
4737         if (netdev_is_rx_handler_busy(dev))
4738                 return -EBUSY;
4739
4740         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4741                 return -EINVAL;
4742
4743         /* Note: rx_handler_data must be set before rx_handler */
4744         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4745         rcu_assign_pointer(dev->rx_handler, rx_handler);
4746
4747         return 0;
4748 }
4749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4750
4751 /**
4752  *      netdev_rx_handler_unregister - unregister receive handler
4753  *      @dev: device to unregister a handler from
4754  *
4755  *      Unregister a receive handler from a device.
4756  *
4757  *      The caller must hold the rtnl_mutex.
4758  */
4759 void netdev_rx_handler_unregister(struct net_device *dev)
4760 {
4761
4762         ASSERT_RTNL();
4763         RCU_INIT_POINTER(dev->rx_handler, NULL);
4764         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765          * section has a guarantee to see a non NULL rx_handler_data
4766          * as well.
4767          */
4768         synchronize_net();
4769         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4770 }
4771 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4772
4773 /*
4774  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775  * the special handling of PFMEMALLOC skbs.
4776  */
4777 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4778 {
4779         switch (skb->protocol) {
4780         case htons(ETH_P_ARP):
4781         case htons(ETH_P_IP):
4782         case htons(ETH_P_IPV6):
4783         case htons(ETH_P_8021Q):
4784         case htons(ETH_P_8021AD):
4785                 return true;
4786         default:
4787                 return false;
4788         }
4789 }
4790
4791 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4792                              int *ret, struct net_device *orig_dev)
4793 {
4794 #ifdef CONFIG_NETFILTER_INGRESS
4795         if (nf_hook_ingress_active(skb)) {
4796                 int ingress_retval;
4797
4798                 if (*pt_prev) {
4799                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4800                         *pt_prev = NULL;
4801                 }
4802
4803                 rcu_read_lock();
4804                 ingress_retval = nf_hook_ingress(skb);
4805                 rcu_read_unlock();
4806                 return ingress_retval;
4807         }
4808 #endif /* CONFIG_NETFILTER_INGRESS */
4809         return 0;
4810 }
4811
4812 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4813                                     struct packet_type **ppt_prev)
4814 {
4815         struct packet_type *ptype, *pt_prev;
4816         rx_handler_func_t *rx_handler;
4817         struct net_device *orig_dev;
4818         bool deliver_exact = false;
4819         int ret = NET_RX_DROP;
4820         __be16 type;
4821
4822         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4823
4824         trace_netif_receive_skb(skb);
4825
4826         orig_dev = skb->dev;
4827
4828         skb_reset_network_header(skb);
4829         if (!skb_transport_header_was_set(skb))
4830                 skb_reset_transport_header(skb);
4831         skb_reset_mac_len(skb);
4832
4833         pt_prev = NULL;
4834
4835 another_round:
4836         skb->skb_iif = skb->dev->ifindex;
4837
4838         __this_cpu_inc(softnet_data.processed);
4839
4840         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4841                 int ret2;
4842
4843                 preempt_disable();
4844                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4845                 preempt_enable();
4846
4847                 if (ret2 != XDP_PASS)
4848                         return NET_RX_DROP;
4849                 skb_reset_mac_len(skb);
4850         }
4851
4852         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854                 skb = skb_vlan_untag(skb);
4855                 if (unlikely(!skb))
4856                         goto out;
4857         }
4858
4859         if (skb_skip_tc_classify(skb))
4860                 goto skip_classify;
4861
4862         if (pfmemalloc)
4863                 goto skip_taps;
4864
4865         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4866                 if (pt_prev)
4867                         ret = deliver_skb(skb, pt_prev, orig_dev);
4868                 pt_prev = ptype;
4869         }
4870
4871         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872                 if (pt_prev)
4873                         ret = deliver_skb(skb, pt_prev, orig_dev);
4874                 pt_prev = ptype;
4875         }
4876
4877 skip_taps:
4878 #ifdef CONFIG_NET_INGRESS
4879         if (static_branch_unlikely(&ingress_needed_key)) {
4880                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4881                 if (!skb)
4882                         goto out;
4883
4884                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4885                         goto out;
4886         }
4887 #endif
4888         skb_reset_tc(skb);
4889 skip_classify:
4890         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4891                 goto drop;
4892
4893         if (skb_vlan_tag_present(skb)) {
4894                 if (pt_prev) {
4895                         ret = deliver_skb(skb, pt_prev, orig_dev);
4896                         pt_prev = NULL;
4897                 }
4898                 if (vlan_do_receive(&skb))
4899                         goto another_round;
4900                 else if (unlikely(!skb))
4901                         goto out;
4902         }
4903
4904         rx_handler = rcu_dereference(skb->dev->rx_handler);
4905         if (rx_handler) {
4906                 if (pt_prev) {
4907                         ret = deliver_skb(skb, pt_prev, orig_dev);
4908                         pt_prev = NULL;
4909                 }
4910                 switch (rx_handler(&skb)) {
4911                 case RX_HANDLER_CONSUMED:
4912                         ret = NET_RX_SUCCESS;
4913                         goto out;
4914                 case RX_HANDLER_ANOTHER:
4915                         goto another_round;
4916                 case RX_HANDLER_EXACT:
4917                         deliver_exact = true;
4918                 case RX_HANDLER_PASS:
4919                         break;
4920                 default:
4921                         BUG();
4922                 }
4923         }
4924
4925         if (unlikely(skb_vlan_tag_present(skb))) {
4926                 if (skb_vlan_tag_get_id(skb))
4927                         skb->pkt_type = PACKET_OTHERHOST;
4928                 /* Note: we might in the future use prio bits
4929                  * and set skb->priority like in vlan_do_receive()
4930                  * For the time being, just ignore Priority Code Point
4931                  */
4932                 __vlan_hwaccel_clear_tag(skb);
4933         }
4934
4935         type = skb->protocol;
4936
4937         /* deliver only exact match when indicated */
4938         if (likely(!deliver_exact)) {
4939                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4940                                        &ptype_base[ntohs(type) &
4941                                                    PTYPE_HASH_MASK]);
4942         }
4943
4944         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4945                                &orig_dev->ptype_specific);
4946
4947         if (unlikely(skb->dev != orig_dev)) {
4948                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949                                        &skb->dev->ptype_specific);
4950         }
4951
4952         if (pt_prev) {
4953                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4954                         goto drop;
4955                 *ppt_prev = pt_prev;
4956         } else {
4957 drop:
4958                 if (!deliver_exact)
4959                         atomic_long_inc(&skb->dev->rx_dropped);
4960                 else
4961                         atomic_long_inc(&skb->dev->rx_nohandler);
4962                 kfree_skb(skb);
4963                 /* Jamal, now you will not able to escape explaining
4964                  * me how you were going to use this. :-)
4965                  */
4966                 ret = NET_RX_DROP;
4967         }
4968
4969 out:
4970         return ret;
4971 }
4972
4973 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4974 {
4975         struct net_device *orig_dev = skb->dev;
4976         struct packet_type *pt_prev = NULL;
4977         int ret;
4978
4979         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4980         if (pt_prev)
4981                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4982                                          skb->dev, pt_prev, orig_dev);
4983         return ret;
4984 }
4985
4986 /**
4987  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4988  *      @skb: buffer to process
4989  *
4990  *      More direct receive version of netif_receive_skb().  It should
4991  *      only be used by callers that have a need to skip RPS and Generic XDP.
4992  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4993  *
4994  *      This function may only be called from softirq context and interrupts
4995  *      should be enabled.
4996  *
4997  *      Return values (usually ignored):
4998  *      NET_RX_SUCCESS: no congestion
4999  *      NET_RX_DROP: packet was dropped
5000  */
5001 int netif_receive_skb_core(struct sk_buff *skb)
5002 {
5003         int ret;
5004
5005         rcu_read_lock();
5006         ret = __netif_receive_skb_one_core(skb, false);
5007         rcu_read_unlock();
5008
5009         return ret;
5010 }
5011 EXPORT_SYMBOL(netif_receive_skb_core);
5012
5013 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5014                                                   struct packet_type *pt_prev,
5015                                                   struct net_device *orig_dev)
5016 {
5017         struct sk_buff *skb, *next;
5018
5019         if (!pt_prev)
5020                 return;
5021         if (list_empty(head))
5022                 return;
5023         if (pt_prev->list_func != NULL)
5024                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5025                                    ip_list_rcv, head, pt_prev, orig_dev);
5026         else
5027                 list_for_each_entry_safe(skb, next, head, list) {
5028                         skb_list_del_init(skb);
5029                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5030                 }
5031 }
5032
5033 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5034 {
5035         /* Fast-path assumptions:
5036          * - There is no RX handler.
5037          * - Only one packet_type matches.
5038          * If either of these fails, we will end up doing some per-packet
5039          * processing in-line, then handling the 'last ptype' for the whole
5040          * sublist.  This can't cause out-of-order delivery to any single ptype,
5041          * because the 'last ptype' must be constant across the sublist, and all
5042          * other ptypes are handled per-packet.
5043          */
5044         /* Current (common) ptype of sublist */
5045         struct packet_type *pt_curr = NULL;
5046         /* Current (common) orig_dev of sublist */
5047         struct net_device *od_curr = NULL;
5048         struct list_head sublist;
5049         struct sk_buff *skb, *next;
5050
5051         INIT_LIST_HEAD(&sublist);
5052         list_for_each_entry_safe(skb, next, head, list) {
5053                 struct net_device *orig_dev = skb->dev;
5054                 struct packet_type *pt_prev = NULL;
5055
5056                 skb_list_del_init(skb);
5057                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5058                 if (!pt_prev)
5059                         continue;
5060                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5061                         /* dispatch old sublist */
5062                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5063                         /* start new sublist */
5064                         INIT_LIST_HEAD(&sublist);
5065                         pt_curr = pt_prev;
5066                         od_curr = orig_dev;
5067                 }
5068                 list_add_tail(&skb->list, &sublist);
5069         }
5070
5071         /* dispatch final sublist */
5072         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5073 }
5074
5075 static int __netif_receive_skb(struct sk_buff *skb)
5076 {
5077         int ret;
5078
5079         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5080                 unsigned int noreclaim_flag;
5081
5082                 /*
5083                  * PFMEMALLOC skbs are special, they should
5084                  * - be delivered to SOCK_MEMALLOC sockets only
5085                  * - stay away from userspace
5086                  * - have bounded memory usage
5087                  *
5088                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5089                  * context down to all allocation sites.
5090                  */
5091                 noreclaim_flag = memalloc_noreclaim_save();
5092                 ret = __netif_receive_skb_one_core(skb, true);
5093                 memalloc_noreclaim_restore(noreclaim_flag);
5094         } else
5095                 ret = __netif_receive_skb_one_core(skb, false);
5096
5097         return ret;
5098 }
5099
5100 static void __netif_receive_skb_list(struct list_head *head)
5101 {
5102         unsigned long noreclaim_flag = 0;
5103         struct sk_buff *skb, *next;
5104         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5105
5106         list_for_each_entry_safe(skb, next, head, list) {
5107                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5108                         struct list_head sublist;
5109
5110                         /* Handle the previous sublist */
5111                         list_cut_before(&sublist, head, &skb->list);
5112                         if (!list_empty(&sublist))
5113                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5114                         pfmemalloc = !pfmemalloc;
5115                         /* See comments in __netif_receive_skb */
5116                         if (pfmemalloc)
5117                                 noreclaim_flag = memalloc_noreclaim_save();
5118                         else
5119                                 memalloc_noreclaim_restore(noreclaim_flag);
5120                 }
5121         }
5122         /* Handle the remaining sublist */
5123         if (!list_empty(head))
5124                 __netif_receive_skb_list_core(head, pfmemalloc);
5125         /* Restore pflags */
5126         if (pfmemalloc)
5127                 memalloc_noreclaim_restore(noreclaim_flag);
5128 }
5129
5130 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5131 {
5132         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5133         struct bpf_prog *new = xdp->prog;
5134         int ret = 0;
5135
5136         switch (xdp->command) {
5137         case XDP_SETUP_PROG:
5138                 rcu_assign_pointer(dev->xdp_prog, new);
5139                 if (old)
5140                         bpf_prog_put(old);
5141
5142                 if (old && !new) {
5143                         static_branch_dec(&generic_xdp_needed_key);
5144                 } else if (new && !old) {
5145                         static_branch_inc(&generic_xdp_needed_key);
5146                         dev_disable_lro(dev);
5147                         dev_disable_gro_hw(dev);
5148                 }
5149                 break;
5150
5151         case XDP_QUERY_PROG:
5152                 xdp->prog_id = old ? old->aux->id : 0;
5153                 break;
5154
5155         default:
5156                 ret = -EINVAL;
5157                 break;
5158         }
5159
5160         return ret;
5161 }
5162
5163 static int netif_receive_skb_internal(struct sk_buff *skb)
5164 {
5165         int ret;
5166
5167         net_timestamp_check(netdev_tstamp_prequeue, skb);
5168
5169         if (skb_defer_rx_timestamp(skb))
5170                 return NET_RX_SUCCESS;
5171
5172         rcu_read_lock();
5173 #ifdef CONFIG_RPS
5174         if (static_branch_unlikely(&rps_needed)) {
5175                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5176                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5177
5178                 if (cpu >= 0) {
5179                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5180                         rcu_read_unlock();
5181                         return ret;
5182                 }
5183         }
5184 #endif
5185         ret = __netif_receive_skb(skb);
5186         rcu_read_unlock();
5187         return ret;
5188 }
5189
5190 static void netif_receive_skb_list_internal(struct list_head *head)
5191 {
5192         struct sk_buff *skb, *next;
5193         struct list_head sublist;
5194
5195         INIT_LIST_HEAD(&sublist);
5196         list_for_each_entry_safe(skb, next, head, list) {
5197                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5198                 skb_list_del_init(skb);
5199                 if (!skb_defer_rx_timestamp(skb))
5200                         list_add_tail(&skb->list, &sublist);
5201         }
5202         list_splice_init(&sublist, head);
5203
5204         rcu_read_lock();
5205 #ifdef CONFIG_RPS
5206         if (static_branch_unlikely(&rps_needed)) {
5207                 list_for_each_entry_safe(skb, next, head, list) {
5208                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5209                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5210
5211                         if (cpu >= 0) {
5212                                 /* Will be handled, remove from list */
5213                                 skb_list_del_init(skb);
5214                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5215                         }
5216                 }
5217         }
5218 #endif
5219         __netif_receive_skb_list(head);
5220         rcu_read_unlock();
5221 }
5222
5223 /**
5224  *      netif_receive_skb - process receive buffer from network
5225  *      @skb: buffer to process
5226  *
5227  *      netif_receive_skb() is the main receive data processing function.
5228  *      It always succeeds. The buffer may be dropped during processing
5229  *      for congestion control or by the protocol layers.
5230  *
5231  *      This function may only be called from softirq context and interrupts
5232  *      should be enabled.
5233  *
5234  *      Return values (usually ignored):
5235  *      NET_RX_SUCCESS: no congestion
5236  *      NET_RX_DROP: packet was dropped
5237  */
5238 int netif_receive_skb(struct sk_buff *skb)
5239 {
5240         int ret;
5241
5242         trace_netif_receive_skb_entry(skb);
5243
5244         ret = netif_receive_skb_internal(skb);
5245         trace_netif_receive_skb_exit(ret);
5246
5247         return ret;
5248 }
5249 EXPORT_SYMBOL(netif_receive_skb);
5250
5251 /**
5252  *      netif_receive_skb_list - process many receive buffers from network
5253  *      @head: list of skbs to process.
5254  *
5255  *      Since return value of netif_receive_skb() is normally ignored, and
5256  *      wouldn't be meaningful for a list, this function returns void.
5257  *
5258  *      This function may only be called from softirq context and interrupts
5259  *      should be enabled.
5260  */
5261 void netif_receive_skb_list(struct list_head *head)
5262 {
5263         struct sk_buff *skb;
5264
5265         if (list_empty(head))
5266                 return;
5267         if (trace_netif_receive_skb_list_entry_enabled()) {
5268                 list_for_each_entry(skb, head, list)
5269                         trace_netif_receive_skb_list_entry(skb);
5270         }
5271         netif_receive_skb_list_internal(head);
5272         trace_netif_receive_skb_list_exit(0);
5273 }
5274 EXPORT_SYMBOL(netif_receive_skb_list);
5275
5276 DEFINE_PER_CPU(struct work_struct, flush_works);
5277
5278 /* Network device is going away, flush any packets still pending */
5279 static void flush_backlog(struct work_struct *work)
5280 {
5281         struct sk_buff *skb, *tmp;
5282         struct softnet_data *sd;
5283
5284         local_bh_disable();
5285         sd = this_cpu_ptr(&softnet_data);
5286
5287         local_irq_disable();
5288         rps_lock(sd);
5289         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5290                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5291                         __skb_unlink(skb, &sd->input_pkt_queue);
5292                         kfree_skb(skb);
5293                         input_queue_head_incr(sd);
5294                 }
5295         }
5296         rps_unlock(sd);
5297         local_irq_enable();
5298
5299         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5300                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5301                         __skb_unlink(skb, &sd->process_queue);
5302                         kfree_skb(skb);
5303                         input_queue_head_incr(sd);
5304                 }
5305         }
5306         local_bh_enable();
5307 }
5308
5309 static void flush_all_backlogs(void)
5310 {
5311         unsigned int cpu;
5312
5313         get_online_cpus();
5314
5315         for_each_online_cpu(cpu)
5316                 queue_work_on(cpu, system_highpri_wq,
5317                               per_cpu_ptr(&flush_works, cpu));
5318
5319         for_each_online_cpu(cpu)
5320                 flush_work(per_cpu_ptr(&flush_works, cpu));
5321
5322         put_online_cpus();
5323 }
5324
5325 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5326 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5327 static int napi_gro_complete(struct sk_buff *skb)
5328 {
5329         struct packet_offload *ptype;
5330         __be16 type = skb->protocol;
5331         struct list_head *head = &offload_base;
5332         int err = -ENOENT;
5333
5334         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5335
5336         if (NAPI_GRO_CB(skb)->count == 1) {
5337                 skb_shinfo(skb)->gso_size = 0;
5338                 goto out;
5339         }
5340
5341         rcu_read_lock();
5342         list_for_each_entry_rcu(ptype, head, list) {
5343                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5344                         continue;
5345
5346                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5347                                          ipv6_gro_complete, inet_gro_complete,
5348                                          skb, 0);
5349                 break;
5350         }
5351         rcu_read_unlock();
5352
5353         if (err) {
5354                 WARN_ON(&ptype->list == head);
5355                 kfree_skb(skb);
5356                 return NET_RX_SUCCESS;
5357         }
5358
5359 out:
5360         return netif_receive_skb_internal(skb);
5361 }
5362
5363 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5364                                    bool flush_old)
5365 {
5366         struct list_head *head = &napi->gro_hash[index].list;
5367         struct sk_buff *skb, *p;
5368
5369         list_for_each_entry_safe_reverse(skb, p, head, list) {
5370                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5371                         return;
5372                 skb_list_del_init(skb);
5373                 napi_gro_complete(skb);
5374                 napi->gro_hash[index].count--;
5375         }
5376
5377         if (!napi->gro_hash[index].count)
5378                 __clear_bit(index, &napi->gro_bitmask);
5379 }
5380
5381 /* napi->gro_hash[].list contains packets ordered by age.
5382  * youngest packets at the head of it.
5383  * Complete skbs in reverse order to reduce latencies.
5384  */
5385 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5386 {
5387         unsigned long bitmask = napi->gro_bitmask;
5388         unsigned int i, base = ~0U;
5389
5390         while ((i = ffs(bitmask)) != 0) {
5391                 bitmask >>= i;
5392                 base += i;
5393                 __napi_gro_flush_chain(napi, base, flush_old);
5394         }
5395 }
5396 EXPORT_SYMBOL(napi_gro_flush);
5397
5398 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5399                                           struct sk_buff *skb)
5400 {
5401         unsigned int maclen = skb->dev->hard_header_len;
5402         u32 hash = skb_get_hash_raw(skb);
5403         struct list_head *head;
5404         struct sk_buff *p;
5405
5406         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5407         list_for_each_entry(p, head, list) {
5408                 unsigned long diffs;
5409
5410                 NAPI_GRO_CB(p)->flush = 0;
5411
5412                 if (hash != skb_get_hash_raw(p)) {
5413                         NAPI_GRO_CB(p)->same_flow = 0;
5414                         continue;
5415                 }
5416
5417                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5418                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5419                 if (skb_vlan_tag_present(p))
5420                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5421                 diffs |= skb_metadata_dst_cmp(p, skb);
5422                 diffs |= skb_metadata_differs(p, skb);
5423                 if (maclen == ETH_HLEN)
5424                         diffs |= compare_ether_header(skb_mac_header(p),
5425                                                       skb_mac_header(skb));
5426                 else if (!diffs)
5427                         diffs = memcmp(skb_mac_header(p),
5428                                        skb_mac_header(skb),
5429                                        maclen);
5430                 NAPI_GRO_CB(p)->same_flow = !diffs;
5431         }
5432
5433         return head;
5434 }
5435
5436 static void skb_gro_reset_offset(struct sk_buff *skb)
5437 {
5438         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5439         const skb_frag_t *frag0 = &pinfo->frags[0];
5440
5441         NAPI_GRO_CB(skb)->data_offset = 0;
5442         NAPI_GRO_CB(skb)->frag0 = NULL;
5443         NAPI_GRO_CB(skb)->frag0_len = 0;
5444
5445         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5446             pinfo->nr_frags &&
5447             !PageHighMem(skb_frag_page(frag0))) {
5448                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5449                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5450                                                     skb_frag_size(frag0),
5451                                                     skb->end - skb->tail);
5452         }
5453 }
5454
5455 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5456 {
5457         struct skb_shared_info *pinfo = skb_shinfo(skb);
5458
5459         BUG_ON(skb->end - skb->tail < grow);
5460
5461         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5462
5463         skb->data_len -= grow;
5464         skb->tail += grow;
5465
5466         pinfo->frags[0].page_offset += grow;
5467         skb_frag_size_sub(&pinfo->frags[0], grow);
5468
5469         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5470                 skb_frag_unref(skb, 0);
5471                 memmove(pinfo->frags, pinfo->frags + 1,
5472                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5473         }
5474 }
5475
5476 static void gro_flush_oldest(struct list_head *head)
5477 {
5478         struct sk_buff *oldest;
5479
5480         oldest = list_last_entry(head, struct sk_buff, list);
5481
5482         /* We are called with head length >= MAX_GRO_SKBS, so this is
5483          * impossible.
5484          */
5485         if (WARN_ON_ONCE(!oldest))
5486                 return;
5487
5488         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5489          * SKB to the chain.
5490          */
5491         skb_list_del_init(oldest);
5492         napi_gro_complete(oldest);
5493 }
5494
5495 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5496                                                            struct sk_buff *));
5497 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5498                                                            struct sk_buff *));
5499 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5500 {
5501         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5502         struct list_head *head = &offload_base;
5503         struct packet_offload *ptype;
5504         __be16 type = skb->protocol;
5505         struct list_head *gro_head;
5506         struct sk_buff *pp = NULL;
5507         enum gro_result ret;
5508         int same_flow;
5509         int grow;
5510
5511         if (netif_elide_gro(skb->dev))
5512                 goto normal;
5513
5514         gro_head = gro_list_prepare(napi, skb);
5515
5516         rcu_read_lock();
5517         list_for_each_entry_rcu(ptype, head, list) {
5518                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5519                         continue;
5520
5521                 skb_set_network_header(skb, skb_gro_offset(skb));
5522                 skb_reset_mac_len(skb);
5523                 NAPI_GRO_CB(skb)->same_flow = 0;
5524                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5525                 NAPI_GRO_CB(skb)->free = 0;
5526                 NAPI_GRO_CB(skb)->encap_mark = 0;
5527                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5528                 NAPI_GRO_CB(skb)->is_fou = 0;
5529                 NAPI_GRO_CB(skb)->is_atomic = 1;
5530                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5531
5532                 /* Setup for GRO checksum validation */
5533                 switch (skb->ip_summed) {
5534                 case CHECKSUM_COMPLETE:
5535                         NAPI_GRO_CB(skb)->csum = skb->csum;
5536                         NAPI_GRO_CB(skb)->csum_valid = 1;
5537                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5538                         break;
5539                 case CHECKSUM_UNNECESSARY:
5540                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5541                         NAPI_GRO_CB(skb)->csum_valid = 0;
5542                         break;
5543                 default:
5544                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5545                         NAPI_GRO_CB(skb)->csum_valid = 0;
5546                 }
5547
5548                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5549                                         ipv6_gro_receive, inet_gro_receive,
5550                                         gro_head, skb);
5551                 break;
5552         }
5553         rcu_read_unlock();
5554
5555         if (&ptype->list == head)
5556                 goto normal;
5557
5558         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5559                 ret = GRO_CONSUMED;
5560                 goto ok;
5561         }
5562
5563         same_flow = NAPI_GRO_CB(skb)->same_flow;
5564         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5565
5566         if (pp) {
5567                 skb_list_del_init(pp);
5568                 napi_gro_complete(pp);
5569                 napi->gro_hash[hash].count--;
5570         }
5571
5572         if (same_flow)
5573                 goto ok;
5574
5575         if (NAPI_GRO_CB(skb)->flush)
5576                 goto normal;
5577
5578         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5579                 gro_flush_oldest(gro_head);
5580         } else {
5581                 napi->gro_hash[hash].count++;
5582         }
5583         NAPI_GRO_CB(skb)->count = 1;
5584         NAPI_GRO_CB(skb)->age = jiffies;
5585         NAPI_GRO_CB(skb)->last = skb;
5586         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5587         list_add(&skb->list, gro_head);
5588         ret = GRO_HELD;
5589
5590 pull:
5591         grow = skb_gro_offset(skb) - skb_headlen(skb);
5592         if (grow > 0)
5593                 gro_pull_from_frag0(skb, grow);
5594 ok:
5595         if (napi->gro_hash[hash].count) {
5596                 if (!test_bit(hash, &napi->gro_bitmask))
5597                         __set_bit(hash, &napi->gro_bitmask);
5598         } else if (test_bit(hash, &napi->gro_bitmask)) {
5599                 __clear_bit(hash, &napi->gro_bitmask);
5600         }
5601
5602         return ret;
5603
5604 normal:
5605         ret = GRO_NORMAL;
5606         goto pull;
5607 }
5608
5609 struct packet_offload *gro_find_receive_by_type(__be16 type)
5610 {
5611         struct list_head *offload_head = &offload_base;
5612         struct packet_offload *ptype;
5613
5614         list_for_each_entry_rcu(ptype, offload_head, list) {
5615                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5616                         continue;
5617                 return ptype;
5618         }
5619         return NULL;
5620 }
5621 EXPORT_SYMBOL(gro_find_receive_by_type);
5622
5623 struct packet_offload *gro_find_complete_by_type(__be16 type)
5624 {
5625         struct list_head *offload_head = &offload_base;
5626         struct packet_offload *ptype;
5627
5628         list_for_each_entry_rcu(ptype, offload_head, list) {
5629                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5630                         continue;
5631                 return ptype;
5632         }
5633         return NULL;
5634 }
5635 EXPORT_SYMBOL(gro_find_complete_by_type);
5636
5637 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5638 {
5639         skb_dst_drop(skb);
5640         secpath_reset(skb);
5641         kmem_cache_free(skbuff_head_cache, skb);
5642 }
5643
5644 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5645 {
5646         switch (ret) {
5647         case GRO_NORMAL:
5648                 if (netif_receive_skb_internal(skb))
5649                         ret = GRO_DROP;
5650                 break;
5651
5652         case GRO_DROP:
5653                 kfree_skb(skb);
5654                 break;
5655
5656         case GRO_MERGED_FREE:
5657                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5658                         napi_skb_free_stolen_head(skb);
5659                 else
5660                         __kfree_skb(skb);
5661                 break;
5662
5663         case GRO_HELD:
5664         case GRO_MERGED:
5665         case GRO_CONSUMED:
5666                 break;
5667         }
5668
5669         return ret;
5670 }
5671
5672 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5673 {
5674         gro_result_t ret;
5675
5676         skb_mark_napi_id(skb, napi);
5677         trace_napi_gro_receive_entry(skb);
5678
5679         skb_gro_reset_offset(skb);
5680
5681         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5682         trace_napi_gro_receive_exit(ret);
5683
5684         return ret;
5685 }
5686 EXPORT_SYMBOL(napi_gro_receive);
5687
5688 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5689 {
5690         if (unlikely(skb->pfmemalloc)) {
5691                 consume_skb(skb);
5692                 return;
5693         }
5694         __skb_pull(skb, skb_headlen(skb));
5695         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5696         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5697         __vlan_hwaccel_clear_tag(skb);
5698         skb->dev = napi->dev;
5699         skb->skb_iif = 0;
5700
5701         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5702         skb->pkt_type = PACKET_HOST;
5703
5704         skb->encapsulation = 0;
5705         skb_shinfo(skb)->gso_type = 0;
5706         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5707         secpath_reset(skb);
5708
5709         napi->skb = skb;
5710 }
5711
5712 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5713 {
5714         struct sk_buff *skb = napi->skb;
5715
5716         if (!skb) {
5717                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5718                 if (skb) {
5719                         napi->skb = skb;
5720                         skb_mark_napi_id(skb, napi);
5721                 }
5722         }
5723         return skb;
5724 }
5725 EXPORT_SYMBOL(napi_get_frags);
5726
5727 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5728                                       struct sk_buff *skb,
5729                                       gro_result_t ret)
5730 {
5731         switch (ret) {
5732         case GRO_NORMAL:
5733         case GRO_HELD:
5734                 __skb_push(skb, ETH_HLEN);
5735                 skb->protocol = eth_type_trans(skb, skb->dev);
5736                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5737                         ret = GRO_DROP;
5738                 break;
5739
5740         case GRO_DROP:
5741                 napi_reuse_skb(napi, skb);
5742                 break;
5743
5744         case GRO_MERGED_FREE:
5745                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5746                         napi_skb_free_stolen_head(skb);
5747                 else
5748                         napi_reuse_skb(napi, skb);
5749                 break;
5750
5751         case GRO_MERGED:
5752         case GRO_CONSUMED:
5753                 break;
5754         }
5755
5756         return ret;
5757 }
5758
5759 /* Upper GRO stack assumes network header starts at gro_offset=0
5760  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5761  * We copy ethernet header into skb->data to have a common layout.
5762  */
5763 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5764 {
5765         struct sk_buff *skb = napi->skb;
5766         const struct ethhdr *eth;
5767         unsigned int hlen = sizeof(*eth);
5768
5769         napi->skb = NULL;
5770
5771         skb_reset_mac_header(skb);
5772         skb_gro_reset_offset(skb);
5773
5774         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5775                 eth = skb_gro_header_slow(skb, hlen, 0);
5776                 if (unlikely(!eth)) {
5777                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5778                                              __func__, napi->dev->name);
5779                         napi_reuse_skb(napi, skb);
5780                         return NULL;
5781                 }
5782         } else {
5783                 eth = (const struct ethhdr *)skb->data;
5784                 gro_pull_from_frag0(skb, hlen);
5785                 NAPI_GRO_CB(skb)->frag0 += hlen;
5786                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5787         }
5788         __skb_pull(skb, hlen);
5789
5790         /*
5791          * This works because the only protocols we care about don't require
5792          * special handling.
5793          * We'll fix it up properly in napi_frags_finish()
5794          */
5795         skb->protocol = eth->h_proto;
5796
5797         return skb;
5798 }
5799
5800 gro_result_t napi_gro_frags(struct napi_struct *napi)
5801 {
5802         gro_result_t ret;
5803         struct sk_buff *skb = napi_frags_skb(napi);
5804
5805         if (!skb)
5806                 return GRO_DROP;
5807
5808         trace_napi_gro_frags_entry(skb);
5809
5810         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5811         trace_napi_gro_frags_exit(ret);
5812
5813         return ret;
5814 }
5815 EXPORT_SYMBOL(napi_gro_frags);
5816
5817 /* Compute the checksum from gro_offset and return the folded value
5818  * after adding in any pseudo checksum.
5819  */
5820 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5821 {
5822         __wsum wsum;
5823         __sum16 sum;
5824
5825         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5826
5827         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5828         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5829         /* See comments in __skb_checksum_complete(). */
5830         if (likely(!sum)) {
5831                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5832                     !skb->csum_complete_sw)
5833                         netdev_rx_csum_fault(skb->dev, skb);
5834         }
5835
5836         NAPI_GRO_CB(skb)->csum = wsum;
5837         NAPI_GRO_CB(skb)->csum_valid = 1;
5838
5839         return sum;
5840 }
5841 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5842
5843 static void net_rps_send_ipi(struct softnet_data *remsd)
5844 {
5845 #ifdef CONFIG_RPS
5846         while (remsd) {
5847                 struct softnet_data *next = remsd->rps_ipi_next;
5848
5849                 if (cpu_online(remsd->cpu))
5850                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5851                 remsd = next;
5852         }
5853 #endif
5854 }
5855
5856 /*
5857  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5858  * Note: called with local irq disabled, but exits with local irq enabled.
5859  */
5860 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5861 {
5862 #ifdef CONFIG_RPS
5863         struct softnet_data *remsd = sd->rps_ipi_list;
5864
5865         if (remsd) {
5866                 sd->rps_ipi_list = NULL;
5867
5868                 local_irq_enable();
5869
5870                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5871                 net_rps_send_ipi(remsd);
5872         } else
5873 #endif
5874                 local_irq_enable();
5875 }
5876
5877 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5878 {
5879 #ifdef CONFIG_RPS
5880         return sd->rps_ipi_list != NULL;
5881 #else
5882         return false;
5883 #endif
5884 }
5885
5886 static int process_backlog(struct napi_struct *napi, int quota)
5887 {
5888         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5889         bool again = true;
5890         int work = 0;
5891
5892         /* Check if we have pending ipi, its better to send them now,
5893          * not waiting net_rx_action() end.
5894          */
5895         if (sd_has_rps_ipi_waiting(sd)) {
5896                 local_irq_disable();
5897                 net_rps_action_and_irq_enable(sd);
5898         }
5899
5900         napi->weight = dev_rx_weight;
5901         while (again) {
5902                 struct sk_buff *skb;
5903
5904                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5905                         rcu_read_lock();
5906                         __netif_receive_skb(skb);
5907                         rcu_read_unlock();
5908                         input_queue_head_incr(sd);
5909                         if (++work >= quota)
5910                                 return work;
5911
5912                 }
5913
5914                 local_irq_disable();
5915                 rps_lock(sd);
5916                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5917                         /*
5918                          * Inline a custom version of __napi_complete().
5919                          * only current cpu owns and manipulates this napi,
5920                          * and NAPI_STATE_SCHED is the only possible flag set
5921                          * on backlog.
5922                          * We can use a plain write instead of clear_bit(),
5923                          * and we dont need an smp_mb() memory barrier.
5924                          */
5925                         napi->state = 0;
5926                         again = false;
5927                 } else {
5928                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5929                                                    &sd->process_queue);
5930                 }
5931                 rps_unlock(sd);
5932                 local_irq_enable();
5933         }
5934
5935         return work;
5936 }
5937
5938 /**
5939  * __napi_schedule - schedule for receive
5940  * @n: entry to schedule
5941  *
5942  * The entry's receive function will be scheduled to run.
5943  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5944  */
5945 void __napi_schedule(struct napi_struct *n)
5946 {
5947         unsigned long flags;
5948
5949         local_irq_save(flags);
5950         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5951         local_irq_restore(flags);
5952 }
5953 EXPORT_SYMBOL(__napi_schedule);
5954
5955 /**
5956  *      napi_schedule_prep - check if napi can be scheduled
5957  *      @n: napi context
5958  *
5959  * Test if NAPI routine is already running, and if not mark
5960  * it as running.  This is used as a condition variable
5961  * insure only one NAPI poll instance runs.  We also make
5962  * sure there is no pending NAPI disable.
5963  */
5964 bool napi_schedule_prep(struct napi_struct *n)
5965 {
5966         unsigned long val, new;
5967
5968         do {
5969                 val = READ_ONCE(n->state);
5970                 if (unlikely(val & NAPIF_STATE_DISABLE))
5971                         return false;
5972                 new = val | NAPIF_STATE_SCHED;
5973
5974                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5975                  * This was suggested by Alexander Duyck, as compiler
5976                  * emits better code than :
5977                  * if (val & NAPIF_STATE_SCHED)
5978                  *     new |= NAPIF_STATE_MISSED;
5979                  */
5980                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5981                                                    NAPIF_STATE_MISSED;
5982         } while (cmpxchg(&n->state, val, new) != val);
5983
5984         return !(val & NAPIF_STATE_SCHED);
5985 }
5986 EXPORT_SYMBOL(napi_schedule_prep);
5987
5988 /**
5989  * __napi_schedule_irqoff - schedule for receive
5990  * @n: entry to schedule
5991  *
5992  * Variant of __napi_schedule() assuming hard irqs are masked
5993  */
5994 void __napi_schedule_irqoff(struct napi_struct *n)
5995 {
5996         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5997 }
5998 EXPORT_SYMBOL(__napi_schedule_irqoff);
5999
6000 bool napi_complete_done(struct napi_struct *n, int work_done)
6001 {
6002         unsigned long flags, val, new;
6003
6004         /*
6005          * 1) Don't let napi dequeue from the cpu poll list
6006          *    just in case its running on a different cpu.
6007          * 2) If we are busy polling, do nothing here, we have
6008          *    the guarantee we will be called later.
6009          */
6010         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6011                                  NAPIF_STATE_IN_BUSY_POLL)))
6012                 return false;
6013
6014         if (n->gro_bitmask) {
6015                 unsigned long timeout = 0;
6016
6017                 if (work_done)
6018                         timeout = n->dev->gro_flush_timeout;
6019
6020                 /* When the NAPI instance uses a timeout and keeps postponing
6021                  * it, we need to bound somehow the time packets are kept in
6022                  * the GRO layer
6023                  */
6024                 napi_gro_flush(n, !!timeout);
6025                 if (timeout)
6026                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6027                                       HRTIMER_MODE_REL_PINNED);
6028         }
6029         if (unlikely(!list_empty(&n->poll_list))) {
6030                 /* If n->poll_list is not empty, we need to mask irqs */
6031                 local_irq_save(flags);
6032                 list_del_init(&n->poll_list);
6033                 local_irq_restore(flags);
6034         }
6035
6036         do {
6037                 val = READ_ONCE(n->state);
6038
6039                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6040
6041                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6042
6043                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6044                  * because we will call napi->poll() one more time.
6045                  * This C code was suggested by Alexander Duyck to help gcc.
6046                  */
6047                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6048                                                     NAPIF_STATE_SCHED;
6049         } while (cmpxchg(&n->state, val, new) != val);
6050
6051         if (unlikely(val & NAPIF_STATE_MISSED)) {
6052                 __napi_schedule(n);
6053                 return false;
6054         }
6055
6056         return true;
6057 }
6058 EXPORT_SYMBOL(napi_complete_done);
6059
6060 /* must be called under rcu_read_lock(), as we dont take a reference */
6061 static struct napi_struct *napi_by_id(unsigned int napi_id)
6062 {
6063         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6064         struct napi_struct *napi;
6065
6066         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6067                 if (napi->napi_id == napi_id)
6068                         return napi;
6069
6070         return NULL;
6071 }
6072
6073 #if defined(CONFIG_NET_RX_BUSY_POLL)
6074
6075 #define BUSY_POLL_BUDGET 8
6076
6077 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6078 {
6079         int rc;
6080
6081         /* Busy polling means there is a high chance device driver hard irq
6082          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6083          * set in napi_schedule_prep().
6084          * Since we are about to call napi->poll() once more, we can safely
6085          * clear NAPI_STATE_MISSED.
6086          *
6087          * Note: x86 could use a single "lock and ..." instruction
6088          * to perform these two clear_bit()
6089          */
6090         clear_bit(NAPI_STATE_MISSED, &napi->state);
6091         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6092
6093         local_bh_disable();
6094
6095         /* All we really want here is to re-enable device interrupts.
6096          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6097          */
6098         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6099         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6100         netpoll_poll_unlock(have_poll_lock);
6101         if (rc == BUSY_POLL_BUDGET)
6102                 __napi_schedule(napi);
6103         local_bh_enable();
6104 }
6105
6106 void napi_busy_loop(unsigned int napi_id,
6107                     bool (*loop_end)(void *, unsigned long),
6108                     void *loop_end_arg)
6109 {
6110         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6111         int (*napi_poll)(struct napi_struct *napi, int budget);
6112         void *have_poll_lock = NULL;
6113         struct napi_struct *napi;
6114
6115 restart:
6116         napi_poll = NULL;
6117
6118         rcu_read_lock();
6119
6120         napi = napi_by_id(napi_id);
6121         if (!napi)
6122                 goto out;
6123
6124         preempt_disable();
6125         for (;;) {
6126                 int work = 0;
6127
6128                 local_bh_disable();
6129                 if (!napi_poll) {
6130                         unsigned long val = READ_ONCE(napi->state);
6131
6132                         /* If multiple threads are competing for this napi,
6133                          * we avoid dirtying napi->state as much as we can.
6134                          */
6135                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6136                                    NAPIF_STATE_IN_BUSY_POLL))
6137                                 goto count;
6138                         if (cmpxchg(&napi->state, val,
6139                                     val | NAPIF_STATE_IN_BUSY_POLL |
6140                                           NAPIF_STATE_SCHED) != val)
6141                                 goto count;
6142                         have_poll_lock = netpoll_poll_lock(napi);
6143                         napi_poll = napi->poll;
6144                 }
6145                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6146                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6147 count:
6148                 if (work > 0)
6149                         __NET_ADD_STATS(dev_net(napi->dev),
6150                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6151                 local_bh_enable();
6152
6153                 if (!loop_end || loop_end(loop_end_arg, start_time))
6154                         break;
6155
6156                 if (unlikely(need_resched())) {
6157                         if (napi_poll)
6158                                 busy_poll_stop(napi, have_poll_lock);
6159                         preempt_enable();
6160                         rcu_read_unlock();
6161                         cond_resched();
6162                         if (loop_end(loop_end_arg, start_time))
6163                                 return;
6164                         goto restart;
6165                 }
6166                 cpu_relax();
6167         }
6168         if (napi_poll)
6169                 busy_poll_stop(napi, have_poll_lock);
6170         preempt_enable();
6171 out:
6172         rcu_read_unlock();
6173 }
6174 EXPORT_SYMBOL(napi_busy_loop);
6175
6176 #endif /* CONFIG_NET_RX_BUSY_POLL */
6177
6178 static void napi_hash_add(struct napi_struct *napi)
6179 {
6180         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6181             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6182                 return;
6183
6184         spin_lock(&napi_hash_lock);
6185
6186         /* 0..NR_CPUS range is reserved for sender_cpu use */
6187         do {
6188                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6189                         napi_gen_id = MIN_NAPI_ID;
6190         } while (napi_by_id(napi_gen_id));
6191         napi->napi_id = napi_gen_id;
6192
6193         hlist_add_head_rcu(&napi->napi_hash_node,
6194                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6195
6196         spin_unlock(&napi_hash_lock);
6197 }
6198
6199 /* Warning : caller is responsible to make sure rcu grace period
6200  * is respected before freeing memory containing @napi
6201  */
6202 bool napi_hash_del(struct napi_struct *napi)
6203 {
6204         bool rcu_sync_needed = false;
6205
6206         spin_lock(&napi_hash_lock);
6207
6208         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6209                 rcu_sync_needed = true;
6210                 hlist_del_rcu(&napi->napi_hash_node);
6211         }
6212         spin_unlock(&napi_hash_lock);
6213         return rcu_sync_needed;
6214 }
6215 EXPORT_SYMBOL_GPL(napi_hash_del);
6216
6217 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6218 {
6219         struct napi_struct *napi;
6220
6221         napi = container_of(timer, struct napi_struct, timer);
6222
6223         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6224          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6225          */
6226         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6227             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6228                 __napi_schedule_irqoff(napi);
6229
6230         return HRTIMER_NORESTART;
6231 }
6232
6233 static void init_gro_hash(struct napi_struct *napi)
6234 {
6235         int i;
6236
6237         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6238                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6239                 napi->gro_hash[i].count = 0;
6240         }
6241         napi->gro_bitmask = 0;
6242 }
6243
6244 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6245                     int (*poll)(struct napi_struct *, int), int weight)
6246 {
6247         INIT_LIST_HEAD(&napi->poll_list);
6248         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6249         napi->timer.function = napi_watchdog;
6250         init_gro_hash(napi);
6251         napi->skb = NULL;
6252         napi->poll = poll;
6253         if (weight > NAPI_POLL_WEIGHT)
6254                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6255                                 weight);
6256         napi->weight = weight;
6257         list_add(&napi->dev_list, &dev->napi_list);
6258         napi->dev = dev;
6259 #ifdef CONFIG_NETPOLL
6260         napi->poll_owner = -1;
6261 #endif
6262         set_bit(NAPI_STATE_SCHED, &napi->state);
6263         napi_hash_add(napi);
6264 }
6265 EXPORT_SYMBOL(netif_napi_add);
6266
6267 void napi_disable(struct napi_struct *n)
6268 {
6269         might_sleep();
6270         set_bit(NAPI_STATE_DISABLE, &n->state);
6271
6272         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6273                 msleep(1);
6274         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6275                 msleep(1);
6276
6277         hrtimer_cancel(&n->timer);
6278
6279         clear_bit(NAPI_STATE_DISABLE, &n->state);
6280 }
6281 EXPORT_SYMBOL(napi_disable);
6282
6283 static void flush_gro_hash(struct napi_struct *napi)
6284 {
6285         int i;
6286
6287         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6288                 struct sk_buff *skb, *n;
6289
6290                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6291                         kfree_skb(skb);
6292                 napi->gro_hash[i].count = 0;
6293         }
6294 }
6295
6296 /* Must be called in process context */
6297 void netif_napi_del(struct napi_struct *napi)
6298 {
6299         might_sleep();
6300         if (napi_hash_del(napi))
6301                 synchronize_net();
6302         list_del_init(&napi->dev_list);
6303         napi_free_frags(napi);
6304
6305         flush_gro_hash(napi);
6306         napi->gro_bitmask = 0;
6307 }
6308 EXPORT_SYMBOL(netif_napi_del);
6309
6310 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6311 {
6312         void *have;
6313         int work, weight;
6314
6315         list_del_init(&n->poll_list);
6316
6317         have = netpoll_poll_lock(n);
6318
6319         weight = n->weight;
6320
6321         /* This NAPI_STATE_SCHED test is for avoiding a race
6322          * with netpoll's poll_napi().  Only the entity which
6323          * obtains the lock and sees NAPI_STATE_SCHED set will
6324          * actually make the ->poll() call.  Therefore we avoid
6325          * accidentally calling ->poll() when NAPI is not scheduled.
6326          */
6327         work = 0;
6328         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6329                 work = n->poll(n, weight);
6330                 trace_napi_poll(n, work, weight);
6331         }
6332
6333         WARN_ON_ONCE(work > weight);
6334
6335         if (likely(work < weight))
6336                 goto out_unlock;
6337
6338         /* Drivers must not modify the NAPI state if they
6339          * consume the entire weight.  In such cases this code
6340          * still "owns" the NAPI instance and therefore can
6341          * move the instance around on the list at-will.
6342          */
6343         if (unlikely(napi_disable_pending(n))) {
6344                 napi_complete(n);
6345                 goto out_unlock;
6346         }
6347
6348         if (n->gro_bitmask) {
6349                 /* flush too old packets
6350                  * If HZ < 1000, flush all packets.
6351                  */
6352                 napi_gro_flush(n, HZ >= 1000);
6353         }
6354
6355         /* Some drivers may have called napi_schedule
6356          * prior to exhausting their budget.
6357          */
6358         if (unlikely(!list_empty(&n->poll_list))) {
6359                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6360                              n->dev ? n->dev->name : "backlog");
6361                 goto out_unlock;
6362         }
6363
6364         list_add_tail(&n->poll_list, repoll);
6365
6366 out_unlock:
6367         netpoll_poll_unlock(have);
6368
6369         return work;
6370 }
6371
6372 static __latent_entropy void net_rx_action(struct softirq_action *h)
6373 {
6374         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6375         unsigned long time_limit = jiffies +
6376                 usecs_to_jiffies(netdev_budget_usecs);
6377         int budget = netdev_budget;
6378         LIST_HEAD(list);
6379         LIST_HEAD(repoll);
6380
6381         local_irq_disable();
6382         list_splice_init(&sd->poll_list, &list);
6383         local_irq_enable();
6384
6385         for (;;) {
6386                 struct napi_struct *n;
6387
6388                 if (list_empty(&list)) {
6389                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6390                                 goto out;
6391                         break;
6392                 }
6393
6394                 n = list_first_entry(&list, struct napi_struct, poll_list);
6395                 budget -= napi_poll(n, &repoll);
6396
6397                 /* If softirq window is exhausted then punt.
6398                  * Allow this to run for 2 jiffies since which will allow
6399                  * an average latency of 1.5/HZ.
6400                  */
6401                 if (unlikely(budget <= 0 ||
6402                              time_after_eq(jiffies, time_limit))) {
6403                         sd->time_squeeze++;
6404                         break;
6405                 }
6406         }
6407
6408         local_irq_disable();
6409
6410         list_splice_tail_init(&sd->poll_list, &list);
6411         list_splice_tail(&repoll, &list);
6412         list_splice(&list, &sd->poll_list);
6413         if (!list_empty(&sd->poll_list))
6414                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6415
6416         net_rps_action_and_irq_enable(sd);
6417 out:
6418         __kfree_skb_flush();
6419 }
6420
6421 struct netdev_adjacent {
6422         struct net_device *dev;
6423
6424         /* upper master flag, there can only be one master device per list */
6425         bool master;
6426
6427         /* counter for the number of times this device was added to us */
6428         u16 ref_nr;
6429
6430         /* private field for the users */
6431         void *private;
6432
6433         struct list_head list;
6434         struct rcu_head rcu;
6435 };
6436
6437 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6438                                                  struct list_head *adj_list)
6439 {
6440         struct netdev_adjacent *adj;
6441
6442         list_for_each_entry(adj, adj_list, list) {
6443                 if (adj->dev == adj_dev)
6444                         return adj;
6445         }
6446         return NULL;
6447 }
6448
6449 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6450 {
6451         struct net_device *dev = data;
6452
6453         return upper_dev == dev;
6454 }
6455
6456 /**
6457  * netdev_has_upper_dev - Check if device is linked to an upper device
6458  * @dev: device
6459  * @upper_dev: upper device to check
6460  *
6461  * Find out if a device is linked to specified upper device and return true
6462  * in case it is. Note that this checks only immediate upper device,
6463  * not through a complete stack of devices. The caller must hold the RTNL lock.
6464  */
6465 bool netdev_has_upper_dev(struct net_device *dev,
6466                           struct net_device *upper_dev)
6467 {
6468         ASSERT_RTNL();
6469
6470         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6471                                              upper_dev);
6472 }
6473 EXPORT_SYMBOL(netdev_has_upper_dev);
6474
6475 /**
6476  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6477  * @dev: device
6478  * @upper_dev: upper device to check
6479  *
6480  * Find out if a device is linked to specified upper device and return true
6481  * in case it is. Note that this checks the entire upper device chain.
6482  * The caller must hold rcu lock.
6483  */
6484
6485 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6486                                   struct net_device *upper_dev)
6487 {
6488         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6489                                                upper_dev);
6490 }
6491 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6492
6493 /**
6494  * netdev_has_any_upper_dev - Check if device is linked to some device
6495  * @dev: device
6496  *
6497  * Find out if a device is linked to an upper device and return true in case
6498  * it is. The caller must hold the RTNL lock.
6499  */
6500 bool netdev_has_any_upper_dev(struct net_device *dev)
6501 {
6502         ASSERT_RTNL();
6503
6504         return !list_empty(&dev->adj_list.upper);
6505 }
6506 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6507
6508 /**
6509  * netdev_master_upper_dev_get - Get master upper device
6510  * @dev: device
6511  *
6512  * Find a master upper device and return pointer to it or NULL in case
6513  * it's not there. The caller must hold the RTNL lock.
6514  */
6515 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6516 {
6517         struct netdev_adjacent *upper;
6518
6519         ASSERT_RTNL();
6520
6521         if (list_empty(&dev->adj_list.upper))
6522                 return NULL;
6523
6524         upper = list_first_entry(&dev->adj_list.upper,
6525                                  struct netdev_adjacent, list);
6526         if (likely(upper->master))
6527                 return upper->dev;
6528         return NULL;
6529 }
6530 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6531
6532 /**
6533  * netdev_has_any_lower_dev - Check if device is linked to some device
6534  * @dev: device
6535  *
6536  * Find out if a device is linked to a lower device and return true in case
6537  * it is. The caller must hold the RTNL lock.
6538  */
6539 static bool netdev_has_any_lower_dev(struct net_device *dev)
6540 {
6541         ASSERT_RTNL();
6542
6543         return !list_empty(&dev->adj_list.lower);
6544 }
6545
6546 void *netdev_adjacent_get_private(struct list_head *adj_list)
6547 {
6548         struct netdev_adjacent *adj;
6549
6550         adj = list_entry(adj_list, struct netdev_adjacent, list);
6551
6552         return adj->private;
6553 }
6554 EXPORT_SYMBOL(netdev_adjacent_get_private);
6555
6556 /**
6557  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6558  * @dev: device
6559  * @iter: list_head ** of the current position
6560  *
6561  * Gets the next device from the dev's upper list, starting from iter
6562  * position. The caller must hold RCU read lock.
6563  */
6564 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6565                                                  struct list_head **iter)
6566 {
6567         struct netdev_adjacent *upper;
6568
6569         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6570
6571         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6572
6573         if (&upper->list == &dev->adj_list.upper)
6574                 return NULL;
6575
6576         *iter = &upper->list;
6577
6578         return upper->dev;
6579 }
6580 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6581
6582 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6583                                                     struct list_head **iter)
6584 {
6585         struct netdev_adjacent *upper;
6586
6587         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6588
6589         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6590
6591         if (&upper->list == &dev->adj_list.upper)
6592                 return NULL;
6593
6594         *iter = &upper->list;
6595
6596         return upper->dev;
6597 }
6598
6599 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6600                                   int (*fn)(struct net_device *dev,
6601                                             void *data),
6602                                   void *data)
6603 {
6604         struct net_device *udev;
6605         struct list_head *iter;
6606         int ret;
6607
6608         for (iter = &dev->adj_list.upper,
6609              udev = netdev_next_upper_dev_rcu(dev, &iter);
6610              udev;
6611              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6612                 /* first is the upper device itself */
6613                 ret = fn(udev, data);
6614                 if (ret)
6615                         return ret;
6616
6617                 /* then look at all of its upper devices */
6618                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6619                 if (ret)
6620                         return ret;
6621         }
6622
6623         return 0;
6624 }
6625 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6626
6627 /**
6628  * netdev_lower_get_next_private - Get the next ->private from the
6629  *                                 lower neighbour list
6630  * @dev: device
6631  * @iter: list_head ** of the current position
6632  *
6633  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6634  * list, starting from iter position. The caller must hold either hold the
6635  * RTNL lock or its own locking that guarantees that the neighbour lower
6636  * list will remain unchanged.
6637  */
6638 void *netdev_lower_get_next_private(struct net_device *dev,
6639                                     struct list_head **iter)
6640 {
6641         struct netdev_adjacent *lower;
6642
6643         lower = list_entry(*iter, struct netdev_adjacent, list);
6644
6645         if (&lower->list == &dev->adj_list.lower)
6646                 return NULL;
6647
6648         *iter = lower->list.next;
6649
6650         return lower->private;
6651 }
6652 EXPORT_SYMBOL(netdev_lower_get_next_private);
6653
6654 /**
6655  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6656  *                                     lower neighbour list, RCU
6657  *                                     variant
6658  * @dev: device
6659  * @iter: list_head ** of the current position
6660  *
6661  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662  * list, starting from iter position. The caller must hold RCU read lock.
6663  */
6664 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6665                                         struct list_head **iter)
6666 {
6667         struct netdev_adjacent *lower;
6668
6669         WARN_ON_ONCE(!rcu_read_lock_held());
6670
6671         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6672
6673         if (&lower->list == &dev->adj_list.lower)
6674                 return NULL;
6675
6676         *iter = &lower->list;
6677
6678         return lower->private;
6679 }
6680 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6681
6682 /**
6683  * netdev_lower_get_next - Get the next device from the lower neighbour
6684  *                         list
6685  * @dev: device
6686  * @iter: list_head ** of the current position
6687  *
6688  * Gets the next netdev_adjacent from the dev's lower neighbour
6689  * list, starting from iter position. The caller must hold RTNL lock or
6690  * its own locking that guarantees that the neighbour lower
6691  * list will remain unchanged.
6692  */
6693 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6694 {
6695         struct netdev_adjacent *lower;
6696
6697         lower = list_entry(*iter, struct netdev_adjacent, list);
6698
6699         if (&lower->list == &dev->adj_list.lower)
6700                 return NULL;
6701
6702         *iter = lower->list.next;
6703
6704         return lower->dev;
6705 }
6706 EXPORT_SYMBOL(netdev_lower_get_next);
6707
6708 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6709                                                 struct list_head **iter)
6710 {
6711         struct netdev_adjacent *lower;
6712
6713         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6714
6715         if (&lower->list == &dev->adj_list.lower)
6716                 return NULL;
6717
6718         *iter = &lower->list;
6719
6720         return lower->dev;
6721 }
6722
6723 int netdev_walk_all_lower_dev(struct net_device *dev,
6724                               int (*fn)(struct net_device *dev,
6725                                         void *data),
6726                               void *data)
6727 {
6728         struct net_device *ldev;
6729         struct list_head *iter;
6730         int ret;
6731
6732         for (iter = &dev->adj_list.lower,
6733              ldev = netdev_next_lower_dev(dev, &iter);
6734              ldev;
6735              ldev = netdev_next_lower_dev(dev, &iter)) {
6736                 /* first is the lower device itself */
6737                 ret = fn(ldev, data);
6738                 if (ret)
6739                         return ret;
6740
6741                 /* then look at all of its lower devices */
6742                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6743                 if (ret)
6744                         return ret;
6745         }
6746
6747         return 0;
6748 }
6749 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6750
6751 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6752                                                     struct list_head **iter)
6753 {
6754         struct netdev_adjacent *lower;
6755
6756         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6757         if (&lower->list == &dev->adj_list.lower)
6758                 return NULL;
6759
6760         *iter = &lower->list;
6761
6762         return lower->dev;
6763 }
6764
6765 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6766                                   int (*fn)(struct net_device *dev,
6767                                             void *data),
6768                                   void *data)
6769 {
6770         struct net_device *ldev;
6771         struct list_head *iter;
6772         int ret;
6773
6774         for (iter = &dev->adj_list.lower,
6775              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6776              ldev;
6777              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6778                 /* first is the lower device itself */
6779                 ret = fn(ldev, data);
6780                 if (ret)
6781                         return ret;
6782
6783                 /* then look at all of its lower devices */
6784                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6785                 if (ret)
6786                         return ret;
6787         }
6788
6789         return 0;
6790 }
6791 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6792
6793 /**
6794  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6795  *                                     lower neighbour list, RCU
6796  *                                     variant
6797  * @dev: device
6798  *
6799  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6800  * list. The caller must hold RCU read lock.
6801  */
6802 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6803 {
6804         struct netdev_adjacent *lower;
6805
6806         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6807                         struct netdev_adjacent, list);
6808         if (lower)
6809                 return lower->private;
6810         return NULL;
6811 }
6812 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6813
6814 /**
6815  * netdev_master_upper_dev_get_rcu - Get master upper device
6816  * @dev: device
6817  *
6818  * Find a master upper device and return pointer to it or NULL in case
6819  * it's not there. The caller must hold the RCU read lock.
6820  */
6821 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6822 {
6823         struct netdev_adjacent *upper;
6824
6825         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6826                                        struct netdev_adjacent, list);
6827         if (upper && likely(upper->master))
6828                 return upper->dev;
6829         return NULL;
6830 }
6831 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6832
6833 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6834                               struct net_device *adj_dev,
6835                               struct list_head *dev_list)
6836 {
6837         char linkname[IFNAMSIZ+7];
6838
6839         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6840                 "upper_%s" : "lower_%s", adj_dev->name);
6841         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6842                                  linkname);
6843 }
6844 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6845                                char *name,
6846                                struct list_head *dev_list)
6847 {
6848         char linkname[IFNAMSIZ+7];
6849
6850         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6851                 "upper_%s" : "lower_%s", name);
6852         sysfs_remove_link(&(dev->dev.kobj), linkname);
6853 }
6854
6855 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6856                                                  struct net_device *adj_dev,
6857                                                  struct list_head *dev_list)
6858 {
6859         return (dev_list == &dev->adj_list.upper ||
6860                 dev_list == &dev->adj_list.lower) &&
6861                 net_eq(dev_net(dev), dev_net(adj_dev));
6862 }
6863
6864 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6865                                         struct net_device *adj_dev,
6866                                         struct list_head *dev_list,
6867                                         void *private, bool master)
6868 {
6869         struct netdev_adjacent *adj;
6870         int ret;
6871
6872         adj = __netdev_find_adj(adj_dev, dev_list);
6873
6874         if (adj) {
6875                 adj->ref_nr += 1;
6876                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6877                          dev->name, adj_dev->name, adj->ref_nr);
6878
6879                 return 0;
6880         }
6881
6882         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6883         if (!adj)
6884                 return -ENOMEM;
6885
6886         adj->dev = adj_dev;
6887         adj->master = master;
6888         adj->ref_nr = 1;
6889         adj->private = private;
6890         dev_hold(adj_dev);
6891
6892         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6893                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6894
6895         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6896                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6897                 if (ret)
6898                         goto free_adj;
6899         }
6900
6901         /* Ensure that master link is always the first item in list. */
6902         if (master) {
6903                 ret = sysfs_create_link(&(dev->dev.kobj),
6904                                         &(adj_dev->dev.kobj), "master");
6905                 if (ret)
6906                         goto remove_symlinks;
6907
6908                 list_add_rcu(&adj->list, dev_list);
6909         } else {
6910                 list_add_tail_rcu(&adj->list, dev_list);
6911         }
6912
6913         return 0;
6914
6915 remove_symlinks:
6916         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6917                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6918 free_adj:
6919         kfree(adj);
6920         dev_put(adj_dev);
6921
6922         return ret;
6923 }
6924
6925 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6926                                          struct net_device *adj_dev,
6927                                          u16 ref_nr,
6928                                          struct list_head *dev_list)
6929 {
6930         struct netdev_adjacent *adj;
6931
6932         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6933                  dev->name, adj_dev->name, ref_nr);
6934
6935         adj = __netdev_find_adj(adj_dev, dev_list);
6936
6937         if (!adj) {
6938                 pr_err("Adjacency does not exist for device %s from %s\n",
6939                        dev->name, adj_dev->name);
6940                 WARN_ON(1);
6941                 return;
6942         }
6943
6944         if (adj->ref_nr > ref_nr) {
6945                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6946                          dev->name, adj_dev->name, ref_nr,
6947                          adj->ref_nr - ref_nr);
6948                 adj->ref_nr -= ref_nr;
6949                 return;
6950         }
6951
6952         if (adj->master)
6953                 sysfs_remove_link(&(dev->dev.kobj), "master");
6954
6955         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6956                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6957
6958         list_del_rcu(&adj->list);
6959         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6960                  adj_dev->name, dev->name, adj_dev->name);
6961         dev_put(adj_dev);
6962         kfree_rcu(adj, rcu);
6963 }
6964
6965 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6966                                             struct net_device *upper_dev,
6967                                             struct list_head *up_list,
6968                                             struct list_head *down_list,
6969                                             void *private, bool master)
6970 {
6971         int ret;
6972
6973         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6974                                            private, master);
6975         if (ret)
6976                 return ret;
6977
6978         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6979                                            private, false);
6980         if (ret) {
6981                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6982                 return ret;
6983         }
6984
6985         return 0;
6986 }
6987
6988 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6989                                                struct net_device *upper_dev,
6990                                                u16 ref_nr,
6991                                                struct list_head *up_list,
6992                                                struct list_head *down_list)
6993 {
6994         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6995         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6996 }
6997
6998 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6999                                                 struct net_device *upper_dev,
7000                                                 void *private, bool master)
7001 {
7002         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7003                                                 &dev->adj_list.upper,
7004                                                 &upper_dev->adj_list.lower,
7005                                                 private, master);
7006 }
7007
7008 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7009                                                    struct net_device *upper_dev)
7010 {
7011         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7012                                            &dev->adj_list.upper,
7013                                            &upper_dev->adj_list.lower);
7014 }
7015
7016 static int __netdev_upper_dev_link(struct net_device *dev,
7017                                    struct net_device *upper_dev, bool master,
7018                                    void *upper_priv, void *upper_info,
7019                                    struct netlink_ext_ack *extack)
7020 {
7021         struct netdev_notifier_changeupper_info changeupper_info = {
7022                 .info = {
7023                         .dev = dev,
7024                         .extack = extack,
7025                 },
7026                 .upper_dev = upper_dev,
7027                 .master = master,
7028                 .linking = true,
7029                 .upper_info = upper_info,
7030         };
7031         struct net_device *master_dev;
7032         int ret = 0;
7033
7034         ASSERT_RTNL();
7035
7036         if (dev == upper_dev)
7037                 return -EBUSY;
7038
7039         /* To prevent loops, check if dev is not upper device to upper_dev. */
7040         if (netdev_has_upper_dev(upper_dev, dev))
7041                 return -EBUSY;
7042
7043         if (!master) {
7044                 if (netdev_has_upper_dev(dev, upper_dev))
7045                         return -EEXIST;
7046         } else {
7047                 master_dev = netdev_master_upper_dev_get(dev);
7048                 if (master_dev)
7049                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7050         }
7051
7052         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7053                                             &changeupper_info.info);
7054         ret = notifier_to_errno(ret);
7055         if (ret)
7056                 return ret;
7057
7058         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7059                                                    master);
7060         if (ret)
7061                 return ret;
7062
7063         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7064                                             &changeupper_info.info);
7065         ret = notifier_to_errno(ret);
7066         if (ret)
7067                 goto rollback;
7068
7069         return 0;
7070
7071 rollback:
7072         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7073
7074         return ret;
7075 }
7076
7077 /**
7078  * netdev_upper_dev_link - Add a link to the upper device
7079  * @dev: device
7080  * @upper_dev: new upper device
7081  * @extack: netlink extended ack
7082  *
7083  * Adds a link to device which is upper to this one. The caller must hold
7084  * the RTNL lock. On a failure a negative errno code is returned.
7085  * On success the reference counts are adjusted and the function
7086  * returns zero.
7087  */
7088 int netdev_upper_dev_link(struct net_device *dev,
7089                           struct net_device *upper_dev,
7090                           struct netlink_ext_ack *extack)
7091 {
7092         return __netdev_upper_dev_link(dev, upper_dev, false,
7093                                        NULL, NULL, extack);
7094 }
7095 EXPORT_SYMBOL(netdev_upper_dev_link);
7096
7097 /**
7098  * netdev_master_upper_dev_link - Add a master link to the upper device
7099  * @dev: device
7100  * @upper_dev: new upper device
7101  * @upper_priv: upper device private
7102  * @upper_info: upper info to be passed down via notifier
7103  * @extack: netlink extended ack
7104  *
7105  * Adds a link to device which is upper to this one. In this case, only
7106  * one master upper device can be linked, although other non-master devices
7107  * might be linked as well. The caller must hold the RTNL lock.
7108  * On a failure a negative errno code is returned. On success the reference
7109  * counts are adjusted and the function returns zero.
7110  */
7111 int netdev_master_upper_dev_link(struct net_device *dev,
7112                                  struct net_device *upper_dev,
7113                                  void *upper_priv, void *upper_info,
7114                                  struct netlink_ext_ack *extack)
7115 {
7116         return __netdev_upper_dev_link(dev, upper_dev, true,
7117                                        upper_priv, upper_info, extack);
7118 }
7119 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7120
7121 /**
7122  * netdev_upper_dev_unlink - Removes a link to upper device
7123  * @dev: device
7124  * @upper_dev: new upper device
7125  *
7126  * Removes a link to device which is upper to this one. The caller must hold
7127  * the RTNL lock.
7128  */
7129 void netdev_upper_dev_unlink(struct net_device *dev,
7130                              struct net_device *upper_dev)
7131 {
7132         struct netdev_notifier_changeupper_info changeupper_info = {
7133                 .info = {
7134                         .dev = dev,
7135                 },
7136                 .upper_dev = upper_dev,
7137                 .linking = false,
7138         };
7139
7140         ASSERT_RTNL();
7141
7142         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7143
7144         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7145                                       &changeupper_info.info);
7146
7147         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7148
7149         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7150                                       &changeupper_info.info);
7151 }
7152 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7153
7154 /**
7155  * netdev_bonding_info_change - Dispatch event about slave change
7156  * @dev: device
7157  * @bonding_info: info to dispatch
7158  *
7159  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7160  * The caller must hold the RTNL lock.
7161  */
7162 void netdev_bonding_info_change(struct net_device *dev,
7163                                 struct netdev_bonding_info *bonding_info)
7164 {
7165         struct netdev_notifier_bonding_info info = {
7166                 .info.dev = dev,
7167         };
7168
7169         memcpy(&info.bonding_info, bonding_info,
7170                sizeof(struct netdev_bonding_info));
7171         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7172                                       &info.info);
7173 }
7174 EXPORT_SYMBOL(netdev_bonding_info_change);
7175
7176 static void netdev_adjacent_add_links(struct net_device *dev)
7177 {
7178         struct netdev_adjacent *iter;
7179
7180         struct net *net = dev_net(dev);
7181
7182         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7183                 if (!net_eq(net, dev_net(iter->dev)))
7184                         continue;
7185                 netdev_adjacent_sysfs_add(iter->dev, dev,
7186                                           &iter->dev->adj_list.lower);
7187                 netdev_adjacent_sysfs_add(dev, iter->dev,
7188                                           &dev->adj_list.upper);
7189         }
7190
7191         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7192                 if (!net_eq(net, dev_net(iter->dev)))
7193                         continue;
7194                 netdev_adjacent_sysfs_add(iter->dev, dev,
7195                                           &iter->dev->adj_list.upper);
7196                 netdev_adjacent_sysfs_add(dev, iter->dev,
7197                                           &dev->adj_list.lower);
7198         }
7199 }
7200
7201 static void netdev_adjacent_del_links(struct net_device *dev)
7202 {
7203         struct netdev_adjacent *iter;
7204
7205         struct net *net = dev_net(dev);
7206
7207         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7208                 if (!net_eq(net, dev_net(iter->dev)))
7209                         continue;
7210                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7211                                           &iter->dev->adj_list.lower);
7212                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7213                                           &dev->adj_list.upper);
7214         }
7215
7216         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7217                 if (!net_eq(net, dev_net(iter->dev)))
7218                         continue;
7219                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7220                                           &iter->dev->adj_list.upper);
7221                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7222                                           &dev->adj_list.lower);
7223         }
7224 }
7225
7226 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7227 {
7228         struct netdev_adjacent *iter;
7229
7230         struct net *net = dev_net(dev);
7231
7232         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7233                 if (!net_eq(net, dev_net(iter->dev)))
7234                         continue;
7235                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7236                                           &iter->dev->adj_list.lower);
7237                 netdev_adjacent_sysfs_add(iter->dev, dev,
7238                                           &iter->dev->adj_list.lower);
7239         }
7240
7241         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7242                 if (!net_eq(net, dev_net(iter->dev)))
7243                         continue;
7244                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7245                                           &iter->dev->adj_list.upper);
7246                 netdev_adjacent_sysfs_add(iter->dev, dev,
7247                                           &iter->dev->adj_list.upper);
7248         }
7249 }
7250
7251 void *netdev_lower_dev_get_private(struct net_device *dev,
7252                                    struct net_device *lower_dev)
7253 {
7254         struct netdev_adjacent *lower;
7255
7256         if (!lower_dev)
7257                 return NULL;
7258         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7259         if (!lower)
7260                 return NULL;
7261
7262         return lower->private;
7263 }
7264 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7265
7266
7267 int dev_get_nest_level(struct net_device *dev)
7268 {
7269         struct net_device *lower = NULL;
7270         struct list_head *iter;
7271         int max_nest = -1;
7272         int nest;
7273
7274         ASSERT_RTNL();
7275
7276         netdev_for_each_lower_dev(dev, lower, iter) {
7277                 nest = dev_get_nest_level(lower);
7278                 if (max_nest < nest)
7279                         max_nest = nest;
7280         }
7281
7282         return max_nest + 1;
7283 }
7284 EXPORT_SYMBOL(dev_get_nest_level);
7285
7286 /**
7287  * netdev_lower_change - Dispatch event about lower device state change
7288  * @lower_dev: device
7289  * @lower_state_info: state to dispatch
7290  *
7291  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7292  * The caller must hold the RTNL lock.
7293  */
7294 void netdev_lower_state_changed(struct net_device *lower_dev,
7295                                 void *lower_state_info)
7296 {
7297         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7298                 .info.dev = lower_dev,
7299         };
7300
7301         ASSERT_RTNL();
7302         changelowerstate_info.lower_state_info = lower_state_info;
7303         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7304                                       &changelowerstate_info.info);
7305 }
7306 EXPORT_SYMBOL(netdev_lower_state_changed);
7307
7308 static void dev_change_rx_flags(struct net_device *dev, int flags)
7309 {
7310         const struct net_device_ops *ops = dev->netdev_ops;
7311
7312         if (ops->ndo_change_rx_flags)
7313                 ops->ndo_change_rx_flags(dev, flags);
7314 }
7315
7316 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7317 {
7318         unsigned int old_flags = dev->flags;
7319         kuid_t uid;
7320         kgid_t gid;
7321
7322         ASSERT_RTNL();
7323
7324         dev->flags |= IFF_PROMISC;
7325         dev->promiscuity += inc;
7326         if (dev->promiscuity == 0) {
7327                 /*
7328                  * Avoid overflow.
7329                  * If inc causes overflow, untouch promisc and return error.
7330                  */
7331                 if (inc < 0)
7332                         dev->flags &= ~IFF_PROMISC;
7333                 else {
7334                         dev->promiscuity -= inc;
7335                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7336                                 dev->name);
7337                         return -EOVERFLOW;
7338                 }
7339         }
7340         if (dev->flags != old_flags) {
7341                 pr_info("device %s %s promiscuous mode\n",
7342                         dev->name,
7343                         dev->flags & IFF_PROMISC ? "entered" : "left");
7344                 if (audit_enabled) {
7345                         current_uid_gid(&uid, &gid);
7346                         audit_log(audit_context(), GFP_ATOMIC,
7347                                   AUDIT_ANOM_PROMISCUOUS,
7348                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7349                                   dev->name, (dev->flags & IFF_PROMISC),
7350                                   (old_flags & IFF_PROMISC),
7351                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7352                                   from_kuid(&init_user_ns, uid),
7353                                   from_kgid(&init_user_ns, gid),
7354                                   audit_get_sessionid(current));
7355                 }
7356
7357                 dev_change_rx_flags(dev, IFF_PROMISC);
7358         }
7359         if (notify)
7360                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7361         return 0;
7362 }
7363
7364 /**
7365  *      dev_set_promiscuity     - update promiscuity count on a device
7366  *      @dev: device
7367  *      @inc: modifier
7368  *
7369  *      Add or remove promiscuity from a device. While the count in the device
7370  *      remains above zero the interface remains promiscuous. Once it hits zero
7371  *      the device reverts back to normal filtering operation. A negative inc
7372  *      value is used to drop promiscuity on the device.
7373  *      Return 0 if successful or a negative errno code on error.
7374  */
7375 int dev_set_promiscuity(struct net_device *dev, int inc)
7376 {
7377         unsigned int old_flags = dev->flags;
7378         int err;
7379
7380         err = __dev_set_promiscuity(dev, inc, true);
7381         if (err < 0)
7382                 return err;
7383         if (dev->flags != old_flags)
7384                 dev_set_rx_mode(dev);
7385         return err;
7386 }
7387 EXPORT_SYMBOL(dev_set_promiscuity);
7388
7389 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7390 {
7391         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7392
7393         ASSERT_RTNL();
7394
7395         dev->flags |= IFF_ALLMULTI;
7396         dev->allmulti += inc;
7397         if (dev->allmulti == 0) {
7398                 /*
7399                  * Avoid overflow.
7400                  * If inc causes overflow, untouch allmulti and return error.
7401                  */
7402                 if (inc < 0)
7403                         dev->flags &= ~IFF_ALLMULTI;
7404                 else {
7405                         dev->allmulti -= inc;
7406                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7407                                 dev->name);
7408                         return -EOVERFLOW;
7409                 }
7410         }
7411         if (dev->flags ^ old_flags) {
7412                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7413                 dev_set_rx_mode(dev);
7414                 if (notify)
7415                         __dev_notify_flags(dev, old_flags,
7416                                            dev->gflags ^ old_gflags);
7417         }
7418         return 0;
7419 }
7420
7421 /**
7422  *      dev_set_allmulti        - update allmulti count on a device
7423  *      @dev: device
7424  *      @inc: modifier
7425  *
7426  *      Add or remove reception of all multicast frames to a device. While the
7427  *      count in the device remains above zero the interface remains listening
7428  *      to all interfaces. Once it hits zero the device reverts back to normal
7429  *      filtering operation. A negative @inc value is used to drop the counter
7430  *      when releasing a resource needing all multicasts.
7431  *      Return 0 if successful or a negative errno code on error.
7432  */
7433
7434 int dev_set_allmulti(struct net_device *dev, int inc)
7435 {
7436         return __dev_set_allmulti(dev, inc, true);
7437 }
7438 EXPORT_SYMBOL(dev_set_allmulti);
7439
7440 /*
7441  *      Upload unicast and multicast address lists to device and
7442  *      configure RX filtering. When the device doesn't support unicast
7443  *      filtering it is put in promiscuous mode while unicast addresses
7444  *      are present.
7445  */
7446 void __dev_set_rx_mode(struct net_device *dev)
7447 {
7448         const struct net_device_ops *ops = dev->netdev_ops;
7449
7450         /* dev_open will call this function so the list will stay sane. */
7451         if (!(dev->flags&IFF_UP))
7452                 return;
7453
7454         if (!netif_device_present(dev))
7455                 return;
7456
7457         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7458                 /* Unicast addresses changes may only happen under the rtnl,
7459                  * therefore calling __dev_set_promiscuity here is safe.
7460                  */
7461                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7462                         __dev_set_promiscuity(dev, 1, false);
7463                         dev->uc_promisc = true;
7464                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7465                         __dev_set_promiscuity(dev, -1, false);
7466                         dev->uc_promisc = false;
7467                 }
7468         }
7469
7470         if (ops->ndo_set_rx_mode)
7471                 ops->ndo_set_rx_mode(dev);
7472 }
7473
7474 void dev_set_rx_mode(struct net_device *dev)
7475 {
7476         netif_addr_lock_bh(dev);
7477         __dev_set_rx_mode(dev);
7478         netif_addr_unlock_bh(dev);
7479 }
7480
7481 /**
7482  *      dev_get_flags - get flags reported to userspace
7483  *      @dev: device
7484  *
7485  *      Get the combination of flag bits exported through APIs to userspace.
7486  */
7487 unsigned int dev_get_flags(const struct net_device *dev)
7488 {
7489         unsigned int flags;
7490
7491         flags = (dev->flags & ~(IFF_PROMISC |
7492                                 IFF_ALLMULTI |
7493                                 IFF_RUNNING |
7494                                 IFF_LOWER_UP |
7495                                 IFF_DORMANT)) |
7496                 (dev->gflags & (IFF_PROMISC |
7497                                 IFF_ALLMULTI));
7498
7499         if (netif_running(dev)) {
7500                 if (netif_oper_up(dev))
7501                         flags |= IFF_RUNNING;
7502                 if (netif_carrier_ok(dev))
7503                         flags |= IFF_LOWER_UP;
7504                 if (netif_dormant(dev))
7505                         flags |= IFF_DORMANT;
7506         }
7507
7508         return flags;
7509 }
7510 EXPORT_SYMBOL(dev_get_flags);
7511
7512 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7513                        struct netlink_ext_ack *extack)
7514 {
7515         unsigned int old_flags = dev->flags;
7516         int ret;
7517
7518         ASSERT_RTNL();
7519
7520         /*
7521          *      Set the flags on our device.
7522          */
7523
7524         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7525                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7526                                IFF_AUTOMEDIA)) |
7527                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7528                                     IFF_ALLMULTI));
7529
7530         /*
7531          *      Load in the correct multicast list now the flags have changed.
7532          */
7533
7534         if ((old_flags ^ flags) & IFF_MULTICAST)
7535                 dev_change_rx_flags(dev, IFF_MULTICAST);
7536
7537         dev_set_rx_mode(dev);
7538
7539         /*
7540          *      Have we downed the interface. We handle IFF_UP ourselves
7541          *      according to user attempts to set it, rather than blindly
7542          *      setting it.
7543          */
7544
7545         ret = 0;
7546         if ((old_flags ^ flags) & IFF_UP) {
7547                 if (old_flags & IFF_UP)
7548                         __dev_close(dev);
7549                 else
7550                         ret = __dev_open(dev, extack);
7551         }
7552
7553         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7554                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7555                 unsigned int old_flags = dev->flags;
7556
7557                 dev->gflags ^= IFF_PROMISC;
7558
7559                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7560                         if (dev->flags != old_flags)
7561                                 dev_set_rx_mode(dev);
7562         }
7563
7564         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7565          * is important. Some (broken) drivers set IFF_PROMISC, when
7566          * IFF_ALLMULTI is requested not asking us and not reporting.
7567          */
7568         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7569                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7570
7571                 dev->gflags ^= IFF_ALLMULTI;
7572                 __dev_set_allmulti(dev, inc, false);
7573         }
7574
7575         return ret;
7576 }
7577
7578 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7579                         unsigned int gchanges)
7580 {
7581         unsigned int changes = dev->flags ^ old_flags;
7582
7583         if (gchanges)
7584                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7585
7586         if (changes & IFF_UP) {
7587                 if (dev->flags & IFF_UP)
7588                         call_netdevice_notifiers(NETDEV_UP, dev);
7589                 else
7590                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7591         }
7592
7593         if (dev->flags & IFF_UP &&
7594             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7595                 struct netdev_notifier_change_info change_info = {
7596                         .info = {
7597                                 .dev = dev,
7598                         },
7599                         .flags_changed = changes,
7600                 };
7601
7602                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7603         }
7604 }
7605
7606 /**
7607  *      dev_change_flags - change device settings
7608  *      @dev: device
7609  *      @flags: device state flags
7610  *      @extack: netlink extended ack
7611  *
7612  *      Change settings on device based state flags. The flags are
7613  *      in the userspace exported format.
7614  */
7615 int dev_change_flags(struct net_device *dev, unsigned int flags,
7616                      struct netlink_ext_ack *extack)
7617 {
7618         int ret;
7619         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7620
7621         ret = __dev_change_flags(dev, flags, extack);
7622         if (ret < 0)
7623                 return ret;
7624
7625         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7626         __dev_notify_flags(dev, old_flags, changes);
7627         return ret;
7628 }
7629 EXPORT_SYMBOL(dev_change_flags);
7630
7631 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7632 {
7633         const struct net_device_ops *ops = dev->netdev_ops;
7634
7635         if (ops->ndo_change_mtu)
7636                 return ops->ndo_change_mtu(dev, new_mtu);
7637
7638         dev->mtu = new_mtu;
7639         return 0;
7640 }
7641 EXPORT_SYMBOL(__dev_set_mtu);
7642
7643 /**
7644  *      dev_set_mtu_ext - Change maximum transfer unit
7645  *      @dev: device
7646  *      @new_mtu: new transfer unit
7647  *      @extack: netlink extended ack
7648  *
7649  *      Change the maximum transfer size of the network device.
7650  */
7651 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7652                     struct netlink_ext_ack *extack)
7653 {
7654         int err, orig_mtu;
7655
7656         if (new_mtu == dev->mtu)
7657                 return 0;
7658
7659         /* MTU must be positive, and in range */
7660         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7661                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7662                 return -EINVAL;
7663         }
7664
7665         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7666                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7667                 return -EINVAL;
7668         }
7669
7670         if (!netif_device_present(dev))
7671                 return -ENODEV;
7672
7673         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7674         err = notifier_to_errno(err);
7675         if (err)
7676                 return err;
7677
7678         orig_mtu = dev->mtu;
7679         err = __dev_set_mtu(dev, new_mtu);
7680
7681         if (!err) {
7682                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7683                                                    orig_mtu);
7684                 err = notifier_to_errno(err);
7685                 if (err) {
7686                         /* setting mtu back and notifying everyone again,
7687                          * so that they have a chance to revert changes.
7688                          */
7689                         __dev_set_mtu(dev, orig_mtu);
7690                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7691                                                      new_mtu);
7692                 }
7693         }
7694         return err;
7695 }
7696
7697 int dev_set_mtu(struct net_device *dev, int new_mtu)
7698 {
7699         struct netlink_ext_ack extack;
7700         int err;
7701
7702         memset(&extack, 0, sizeof(extack));
7703         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7704         if (err && extack._msg)
7705                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7706         return err;
7707 }
7708 EXPORT_SYMBOL(dev_set_mtu);
7709
7710 /**
7711  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7712  *      @dev: device
7713  *      @new_len: new tx queue length
7714  */
7715 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7716 {
7717         unsigned int orig_len = dev->tx_queue_len;
7718         int res;
7719
7720         if (new_len != (unsigned int)new_len)
7721                 return -ERANGE;
7722
7723         if (new_len != orig_len) {
7724                 dev->tx_queue_len = new_len;
7725                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7726                 res = notifier_to_errno(res);
7727                 if (res)
7728                         goto err_rollback;
7729                 res = dev_qdisc_change_tx_queue_len(dev);
7730                 if (res)
7731                         goto err_rollback;
7732         }
7733
7734         return 0;
7735
7736 err_rollback:
7737         netdev_err(dev, "refused to change device tx_queue_len\n");
7738         dev->tx_queue_len = orig_len;
7739         return res;
7740 }
7741
7742 /**
7743  *      dev_set_group - Change group this device belongs to
7744  *      @dev: device
7745  *      @new_group: group this device should belong to
7746  */
7747 void dev_set_group(struct net_device *dev, int new_group)
7748 {
7749         dev->group = new_group;
7750 }
7751 EXPORT_SYMBOL(dev_set_group);
7752
7753 /**
7754  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7755  *      @dev: device
7756  *      @addr: new address
7757  *      @extack: netlink extended ack
7758  */
7759 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7760                               struct netlink_ext_ack *extack)
7761 {
7762         struct netdev_notifier_pre_changeaddr_info info = {
7763                 .info.dev = dev,
7764                 .info.extack = extack,
7765                 .dev_addr = addr,
7766         };
7767         int rc;
7768
7769         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7770         return notifier_to_errno(rc);
7771 }
7772 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7773
7774 /**
7775  *      dev_set_mac_address - Change Media Access Control Address
7776  *      @dev: device
7777  *      @sa: new address
7778  *      @extack: netlink extended ack
7779  *
7780  *      Change the hardware (MAC) address of the device
7781  */
7782 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7783                         struct netlink_ext_ack *extack)
7784 {
7785         const struct net_device_ops *ops = dev->netdev_ops;
7786         int err;
7787
7788         if (!ops->ndo_set_mac_address)
7789                 return -EOPNOTSUPP;
7790         if (sa->sa_family != dev->type)
7791                 return -EINVAL;
7792         if (!netif_device_present(dev))
7793                 return -ENODEV;
7794         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7795         if (err)
7796                 return err;
7797         err = ops->ndo_set_mac_address(dev, sa);
7798         if (err)
7799                 return err;
7800         dev->addr_assign_type = NET_ADDR_SET;
7801         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7802         add_device_randomness(dev->dev_addr, dev->addr_len);
7803         return 0;
7804 }
7805 EXPORT_SYMBOL(dev_set_mac_address);
7806
7807 /**
7808  *      dev_change_carrier - Change device carrier
7809  *      @dev: device
7810  *      @new_carrier: new value
7811  *
7812  *      Change device carrier
7813  */
7814 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7815 {
7816         const struct net_device_ops *ops = dev->netdev_ops;
7817
7818         if (!ops->ndo_change_carrier)
7819                 return -EOPNOTSUPP;
7820         if (!netif_device_present(dev))
7821                 return -ENODEV;
7822         return ops->ndo_change_carrier(dev, new_carrier);
7823 }
7824 EXPORT_SYMBOL(dev_change_carrier);
7825
7826 /**
7827  *      dev_get_phys_port_id - Get device physical port ID
7828  *      @dev: device
7829  *      @ppid: port ID
7830  *
7831  *      Get device physical port ID
7832  */
7833 int dev_get_phys_port_id(struct net_device *dev,
7834                          struct netdev_phys_item_id *ppid)
7835 {
7836         const struct net_device_ops *ops = dev->netdev_ops;
7837
7838         if (!ops->ndo_get_phys_port_id)
7839                 return -EOPNOTSUPP;
7840         return ops->ndo_get_phys_port_id(dev, ppid);
7841 }
7842 EXPORT_SYMBOL(dev_get_phys_port_id);
7843
7844 /**
7845  *      dev_get_phys_port_name - Get device physical port name
7846  *      @dev: device
7847  *      @name: port name
7848  *      @len: limit of bytes to copy to name
7849  *
7850  *      Get device physical port name
7851  */
7852 int dev_get_phys_port_name(struct net_device *dev,
7853                            char *name, size_t len)
7854 {
7855         const struct net_device_ops *ops = dev->netdev_ops;
7856         int err;
7857
7858         if (ops->ndo_get_phys_port_name) {
7859                 err = ops->ndo_get_phys_port_name(dev, name, len);
7860                 if (err != -EOPNOTSUPP)
7861                         return err;
7862         }
7863         return devlink_compat_phys_port_name_get(dev, name, len);
7864 }
7865 EXPORT_SYMBOL(dev_get_phys_port_name);
7866
7867 /**
7868  *      dev_get_port_parent_id - Get the device's port parent identifier
7869  *      @dev: network device
7870  *      @ppid: pointer to a storage for the port's parent identifier
7871  *      @recurse: allow/disallow recursion to lower devices
7872  *
7873  *      Get the devices's port parent identifier
7874  */
7875 int dev_get_port_parent_id(struct net_device *dev,
7876                            struct netdev_phys_item_id *ppid,
7877                            bool recurse)
7878 {
7879         const struct net_device_ops *ops = dev->netdev_ops;
7880         struct netdev_phys_item_id first = { };
7881         struct net_device *lower_dev;
7882         struct list_head *iter;
7883         int err;
7884
7885         if (ops->ndo_get_port_parent_id) {
7886                 err = ops->ndo_get_port_parent_id(dev, ppid);
7887                 if (err != -EOPNOTSUPP)
7888                         return err;
7889         }
7890
7891         err = devlink_compat_switch_id_get(dev, ppid);
7892         if (!err || err != -EOPNOTSUPP)
7893                 return err;
7894
7895         if (!recurse)
7896                 return -EOPNOTSUPP;
7897
7898         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7899                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7900                 if (err)
7901                         break;
7902                 if (!first.id_len)
7903                         first = *ppid;
7904                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7905                         return -ENODATA;
7906         }
7907
7908         return err;
7909 }
7910 EXPORT_SYMBOL(dev_get_port_parent_id);
7911
7912 /**
7913  *      netdev_port_same_parent_id - Indicate if two network devices have
7914  *      the same port parent identifier
7915  *      @a: first network device
7916  *      @b: second network device
7917  */
7918 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7919 {
7920         struct netdev_phys_item_id a_id = { };
7921         struct netdev_phys_item_id b_id = { };
7922
7923         if (dev_get_port_parent_id(a, &a_id, true) ||
7924             dev_get_port_parent_id(b, &b_id, true))
7925                 return false;
7926
7927         return netdev_phys_item_id_same(&a_id, &b_id);
7928 }
7929 EXPORT_SYMBOL(netdev_port_same_parent_id);
7930
7931 /**
7932  *      dev_change_proto_down - update protocol port state information
7933  *      @dev: device
7934  *      @proto_down: new value
7935  *
7936  *      This info can be used by switch drivers to set the phys state of the
7937  *      port.
7938  */
7939 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7940 {
7941         const struct net_device_ops *ops = dev->netdev_ops;
7942
7943         if (!ops->ndo_change_proto_down)
7944                 return -EOPNOTSUPP;
7945         if (!netif_device_present(dev))
7946                 return -ENODEV;
7947         return ops->ndo_change_proto_down(dev, proto_down);
7948 }
7949 EXPORT_SYMBOL(dev_change_proto_down);
7950
7951 /**
7952  *      dev_change_proto_down_generic - generic implementation for
7953  *      ndo_change_proto_down that sets carrier according to
7954  *      proto_down.
7955  *
7956  *      @dev: device
7957  *      @proto_down: new value
7958  */
7959 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7960 {
7961         if (proto_down)
7962                 netif_carrier_off(dev);
7963         else
7964                 netif_carrier_on(dev);
7965         dev->proto_down = proto_down;
7966         return 0;
7967 }
7968 EXPORT_SYMBOL(dev_change_proto_down_generic);
7969
7970 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7971                     enum bpf_netdev_command cmd)
7972 {
7973         struct netdev_bpf xdp;
7974
7975         if (!bpf_op)
7976                 return 0;
7977
7978         memset(&xdp, 0, sizeof(xdp));
7979         xdp.command = cmd;
7980
7981         /* Query must always succeed. */
7982         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7983
7984         return xdp.prog_id;
7985 }
7986
7987 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7988                            struct netlink_ext_ack *extack, u32 flags,
7989                            struct bpf_prog *prog)
7990 {
7991         struct netdev_bpf xdp;
7992
7993         memset(&xdp, 0, sizeof(xdp));
7994         if (flags & XDP_FLAGS_HW_MODE)
7995                 xdp.command = XDP_SETUP_PROG_HW;
7996         else
7997                 xdp.command = XDP_SETUP_PROG;
7998         xdp.extack = extack;
7999         xdp.flags = flags;
8000         xdp.prog = prog;
8001
8002         return bpf_op(dev, &xdp);
8003 }
8004
8005 static void dev_xdp_uninstall(struct net_device *dev)
8006 {
8007         struct netdev_bpf xdp;
8008         bpf_op_t ndo_bpf;
8009
8010         /* Remove generic XDP */
8011         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8012
8013         /* Remove from the driver */
8014         ndo_bpf = dev->netdev_ops->ndo_bpf;
8015         if (!ndo_bpf)
8016                 return;
8017
8018         memset(&xdp, 0, sizeof(xdp));
8019         xdp.command = XDP_QUERY_PROG;
8020         WARN_ON(ndo_bpf(dev, &xdp));
8021         if (xdp.prog_id)
8022                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8023                                         NULL));
8024
8025         /* Remove HW offload */
8026         memset(&xdp, 0, sizeof(xdp));
8027         xdp.command = XDP_QUERY_PROG_HW;
8028         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8029                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8030                                         NULL));
8031 }
8032
8033 /**
8034  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8035  *      @dev: device
8036  *      @extack: netlink extended ack
8037  *      @fd: new program fd or negative value to clear
8038  *      @flags: xdp-related flags
8039  *
8040  *      Set or clear a bpf program for a device
8041  */
8042 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8043                       int fd, u32 flags)
8044 {
8045         const struct net_device_ops *ops = dev->netdev_ops;
8046         enum bpf_netdev_command query;
8047         struct bpf_prog *prog = NULL;
8048         bpf_op_t bpf_op, bpf_chk;
8049         bool offload;
8050         int err;
8051
8052         ASSERT_RTNL();
8053
8054         offload = flags & XDP_FLAGS_HW_MODE;
8055         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8056
8057         bpf_op = bpf_chk = ops->ndo_bpf;
8058         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8059                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8060                 return -EOPNOTSUPP;
8061         }
8062         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8063                 bpf_op = generic_xdp_install;
8064         if (bpf_op == bpf_chk)
8065                 bpf_chk = generic_xdp_install;
8066
8067         if (fd >= 0) {
8068                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8069                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8070                         return -EEXIST;
8071                 }
8072                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8073                     __dev_xdp_query(dev, bpf_op, query)) {
8074                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8075                         return -EBUSY;
8076                 }
8077
8078                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8079                                              bpf_op == ops->ndo_bpf);
8080                 if (IS_ERR(prog))
8081                         return PTR_ERR(prog);
8082
8083                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8084                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8085                         bpf_prog_put(prog);
8086                         return -EINVAL;
8087                 }
8088         }
8089
8090         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8091         if (err < 0 && prog)
8092                 bpf_prog_put(prog);
8093
8094         return err;
8095 }
8096
8097 /**
8098  *      dev_new_index   -       allocate an ifindex
8099  *      @net: the applicable net namespace
8100  *
8101  *      Returns a suitable unique value for a new device interface
8102  *      number.  The caller must hold the rtnl semaphore or the
8103  *      dev_base_lock to be sure it remains unique.
8104  */
8105 static int dev_new_index(struct net *net)
8106 {
8107         int ifindex = net->ifindex;
8108
8109         for (;;) {
8110                 if (++ifindex <= 0)
8111                         ifindex = 1;
8112                 if (!__dev_get_by_index(net, ifindex))
8113                         return net->ifindex = ifindex;
8114         }
8115 }
8116
8117 /* Delayed registration/unregisteration */
8118 static LIST_HEAD(net_todo_list);
8119 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8120
8121 static void net_set_todo(struct net_device *dev)
8122 {
8123         list_add_tail(&dev->todo_list, &net_todo_list);
8124         dev_net(dev)->dev_unreg_count++;
8125 }
8126
8127 static void rollback_registered_many(struct list_head *head)
8128 {
8129         struct net_device *dev, *tmp;
8130         LIST_HEAD(close_head);
8131
8132         BUG_ON(dev_boot_phase);
8133         ASSERT_RTNL();
8134
8135         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8136                 /* Some devices call without registering
8137                  * for initialization unwind. Remove those
8138                  * devices and proceed with the remaining.
8139                  */
8140                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8141                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8142                                  dev->name, dev);
8143
8144                         WARN_ON(1);
8145                         list_del(&dev->unreg_list);
8146                         continue;
8147                 }
8148                 dev->dismantle = true;
8149                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8150         }
8151
8152         /* If device is running, close it first. */
8153         list_for_each_entry(dev, head, unreg_list)
8154                 list_add_tail(&dev->close_list, &close_head);
8155         dev_close_many(&close_head, true);
8156
8157         list_for_each_entry(dev, head, unreg_list) {
8158                 /* And unlink it from device chain. */
8159                 unlist_netdevice(dev);
8160
8161                 dev->reg_state = NETREG_UNREGISTERING;
8162         }
8163         flush_all_backlogs();
8164
8165         synchronize_net();
8166
8167         list_for_each_entry(dev, head, unreg_list) {
8168                 struct sk_buff *skb = NULL;
8169
8170                 /* Shutdown queueing discipline. */
8171                 dev_shutdown(dev);
8172
8173                 dev_xdp_uninstall(dev);
8174
8175                 /* Notify protocols, that we are about to destroy
8176                  * this device. They should clean all the things.
8177                  */
8178                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8179
8180                 if (!dev->rtnl_link_ops ||
8181                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8182                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8183                                                      GFP_KERNEL, NULL, 0);
8184
8185                 /*
8186                  *      Flush the unicast and multicast chains
8187                  */
8188                 dev_uc_flush(dev);
8189                 dev_mc_flush(dev);
8190
8191                 if (dev->netdev_ops->ndo_uninit)
8192                         dev->netdev_ops->ndo_uninit(dev);
8193
8194                 if (skb)
8195                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8196
8197                 /* Notifier chain MUST detach us all upper devices. */
8198                 WARN_ON(netdev_has_any_upper_dev(dev));
8199                 WARN_ON(netdev_has_any_lower_dev(dev));
8200
8201                 /* Remove entries from kobject tree */
8202                 netdev_unregister_kobject(dev);
8203 #ifdef CONFIG_XPS
8204                 /* Remove XPS queueing entries */
8205                 netif_reset_xps_queues_gt(dev, 0);
8206 #endif
8207         }
8208
8209         synchronize_net();
8210
8211         list_for_each_entry(dev, head, unreg_list)
8212                 dev_put(dev);
8213 }
8214
8215 static void rollback_registered(struct net_device *dev)
8216 {
8217         LIST_HEAD(single);
8218
8219         list_add(&dev->unreg_list, &single);
8220         rollback_registered_many(&single);
8221         list_del(&single);
8222 }
8223
8224 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8225         struct net_device *upper, netdev_features_t features)
8226 {
8227         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8228         netdev_features_t feature;
8229         int feature_bit;
8230
8231         for_each_netdev_feature(upper_disables, feature_bit) {
8232                 feature = __NETIF_F_BIT(feature_bit);
8233                 if (!(upper->wanted_features & feature)
8234                     && (features & feature)) {
8235                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8236                                    &feature, upper->name);
8237                         features &= ~feature;
8238                 }
8239         }
8240
8241         return features;
8242 }
8243
8244 static void netdev_sync_lower_features(struct net_device *upper,
8245         struct net_device *lower, netdev_features_t features)
8246 {
8247         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8248         netdev_features_t feature;
8249         int feature_bit;
8250
8251         for_each_netdev_feature(upper_disables, feature_bit) {
8252                 feature = __NETIF_F_BIT(feature_bit);
8253                 if (!(features & feature) && (lower->features & feature)) {
8254                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8255                                    &feature, lower->name);
8256                         lower->wanted_features &= ~feature;
8257                         netdev_update_features(lower);
8258
8259                         if (unlikely(lower->features & feature))
8260                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8261                                             &feature, lower->name);
8262                 }
8263         }
8264 }
8265
8266 static netdev_features_t netdev_fix_features(struct net_device *dev,
8267         netdev_features_t features)
8268 {
8269         /* Fix illegal checksum combinations */
8270         if ((features & NETIF_F_HW_CSUM) &&
8271             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8272                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8273                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8274         }
8275
8276         /* TSO requires that SG is present as well. */
8277         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8278                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8279                 features &= ~NETIF_F_ALL_TSO;
8280         }
8281
8282         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8283                                         !(features & NETIF_F_IP_CSUM)) {
8284                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8285                 features &= ~NETIF_F_TSO;
8286                 features &= ~NETIF_F_TSO_ECN;
8287         }
8288
8289         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8290                                          !(features & NETIF_F_IPV6_CSUM)) {
8291                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8292                 features &= ~NETIF_F_TSO6;
8293         }
8294
8295         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8296         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8297                 features &= ~NETIF_F_TSO_MANGLEID;
8298
8299         /* TSO ECN requires that TSO is present as well. */
8300         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8301                 features &= ~NETIF_F_TSO_ECN;
8302
8303         /* Software GSO depends on SG. */
8304         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8305                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8306                 features &= ~NETIF_F_GSO;
8307         }
8308
8309         /* GSO partial features require GSO partial be set */
8310         if ((features & dev->gso_partial_features) &&
8311             !(features & NETIF_F_GSO_PARTIAL)) {
8312                 netdev_dbg(dev,
8313                            "Dropping partially supported GSO features since no GSO partial.\n");
8314                 features &= ~dev->gso_partial_features;
8315         }
8316
8317         if (!(features & NETIF_F_RXCSUM)) {
8318                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8319                  * successfully merged by hardware must also have the
8320                  * checksum verified by hardware.  If the user does not
8321                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8322                  */
8323                 if (features & NETIF_F_GRO_HW) {
8324                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8325                         features &= ~NETIF_F_GRO_HW;
8326                 }
8327         }
8328
8329         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8330         if (features & NETIF_F_RXFCS) {
8331                 if (features & NETIF_F_LRO) {
8332                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8333                         features &= ~NETIF_F_LRO;
8334                 }
8335
8336                 if (features & NETIF_F_GRO_HW) {
8337                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8338                         features &= ~NETIF_F_GRO_HW;
8339                 }
8340         }
8341
8342         return features;
8343 }
8344
8345 int __netdev_update_features(struct net_device *dev)
8346 {
8347         struct net_device *upper, *lower;
8348         netdev_features_t features;
8349         struct list_head *iter;
8350         int err = -1;
8351
8352         ASSERT_RTNL();
8353
8354         features = netdev_get_wanted_features(dev);
8355
8356         if (dev->netdev_ops->ndo_fix_features)
8357                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8358
8359         /* driver might be less strict about feature dependencies */
8360         features = netdev_fix_features(dev, features);
8361
8362         /* some features can't be enabled if they're off an an upper device */
8363         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8364                 features = netdev_sync_upper_features(dev, upper, features);
8365
8366         if (dev->features == features)
8367                 goto sync_lower;
8368
8369         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8370                 &dev->features, &features);
8371
8372         if (dev->netdev_ops->ndo_set_features)
8373                 err = dev->netdev_ops->ndo_set_features(dev, features);
8374         else
8375                 err = 0;
8376
8377         if (unlikely(err < 0)) {
8378                 netdev_err(dev,
8379                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8380                         err, &features, &dev->features);
8381                 /* return non-0 since some features might have changed and
8382                  * it's better to fire a spurious notification than miss it
8383                  */
8384                 return -1;
8385         }
8386
8387 sync_lower:
8388         /* some features must be disabled on lower devices when disabled
8389          * on an upper device (think: bonding master or bridge)
8390          */
8391         netdev_for_each_lower_dev(dev, lower, iter)
8392                 netdev_sync_lower_features(dev, lower, features);
8393
8394         if (!err) {
8395                 netdev_features_t diff = features ^ dev->features;
8396
8397                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8398                         /* udp_tunnel_{get,drop}_rx_info both need
8399                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8400                          * device, or they won't do anything.
8401                          * Thus we need to update dev->features
8402                          * *before* calling udp_tunnel_get_rx_info,
8403                          * but *after* calling udp_tunnel_drop_rx_info.
8404                          */
8405                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8406                                 dev->features = features;
8407                                 udp_tunnel_get_rx_info(dev);
8408                         } else {
8409                                 udp_tunnel_drop_rx_info(dev);
8410                         }
8411                 }
8412
8413                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8414                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8415                                 dev->features = features;
8416                                 err |= vlan_get_rx_ctag_filter_info(dev);
8417                         } else {
8418                                 vlan_drop_rx_ctag_filter_info(dev);
8419                         }
8420                 }
8421
8422                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8423                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8424                                 dev->features = features;
8425                                 err |= vlan_get_rx_stag_filter_info(dev);
8426                         } else {
8427                                 vlan_drop_rx_stag_filter_info(dev);
8428                         }
8429                 }
8430
8431                 dev->features = features;
8432         }
8433
8434         return err < 0 ? 0 : 1;
8435 }
8436
8437 /**
8438  *      netdev_update_features - recalculate device features
8439  *      @dev: the device to check
8440  *
8441  *      Recalculate dev->features set and send notifications if it
8442  *      has changed. Should be called after driver or hardware dependent
8443  *      conditions might have changed that influence the features.
8444  */
8445 void netdev_update_features(struct net_device *dev)
8446 {
8447         if (__netdev_update_features(dev))
8448                 netdev_features_change(dev);
8449 }
8450 EXPORT_SYMBOL(netdev_update_features);
8451
8452 /**
8453  *      netdev_change_features - recalculate device features
8454  *      @dev: the device to check
8455  *
8456  *      Recalculate dev->features set and send notifications even
8457  *      if they have not changed. Should be called instead of
8458  *      netdev_update_features() if also dev->vlan_features might
8459  *      have changed to allow the changes to be propagated to stacked
8460  *      VLAN devices.
8461  */
8462 void netdev_change_features(struct net_device *dev)
8463 {
8464         __netdev_update_features(dev);
8465         netdev_features_change(dev);
8466 }
8467 EXPORT_SYMBOL(netdev_change_features);
8468
8469 /**
8470  *      netif_stacked_transfer_operstate -      transfer operstate
8471  *      @rootdev: the root or lower level device to transfer state from
8472  *      @dev: the device to transfer operstate to
8473  *
8474  *      Transfer operational state from root to device. This is normally
8475  *      called when a stacking relationship exists between the root
8476  *      device and the device(a leaf device).
8477  */
8478 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8479                                         struct net_device *dev)
8480 {
8481         if (rootdev->operstate == IF_OPER_DORMANT)
8482                 netif_dormant_on(dev);
8483         else
8484                 netif_dormant_off(dev);
8485
8486         if (netif_carrier_ok(rootdev))
8487                 netif_carrier_on(dev);
8488         else
8489                 netif_carrier_off(dev);
8490 }
8491 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8492
8493 static int netif_alloc_rx_queues(struct net_device *dev)
8494 {
8495         unsigned int i, count = dev->num_rx_queues;
8496         struct netdev_rx_queue *rx;
8497         size_t sz = count * sizeof(*rx);
8498         int err = 0;
8499
8500         BUG_ON(count < 1);
8501
8502         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8503         if (!rx)
8504                 return -ENOMEM;
8505
8506         dev->_rx = rx;
8507
8508         for (i = 0; i < count; i++) {
8509                 rx[i].dev = dev;
8510
8511                 /* XDP RX-queue setup */
8512                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8513                 if (err < 0)
8514                         goto err_rxq_info;
8515         }
8516         return 0;
8517
8518 err_rxq_info:
8519         /* Rollback successful reg's and free other resources */
8520         while (i--)
8521                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8522         kvfree(dev->_rx);
8523         dev->_rx = NULL;
8524         return err;
8525 }
8526
8527 static void netif_free_rx_queues(struct net_device *dev)
8528 {
8529         unsigned int i, count = dev->num_rx_queues;
8530
8531         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8532         if (!dev->_rx)
8533                 return;
8534
8535         for (i = 0; i < count; i++)
8536                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8537
8538         kvfree(dev->_rx);
8539 }
8540
8541 static void netdev_init_one_queue(struct net_device *dev,
8542                                   struct netdev_queue *queue, void *_unused)
8543 {
8544         /* Initialize queue lock */
8545         spin_lock_init(&queue->_xmit_lock);
8546         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8547         queue->xmit_lock_owner = -1;
8548         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8549         queue->dev = dev;
8550 #ifdef CONFIG_BQL
8551         dql_init(&queue->dql, HZ);
8552 #endif
8553 }
8554
8555 static void netif_free_tx_queues(struct net_device *dev)
8556 {
8557         kvfree(dev->_tx);
8558 }
8559
8560 static int netif_alloc_netdev_queues(struct net_device *dev)
8561 {
8562         unsigned int count = dev->num_tx_queues;
8563         struct netdev_queue *tx;
8564         size_t sz = count * sizeof(*tx);
8565
8566         if (count < 1 || count > 0xffff)
8567                 return -EINVAL;
8568
8569         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8570         if (!tx)
8571                 return -ENOMEM;
8572
8573         dev->_tx = tx;
8574
8575         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8576         spin_lock_init(&dev->tx_global_lock);
8577
8578         return 0;
8579 }
8580
8581 void netif_tx_stop_all_queues(struct net_device *dev)
8582 {
8583         unsigned int i;
8584
8585         for (i = 0; i < dev->num_tx_queues; i++) {
8586                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8587
8588                 netif_tx_stop_queue(txq);
8589         }
8590 }
8591 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8592
8593 /**
8594  *      register_netdevice      - register a network device
8595  *      @dev: device to register
8596  *
8597  *      Take a completed network device structure and add it to the kernel
8598  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8599  *      chain. 0 is returned on success. A negative errno code is returned
8600  *      on a failure to set up the device, or if the name is a duplicate.
8601  *
8602  *      Callers must hold the rtnl semaphore. You may want
8603  *      register_netdev() instead of this.
8604  *
8605  *      BUGS:
8606  *      The locking appears insufficient to guarantee two parallel registers
8607  *      will not get the same name.
8608  */
8609
8610 int register_netdevice(struct net_device *dev)
8611 {
8612         int ret;
8613         struct net *net = dev_net(dev);
8614
8615         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8616                      NETDEV_FEATURE_COUNT);
8617         BUG_ON(dev_boot_phase);
8618         ASSERT_RTNL();
8619
8620         might_sleep();
8621
8622         /* When net_device's are persistent, this will be fatal. */
8623         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8624         BUG_ON(!net);
8625
8626         spin_lock_init(&dev->addr_list_lock);
8627         netdev_set_addr_lockdep_class(dev);
8628
8629         ret = dev_get_valid_name(net, dev, dev->name);
8630         if (ret < 0)
8631                 goto out;
8632
8633         /* Init, if this function is available */
8634         if (dev->netdev_ops->ndo_init) {
8635                 ret = dev->netdev_ops->ndo_init(dev);
8636                 if (ret) {
8637                         if (ret > 0)
8638                                 ret = -EIO;
8639                         goto out;
8640                 }
8641         }
8642
8643         if (((dev->hw_features | dev->features) &
8644              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8645             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8646              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8647                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8648                 ret = -EINVAL;
8649                 goto err_uninit;
8650         }
8651
8652         ret = -EBUSY;
8653         if (!dev->ifindex)
8654                 dev->ifindex = dev_new_index(net);
8655         else if (__dev_get_by_index(net, dev->ifindex))
8656                 goto err_uninit;
8657
8658         /* Transfer changeable features to wanted_features and enable
8659          * software offloads (GSO and GRO).
8660          */
8661         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8662         dev->features |= NETIF_F_SOFT_FEATURES;
8663
8664         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8665                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8666                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8667         }
8668
8669         dev->wanted_features = dev->features & dev->hw_features;
8670
8671         if (!(dev->flags & IFF_LOOPBACK))
8672                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8673
8674         /* If IPv4 TCP segmentation offload is supported we should also
8675          * allow the device to enable segmenting the frame with the option
8676          * of ignoring a static IP ID value.  This doesn't enable the
8677          * feature itself but allows the user to enable it later.
8678          */
8679         if (dev->hw_features & NETIF_F_TSO)
8680                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8681         if (dev->vlan_features & NETIF_F_TSO)
8682                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8683         if (dev->mpls_features & NETIF_F_TSO)
8684                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8685         if (dev->hw_enc_features & NETIF_F_TSO)
8686                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8687
8688         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8689          */
8690         dev->vlan_features |= NETIF_F_HIGHDMA;
8691
8692         /* Make NETIF_F_SG inheritable to tunnel devices.
8693          */
8694         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8695
8696         /* Make NETIF_F_SG inheritable to MPLS.
8697          */
8698         dev->mpls_features |= NETIF_F_SG;
8699
8700         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8701         ret = notifier_to_errno(ret);
8702         if (ret)
8703                 goto err_uninit;
8704
8705         ret = netdev_register_kobject(dev);
8706         if (ret)
8707                 goto err_uninit;
8708         dev->reg_state = NETREG_REGISTERED;
8709
8710         __netdev_update_features(dev);
8711
8712         /*
8713          *      Default initial state at registry is that the
8714          *      device is present.
8715          */
8716
8717         set_bit(__LINK_STATE_PRESENT, &dev->state);
8718
8719         linkwatch_init_dev(dev);
8720
8721         dev_init_scheduler(dev);
8722         dev_hold(dev);
8723         list_netdevice(dev);
8724         add_device_randomness(dev->dev_addr, dev->addr_len);
8725
8726         /* If the device has permanent device address, driver should
8727          * set dev_addr and also addr_assign_type should be set to
8728          * NET_ADDR_PERM (default value).
8729          */
8730         if (dev->addr_assign_type == NET_ADDR_PERM)
8731                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8732
8733         /* Notify protocols, that a new device appeared. */
8734         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8735         ret = notifier_to_errno(ret);
8736         if (ret) {
8737                 rollback_registered(dev);
8738                 dev->reg_state = NETREG_UNREGISTERED;
8739         }
8740         /*
8741          *      Prevent userspace races by waiting until the network
8742          *      device is fully setup before sending notifications.
8743          */
8744         if (!dev->rtnl_link_ops ||
8745             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8746                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8747
8748 out:
8749         return ret;
8750
8751 err_uninit:
8752         if (dev->netdev_ops->ndo_uninit)
8753                 dev->netdev_ops->ndo_uninit(dev);
8754         if (dev->priv_destructor)
8755                 dev->priv_destructor(dev);
8756         goto out;
8757 }
8758 EXPORT_SYMBOL(register_netdevice);
8759
8760 /**
8761  *      init_dummy_netdev       - init a dummy network device for NAPI
8762  *      @dev: device to init
8763  *
8764  *      This takes a network device structure and initialize the minimum
8765  *      amount of fields so it can be used to schedule NAPI polls without
8766  *      registering a full blown interface. This is to be used by drivers
8767  *      that need to tie several hardware interfaces to a single NAPI
8768  *      poll scheduler due to HW limitations.
8769  */
8770 int init_dummy_netdev(struct net_device *dev)
8771 {
8772         /* Clear everything. Note we don't initialize spinlocks
8773          * are they aren't supposed to be taken by any of the
8774          * NAPI code and this dummy netdev is supposed to be
8775          * only ever used for NAPI polls
8776          */
8777         memset(dev, 0, sizeof(struct net_device));
8778
8779         /* make sure we BUG if trying to hit standard
8780          * register/unregister code path
8781          */
8782         dev->reg_state = NETREG_DUMMY;
8783
8784         /* NAPI wants this */
8785         INIT_LIST_HEAD(&dev->napi_list);
8786
8787         /* a dummy interface is started by default */
8788         set_bit(__LINK_STATE_PRESENT, &dev->state);
8789         set_bit(__LINK_STATE_START, &dev->state);
8790
8791         /* napi_busy_loop stats accounting wants this */
8792         dev_net_set(dev, &init_net);
8793
8794         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8795          * because users of this 'device' dont need to change
8796          * its refcount.
8797          */
8798
8799         return 0;
8800 }
8801 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8802
8803
8804 /**
8805  *      register_netdev - register a network device
8806  *      @dev: device to register
8807  *
8808  *      Take a completed network device structure and add it to the kernel
8809  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8810  *      chain. 0 is returned on success. A negative errno code is returned
8811  *      on a failure to set up the device, or if the name is a duplicate.
8812  *
8813  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8814  *      and expands the device name if you passed a format string to
8815  *      alloc_netdev.
8816  */
8817 int register_netdev(struct net_device *dev)
8818 {
8819         int err;
8820
8821         if (rtnl_lock_killable())
8822                 return -EINTR;
8823         err = register_netdevice(dev);
8824         rtnl_unlock();
8825         return err;
8826 }
8827 EXPORT_SYMBOL(register_netdev);
8828
8829 int netdev_refcnt_read(const struct net_device *dev)
8830 {
8831         int i, refcnt = 0;
8832
8833         for_each_possible_cpu(i)
8834                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8835         return refcnt;
8836 }
8837 EXPORT_SYMBOL(netdev_refcnt_read);
8838
8839 /**
8840  * netdev_wait_allrefs - wait until all references are gone.
8841  * @dev: target net_device
8842  *
8843  * This is called when unregistering network devices.
8844  *
8845  * Any protocol or device that holds a reference should register
8846  * for netdevice notification, and cleanup and put back the
8847  * reference if they receive an UNREGISTER event.
8848  * We can get stuck here if buggy protocols don't correctly
8849  * call dev_put.
8850  */
8851 static void netdev_wait_allrefs(struct net_device *dev)
8852 {
8853         unsigned long rebroadcast_time, warning_time;
8854         int refcnt;
8855
8856         linkwatch_forget_dev(dev);
8857
8858         rebroadcast_time = warning_time = jiffies;
8859         refcnt = netdev_refcnt_read(dev);
8860
8861         while (refcnt != 0) {
8862                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8863                         rtnl_lock();
8864
8865                         /* Rebroadcast unregister notification */
8866                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8867
8868                         __rtnl_unlock();
8869                         rcu_barrier();
8870                         rtnl_lock();
8871
8872                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8873                                      &dev->state)) {
8874                                 /* We must not have linkwatch events
8875                                  * pending on unregister. If this
8876                                  * happens, we simply run the queue
8877                                  * unscheduled, resulting in a noop
8878                                  * for this device.
8879                                  */
8880                                 linkwatch_run_queue();
8881                         }
8882
8883                         __rtnl_unlock();
8884
8885                         rebroadcast_time = jiffies;
8886                 }
8887
8888                 msleep(250);
8889
8890                 refcnt = netdev_refcnt_read(dev);
8891
8892                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8893                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8894                                  dev->name, refcnt);
8895                         warning_time = jiffies;
8896                 }
8897         }
8898 }
8899
8900 /* The sequence is:
8901  *
8902  *      rtnl_lock();
8903  *      ...
8904  *      register_netdevice(x1);
8905  *      register_netdevice(x2);
8906  *      ...
8907  *      unregister_netdevice(y1);
8908  *      unregister_netdevice(y2);
8909  *      ...
8910  *      rtnl_unlock();
8911  *      free_netdev(y1);
8912  *      free_netdev(y2);
8913  *
8914  * We are invoked by rtnl_unlock().
8915  * This allows us to deal with problems:
8916  * 1) We can delete sysfs objects which invoke hotplug
8917  *    without deadlocking with linkwatch via keventd.
8918  * 2) Since we run with the RTNL semaphore not held, we can sleep
8919  *    safely in order to wait for the netdev refcnt to drop to zero.
8920  *
8921  * We must not return until all unregister events added during
8922  * the interval the lock was held have been completed.
8923  */
8924 void netdev_run_todo(void)
8925 {
8926         struct list_head list;
8927
8928         /* Snapshot list, allow later requests */
8929         list_replace_init(&net_todo_list, &list);
8930
8931         __rtnl_unlock();
8932
8933
8934         /* Wait for rcu callbacks to finish before next phase */
8935         if (!list_empty(&list))
8936                 rcu_barrier();
8937
8938         while (!list_empty(&list)) {
8939                 struct net_device *dev
8940                         = list_first_entry(&list, struct net_device, todo_list);
8941                 list_del(&dev->todo_list);
8942
8943                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8944                         pr_err("network todo '%s' but state %d\n",
8945                                dev->name, dev->reg_state);
8946                         dump_stack();
8947                         continue;
8948                 }
8949
8950                 dev->reg_state = NETREG_UNREGISTERED;
8951
8952                 netdev_wait_allrefs(dev);
8953
8954                 /* paranoia */
8955                 BUG_ON(netdev_refcnt_read(dev));
8956                 BUG_ON(!list_empty(&dev->ptype_all));
8957                 BUG_ON(!list_empty(&dev->ptype_specific));
8958                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8959                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8960 #if IS_ENABLED(CONFIG_DECNET)
8961                 WARN_ON(dev->dn_ptr);
8962 #endif
8963                 if (dev->priv_destructor)
8964                         dev->priv_destructor(dev);
8965                 if (dev->needs_free_netdev)
8966                         free_netdev(dev);
8967
8968                 /* Report a network device has been unregistered */
8969                 rtnl_lock();
8970                 dev_net(dev)->dev_unreg_count--;
8971                 __rtnl_unlock();
8972                 wake_up(&netdev_unregistering_wq);
8973
8974                 /* Free network device */
8975                 kobject_put(&dev->dev.kobj);
8976         }
8977 }
8978
8979 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8980  * all the same fields in the same order as net_device_stats, with only
8981  * the type differing, but rtnl_link_stats64 may have additional fields
8982  * at the end for newer counters.
8983  */
8984 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8985                              const struct net_device_stats *netdev_stats)
8986 {
8987 #if BITS_PER_LONG == 64
8988         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8989         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8990         /* zero out counters that only exist in rtnl_link_stats64 */
8991         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8992                sizeof(*stats64) - sizeof(*netdev_stats));
8993 #else
8994         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8995         const unsigned long *src = (const unsigned long *)netdev_stats;
8996         u64 *dst = (u64 *)stats64;
8997
8998         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8999         for (i = 0; i < n; i++)
9000                 dst[i] = src[i];
9001         /* zero out counters that only exist in rtnl_link_stats64 */
9002         memset((char *)stats64 + n * sizeof(u64), 0,
9003                sizeof(*stats64) - n * sizeof(u64));
9004 #endif
9005 }
9006 EXPORT_SYMBOL(netdev_stats_to_stats64);
9007
9008 /**
9009  *      dev_get_stats   - get network device statistics
9010  *      @dev: device to get statistics from
9011  *      @storage: place to store stats
9012  *
9013  *      Get network statistics from device. Return @storage.
9014  *      The device driver may provide its own method by setting
9015  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9016  *      otherwise the internal statistics structure is used.
9017  */
9018 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9019                                         struct rtnl_link_stats64 *storage)
9020 {
9021         const struct net_device_ops *ops = dev->netdev_ops;
9022
9023         if (ops->ndo_get_stats64) {
9024                 memset(storage, 0, sizeof(*storage));
9025                 ops->ndo_get_stats64(dev, storage);
9026         } else if (ops->ndo_get_stats) {
9027                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9028         } else {
9029                 netdev_stats_to_stats64(storage, &dev->stats);
9030         }
9031         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9032         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9033         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9034         return storage;
9035 }
9036 EXPORT_SYMBOL(dev_get_stats);
9037
9038 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9039 {
9040         struct netdev_queue *queue = dev_ingress_queue(dev);
9041
9042 #ifdef CONFIG_NET_CLS_ACT
9043         if (queue)
9044                 return queue;
9045         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9046         if (!queue)
9047                 return NULL;
9048         netdev_init_one_queue(dev, queue, NULL);
9049         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9050         queue->qdisc_sleeping = &noop_qdisc;
9051         rcu_assign_pointer(dev->ingress_queue, queue);
9052 #endif
9053         return queue;
9054 }
9055
9056 static const struct ethtool_ops default_ethtool_ops;
9057
9058 void netdev_set_default_ethtool_ops(struct net_device *dev,
9059                                     const struct ethtool_ops *ops)
9060 {
9061         if (dev->ethtool_ops == &default_ethtool_ops)
9062                 dev->ethtool_ops = ops;
9063 }
9064 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9065
9066 void netdev_freemem(struct net_device *dev)
9067 {
9068         char *addr = (char *)dev - dev->padded;
9069
9070         kvfree(addr);
9071 }
9072
9073 /**
9074  * alloc_netdev_mqs - allocate network device
9075  * @sizeof_priv: size of private data to allocate space for
9076  * @name: device name format string
9077  * @name_assign_type: origin of device name
9078  * @setup: callback to initialize device
9079  * @txqs: the number of TX subqueues to allocate
9080  * @rxqs: the number of RX subqueues to allocate
9081  *
9082  * Allocates a struct net_device with private data area for driver use
9083  * and performs basic initialization.  Also allocates subqueue structs
9084  * for each queue on the device.
9085  */
9086 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9087                 unsigned char name_assign_type,
9088                 void (*setup)(struct net_device *),
9089                 unsigned int txqs, unsigned int rxqs)
9090 {
9091         struct net_device *dev;
9092         unsigned int alloc_size;
9093         struct net_device *p;
9094
9095         BUG_ON(strlen(name) >= sizeof(dev->name));
9096
9097         if (txqs < 1) {
9098                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9099                 return NULL;
9100         }
9101
9102         if (rxqs < 1) {
9103                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9104                 return NULL;
9105         }
9106
9107         alloc_size = sizeof(struct net_device);
9108         if (sizeof_priv) {
9109                 /* ensure 32-byte alignment of private area */
9110                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9111                 alloc_size += sizeof_priv;
9112         }
9113         /* ensure 32-byte alignment of whole construct */
9114         alloc_size += NETDEV_ALIGN - 1;
9115
9116         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9117         if (!p)
9118                 return NULL;
9119
9120         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9121         dev->padded = (char *)dev - (char *)p;
9122
9123         dev->pcpu_refcnt = alloc_percpu(int);
9124         if (!dev->pcpu_refcnt)
9125                 goto free_dev;
9126
9127         if (dev_addr_init(dev))
9128                 goto free_pcpu;
9129
9130         dev_mc_init(dev);
9131         dev_uc_init(dev);
9132
9133         dev_net_set(dev, &init_net);
9134
9135         dev->gso_max_size = GSO_MAX_SIZE;
9136         dev->gso_max_segs = GSO_MAX_SEGS;
9137
9138         INIT_LIST_HEAD(&dev->napi_list);
9139         INIT_LIST_HEAD(&dev->unreg_list);
9140         INIT_LIST_HEAD(&dev->close_list);
9141         INIT_LIST_HEAD(&dev->link_watch_list);
9142         INIT_LIST_HEAD(&dev->adj_list.upper);
9143         INIT_LIST_HEAD(&dev->adj_list.lower);
9144         INIT_LIST_HEAD(&dev->ptype_all);
9145         INIT_LIST_HEAD(&dev->ptype_specific);
9146 #ifdef CONFIG_NET_SCHED
9147         hash_init(dev->qdisc_hash);
9148 #endif
9149         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9150         setup(dev);
9151
9152         if (!dev->tx_queue_len) {
9153                 dev->priv_flags |= IFF_NO_QUEUE;
9154                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9155         }
9156
9157         dev->num_tx_queues = txqs;
9158         dev->real_num_tx_queues = txqs;
9159         if (netif_alloc_netdev_queues(dev))
9160                 goto free_all;
9161
9162         dev->num_rx_queues = rxqs;
9163         dev->real_num_rx_queues = rxqs;
9164         if (netif_alloc_rx_queues(dev))
9165                 goto free_all;
9166
9167         strcpy(dev->name, name);
9168         dev->name_assign_type = name_assign_type;
9169         dev->group = INIT_NETDEV_GROUP;
9170         if (!dev->ethtool_ops)
9171                 dev->ethtool_ops = &default_ethtool_ops;
9172
9173         nf_hook_ingress_init(dev);
9174
9175         return dev;
9176
9177 free_all:
9178         free_netdev(dev);
9179         return NULL;
9180
9181 free_pcpu:
9182         free_percpu(dev->pcpu_refcnt);
9183 free_dev:
9184         netdev_freemem(dev);
9185         return NULL;
9186 }
9187 EXPORT_SYMBOL(alloc_netdev_mqs);
9188
9189 /**
9190  * free_netdev - free network device
9191  * @dev: device
9192  *
9193  * This function does the last stage of destroying an allocated device
9194  * interface. The reference to the device object is released. If this
9195  * is the last reference then it will be freed.Must be called in process
9196  * context.
9197  */
9198 void free_netdev(struct net_device *dev)
9199 {
9200         struct napi_struct *p, *n;
9201
9202         might_sleep();
9203         netif_free_tx_queues(dev);
9204         netif_free_rx_queues(dev);
9205
9206         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9207
9208         /* Flush device addresses */
9209         dev_addr_flush(dev);
9210
9211         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9212                 netif_napi_del(p);
9213
9214         free_percpu(dev->pcpu_refcnt);
9215         dev->pcpu_refcnt = NULL;
9216
9217         /*  Compatibility with error handling in drivers */
9218         if (dev->reg_state == NETREG_UNINITIALIZED) {
9219                 netdev_freemem(dev);
9220                 return;
9221         }
9222
9223         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9224         dev->reg_state = NETREG_RELEASED;
9225
9226         /* will free via device release */
9227         put_device(&dev->dev);
9228 }
9229 EXPORT_SYMBOL(free_netdev);
9230
9231 /**
9232  *      synchronize_net -  Synchronize with packet receive processing
9233  *
9234  *      Wait for packets currently being received to be done.
9235  *      Does not block later packets from starting.
9236  */
9237 void synchronize_net(void)
9238 {
9239         might_sleep();
9240         if (rtnl_is_locked())
9241                 synchronize_rcu_expedited();
9242         else
9243                 synchronize_rcu();
9244 }
9245 EXPORT_SYMBOL(synchronize_net);
9246
9247 /**
9248  *      unregister_netdevice_queue - remove device from the kernel
9249  *      @dev: device
9250  *      @head: list
9251  *
9252  *      This function shuts down a device interface and removes it
9253  *      from the kernel tables.
9254  *      If head not NULL, device is queued to be unregistered later.
9255  *
9256  *      Callers must hold the rtnl semaphore.  You may want
9257  *      unregister_netdev() instead of this.
9258  */
9259
9260 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9261 {
9262         ASSERT_RTNL();
9263
9264         if (head) {
9265                 list_move_tail(&dev->unreg_list, head);
9266         } else {
9267                 rollback_registered(dev);
9268                 /* Finish processing unregister after unlock */
9269                 net_set_todo(dev);
9270         }
9271 }
9272 EXPORT_SYMBOL(unregister_netdevice_queue);
9273
9274 /**
9275  *      unregister_netdevice_many - unregister many devices
9276  *      @head: list of devices
9277  *
9278  *  Note: As most callers use a stack allocated list_head,
9279  *  we force a list_del() to make sure stack wont be corrupted later.
9280  */
9281 void unregister_netdevice_many(struct list_head *head)
9282 {
9283         struct net_device *dev;
9284
9285         if (!list_empty(head)) {
9286                 rollback_registered_many(head);
9287                 list_for_each_entry(dev, head, unreg_list)
9288                         net_set_todo(dev);
9289                 list_del(head);
9290         }
9291 }
9292 EXPORT_SYMBOL(unregister_netdevice_many);
9293
9294 /**
9295  *      unregister_netdev - remove device from the kernel
9296  *      @dev: device
9297  *
9298  *      This function shuts down a device interface and removes it
9299  *      from the kernel tables.
9300  *
9301  *      This is just a wrapper for unregister_netdevice that takes
9302  *      the rtnl semaphore.  In general you want to use this and not
9303  *      unregister_netdevice.
9304  */
9305 void unregister_netdev(struct net_device *dev)
9306 {
9307         rtnl_lock();
9308         unregister_netdevice(dev);
9309         rtnl_unlock();
9310 }
9311 EXPORT_SYMBOL(unregister_netdev);
9312
9313 /**
9314  *      dev_change_net_namespace - move device to different nethost namespace
9315  *      @dev: device
9316  *      @net: network namespace
9317  *      @pat: If not NULL name pattern to try if the current device name
9318  *            is already taken in the destination network namespace.
9319  *
9320  *      This function shuts down a device interface and moves it
9321  *      to a new network namespace. On success 0 is returned, on
9322  *      a failure a netagive errno code is returned.
9323  *
9324  *      Callers must hold the rtnl semaphore.
9325  */
9326
9327 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9328 {
9329         int err, new_nsid, new_ifindex;
9330
9331         ASSERT_RTNL();
9332
9333         /* Don't allow namespace local devices to be moved. */
9334         err = -EINVAL;
9335         if (dev->features & NETIF_F_NETNS_LOCAL)
9336                 goto out;
9337
9338         /* Ensure the device has been registrered */
9339         if (dev->reg_state != NETREG_REGISTERED)
9340                 goto out;
9341
9342         /* Get out if there is nothing todo */
9343         err = 0;
9344         if (net_eq(dev_net(dev), net))
9345                 goto out;
9346
9347         /* Pick the destination device name, and ensure
9348          * we can use it in the destination network namespace.
9349          */
9350         err = -EEXIST;
9351         if (__dev_get_by_name(net, dev->name)) {
9352                 /* We get here if we can't use the current device name */
9353                 if (!pat)
9354                         goto out;
9355                 err = dev_get_valid_name(net, dev, pat);
9356                 if (err < 0)
9357                         goto out;
9358         }
9359
9360         /*
9361          * And now a mini version of register_netdevice unregister_netdevice.
9362          */
9363
9364         /* If device is running close it first. */
9365         dev_close(dev);
9366
9367         /* And unlink it from device chain */
9368         unlist_netdevice(dev);
9369
9370         synchronize_net();
9371
9372         /* Shutdown queueing discipline. */
9373         dev_shutdown(dev);
9374
9375         /* Notify protocols, that we are about to destroy
9376          * this device. They should clean all the things.
9377          *
9378          * Note that dev->reg_state stays at NETREG_REGISTERED.
9379          * This is wanted because this way 8021q and macvlan know
9380          * the device is just moving and can keep their slaves up.
9381          */
9382         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9383         rcu_barrier();
9384
9385         new_nsid = peernet2id_alloc(dev_net(dev), net);
9386         /* If there is an ifindex conflict assign a new one */
9387         if (__dev_get_by_index(net, dev->ifindex))
9388                 new_ifindex = dev_new_index(net);
9389         else
9390                 new_ifindex = dev->ifindex;
9391
9392         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9393                             new_ifindex);
9394
9395         /*
9396          *      Flush the unicast and multicast chains
9397          */
9398         dev_uc_flush(dev);
9399         dev_mc_flush(dev);
9400
9401         /* Send a netdev-removed uevent to the old namespace */
9402         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9403         netdev_adjacent_del_links(dev);
9404
9405         /* Actually switch the network namespace */
9406         dev_net_set(dev, net);
9407         dev->ifindex = new_ifindex;
9408
9409         /* Send a netdev-add uevent to the new namespace */
9410         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9411         netdev_adjacent_add_links(dev);
9412
9413         /* Fixup kobjects */
9414         err = device_rename(&dev->dev, dev->name);
9415         WARN_ON(err);
9416
9417         /* Add the device back in the hashes */
9418         list_netdevice(dev);
9419
9420         /* Notify protocols, that a new device appeared. */
9421         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9422
9423         /*
9424          *      Prevent userspace races by waiting until the network
9425          *      device is fully setup before sending notifications.
9426          */
9427         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9428
9429         synchronize_net();
9430         err = 0;
9431 out:
9432         return err;
9433 }
9434 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9435
9436 static int dev_cpu_dead(unsigned int oldcpu)
9437 {
9438         struct sk_buff **list_skb;
9439         struct sk_buff *skb;
9440         unsigned int cpu;
9441         struct softnet_data *sd, *oldsd, *remsd = NULL;
9442
9443         local_irq_disable();
9444         cpu = smp_processor_id();
9445         sd = &per_cpu(softnet_data, cpu);
9446         oldsd = &per_cpu(softnet_data, oldcpu);
9447
9448         /* Find end of our completion_queue. */
9449         list_skb = &sd->completion_queue;
9450         while (*list_skb)
9451                 list_skb = &(*list_skb)->next;
9452         /* Append completion queue from offline CPU. */
9453         *list_skb = oldsd->completion_queue;
9454         oldsd->completion_queue = NULL;
9455
9456         /* Append output queue from offline CPU. */
9457         if (oldsd->output_queue) {
9458                 *sd->output_queue_tailp = oldsd->output_queue;
9459                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9460                 oldsd->output_queue = NULL;
9461                 oldsd->output_queue_tailp = &oldsd->output_queue;
9462         }
9463         /* Append NAPI poll list from offline CPU, with one exception :
9464          * process_backlog() must be called by cpu owning percpu backlog.
9465          * We properly handle process_queue & input_pkt_queue later.
9466          */
9467         while (!list_empty(&oldsd->poll_list)) {
9468                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9469                                                             struct napi_struct,
9470                                                             poll_list);
9471
9472                 list_del_init(&napi->poll_list);
9473                 if (napi->poll == process_backlog)
9474                         napi->state = 0;
9475                 else
9476                         ____napi_schedule(sd, napi);
9477         }
9478
9479         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9480         local_irq_enable();
9481
9482 #ifdef CONFIG_RPS
9483         remsd = oldsd->rps_ipi_list;
9484         oldsd->rps_ipi_list = NULL;
9485 #endif
9486         /* send out pending IPI's on offline CPU */
9487         net_rps_send_ipi(remsd);
9488
9489         /* Process offline CPU's input_pkt_queue */
9490         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9491                 netif_rx_ni(skb);
9492                 input_queue_head_incr(oldsd);
9493         }
9494         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9495                 netif_rx_ni(skb);
9496                 input_queue_head_incr(oldsd);
9497         }
9498
9499         return 0;
9500 }
9501
9502 /**
9503  *      netdev_increment_features - increment feature set by one
9504  *      @all: current feature set
9505  *      @one: new feature set
9506  *      @mask: mask feature set
9507  *
9508  *      Computes a new feature set after adding a device with feature set
9509  *      @one to the master device with current feature set @all.  Will not
9510  *      enable anything that is off in @mask. Returns the new feature set.
9511  */
9512 netdev_features_t netdev_increment_features(netdev_features_t all,
9513         netdev_features_t one, netdev_features_t mask)
9514 {
9515         if (mask & NETIF_F_HW_CSUM)
9516                 mask |= NETIF_F_CSUM_MASK;
9517         mask |= NETIF_F_VLAN_CHALLENGED;
9518
9519         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9520         all &= one | ~NETIF_F_ALL_FOR_ALL;
9521
9522         /* If one device supports hw checksumming, set for all. */
9523         if (all & NETIF_F_HW_CSUM)
9524                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9525
9526         return all;
9527 }
9528 EXPORT_SYMBOL(netdev_increment_features);
9529
9530 static struct hlist_head * __net_init netdev_create_hash(void)
9531 {
9532         int i;
9533         struct hlist_head *hash;
9534
9535         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9536         if (hash != NULL)
9537                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9538                         INIT_HLIST_HEAD(&hash[i]);
9539
9540         return hash;
9541 }
9542
9543 /* Initialize per network namespace state */
9544 static int __net_init netdev_init(struct net *net)
9545 {
9546         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9547                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9548
9549         if (net != &init_net)
9550                 INIT_LIST_HEAD(&net->dev_base_head);
9551
9552         net->dev_name_head = netdev_create_hash();
9553         if (net->dev_name_head == NULL)
9554                 goto err_name;
9555
9556         net->dev_index_head = netdev_create_hash();
9557         if (net->dev_index_head == NULL)
9558                 goto err_idx;
9559
9560         return 0;
9561
9562 err_idx:
9563         kfree(net->dev_name_head);
9564 err_name:
9565         return -ENOMEM;
9566 }
9567
9568 /**
9569  *      netdev_drivername - network driver for the device
9570  *      @dev: network device
9571  *
9572  *      Determine network driver for device.
9573  */
9574 const char *netdev_drivername(const struct net_device *dev)
9575 {
9576         const struct device_driver *driver;
9577         const struct device *parent;
9578         const char *empty = "";
9579
9580         parent = dev->dev.parent;
9581         if (!parent)
9582                 return empty;
9583
9584         driver = parent->driver;
9585         if (driver && driver->name)
9586                 return driver->name;
9587         return empty;
9588 }
9589
9590 static void __netdev_printk(const char *level, const struct net_device *dev,
9591                             struct va_format *vaf)
9592 {
9593         if (dev && dev->dev.parent) {
9594                 dev_printk_emit(level[1] - '0',
9595                                 dev->dev.parent,
9596                                 "%s %s %s%s: %pV",
9597                                 dev_driver_string(dev->dev.parent),
9598                                 dev_name(dev->dev.parent),
9599                                 netdev_name(dev), netdev_reg_state(dev),
9600                                 vaf);
9601         } else if (dev) {
9602                 printk("%s%s%s: %pV",
9603                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9604         } else {
9605                 printk("%s(NULL net_device): %pV", level, vaf);
9606         }
9607 }
9608
9609 void netdev_printk(const char *level, const struct net_device *dev,
9610                    const char *format, ...)
9611 {
9612         struct va_format vaf;
9613         va_list args;
9614
9615         va_start(args, format);
9616
9617         vaf.fmt = format;
9618         vaf.va = &args;
9619
9620         __netdev_printk(level, dev, &vaf);
9621
9622         va_end(args);
9623 }
9624 EXPORT_SYMBOL(netdev_printk);
9625
9626 #define define_netdev_printk_level(func, level)                 \
9627 void func(const struct net_device *dev, const char *fmt, ...)   \
9628 {                                                               \
9629         struct va_format vaf;                                   \
9630         va_list args;                                           \
9631                                                                 \
9632         va_start(args, fmt);                                    \
9633                                                                 \
9634         vaf.fmt = fmt;                                          \
9635         vaf.va = &args;                                         \
9636                                                                 \
9637         __netdev_printk(level, dev, &vaf);                      \
9638                                                                 \
9639         va_end(args);                                           \
9640 }                                                               \
9641 EXPORT_SYMBOL(func);
9642
9643 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9644 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9645 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9646 define_netdev_printk_level(netdev_err, KERN_ERR);
9647 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9648 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9649 define_netdev_printk_level(netdev_info, KERN_INFO);
9650
9651 static void __net_exit netdev_exit(struct net *net)
9652 {
9653         kfree(net->dev_name_head);
9654         kfree(net->dev_index_head);
9655         if (net != &init_net)
9656                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9657 }
9658
9659 static struct pernet_operations __net_initdata netdev_net_ops = {
9660         .init = netdev_init,
9661         .exit = netdev_exit,
9662 };
9663
9664 static void __net_exit default_device_exit(struct net *net)
9665 {
9666         struct net_device *dev, *aux;
9667         /*
9668          * Push all migratable network devices back to the
9669          * initial network namespace
9670          */
9671         rtnl_lock();
9672         for_each_netdev_safe(net, dev, aux) {
9673                 int err;
9674                 char fb_name[IFNAMSIZ];
9675
9676                 /* Ignore unmoveable devices (i.e. loopback) */
9677                 if (dev->features & NETIF_F_NETNS_LOCAL)
9678                         continue;
9679
9680                 /* Leave virtual devices for the generic cleanup */
9681                 if (dev->rtnl_link_ops)
9682                         continue;
9683
9684                 /* Push remaining network devices to init_net */
9685                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9686                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9687                 if (err) {
9688                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9689                                  __func__, dev->name, err);
9690                         BUG();
9691                 }
9692         }
9693         rtnl_unlock();
9694 }
9695
9696 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9697 {
9698         /* Return with the rtnl_lock held when there are no network
9699          * devices unregistering in any network namespace in net_list.
9700          */
9701         struct net *net;
9702         bool unregistering;
9703         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9704
9705         add_wait_queue(&netdev_unregistering_wq, &wait);
9706         for (;;) {
9707                 unregistering = false;
9708                 rtnl_lock();
9709                 list_for_each_entry(net, net_list, exit_list) {
9710                         if (net->dev_unreg_count > 0) {
9711                                 unregistering = true;
9712                                 break;
9713                         }
9714                 }
9715                 if (!unregistering)
9716                         break;
9717                 __rtnl_unlock();
9718
9719                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9720         }
9721         remove_wait_queue(&netdev_unregistering_wq, &wait);
9722 }
9723
9724 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9725 {
9726         /* At exit all network devices most be removed from a network
9727          * namespace.  Do this in the reverse order of registration.
9728          * Do this across as many network namespaces as possible to
9729          * improve batching efficiency.
9730          */
9731         struct net_device *dev;
9732         struct net *net;
9733         LIST_HEAD(dev_kill_list);
9734
9735         /* To prevent network device cleanup code from dereferencing
9736          * loopback devices or network devices that have been freed
9737          * wait here for all pending unregistrations to complete,
9738          * before unregistring the loopback device and allowing the
9739          * network namespace be freed.
9740          *
9741          * The netdev todo list containing all network devices
9742          * unregistrations that happen in default_device_exit_batch
9743          * will run in the rtnl_unlock() at the end of
9744          * default_device_exit_batch.
9745          */
9746         rtnl_lock_unregistering(net_list);
9747         list_for_each_entry(net, net_list, exit_list) {
9748                 for_each_netdev_reverse(net, dev) {
9749                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9750                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9751                         else
9752                                 unregister_netdevice_queue(dev, &dev_kill_list);
9753                 }
9754         }
9755         unregister_netdevice_many(&dev_kill_list);
9756         rtnl_unlock();
9757 }
9758
9759 static struct pernet_operations __net_initdata default_device_ops = {
9760         .exit = default_device_exit,
9761         .exit_batch = default_device_exit_batch,
9762 };
9763
9764 /*
9765  *      Initialize the DEV module. At boot time this walks the device list and
9766  *      unhooks any devices that fail to initialise (normally hardware not
9767  *      present) and leaves us with a valid list of present and active devices.
9768  *
9769  */
9770
9771 /*
9772  *       This is called single threaded during boot, so no need
9773  *       to take the rtnl semaphore.
9774  */
9775 static int __init net_dev_init(void)
9776 {
9777         int i, rc = -ENOMEM;
9778
9779         BUG_ON(!dev_boot_phase);
9780
9781         if (dev_proc_init())
9782                 goto out;
9783
9784         if (netdev_kobject_init())
9785                 goto out;
9786
9787         INIT_LIST_HEAD(&ptype_all);
9788         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9789                 INIT_LIST_HEAD(&ptype_base[i]);
9790
9791         INIT_LIST_HEAD(&offload_base);
9792
9793         if (register_pernet_subsys(&netdev_net_ops))
9794                 goto out;
9795
9796         /*
9797          *      Initialise the packet receive queues.
9798          */
9799
9800         for_each_possible_cpu(i) {
9801                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9802                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9803
9804                 INIT_WORK(flush, flush_backlog);
9805
9806                 skb_queue_head_init(&sd->input_pkt_queue);
9807                 skb_queue_head_init(&sd->process_queue);
9808 #ifdef CONFIG_XFRM_OFFLOAD
9809                 skb_queue_head_init(&sd->xfrm_backlog);
9810 #endif
9811                 INIT_LIST_HEAD(&sd->poll_list);
9812                 sd->output_queue_tailp = &sd->output_queue;
9813 #ifdef CONFIG_RPS
9814                 sd->csd.func = rps_trigger_softirq;
9815                 sd->csd.info = sd;
9816                 sd->cpu = i;
9817 #endif
9818
9819                 init_gro_hash(&sd->backlog);
9820                 sd->backlog.poll = process_backlog;
9821                 sd->backlog.weight = weight_p;
9822         }
9823
9824         dev_boot_phase = 0;
9825
9826         /* The loopback device is special if any other network devices
9827          * is present in a network namespace the loopback device must
9828          * be present. Since we now dynamically allocate and free the
9829          * loopback device ensure this invariant is maintained by
9830          * keeping the loopback device as the first device on the
9831          * list of network devices.  Ensuring the loopback devices
9832          * is the first device that appears and the last network device
9833          * that disappears.
9834          */
9835         if (register_pernet_device(&loopback_net_ops))
9836                 goto out;
9837
9838         if (register_pernet_device(&default_device_ops))
9839                 goto out;
9840
9841         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9842         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9843
9844         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9845                                        NULL, dev_cpu_dead);
9846         WARN_ON(rc < 0);
9847         rc = 0;
9848 out:
9849         return rc;
9850 }
9851
9852 subsys_initcall(net_dev_init);