66f7508825bd393d64d87b60b0a793d76092963a
[linux-2.6-block.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static seqcount_t devnet_rename_seq;
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238         struct net *net = dev_net(dev);
239
240         ASSERT_RTNL();
241
242         write_lock_bh(&dev_base_lock);
243         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245         hlist_add_head_rcu(&dev->index_hlist,
246                            dev_index_hash(net, dev->ifindex));
247         write_unlock_bh(&dev_base_lock);
248
249         dev_base_seq_inc(net);
250 }
251
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257         ASSERT_RTNL();
258
259         /* Unlink dev from the device chain */
260         write_lock_bh(&dev_base_lock);
261         list_del_rcu(&dev->dev_list);
262         hlist_del_rcu(&dev->name_hlist);
263         hlist_del_rcu(&dev->index_hlist);
264         write_unlock_bh(&dev_base_lock);
265
266         dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270  *      Our notifier list
271  */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276  *      Device drivers call our routines to queue packets here. We empty the
277  *      queue in the local softnet handler.
278  */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] = {
306         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330                 if (netdev_lock_type[i] == dev_type)
331                         return i;
332         /* the last key is used by default */
333         return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337                                                  unsigned short dev_type)
338 {
339         int i;
340
341         i = netdev_lock_pos(dev_type);
342         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348         int i;
349
350         i = netdev_lock_pos(dev->type);
351         lockdep_set_class_and_name(&dev->addr_list_lock,
352                                    &netdev_addr_lock_key[i],
353                                    netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357                                                  unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364
365 /*******************************************************************************
366  *
367  *              Protocol management and registration routines
368  *
369  *******************************************************************************/
370
371
372 /*
373  *      Add a protocol ID to the list. Now that the input handler is
374  *      smarter we can dispense with all the messy stuff that used to be
375  *      here.
376  *
377  *      BEWARE!!! Protocol handlers, mangling input packets,
378  *      MUST BE last in hash buckets and checking protocol handlers
379  *      MUST start from promiscuous ptype_all chain in net_bh.
380  *      It is true now, do not change it.
381  *      Explanation follows: if protocol handler, mangling packet, will
382  *      be the first on list, it is not able to sense, that packet
383  *      is cloned and should be copied-on-write, so that it will
384  *      change it and subsequent readers will get broken packet.
385  *                                                      --ANK (980803)
386  */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390         if (pt->type == htons(ETH_P_ALL))
391                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392         else
393                 return pt->dev ? &pt->dev->ptype_specific :
394                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398  *      dev_add_pack - add packet handler
399  *      @pt: packet type declaration
400  *
401  *      Add a protocol handler to the networking stack. The passed &packet_type
402  *      is linked into kernel lists and may not be freed until it has been
403  *      removed from the kernel lists.
404  *
405  *      This call does not sleep therefore it can not
406  *      guarantee all CPU's that are in middle of receiving packets
407  *      will see the new packet type (until the next received packet).
408  */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412         struct list_head *head = ptype_head(pt);
413
414         spin_lock(&ptype_lock);
415         list_add_rcu(&pt->list, head);
416         spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421  *      __dev_remove_pack        - remove packet handler
422  *      @pt: packet type declaration
423  *
424  *      Remove a protocol handler that was previously added to the kernel
425  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *      from the kernel lists and can be freed or reused once this function
427  *      returns.
428  *
429  *      The packet type might still be in use by receivers
430  *      and must not be freed until after all the CPU's have gone
431  *      through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435         struct list_head *head = ptype_head(pt);
436         struct packet_type *pt1;
437
438         spin_lock(&ptype_lock);
439
440         list_for_each_entry(pt1, head, list) {
441                 if (pt == pt1) {
442                         list_del_rcu(&pt->list);
443                         goto out;
444                 }
445         }
446
447         pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449         spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454  *      dev_remove_pack  - remove packet handler
455  *      @pt: packet type declaration
456  *
457  *      Remove a protocol handler that was previously added to the kernel
458  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *      from the kernel lists and can be freed or reused once this function
460  *      returns.
461  *
462  *      This call sleeps to guarantee that no CPU is looking at the packet
463  *      type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467         __dev_remove_pack(pt);
468
469         synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473
474 /**
475  *      dev_add_offload - register offload handlers
476  *      @po: protocol offload declaration
477  *
478  *      Add protocol offload handlers to the networking stack. The passed
479  *      &proto_offload is linked into kernel lists and may not be freed until
480  *      it has been removed from the kernel lists.
481  *
482  *      This call does not sleep therefore it can not
483  *      guarantee all CPU's that are in middle of receiving packets
484  *      will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488         struct packet_offload *elem;
489
490         spin_lock(&offload_lock);
491         list_for_each_entry(elem, &offload_base, list) {
492                 if (po->priority < elem->priority)
493                         break;
494         }
495         list_add_rcu(&po->list, elem->list.prev);
496         spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501  *      __dev_remove_offload     - remove offload handler
502  *      @po: packet offload declaration
503  *
504  *      Remove a protocol offload handler that was previously added to the
505  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *      is removed from the kernel lists and can be freed or reused once this
507  *      function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *      and must not be freed until after all the CPU's have gone
511  *      through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515         struct list_head *head = &offload_base;
516         struct packet_offload *po1;
517
518         spin_lock(&offload_lock);
519
520         list_for_each_entry(po1, head, list) {
521                 if (po == po1) {
522                         list_del_rcu(&po->list);
523                         goto out;
524                 }
525         }
526
527         pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529         spin_unlock(&offload_lock);
530 }
531
532 /**
533  *      dev_remove_offload       - remove packet offload handler
534  *      @po: packet offload declaration
535  *
536  *      Remove a packet offload handler that was previously added to the kernel
537  *      offload handlers by dev_add_offload(). The passed &offload_type is
538  *      removed from the kernel lists and can be freed or reused once this
539  *      function returns.
540  *
541  *      This call sleeps to guarantee that no CPU is looking at the packet
542  *      type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546         __dev_remove_offload(po);
547
548         synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553  *
554  *                    Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562  *      netdev_boot_setup_add   - add new setup entry
563  *      @name: name of the device
564  *      @map: configured settings for the device
565  *
566  *      Adds new setup entry to the dev_boot_setup list.  The function
567  *      returns 0 on error and 1 on success.  This is a generic routine to
568  *      all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572         struct netdev_boot_setup *s;
573         int i;
574
575         s = dev_boot_setup;
576         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578                         memset(s[i].name, 0, sizeof(s[i].name));
579                         strlcpy(s[i].name, name, IFNAMSIZ);
580                         memcpy(&s[i].map, map, sizeof(s[i].map));
581                         break;
582                 }
583         }
584
585         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589  * netdev_boot_setup_check      - check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599         struct netdev_boot_setup *s = dev_boot_setup;
600         int i;
601
602         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604                     !strcmp(dev->name, s[i].name)) {
605                         dev->irq = s[i].map.irq;
606                         dev->base_addr = s[i].map.base_addr;
607                         dev->mem_start = s[i].map.mem_start;
608                         dev->mem_end = s[i].map.mem_end;
609                         return 1;
610                 }
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618  * netdev_boot_base     - get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629         const struct netdev_boot_setup *s = dev_boot_setup;
630         char name[IFNAMSIZ];
631         int i;
632
633         sprintf(name, "%s%d", prefix, unit);
634
635         /*
636          * If device already registered then return base of 1
637          * to indicate not to probe for this interface
638          */
639         if (__dev_get_by_name(&init_net, name))
640                 return 1;
641
642         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643                 if (!strcmp(name, s[i].name))
644                         return s[i].map.base_addr;
645         return 0;
646 }
647
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653         int ints[5];
654         struct ifmap map;
655
656         str = get_options(str, ARRAY_SIZE(ints), ints);
657         if (!str || !*str)
658                 return 0;
659
660         /* Save settings */
661         memset(&map, 0, sizeof(map));
662         if (ints[0] > 0)
663                 map.irq = ints[1];
664         if (ints[0] > 1)
665                 map.base_addr = ints[2];
666         if (ints[0] > 2)
667                 map.mem_start = ints[3];
668         if (ints[0] > 3)
669                 map.mem_end = ints[4];
670
671         /* Add new entry to the list */
672         return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678  *
679  *                          Device Interface Subroutines
680  *
681  *******************************************************************************/
682
683 /**
684  *      dev_get_iflink  - get 'iflink' value of a interface
685  *      @dev: targeted interface
686  *
687  *      Indicates the ifindex the interface is linked to.
688  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690
691 int dev_get_iflink(const struct net_device *dev)
692 {
693         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694                 return dev->netdev_ops->ndo_get_iflink(dev);
695
696         return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699
700 /**
701  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *      @dev: targeted interface
703  *      @skb: The packet.
704  *
705  *      For better visibility of tunnel traffic OVS needs to retrieve
706  *      egress tunnel information for a packet. Following API allows
707  *      user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711         struct ip_tunnel_info *info;
712
713         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714                 return -EINVAL;
715
716         info = skb_tunnel_info_unclone(skb);
717         if (!info)
718                 return -ENOMEM;
719         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720                 return -EINVAL;
721
722         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726 /**
727  *      __dev_get_by_name       - find a device by its name
728  *      @net: the applicable net namespace
729  *      @name: name to find
730  *
731  *      Find an interface by name. Must be called under RTNL semaphore
732  *      or @dev_base_lock. If the name is found a pointer to the device
733  *      is returned. If the name is not found then %NULL is returned. The
734  *      reference counters are not incremented so the caller must be
735  *      careful with locks.
736  */
737
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740         struct net_device *dev;
741         struct hlist_head *head = dev_name_hash(net, name);
742
743         hlist_for_each_entry(dev, head, name_hlist)
744                 if (!strncmp(dev->name, name, IFNAMSIZ))
745                         return dev;
746
747         return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750
751 /**
752  * dev_get_by_name_rcu  - find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765         struct net_device *dev;
766         struct hlist_head *head = dev_name_hash(net, name);
767
768         hlist_for_each_entry_rcu(dev, head, name_hlist)
769                 if (!strncmp(dev->name, name, IFNAMSIZ))
770                         return dev;
771
772         return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776 /**
777  *      dev_get_by_name         - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use dev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790         struct net_device *dev;
791
792         rcu_read_lock();
793         dev = dev_get_by_name_rcu(net, name);
794         if (dev)
795                 dev_hold(dev);
796         rcu_read_unlock();
797         return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800
801 /**
802  *      __dev_get_by_index - find a device by its ifindex
803  *      @net: the applicable net namespace
804  *      @ifindex: index of device
805  *
806  *      Search for an interface by index. Returns %NULL if the device
807  *      is not found or a pointer to the device. The device has not
808  *      had its reference counter increased so the caller must be careful
809  *      about locking. The caller must hold either the RTNL semaphore
810  *      or @dev_base_lock.
811  */
812
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815         struct net_device *dev;
816         struct hlist_head *head = dev_index_hash(net, ifindex);
817
818         hlist_for_each_entry(dev, head, index_hlist)
819                 if (dev->ifindex == ifindex)
820                         return dev;
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825
826 /**
827  *      dev_get_by_index_rcu - find a device by its ifindex
828  *      @net: the applicable net namespace
829  *      @ifindex: index of device
830  *
831  *      Search for an interface by index. Returns %NULL if the device
832  *      is not found or a pointer to the device. The device has not
833  *      had its reference counter increased so the caller must be careful
834  *      about locking. The caller must hold RCU lock.
835  */
836
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839         struct net_device *dev;
840         struct hlist_head *head = dev_index_hash(net, ifindex);
841
842         hlist_for_each_entry_rcu(dev, head, index_hlist)
843                 if (dev->ifindex == ifindex)
844                         return dev;
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851 /**
852  *      dev_get_by_index - find a device by its ifindex
853  *      @net: the applicable net namespace
854  *      @ifindex: index of device
855  *
856  *      Search for an interface by index. Returns NULL if the device
857  *      is not found or a pointer to the device. The device returned has
858  *      had a reference added and the pointer is safe until the user calls
859  *      dev_put to indicate they have finished with it.
860  */
861
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864         struct net_device *dev;
865
866         rcu_read_lock();
867         dev = dev_get_by_index_rcu(net, ifindex);
868         if (dev)
869                 dev_hold(dev);
870         rcu_read_unlock();
871         return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874
875 /**
876  *      dev_get_by_napi_id - find a device by napi_id
877  *      @napi_id: ID of the NAPI struct
878  *
879  *      Search for an interface by NAPI ID. Returns %NULL if the device
880  *      is not found or a pointer to the device. The device has not had
881  *      its reference counter increased so the caller must be careful
882  *      about locking. The caller must hold RCU lock.
883  */
884
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887         struct napi_struct *napi;
888
889         WARN_ON_ONCE(!rcu_read_lock_held());
890
891         if (napi_id < MIN_NAPI_ID)
892                 return NULL;
893
894         napi = napi_by_id(napi_id);
895
896         return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899
900 /**
901  *      netdev_get_name - get a netdevice name, knowing its ifindex.
902  *      @net: network namespace
903  *      @name: a pointer to the buffer where the name will be stored.
904  *      @ifindex: the ifindex of the interface to get the name from.
905  *
906  *      The use of raw_seqcount_begin() and cond_resched() before
907  *      retrying is required as we want to give the writers a chance
908  *      to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912         struct net_device *dev;
913         unsigned int seq;
914
915 retry:
916         seq = raw_seqcount_begin(&devnet_rename_seq);
917         rcu_read_lock();
918         dev = dev_get_by_index_rcu(net, ifindex);
919         if (!dev) {
920                 rcu_read_unlock();
921                 return -ENODEV;
922         }
923
924         strcpy(name, dev->name);
925         rcu_read_unlock();
926         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927                 cond_resched();
928                 goto retry;
929         }
930
931         return 0;
932 }
933
934 /**
935  *      dev_getbyhwaddr_rcu - find a device by its hardware address
936  *      @net: the applicable net namespace
937  *      @type: media type of device
938  *      @ha: hardware address
939  *
940  *      Search for an interface by MAC address. Returns NULL if the device
941  *      is not found or a pointer to the device.
942  *      The caller must hold RCU or RTNL.
943  *      The returned device has not had its ref count increased
944  *      and the caller must therefore be careful about locking
945  *
946  */
947
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949                                        const char *ha)
950 {
951         struct net_device *dev;
952
953         for_each_netdev_rcu(net, dev)
954                 if (dev->type == type &&
955                     !memcmp(dev->dev_addr, ha, dev->addr_len))
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964         struct net_device *dev;
965
966         ASSERT_RTNL();
967         for_each_netdev(net, dev)
968                 if (dev->type == type)
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      to allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         if (!sscanf(d->name, name, &i))
1089                                 continue;
1090                         if (i < 0 || i >= max_netdevices)
1091                                 continue;
1092
1093                         /*  avoid cases where sscanf is not exact inverse of printf */
1094                         snprintf(buf, IFNAMSIZ, name, i);
1095                         if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                 set_bit(i, inuse);
1097                 }
1098
1099                 i = find_first_zero_bit(inuse, max_netdevices);
1100                 free_page((unsigned long) inuse);
1101         }
1102
1103         snprintf(buf, IFNAMSIZ, name, i);
1104         if (!__dev_get_by_name(net, buf))
1105                 return i;
1106
1107         /* It is possible to run out of possible slots
1108          * when the name is long and there isn't enough space left
1109          * for the digits, or if all bits are used.
1110          */
1111         return -ENFILE;
1112 }
1113
1114 static int dev_alloc_name_ns(struct net *net,
1115                              struct net_device *dev,
1116                              const char *name)
1117 {
1118         char buf[IFNAMSIZ];
1119         int ret;
1120
1121         BUG_ON(!net);
1122         ret = __dev_alloc_name(net, name, buf);
1123         if (ret >= 0)
1124                 strlcpy(dev->name, buf, IFNAMSIZ);
1125         return ret;
1126 }
1127
1128 /**
1129  *      dev_alloc_name - allocate a name for a device
1130  *      @dev: device
1131  *      @name: name format string
1132  *
1133  *      Passed a format string - eg "lt%d" it will try and find a suitable
1134  *      id. It scans list of devices to build up a free map, then chooses
1135  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *      while allocating the name and adding the device in order to avoid
1137  *      duplicates.
1138  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *      Returns the number of the unit assigned or a negative errno code.
1140  */
1141
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144         return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                        const char *name)
1150 {
1151         BUG_ON(!net);
1152
1153         if (!dev_valid_name(name))
1154                 return -EINVAL;
1155
1156         if (strchr(name, '%'))
1157                 return dev_alloc_name_ns(net, dev, name);
1158         else if (__dev_get_by_name(net, name))
1159                 return -EEXIST;
1160         else if (dev->name != name)
1161                 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166
1167 /**
1168  *      dev_change_name - change name of a device
1169  *      @dev: device
1170  *      @newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *      Change name of a device, can pass format strings "eth%d".
1173  *      for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177         unsigned char old_assign_type;
1178         char oldname[IFNAMSIZ];
1179         int err = 0;
1180         int ret;
1181         struct net *net;
1182
1183         ASSERT_RTNL();
1184         BUG_ON(!dev_net(dev));
1185
1186         net = dev_net(dev);
1187
1188         /* Some auto-enslaved devices e.g. failover slaves are
1189          * special, as userspace might rename the device after
1190          * the interface had been brought up and running since
1191          * the point kernel initiated auto-enslavement. Allow
1192          * live name change even when these slave devices are
1193          * up and running.
1194          *
1195          * Typically, users of these auto-enslaving devices
1196          * don't actually care about slave name change, as
1197          * they are supposed to operate on master interface
1198          * directly.
1199          */
1200         if (dev->flags & IFF_UP &&
1201             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1202                 return -EBUSY;
1203
1204         write_seqcount_begin(&devnet_rename_seq);
1205
1206         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1207                 write_seqcount_end(&devnet_rename_seq);
1208                 return 0;
1209         }
1210
1211         memcpy(oldname, dev->name, IFNAMSIZ);
1212
1213         err = dev_get_valid_name(net, dev, newname);
1214         if (err < 0) {
1215                 write_seqcount_end(&devnet_rename_seq);
1216                 return err;
1217         }
1218
1219         if (oldname[0] && !strchr(oldname, '%'))
1220                 netdev_info(dev, "renamed from %s\n", oldname);
1221
1222         old_assign_type = dev->name_assign_type;
1223         dev->name_assign_type = NET_NAME_RENAMED;
1224
1225 rollback:
1226         ret = device_rename(&dev->dev, dev->name);
1227         if (ret) {
1228                 memcpy(dev->name, oldname, IFNAMSIZ);
1229                 dev->name_assign_type = old_assign_type;
1230                 write_seqcount_end(&devnet_rename_seq);
1231                 return ret;
1232         }
1233
1234         write_seqcount_end(&devnet_rename_seq);
1235
1236         netdev_adjacent_rename_links(dev, oldname);
1237
1238         write_lock_bh(&dev_base_lock);
1239         hlist_del_rcu(&dev->name_hlist);
1240         write_unlock_bh(&dev_base_lock);
1241
1242         synchronize_rcu();
1243
1244         write_lock_bh(&dev_base_lock);
1245         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1246         write_unlock_bh(&dev_base_lock);
1247
1248         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1249         ret = notifier_to_errno(ret);
1250
1251         if (ret) {
1252                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1253                 if (err >= 0) {
1254                         err = ret;
1255                         write_seqcount_begin(&devnet_rename_seq);
1256                         memcpy(dev->name, oldname, IFNAMSIZ);
1257                         memcpy(oldname, newname, IFNAMSIZ);
1258                         dev->name_assign_type = old_assign_type;
1259                         old_assign_type = NET_NAME_RENAMED;
1260                         goto rollback;
1261                 } else {
1262                         pr_err("%s: name change rollback failed: %d\n",
1263                                dev->name, ret);
1264                 }
1265         }
1266
1267         return err;
1268 }
1269
1270 /**
1271  *      dev_set_alias - change ifalias of a device
1272  *      @dev: device
1273  *      @alias: name up to IFALIASZ
1274  *      @len: limit of bytes to copy from info
1275  *
1276  *      Set ifalias for a device,
1277  */
1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1279 {
1280         struct dev_ifalias *new_alias = NULL;
1281
1282         if (len >= IFALIASZ)
1283                 return -EINVAL;
1284
1285         if (len) {
1286                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1287                 if (!new_alias)
1288                         return -ENOMEM;
1289
1290                 memcpy(new_alias->ifalias, alias, len);
1291                 new_alias->ifalias[len] = 0;
1292         }
1293
1294         mutex_lock(&ifalias_mutex);
1295         rcu_swap_protected(dev->ifalias, new_alias,
1296                            mutex_is_locked(&ifalias_mutex));
1297         mutex_unlock(&ifalias_mutex);
1298
1299         if (new_alias)
1300                 kfree_rcu(new_alias, rcuhead);
1301
1302         return len;
1303 }
1304 EXPORT_SYMBOL(dev_set_alias);
1305
1306 /**
1307  *      dev_get_alias - get ifalias of a device
1308  *      @dev: device
1309  *      @name: buffer to store name of ifalias
1310  *      @len: size of buffer
1311  *
1312  *      get ifalias for a device.  Caller must make sure dev cannot go
1313  *      away,  e.g. rcu read lock or own a reference count to device.
1314  */
1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1316 {
1317         const struct dev_ifalias *alias;
1318         int ret = 0;
1319
1320         rcu_read_lock();
1321         alias = rcu_dereference(dev->ifalias);
1322         if (alias)
1323                 ret = snprintf(name, len, "%s", alias->ifalias);
1324         rcu_read_unlock();
1325
1326         return ret;
1327 }
1328
1329 /**
1330  *      netdev_features_change - device changes features
1331  *      @dev: device to cause notification
1332  *
1333  *      Called to indicate a device has changed features.
1334  */
1335 void netdev_features_change(struct net_device *dev)
1336 {
1337         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1338 }
1339 EXPORT_SYMBOL(netdev_features_change);
1340
1341 /**
1342  *      netdev_state_change - device changes state
1343  *      @dev: device to cause notification
1344  *
1345  *      Called to indicate a device has changed state. This function calls
1346  *      the notifier chains for netdev_chain and sends a NEWLINK message
1347  *      to the routing socket.
1348  */
1349 void netdev_state_change(struct net_device *dev)
1350 {
1351         if (dev->flags & IFF_UP) {
1352                 struct netdev_notifier_change_info change_info = {
1353                         .info.dev = dev,
1354                 };
1355
1356                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1357                                               &change_info.info);
1358                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1359         }
1360 }
1361 EXPORT_SYMBOL(netdev_state_change);
1362
1363 /**
1364  * netdev_notify_peers - notify network peers about existence of @dev
1365  * @dev: network device
1366  *
1367  * Generate traffic such that interested network peers are aware of
1368  * @dev, such as by generating a gratuitous ARP. This may be used when
1369  * a device wants to inform the rest of the network about some sort of
1370  * reconfiguration such as a failover event or virtual machine
1371  * migration.
1372  */
1373 void netdev_notify_peers(struct net_device *dev)
1374 {
1375         rtnl_lock();
1376         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1377         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1378         rtnl_unlock();
1379 }
1380 EXPORT_SYMBOL(netdev_notify_peers);
1381
1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383 {
1384         const struct net_device_ops *ops = dev->netdev_ops;
1385         int ret;
1386
1387         ASSERT_RTNL();
1388
1389         if (!netif_device_present(dev))
1390                 return -ENODEV;
1391
1392         /* Block netpoll from trying to do any rx path servicing.
1393          * If we don't do this there is a chance ndo_poll_controller
1394          * or ndo_poll may be running while we open the device
1395          */
1396         netpoll_poll_disable(dev);
1397
1398         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1399         ret = notifier_to_errno(ret);
1400         if (ret)
1401                 return ret;
1402
1403         set_bit(__LINK_STATE_START, &dev->state);
1404
1405         if (ops->ndo_validate_addr)
1406                 ret = ops->ndo_validate_addr(dev);
1407
1408         if (!ret && ops->ndo_open)
1409                 ret = ops->ndo_open(dev);
1410
1411         netpoll_poll_enable(dev);
1412
1413         if (ret)
1414                 clear_bit(__LINK_STATE_START, &dev->state);
1415         else {
1416                 dev->flags |= IFF_UP;
1417                 dev_set_rx_mode(dev);
1418                 dev_activate(dev);
1419                 add_device_randomness(dev->dev_addr, dev->addr_len);
1420         }
1421
1422         return ret;
1423 }
1424
1425 /**
1426  *      dev_open        - prepare an interface for use.
1427  *      @dev: device to open
1428  *      @extack: netlink extended ack
1429  *
1430  *      Takes a device from down to up state. The device's private open
1431  *      function is invoked and then the multicast lists are loaded. Finally
1432  *      the device is moved into the up state and a %NETDEV_UP message is
1433  *      sent to the netdev notifier chain.
1434  *
1435  *      Calling this function on an active interface is a nop. On a failure
1436  *      a negative errno code is returned.
1437  */
1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1439 {
1440         int ret;
1441
1442         if (dev->flags & IFF_UP)
1443                 return 0;
1444
1445         ret = __dev_open(dev, extack);
1446         if (ret < 0)
1447                 return ret;
1448
1449         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450         call_netdevice_notifiers(NETDEV_UP, dev);
1451
1452         return ret;
1453 }
1454 EXPORT_SYMBOL(dev_open);
1455
1456 static void __dev_close_many(struct list_head *head)
1457 {
1458         struct net_device *dev;
1459
1460         ASSERT_RTNL();
1461         might_sleep();
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 /* Temporarily disable netpoll until the interface is down */
1465                 netpoll_poll_disable(dev);
1466
1467                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1468
1469                 clear_bit(__LINK_STATE_START, &dev->state);
1470
1471                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1472                  * can be even on different cpu. So just clear netif_running().
1473                  *
1474                  * dev->stop() will invoke napi_disable() on all of it's
1475                  * napi_struct instances on this device.
1476                  */
1477                 smp_mb__after_atomic(); /* Commit netif_running(). */
1478         }
1479
1480         dev_deactivate_many(head);
1481
1482         list_for_each_entry(dev, head, close_list) {
1483                 const struct net_device_ops *ops = dev->netdev_ops;
1484
1485                 /*
1486                  *      Call the device specific close. This cannot fail.
1487                  *      Only if device is UP
1488                  *
1489                  *      We allow it to be called even after a DETACH hot-plug
1490                  *      event.
1491                  */
1492                 if (ops->ndo_stop)
1493                         ops->ndo_stop(dev);
1494
1495                 dev->flags &= ~IFF_UP;
1496                 netpoll_poll_enable(dev);
1497         }
1498 }
1499
1500 static void __dev_close(struct net_device *dev)
1501 {
1502         LIST_HEAD(single);
1503
1504         list_add(&dev->close_list, &single);
1505         __dev_close_many(&single);
1506         list_del(&single);
1507 }
1508
1509 void dev_close_many(struct list_head *head, bool unlink)
1510 {
1511         struct net_device *dev, *tmp;
1512
1513         /* Remove the devices that don't need to be closed */
1514         list_for_each_entry_safe(dev, tmp, head, close_list)
1515                 if (!(dev->flags & IFF_UP))
1516                         list_del_init(&dev->close_list);
1517
1518         __dev_close_many(head);
1519
1520         list_for_each_entry_safe(dev, tmp, head, close_list) {
1521                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1522                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1523                 if (unlink)
1524                         list_del_init(&dev->close_list);
1525         }
1526 }
1527 EXPORT_SYMBOL(dev_close_many);
1528
1529 /**
1530  *      dev_close - shutdown an interface.
1531  *      @dev: device to shutdown
1532  *
1533  *      This function moves an active device into down state. A
1534  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1535  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1536  *      chain.
1537  */
1538 void dev_close(struct net_device *dev)
1539 {
1540         if (dev->flags & IFF_UP) {
1541                 LIST_HEAD(single);
1542
1543                 list_add(&dev->close_list, &single);
1544                 dev_close_many(&single, true);
1545                 list_del(&single);
1546         }
1547 }
1548 EXPORT_SYMBOL(dev_close);
1549
1550
1551 /**
1552  *      dev_disable_lro - disable Large Receive Offload on a device
1553  *      @dev: device
1554  *
1555  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1556  *      called under RTNL.  This is needed if received packets may be
1557  *      forwarded to another interface.
1558  */
1559 void dev_disable_lro(struct net_device *dev)
1560 {
1561         struct net_device *lower_dev;
1562         struct list_head *iter;
1563
1564         dev->wanted_features &= ~NETIF_F_LRO;
1565         netdev_update_features(dev);
1566
1567         if (unlikely(dev->features & NETIF_F_LRO))
1568                 netdev_WARN(dev, "failed to disable LRO!\n");
1569
1570         netdev_for_each_lower_dev(dev, lower_dev, iter)
1571                 dev_disable_lro(lower_dev);
1572 }
1573 EXPORT_SYMBOL(dev_disable_lro);
1574
1575 /**
1576  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1577  *      @dev: device
1578  *
1579  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1580  *      called under RTNL.  This is needed if Generic XDP is installed on
1581  *      the device.
1582  */
1583 static void dev_disable_gro_hw(struct net_device *dev)
1584 {
1585         dev->wanted_features &= ~NETIF_F_GRO_HW;
1586         netdev_update_features(dev);
1587
1588         if (unlikely(dev->features & NETIF_F_GRO_HW))
1589                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1590 }
1591
1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1593 {
1594 #define N(val)                                          \
1595         case NETDEV_##val:                              \
1596                 return "NETDEV_" __stringify(val);
1597         switch (cmd) {
1598         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1599         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1600         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1601         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1602         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1603         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1604         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1605         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1606         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1607         N(PRE_CHANGEADDR)
1608         }
1609 #undef N
1610         return "UNKNOWN_NETDEV_EVENT";
1611 }
1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1613
1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1615                                    struct net_device *dev)
1616 {
1617         struct netdev_notifier_info info = {
1618                 .dev = dev,
1619         };
1620
1621         return nb->notifier_call(nb, val, &info);
1622 }
1623
1624 static int dev_boot_phase = 1;
1625
1626 /**
1627  * register_netdevice_notifier - register a network notifier block
1628  * @nb: notifier
1629  *
1630  * Register a notifier to be called when network device events occur.
1631  * The notifier passed is linked into the kernel structures and must
1632  * not be reused until it has been unregistered. A negative errno code
1633  * is returned on a failure.
1634  *
1635  * When registered all registration and up events are replayed
1636  * to the new notifier to allow device to have a race free
1637  * view of the network device list.
1638  */
1639
1640 int register_netdevice_notifier(struct notifier_block *nb)
1641 {
1642         struct net_device *dev;
1643         struct net_device *last;
1644         struct net *net;
1645         int err;
1646
1647         /* Close race with setup_net() and cleanup_net() */
1648         down_write(&pernet_ops_rwsem);
1649         rtnl_lock();
1650         err = raw_notifier_chain_register(&netdev_chain, nb);
1651         if (err)
1652                 goto unlock;
1653         if (dev_boot_phase)
1654                 goto unlock;
1655         for_each_net(net) {
1656                 for_each_netdev(net, dev) {
1657                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1658                         err = notifier_to_errno(err);
1659                         if (err)
1660                                 goto rollback;
1661
1662                         if (!(dev->flags & IFF_UP))
1663                                 continue;
1664
1665                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1666                 }
1667         }
1668
1669 unlock:
1670         rtnl_unlock();
1671         up_write(&pernet_ops_rwsem);
1672         return err;
1673
1674 rollback:
1675         last = dev;
1676         for_each_net(net) {
1677                 for_each_netdev(net, dev) {
1678                         if (dev == last)
1679                                 goto outroll;
1680
1681                         if (dev->flags & IFF_UP) {
1682                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1683                                                         dev);
1684                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1685                         }
1686                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1687                 }
1688         }
1689
1690 outroll:
1691         raw_notifier_chain_unregister(&netdev_chain, nb);
1692         goto unlock;
1693 }
1694 EXPORT_SYMBOL(register_netdevice_notifier);
1695
1696 /**
1697  * unregister_netdevice_notifier - unregister a network notifier block
1698  * @nb: notifier
1699  *
1700  * Unregister a notifier previously registered by
1701  * register_netdevice_notifier(). The notifier is unlinked into the
1702  * kernel structures and may then be reused. A negative errno code
1703  * is returned on a failure.
1704  *
1705  * After unregistering unregister and down device events are synthesized
1706  * for all devices on the device list to the removed notifier to remove
1707  * the need for special case cleanup code.
1708  */
1709
1710 int unregister_netdevice_notifier(struct notifier_block *nb)
1711 {
1712         struct net_device *dev;
1713         struct net *net;
1714         int err;
1715
1716         /* Close race with setup_net() and cleanup_net() */
1717         down_write(&pernet_ops_rwsem);
1718         rtnl_lock();
1719         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1720         if (err)
1721                 goto unlock;
1722
1723         for_each_net(net) {
1724                 for_each_netdev(net, dev) {
1725                         if (dev->flags & IFF_UP) {
1726                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727                                                         dev);
1728                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729                         }
1730                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731                 }
1732         }
1733 unlock:
1734         rtnl_unlock();
1735         up_write(&pernet_ops_rwsem);
1736         return err;
1737 }
1738 EXPORT_SYMBOL(unregister_netdevice_notifier);
1739
1740 /**
1741  *      call_netdevice_notifiers_info - call all network notifier blocks
1742  *      @val: value passed unmodified to notifier function
1743  *      @info: notifier information data
1744  *
1745  *      Call all network notifier blocks.  Parameters and return value
1746  *      are as for raw_notifier_call_chain().
1747  */
1748
1749 static int call_netdevice_notifiers_info(unsigned long val,
1750                                          struct netdev_notifier_info *info)
1751 {
1752         ASSERT_RTNL();
1753         return raw_notifier_call_chain(&netdev_chain, val, info);
1754 }
1755
1756 static int call_netdevice_notifiers_extack(unsigned long val,
1757                                            struct net_device *dev,
1758                                            struct netlink_ext_ack *extack)
1759 {
1760         struct netdev_notifier_info info = {
1761                 .dev = dev,
1762                 .extack = extack,
1763         };
1764
1765         return call_netdevice_notifiers_info(val, &info);
1766 }
1767
1768 /**
1769  *      call_netdevice_notifiers - call all network notifier blocks
1770  *      @val: value passed unmodified to notifier function
1771  *      @dev: net_device pointer passed unmodified to notifier function
1772  *
1773  *      Call all network notifier blocks.  Parameters and return value
1774  *      are as for raw_notifier_call_chain().
1775  */
1776
1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1778 {
1779         return call_netdevice_notifiers_extack(val, dev, NULL);
1780 }
1781 EXPORT_SYMBOL(call_netdevice_notifiers);
1782
1783 /**
1784  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1785  *      @val: value passed unmodified to notifier function
1786  *      @dev: net_device pointer passed unmodified to notifier function
1787  *      @arg: additional u32 argument passed to the notifier function
1788  *
1789  *      Call all network notifier blocks.  Parameters and return value
1790  *      are as for raw_notifier_call_chain().
1791  */
1792 static int call_netdevice_notifiers_mtu(unsigned long val,
1793                                         struct net_device *dev, u32 arg)
1794 {
1795         struct netdev_notifier_info_ext info = {
1796                 .info.dev = dev,
1797                 .ext.mtu = arg,
1798         };
1799
1800         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1801
1802         return call_netdevice_notifiers_info(val, &info.info);
1803 }
1804
1805 #ifdef CONFIG_NET_INGRESS
1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1807
1808 void net_inc_ingress_queue(void)
1809 {
1810         static_branch_inc(&ingress_needed_key);
1811 }
1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1813
1814 void net_dec_ingress_queue(void)
1815 {
1816         static_branch_dec(&ingress_needed_key);
1817 }
1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1819 #endif
1820
1821 #ifdef CONFIG_NET_EGRESS
1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1823
1824 void net_inc_egress_queue(void)
1825 {
1826         static_branch_inc(&egress_needed_key);
1827 }
1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1829
1830 void net_dec_egress_queue(void)
1831 {
1832         static_branch_dec(&egress_needed_key);
1833 }
1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1835 #endif
1836
1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1838 #ifdef CONFIG_JUMP_LABEL
1839 static atomic_t netstamp_needed_deferred;
1840 static atomic_t netstamp_wanted;
1841 static void netstamp_clear(struct work_struct *work)
1842 {
1843         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1844         int wanted;
1845
1846         wanted = atomic_add_return(deferred, &netstamp_wanted);
1847         if (wanted > 0)
1848                 static_branch_enable(&netstamp_needed_key);
1849         else
1850                 static_branch_disable(&netstamp_needed_key);
1851 }
1852 static DECLARE_WORK(netstamp_work, netstamp_clear);
1853 #endif
1854
1855 void net_enable_timestamp(void)
1856 {
1857 #ifdef CONFIG_JUMP_LABEL
1858         int wanted;
1859
1860         while (1) {
1861                 wanted = atomic_read(&netstamp_wanted);
1862                 if (wanted <= 0)
1863                         break;
1864                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1865                         return;
1866         }
1867         atomic_inc(&netstamp_needed_deferred);
1868         schedule_work(&netstamp_work);
1869 #else
1870         static_branch_inc(&netstamp_needed_key);
1871 #endif
1872 }
1873 EXPORT_SYMBOL(net_enable_timestamp);
1874
1875 void net_disable_timestamp(void)
1876 {
1877 #ifdef CONFIG_JUMP_LABEL
1878         int wanted;
1879
1880         while (1) {
1881                 wanted = atomic_read(&netstamp_wanted);
1882                 if (wanted <= 1)
1883                         break;
1884                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1885                         return;
1886         }
1887         atomic_dec(&netstamp_needed_deferred);
1888         schedule_work(&netstamp_work);
1889 #else
1890         static_branch_dec(&netstamp_needed_key);
1891 #endif
1892 }
1893 EXPORT_SYMBOL(net_disable_timestamp);
1894
1895 static inline void net_timestamp_set(struct sk_buff *skb)
1896 {
1897         skb->tstamp = 0;
1898         if (static_branch_unlikely(&netstamp_needed_key))
1899                 __net_timestamp(skb);
1900 }
1901
1902 #define net_timestamp_check(COND, SKB)                          \
1903         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1904                 if ((COND) && !(SKB)->tstamp)                   \
1905                         __net_timestamp(SKB);                   \
1906         }                                                       \
1907
1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1909 {
1910         unsigned int len;
1911
1912         if (!(dev->flags & IFF_UP))
1913                 return false;
1914
1915         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1916         if (skb->len <= len)
1917                 return true;
1918
1919         /* if TSO is enabled, we don't care about the length as the packet
1920          * could be forwarded without being segmented before
1921          */
1922         if (skb_is_gso(skb))
1923                 return true;
1924
1925         return false;
1926 }
1927 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1928
1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1930 {
1931         int ret = ____dev_forward_skb(dev, skb);
1932
1933         if (likely(!ret)) {
1934                 skb->protocol = eth_type_trans(skb, dev);
1935                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1936         }
1937
1938         return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1941
1942 /**
1943  * dev_forward_skb - loopback an skb to another netif
1944  *
1945  * @dev: destination network device
1946  * @skb: buffer to forward
1947  *
1948  * return values:
1949  *      NET_RX_SUCCESS  (no congestion)
1950  *      NET_RX_DROP     (packet was dropped, but freed)
1951  *
1952  * dev_forward_skb can be used for injecting an skb from the
1953  * start_xmit function of one device into the receive queue
1954  * of another device.
1955  *
1956  * The receiving device may be in another namespace, so
1957  * we have to clear all information in the skb that could
1958  * impact namespace isolation.
1959  */
1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1961 {
1962         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1963 }
1964 EXPORT_SYMBOL_GPL(dev_forward_skb);
1965
1966 static inline int deliver_skb(struct sk_buff *skb,
1967                               struct packet_type *pt_prev,
1968                               struct net_device *orig_dev)
1969 {
1970         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1971                 return -ENOMEM;
1972         refcount_inc(&skb->users);
1973         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1974 }
1975
1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1977                                           struct packet_type **pt,
1978                                           struct net_device *orig_dev,
1979                                           __be16 type,
1980                                           struct list_head *ptype_list)
1981 {
1982         struct packet_type *ptype, *pt_prev = *pt;
1983
1984         list_for_each_entry_rcu(ptype, ptype_list, list) {
1985                 if (ptype->type != type)
1986                         continue;
1987                 if (pt_prev)
1988                         deliver_skb(skb, pt_prev, orig_dev);
1989                 pt_prev = ptype;
1990         }
1991         *pt = pt_prev;
1992 }
1993
1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1995 {
1996         if (!ptype->af_packet_priv || !skb->sk)
1997                 return false;
1998
1999         if (ptype->id_match)
2000                 return ptype->id_match(ptype, skb->sk);
2001         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2002                 return true;
2003
2004         return false;
2005 }
2006
2007 /**
2008  * dev_nit_active - return true if any network interface taps are in use
2009  *
2010  * @dev: network device to check for the presence of taps
2011  */
2012 bool dev_nit_active(struct net_device *dev)
2013 {
2014         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2015 }
2016 EXPORT_SYMBOL_GPL(dev_nit_active);
2017
2018 /*
2019  *      Support routine. Sends outgoing frames to any network
2020  *      taps currently in use.
2021  */
2022
2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2024 {
2025         struct packet_type *ptype;
2026         struct sk_buff *skb2 = NULL;
2027         struct packet_type *pt_prev = NULL;
2028         struct list_head *ptype_list = &ptype_all;
2029
2030         rcu_read_lock();
2031 again:
2032         list_for_each_entry_rcu(ptype, ptype_list, list) {
2033                 if (ptype->ignore_outgoing)
2034                         continue;
2035
2036                 /* Never send packets back to the socket
2037                  * they originated from - MvS (miquels@drinkel.ow.org)
2038                  */
2039                 if (skb_loop_sk(ptype, skb))
2040                         continue;
2041
2042                 if (pt_prev) {
2043                         deliver_skb(skb2, pt_prev, skb->dev);
2044                         pt_prev = ptype;
2045                         continue;
2046                 }
2047
2048                 /* need to clone skb, done only once */
2049                 skb2 = skb_clone(skb, GFP_ATOMIC);
2050                 if (!skb2)
2051                         goto out_unlock;
2052
2053                 net_timestamp_set(skb2);
2054
2055                 /* skb->nh should be correctly
2056                  * set by sender, so that the second statement is
2057                  * just protection against buggy protocols.
2058                  */
2059                 skb_reset_mac_header(skb2);
2060
2061                 if (skb_network_header(skb2) < skb2->data ||
2062                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2063                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2064                                              ntohs(skb2->protocol),
2065                                              dev->name);
2066                         skb_reset_network_header(skb2);
2067                 }
2068
2069                 skb2->transport_header = skb2->network_header;
2070                 skb2->pkt_type = PACKET_OUTGOING;
2071                 pt_prev = ptype;
2072         }
2073
2074         if (ptype_list == &ptype_all) {
2075                 ptype_list = &dev->ptype_all;
2076                 goto again;
2077         }
2078 out_unlock:
2079         if (pt_prev) {
2080                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2081                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2082                 else
2083                         kfree_skb(skb2);
2084         }
2085         rcu_read_unlock();
2086 }
2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2088
2089 /**
2090  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2091  * @dev: Network device
2092  * @txq: number of queues available
2093  *
2094  * If real_num_tx_queues is changed the tc mappings may no longer be
2095  * valid. To resolve this verify the tc mapping remains valid and if
2096  * not NULL the mapping. With no priorities mapping to this
2097  * offset/count pair it will no longer be used. In the worst case TC0
2098  * is invalid nothing can be done so disable priority mappings. If is
2099  * expected that drivers will fix this mapping if they can before
2100  * calling netif_set_real_num_tx_queues.
2101  */
2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2103 {
2104         int i;
2105         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2106
2107         /* If TC0 is invalidated disable TC mapping */
2108         if (tc->offset + tc->count > txq) {
2109                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2110                 dev->num_tc = 0;
2111                 return;
2112         }
2113
2114         /* Invalidated prio to tc mappings set to TC0 */
2115         for (i = 1; i < TC_BITMASK + 1; i++) {
2116                 int q = netdev_get_prio_tc_map(dev, i);
2117
2118                 tc = &dev->tc_to_txq[q];
2119                 if (tc->offset + tc->count > txq) {
2120                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2121                                 i, q);
2122                         netdev_set_prio_tc_map(dev, i, 0);
2123                 }
2124         }
2125 }
2126
2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2128 {
2129         if (dev->num_tc) {
2130                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2131                 int i;
2132
2133                 /* walk through the TCs and see if it falls into any of them */
2134                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2135                         if ((txq - tc->offset) < tc->count)
2136                                 return i;
2137                 }
2138
2139                 /* didn't find it, just return -1 to indicate no match */
2140                 return -1;
2141         }
2142
2143         return 0;
2144 }
2145 EXPORT_SYMBOL(netdev_txq_to_tc);
2146
2147 #ifdef CONFIG_XPS
2148 struct static_key xps_needed __read_mostly;
2149 EXPORT_SYMBOL(xps_needed);
2150 struct static_key xps_rxqs_needed __read_mostly;
2151 EXPORT_SYMBOL(xps_rxqs_needed);
2152 static DEFINE_MUTEX(xps_map_mutex);
2153 #define xmap_dereference(P)             \
2154         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2155
2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2157                              int tci, u16 index)
2158 {
2159         struct xps_map *map = NULL;
2160         int pos;
2161
2162         if (dev_maps)
2163                 map = xmap_dereference(dev_maps->attr_map[tci]);
2164         if (!map)
2165                 return false;
2166
2167         for (pos = map->len; pos--;) {
2168                 if (map->queues[pos] != index)
2169                         continue;
2170
2171                 if (map->len > 1) {
2172                         map->queues[pos] = map->queues[--map->len];
2173                         break;
2174                 }
2175
2176                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2177                 kfree_rcu(map, rcu);
2178                 return false;
2179         }
2180
2181         return true;
2182 }
2183
2184 static bool remove_xps_queue_cpu(struct net_device *dev,
2185                                  struct xps_dev_maps *dev_maps,
2186                                  int cpu, u16 offset, u16 count)
2187 {
2188         int num_tc = dev->num_tc ? : 1;
2189         bool active = false;
2190         int tci;
2191
2192         for (tci = cpu * num_tc; num_tc--; tci++) {
2193                 int i, j;
2194
2195                 for (i = count, j = offset; i--; j++) {
2196                         if (!remove_xps_queue(dev_maps, tci, j))
2197                                 break;
2198                 }
2199
2200                 active |= i < 0;
2201         }
2202
2203         return active;
2204 }
2205
2206 static void reset_xps_maps(struct net_device *dev,
2207                            struct xps_dev_maps *dev_maps,
2208                            bool is_rxqs_map)
2209 {
2210         if (is_rxqs_map) {
2211                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2212                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2213         } else {
2214                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2215         }
2216         static_key_slow_dec_cpuslocked(&xps_needed);
2217         kfree_rcu(dev_maps, rcu);
2218 }
2219
2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2221                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2222                            u16 offset, u16 count, bool is_rxqs_map)
2223 {
2224         bool active = false;
2225         int i, j;
2226
2227         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2228              j < nr_ids;)
2229                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2230                                                count);
2231         if (!active)
2232                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2233
2234         if (!is_rxqs_map) {
2235                 for (i = offset + (count - 1); count--; i--) {
2236                         netdev_queue_numa_node_write(
2237                                 netdev_get_tx_queue(dev, i),
2238                                 NUMA_NO_NODE);
2239                 }
2240         }
2241 }
2242
2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2244                                    u16 count)
2245 {
2246         const unsigned long *possible_mask = NULL;
2247         struct xps_dev_maps *dev_maps;
2248         unsigned int nr_ids;
2249
2250         if (!static_key_false(&xps_needed))
2251                 return;
2252
2253         cpus_read_lock();
2254         mutex_lock(&xps_map_mutex);
2255
2256         if (static_key_false(&xps_rxqs_needed)) {
2257                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2258                 if (dev_maps) {
2259                         nr_ids = dev->num_rx_queues;
2260                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2261                                        offset, count, true);
2262                 }
2263         }
2264
2265         dev_maps = xmap_dereference(dev->xps_cpus_map);
2266         if (!dev_maps)
2267                 goto out_no_maps;
2268
2269         if (num_possible_cpus() > 1)
2270                 possible_mask = cpumask_bits(cpu_possible_mask);
2271         nr_ids = nr_cpu_ids;
2272         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2273                        false);
2274
2275 out_no_maps:
2276         mutex_unlock(&xps_map_mutex);
2277         cpus_read_unlock();
2278 }
2279
2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2281 {
2282         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2283 }
2284
2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2286                                       u16 index, bool is_rxqs_map)
2287 {
2288         struct xps_map *new_map;
2289         int alloc_len = XPS_MIN_MAP_ALLOC;
2290         int i, pos;
2291
2292         for (pos = 0; map && pos < map->len; pos++) {
2293                 if (map->queues[pos] != index)
2294                         continue;
2295                 return map;
2296         }
2297
2298         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2299         if (map) {
2300                 if (pos < map->alloc_len)
2301                         return map;
2302
2303                 alloc_len = map->alloc_len * 2;
2304         }
2305
2306         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2307          *  map
2308          */
2309         if (is_rxqs_map)
2310                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2311         else
2312                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2313                                        cpu_to_node(attr_index));
2314         if (!new_map)
2315                 return NULL;
2316
2317         for (i = 0; i < pos; i++)
2318                 new_map->queues[i] = map->queues[i];
2319         new_map->alloc_len = alloc_len;
2320         new_map->len = pos;
2321
2322         return new_map;
2323 }
2324
2325 /* Must be called under cpus_read_lock */
2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2327                           u16 index, bool is_rxqs_map)
2328 {
2329         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2330         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2331         int i, j, tci, numa_node_id = -2;
2332         int maps_sz, num_tc = 1, tc = 0;
2333         struct xps_map *map, *new_map;
2334         bool active = false;
2335         unsigned int nr_ids;
2336
2337         if (dev->num_tc) {
2338                 /* Do not allow XPS on subordinate device directly */
2339                 num_tc = dev->num_tc;
2340                 if (num_tc < 0)
2341                         return -EINVAL;
2342
2343                 /* If queue belongs to subordinate dev use its map */
2344                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2345
2346                 tc = netdev_txq_to_tc(dev, index);
2347                 if (tc < 0)
2348                         return -EINVAL;
2349         }
2350
2351         mutex_lock(&xps_map_mutex);
2352         if (is_rxqs_map) {
2353                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2354                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2355                 nr_ids = dev->num_rx_queues;
2356         } else {
2357                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2358                 if (num_possible_cpus() > 1) {
2359                         online_mask = cpumask_bits(cpu_online_mask);
2360                         possible_mask = cpumask_bits(cpu_possible_mask);
2361                 }
2362                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2363                 nr_ids = nr_cpu_ids;
2364         }
2365
2366         if (maps_sz < L1_CACHE_BYTES)
2367                 maps_sz = L1_CACHE_BYTES;
2368
2369         /* allocate memory for queue storage */
2370         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2371              j < nr_ids;) {
2372                 if (!new_dev_maps)
2373                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2374                 if (!new_dev_maps) {
2375                         mutex_unlock(&xps_map_mutex);
2376                         return -ENOMEM;
2377                 }
2378
2379                 tci = j * num_tc + tc;
2380                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2381                                  NULL;
2382
2383                 map = expand_xps_map(map, j, index, is_rxqs_map);
2384                 if (!map)
2385                         goto error;
2386
2387                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2388         }
2389
2390         if (!new_dev_maps)
2391                 goto out_no_new_maps;
2392
2393         if (!dev_maps) {
2394                 /* Increment static keys at most once per type */
2395                 static_key_slow_inc_cpuslocked(&xps_needed);
2396                 if (is_rxqs_map)
2397                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2398         }
2399
2400         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2401              j < nr_ids;) {
2402                 /* copy maps belonging to foreign traffic classes */
2403                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2404                         /* fill in the new device map from the old device map */
2405                         map = xmap_dereference(dev_maps->attr_map[tci]);
2406                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2407                 }
2408
2409                 /* We need to explicitly update tci as prevous loop
2410                  * could break out early if dev_maps is NULL.
2411                  */
2412                 tci = j * num_tc + tc;
2413
2414                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2415                     netif_attr_test_online(j, online_mask, nr_ids)) {
2416                         /* add tx-queue to CPU/rx-queue maps */
2417                         int pos = 0;
2418
2419                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2420                         while ((pos < map->len) && (map->queues[pos] != index))
2421                                 pos++;
2422
2423                         if (pos == map->len)
2424                                 map->queues[map->len++] = index;
2425 #ifdef CONFIG_NUMA
2426                         if (!is_rxqs_map) {
2427                                 if (numa_node_id == -2)
2428                                         numa_node_id = cpu_to_node(j);
2429                                 else if (numa_node_id != cpu_to_node(j))
2430                                         numa_node_id = -1;
2431                         }
2432 #endif
2433                 } else if (dev_maps) {
2434                         /* fill in the new device map from the old device map */
2435                         map = xmap_dereference(dev_maps->attr_map[tci]);
2436                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2437                 }
2438
2439                 /* copy maps belonging to foreign traffic classes */
2440                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2441                         /* fill in the new device map from the old device map */
2442                         map = xmap_dereference(dev_maps->attr_map[tci]);
2443                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2444                 }
2445         }
2446
2447         if (is_rxqs_map)
2448                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2449         else
2450                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2451
2452         /* Cleanup old maps */
2453         if (!dev_maps)
2454                 goto out_no_old_maps;
2455
2456         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2457              j < nr_ids;) {
2458                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2459                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2460                         map = xmap_dereference(dev_maps->attr_map[tci]);
2461                         if (map && map != new_map)
2462                                 kfree_rcu(map, rcu);
2463                 }
2464         }
2465
2466         kfree_rcu(dev_maps, rcu);
2467
2468 out_no_old_maps:
2469         dev_maps = new_dev_maps;
2470         active = true;
2471
2472 out_no_new_maps:
2473         if (!is_rxqs_map) {
2474                 /* update Tx queue numa node */
2475                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2476                                              (numa_node_id >= 0) ?
2477                                              numa_node_id : NUMA_NO_NODE);
2478         }
2479
2480         if (!dev_maps)
2481                 goto out_no_maps;
2482
2483         /* removes tx-queue from unused CPUs/rx-queues */
2484         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2485              j < nr_ids;) {
2486                 for (i = tc, tci = j * num_tc; i--; tci++)
2487                         active |= remove_xps_queue(dev_maps, tci, index);
2488                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2489                     !netif_attr_test_online(j, online_mask, nr_ids))
2490                         active |= remove_xps_queue(dev_maps, tci, index);
2491                 for (i = num_tc - tc, tci++; --i; tci++)
2492                         active |= remove_xps_queue(dev_maps, tci, index);
2493         }
2494
2495         /* free map if not active */
2496         if (!active)
2497                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2498
2499 out_no_maps:
2500         mutex_unlock(&xps_map_mutex);
2501
2502         return 0;
2503 error:
2504         /* remove any maps that we added */
2505         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2506              j < nr_ids;) {
2507                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2508                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2509                         map = dev_maps ?
2510                               xmap_dereference(dev_maps->attr_map[tci]) :
2511                               NULL;
2512                         if (new_map && new_map != map)
2513                                 kfree(new_map);
2514                 }
2515         }
2516
2517         mutex_unlock(&xps_map_mutex);
2518
2519         kfree(new_dev_maps);
2520         return -ENOMEM;
2521 }
2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2523
2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2525                         u16 index)
2526 {
2527         int ret;
2528
2529         cpus_read_lock();
2530         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2531         cpus_read_unlock();
2532
2533         return ret;
2534 }
2535 EXPORT_SYMBOL(netif_set_xps_queue);
2536
2537 #endif
2538 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2539 {
2540         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2541
2542         /* Unbind any subordinate channels */
2543         while (txq-- != &dev->_tx[0]) {
2544                 if (txq->sb_dev)
2545                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2546         }
2547 }
2548
2549 void netdev_reset_tc(struct net_device *dev)
2550 {
2551 #ifdef CONFIG_XPS
2552         netif_reset_xps_queues_gt(dev, 0);
2553 #endif
2554         netdev_unbind_all_sb_channels(dev);
2555
2556         /* Reset TC configuration of device */
2557         dev->num_tc = 0;
2558         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2559         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2560 }
2561 EXPORT_SYMBOL(netdev_reset_tc);
2562
2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2564 {
2565         if (tc >= dev->num_tc)
2566                 return -EINVAL;
2567
2568 #ifdef CONFIG_XPS
2569         netif_reset_xps_queues(dev, offset, count);
2570 #endif
2571         dev->tc_to_txq[tc].count = count;
2572         dev->tc_to_txq[tc].offset = offset;
2573         return 0;
2574 }
2575 EXPORT_SYMBOL(netdev_set_tc_queue);
2576
2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2578 {
2579         if (num_tc > TC_MAX_QUEUE)
2580                 return -EINVAL;
2581
2582 #ifdef CONFIG_XPS
2583         netif_reset_xps_queues_gt(dev, 0);
2584 #endif
2585         netdev_unbind_all_sb_channels(dev);
2586
2587         dev->num_tc = num_tc;
2588         return 0;
2589 }
2590 EXPORT_SYMBOL(netdev_set_num_tc);
2591
2592 void netdev_unbind_sb_channel(struct net_device *dev,
2593                               struct net_device *sb_dev)
2594 {
2595         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2596
2597 #ifdef CONFIG_XPS
2598         netif_reset_xps_queues_gt(sb_dev, 0);
2599 #endif
2600         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2601         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2602
2603         while (txq-- != &dev->_tx[0]) {
2604                 if (txq->sb_dev == sb_dev)
2605                         txq->sb_dev = NULL;
2606         }
2607 }
2608 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2609
2610 int netdev_bind_sb_channel_queue(struct net_device *dev,
2611                                  struct net_device *sb_dev,
2612                                  u8 tc, u16 count, u16 offset)
2613 {
2614         /* Make certain the sb_dev and dev are already configured */
2615         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2616                 return -EINVAL;
2617
2618         /* We cannot hand out queues we don't have */
2619         if ((offset + count) > dev->real_num_tx_queues)
2620                 return -EINVAL;
2621
2622         /* Record the mapping */
2623         sb_dev->tc_to_txq[tc].count = count;
2624         sb_dev->tc_to_txq[tc].offset = offset;
2625
2626         /* Provide a way for Tx queue to find the tc_to_txq map or
2627          * XPS map for itself.
2628          */
2629         while (count--)
2630                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2631
2632         return 0;
2633 }
2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2635
2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2637 {
2638         /* Do not use a multiqueue device to represent a subordinate channel */
2639         if (netif_is_multiqueue(dev))
2640                 return -ENODEV;
2641
2642         /* We allow channels 1 - 32767 to be used for subordinate channels.
2643          * Channel 0 is meant to be "native" mode and used only to represent
2644          * the main root device. We allow writing 0 to reset the device back
2645          * to normal mode after being used as a subordinate channel.
2646          */
2647         if (channel > S16_MAX)
2648                 return -EINVAL;
2649
2650         dev->num_tc = -channel;
2651
2652         return 0;
2653 }
2654 EXPORT_SYMBOL(netdev_set_sb_channel);
2655
2656 /*
2657  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2658  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2659  */
2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2661 {
2662         bool disabling;
2663         int rc;
2664
2665         disabling = txq < dev->real_num_tx_queues;
2666
2667         if (txq < 1 || txq > dev->num_tx_queues)
2668                 return -EINVAL;
2669
2670         if (dev->reg_state == NETREG_REGISTERED ||
2671             dev->reg_state == NETREG_UNREGISTERING) {
2672                 ASSERT_RTNL();
2673
2674                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2675                                                   txq);
2676                 if (rc)
2677                         return rc;
2678
2679                 if (dev->num_tc)
2680                         netif_setup_tc(dev, txq);
2681
2682                 dev->real_num_tx_queues = txq;
2683
2684                 if (disabling) {
2685                         synchronize_net();
2686                         qdisc_reset_all_tx_gt(dev, txq);
2687 #ifdef CONFIG_XPS
2688                         netif_reset_xps_queues_gt(dev, txq);
2689 #endif
2690                 }
2691         } else {
2692                 dev->real_num_tx_queues = txq;
2693         }
2694
2695         return 0;
2696 }
2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2698
2699 #ifdef CONFIG_SYSFS
2700 /**
2701  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2702  *      @dev: Network device
2703  *      @rxq: Actual number of RX queues
2704  *
2705  *      This must be called either with the rtnl_lock held or before
2706  *      registration of the net device.  Returns 0 on success, or a
2707  *      negative error code.  If called before registration, it always
2708  *      succeeds.
2709  */
2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2711 {
2712         int rc;
2713
2714         if (rxq < 1 || rxq > dev->num_rx_queues)
2715                 return -EINVAL;
2716
2717         if (dev->reg_state == NETREG_REGISTERED) {
2718                 ASSERT_RTNL();
2719
2720                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2721                                                   rxq);
2722                 if (rc)
2723                         return rc;
2724         }
2725
2726         dev->real_num_rx_queues = rxq;
2727         return 0;
2728 }
2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2730 #endif
2731
2732 /**
2733  * netif_get_num_default_rss_queues - default number of RSS queues
2734  *
2735  * This routine should set an upper limit on the number of RSS queues
2736  * used by default by multiqueue devices.
2737  */
2738 int netif_get_num_default_rss_queues(void)
2739 {
2740         return is_kdump_kernel() ?
2741                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2742 }
2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2744
2745 static void __netif_reschedule(struct Qdisc *q)
2746 {
2747         struct softnet_data *sd;
2748         unsigned long flags;
2749
2750         local_irq_save(flags);
2751         sd = this_cpu_ptr(&softnet_data);
2752         q->next_sched = NULL;
2753         *sd->output_queue_tailp = q;
2754         sd->output_queue_tailp = &q->next_sched;
2755         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2756         local_irq_restore(flags);
2757 }
2758
2759 void __netif_schedule(struct Qdisc *q)
2760 {
2761         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2762                 __netif_reschedule(q);
2763 }
2764 EXPORT_SYMBOL(__netif_schedule);
2765
2766 struct dev_kfree_skb_cb {
2767         enum skb_free_reason reason;
2768 };
2769
2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2771 {
2772         return (struct dev_kfree_skb_cb *)skb->cb;
2773 }
2774
2775 void netif_schedule_queue(struct netdev_queue *txq)
2776 {
2777         rcu_read_lock();
2778         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2779                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2780
2781                 __netif_schedule(q);
2782         }
2783         rcu_read_unlock();
2784 }
2785 EXPORT_SYMBOL(netif_schedule_queue);
2786
2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2788 {
2789         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2790                 struct Qdisc *q;
2791
2792                 rcu_read_lock();
2793                 q = rcu_dereference(dev_queue->qdisc);
2794                 __netif_schedule(q);
2795                 rcu_read_unlock();
2796         }
2797 }
2798 EXPORT_SYMBOL(netif_tx_wake_queue);
2799
2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2801 {
2802         unsigned long flags;
2803
2804         if (unlikely(!skb))
2805                 return;
2806
2807         if (likely(refcount_read(&skb->users) == 1)) {
2808                 smp_rmb();
2809                 refcount_set(&skb->users, 0);
2810         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2811                 return;
2812         }
2813         get_kfree_skb_cb(skb)->reason = reason;
2814         local_irq_save(flags);
2815         skb->next = __this_cpu_read(softnet_data.completion_queue);
2816         __this_cpu_write(softnet_data.completion_queue, skb);
2817         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2818         local_irq_restore(flags);
2819 }
2820 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2821
2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2823 {
2824         if (in_irq() || irqs_disabled())
2825                 __dev_kfree_skb_irq(skb, reason);
2826         else
2827                 dev_kfree_skb(skb);
2828 }
2829 EXPORT_SYMBOL(__dev_kfree_skb_any);
2830
2831
2832 /**
2833  * netif_device_detach - mark device as removed
2834  * @dev: network device
2835  *
2836  * Mark device as removed from system and therefore no longer available.
2837  */
2838 void netif_device_detach(struct net_device *dev)
2839 {
2840         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2841             netif_running(dev)) {
2842                 netif_tx_stop_all_queues(dev);
2843         }
2844 }
2845 EXPORT_SYMBOL(netif_device_detach);
2846
2847 /**
2848  * netif_device_attach - mark device as attached
2849  * @dev: network device
2850  *
2851  * Mark device as attached from system and restart if needed.
2852  */
2853 void netif_device_attach(struct net_device *dev)
2854 {
2855         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2856             netif_running(dev)) {
2857                 netif_tx_wake_all_queues(dev);
2858                 __netdev_watchdog_up(dev);
2859         }
2860 }
2861 EXPORT_SYMBOL(netif_device_attach);
2862
2863 /*
2864  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2865  * to be used as a distribution range.
2866  */
2867 static u16 skb_tx_hash(const struct net_device *dev,
2868                        const struct net_device *sb_dev,
2869                        struct sk_buff *skb)
2870 {
2871         u32 hash;
2872         u16 qoffset = 0;
2873         u16 qcount = dev->real_num_tx_queues;
2874
2875         if (dev->num_tc) {
2876                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2877
2878                 qoffset = sb_dev->tc_to_txq[tc].offset;
2879                 qcount = sb_dev->tc_to_txq[tc].count;
2880         }
2881
2882         if (skb_rx_queue_recorded(skb)) {
2883                 hash = skb_get_rx_queue(skb);
2884                 while (unlikely(hash >= qcount))
2885                         hash -= qcount;
2886                 return hash + qoffset;
2887         }
2888
2889         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2890 }
2891
2892 static void skb_warn_bad_offload(const struct sk_buff *skb)
2893 {
2894         static const netdev_features_t null_features;
2895         struct net_device *dev = skb->dev;
2896         const char *name = "";
2897
2898         if (!net_ratelimit())
2899                 return;
2900
2901         if (dev) {
2902                 if (dev->dev.parent)
2903                         name = dev_driver_string(dev->dev.parent);
2904                 else
2905                         name = netdev_name(dev);
2906         }
2907         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2908              "gso_type=%d ip_summed=%d\n",
2909              name, dev ? &dev->features : &null_features,
2910              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2911              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2912              skb_shinfo(skb)->gso_type, skb->ip_summed);
2913 }
2914
2915 /*
2916  * Invalidate hardware checksum when packet is to be mangled, and
2917  * complete checksum manually on outgoing path.
2918  */
2919 int skb_checksum_help(struct sk_buff *skb)
2920 {
2921         __wsum csum;
2922         int ret = 0, offset;
2923
2924         if (skb->ip_summed == CHECKSUM_COMPLETE)
2925                 goto out_set_summed;
2926
2927         if (unlikely(skb_shinfo(skb)->gso_size)) {
2928                 skb_warn_bad_offload(skb);
2929                 return -EINVAL;
2930         }
2931
2932         /* Before computing a checksum, we should make sure no frag could
2933          * be modified by an external entity : checksum could be wrong.
2934          */
2935         if (skb_has_shared_frag(skb)) {
2936                 ret = __skb_linearize(skb);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         offset = skb_checksum_start_offset(skb);
2942         BUG_ON(offset >= skb_headlen(skb));
2943         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2944
2945         offset += skb->csum_offset;
2946         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2947
2948         if (skb_cloned(skb) &&
2949             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2950                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2951                 if (ret)
2952                         goto out;
2953         }
2954
2955         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2956 out_set_summed:
2957         skb->ip_summed = CHECKSUM_NONE;
2958 out:
2959         return ret;
2960 }
2961 EXPORT_SYMBOL(skb_checksum_help);
2962
2963 int skb_crc32c_csum_help(struct sk_buff *skb)
2964 {
2965         __le32 crc32c_csum;
2966         int ret = 0, offset, start;
2967
2968         if (skb->ip_summed != CHECKSUM_PARTIAL)
2969                 goto out;
2970
2971         if (unlikely(skb_is_gso(skb)))
2972                 goto out;
2973
2974         /* Before computing a checksum, we should make sure no frag could
2975          * be modified by an external entity : checksum could be wrong.
2976          */
2977         if (unlikely(skb_has_shared_frag(skb))) {
2978                 ret = __skb_linearize(skb);
2979                 if (ret)
2980                         goto out;
2981         }
2982         start = skb_checksum_start_offset(skb);
2983         offset = start + offsetof(struct sctphdr, checksum);
2984         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2985                 ret = -EINVAL;
2986                 goto out;
2987         }
2988         if (skb_cloned(skb) &&
2989             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2990                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2991                 if (ret)
2992                         goto out;
2993         }
2994         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2995                                                   skb->len - start, ~(__u32)0,
2996                                                   crc32c_csum_stub));
2997         *(__le32 *)(skb->data + offset) = crc32c_csum;
2998         skb->ip_summed = CHECKSUM_NONE;
2999         skb->csum_not_inet = 0;
3000 out:
3001         return ret;
3002 }
3003
3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3005 {
3006         __be16 type = skb->protocol;
3007
3008         /* Tunnel gso handlers can set protocol to ethernet. */
3009         if (type == htons(ETH_P_TEB)) {
3010                 struct ethhdr *eth;
3011
3012                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3013                         return 0;
3014
3015                 eth = (struct ethhdr *)skb->data;
3016                 type = eth->h_proto;
3017         }
3018
3019         return __vlan_get_protocol(skb, type, depth);
3020 }
3021
3022 /**
3023  *      skb_mac_gso_segment - mac layer segmentation handler.
3024  *      @skb: buffer to segment
3025  *      @features: features for the output path (see dev->features)
3026  */
3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3028                                     netdev_features_t features)
3029 {
3030         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3031         struct packet_offload *ptype;
3032         int vlan_depth = skb->mac_len;
3033         __be16 type = skb_network_protocol(skb, &vlan_depth);
3034
3035         if (unlikely(!type))
3036                 return ERR_PTR(-EINVAL);
3037
3038         __skb_pull(skb, vlan_depth);
3039
3040         rcu_read_lock();
3041         list_for_each_entry_rcu(ptype, &offload_base, list) {
3042                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3043                         segs = ptype->callbacks.gso_segment(skb, features);
3044                         break;
3045                 }
3046         }
3047         rcu_read_unlock();
3048
3049         __skb_push(skb, skb->data - skb_mac_header(skb));
3050
3051         return segs;
3052 }
3053 EXPORT_SYMBOL(skb_mac_gso_segment);
3054
3055
3056 /* openvswitch calls this on rx path, so we need a different check.
3057  */
3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3059 {
3060         if (tx_path)
3061                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3062                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3063
3064         return skb->ip_summed == CHECKSUM_NONE;
3065 }
3066
3067 /**
3068  *      __skb_gso_segment - Perform segmentation on skb.
3069  *      @skb: buffer to segment
3070  *      @features: features for the output path (see dev->features)
3071  *      @tx_path: whether it is called in TX path
3072  *
3073  *      This function segments the given skb and returns a list of segments.
3074  *
3075  *      It may return NULL if the skb requires no segmentation.  This is
3076  *      only possible when GSO is used for verifying header integrity.
3077  *
3078  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3079  */
3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3081                                   netdev_features_t features, bool tx_path)
3082 {
3083         struct sk_buff *segs;
3084
3085         if (unlikely(skb_needs_check(skb, tx_path))) {
3086                 int err;
3087
3088                 /* We're going to init ->check field in TCP or UDP header */
3089                 err = skb_cow_head(skb, 0);
3090                 if (err < 0)
3091                         return ERR_PTR(err);
3092         }
3093
3094         /* Only report GSO partial support if it will enable us to
3095          * support segmentation on this frame without needing additional
3096          * work.
3097          */
3098         if (features & NETIF_F_GSO_PARTIAL) {
3099                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3100                 struct net_device *dev = skb->dev;
3101
3102                 partial_features |= dev->features & dev->gso_partial_features;
3103                 if (!skb_gso_ok(skb, features | partial_features))
3104                         features &= ~NETIF_F_GSO_PARTIAL;
3105         }
3106
3107         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3108                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3109
3110         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3111         SKB_GSO_CB(skb)->encap_level = 0;
3112
3113         skb_reset_mac_header(skb);
3114         skb_reset_mac_len(skb);
3115
3116         segs = skb_mac_gso_segment(skb, features);
3117
3118         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3119                 skb_warn_bad_offload(skb);
3120
3121         return segs;
3122 }
3123 EXPORT_SYMBOL(__skb_gso_segment);
3124
3125 /* Take action when hardware reception checksum errors are detected. */
3126 #ifdef CONFIG_BUG
3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3128 {
3129         if (net_ratelimit()) {
3130                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3131                 if (dev)
3132                         pr_err("dev features: %pNF\n", &dev->features);
3133                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3134                        skb->len, skb->data_len, skb->pkt_type,
3135                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3136                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3137                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3138                 dump_stack();
3139         }
3140 }
3141 EXPORT_SYMBOL(netdev_rx_csum_fault);
3142 #endif
3143
3144 /* XXX: check that highmem exists at all on the given machine. */
3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3146 {
3147 #ifdef CONFIG_HIGHMEM
3148         int i;
3149
3150         if (!(dev->features & NETIF_F_HIGHDMA)) {
3151                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3152                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3153
3154                         if (PageHighMem(skb_frag_page(frag)))
3155                                 return 1;
3156                 }
3157         }
3158 #endif
3159         return 0;
3160 }
3161
3162 /* If MPLS offload request, verify we are testing hardware MPLS features
3163  * instead of standard features for the netdev.
3164  */
3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3166 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3167                                            netdev_features_t features,
3168                                            __be16 type)
3169 {
3170         if (eth_p_mpls(type))
3171                 features &= skb->dev->mpls_features;
3172
3173         return features;
3174 }
3175 #else
3176 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3177                                            netdev_features_t features,
3178                                            __be16 type)
3179 {
3180         return features;
3181 }
3182 #endif
3183
3184 static netdev_features_t harmonize_features(struct sk_buff *skb,
3185         netdev_features_t features)
3186 {
3187         int tmp;
3188         __be16 type;
3189
3190         type = skb_network_protocol(skb, &tmp);
3191         features = net_mpls_features(skb, features, type);
3192
3193         if (skb->ip_summed != CHECKSUM_NONE &&
3194             !can_checksum_protocol(features, type)) {
3195                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3196         }
3197         if (illegal_highdma(skb->dev, skb))
3198                 features &= ~NETIF_F_SG;
3199
3200         return features;
3201 }
3202
3203 netdev_features_t passthru_features_check(struct sk_buff *skb,
3204                                           struct net_device *dev,
3205                                           netdev_features_t features)
3206 {
3207         return features;
3208 }
3209 EXPORT_SYMBOL(passthru_features_check);
3210
3211 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3212                                              struct net_device *dev,
3213                                              netdev_features_t features)
3214 {
3215         return vlan_features_check(skb, features);
3216 }
3217
3218 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3219                                             struct net_device *dev,
3220                                             netdev_features_t features)
3221 {
3222         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3223
3224         if (gso_segs > dev->gso_max_segs)
3225                 return features & ~NETIF_F_GSO_MASK;
3226
3227         /* Support for GSO partial features requires software
3228          * intervention before we can actually process the packets
3229          * so we need to strip support for any partial features now
3230          * and we can pull them back in after we have partially
3231          * segmented the frame.
3232          */
3233         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3234                 features &= ~dev->gso_partial_features;
3235
3236         /* Make sure to clear the IPv4 ID mangling feature if the
3237          * IPv4 header has the potential to be fragmented.
3238          */
3239         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3240                 struct iphdr *iph = skb->encapsulation ?
3241                                     inner_ip_hdr(skb) : ip_hdr(skb);
3242
3243                 if (!(iph->frag_off & htons(IP_DF)))
3244                         features &= ~NETIF_F_TSO_MANGLEID;
3245         }
3246
3247         return features;
3248 }
3249
3250 netdev_features_t netif_skb_features(struct sk_buff *skb)
3251 {
3252         struct net_device *dev = skb->dev;
3253         netdev_features_t features = dev->features;
3254
3255         if (skb_is_gso(skb))
3256                 features = gso_features_check(skb, dev, features);
3257
3258         /* If encapsulation offload request, verify we are testing
3259          * hardware encapsulation features instead of standard
3260          * features for the netdev
3261          */
3262         if (skb->encapsulation)
3263                 features &= dev->hw_enc_features;
3264
3265         if (skb_vlan_tagged(skb))
3266                 features = netdev_intersect_features(features,
3267                                                      dev->vlan_features |
3268                                                      NETIF_F_HW_VLAN_CTAG_TX |
3269                                                      NETIF_F_HW_VLAN_STAG_TX);
3270
3271         if (dev->netdev_ops->ndo_features_check)
3272                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3273                                                                 features);
3274         else
3275                 features &= dflt_features_check(skb, dev, features);
3276
3277         return harmonize_features(skb, features);
3278 }
3279 EXPORT_SYMBOL(netif_skb_features);
3280
3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3282                     struct netdev_queue *txq, bool more)
3283 {
3284         unsigned int len;
3285         int rc;
3286
3287         if (dev_nit_active(dev))
3288                 dev_queue_xmit_nit(skb, dev);
3289
3290         len = skb->len;
3291         trace_net_dev_start_xmit(skb, dev);
3292         rc = netdev_start_xmit(skb, dev, txq, more);
3293         trace_net_dev_xmit(skb, rc, dev, len);
3294
3295         return rc;
3296 }
3297
3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3299                                     struct netdev_queue *txq, int *ret)
3300 {
3301         struct sk_buff *skb = first;
3302         int rc = NETDEV_TX_OK;
3303
3304         while (skb) {
3305                 struct sk_buff *next = skb->next;
3306
3307                 skb_mark_not_on_list(skb);
3308                 rc = xmit_one(skb, dev, txq, next != NULL);
3309                 if (unlikely(!dev_xmit_complete(rc))) {
3310                         skb->next = next;
3311                         goto out;
3312                 }
3313
3314                 skb = next;
3315                 if (netif_tx_queue_stopped(txq) && skb) {
3316                         rc = NETDEV_TX_BUSY;
3317                         break;
3318                 }
3319         }
3320
3321 out:
3322         *ret = rc;
3323         return skb;
3324 }
3325
3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3327                                           netdev_features_t features)
3328 {
3329         if (skb_vlan_tag_present(skb) &&
3330             !vlan_hw_offload_capable(features, skb->vlan_proto))
3331                 skb = __vlan_hwaccel_push_inside(skb);
3332         return skb;
3333 }
3334
3335 int skb_csum_hwoffload_help(struct sk_buff *skb,
3336                             const netdev_features_t features)
3337 {
3338         if (unlikely(skb->csum_not_inet))
3339                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3340                         skb_crc32c_csum_help(skb);
3341
3342         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3343 }
3344 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3345
3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3347 {
3348         netdev_features_t features;
3349
3350         features = netif_skb_features(skb);
3351         skb = validate_xmit_vlan(skb, features);
3352         if (unlikely(!skb))
3353                 goto out_null;
3354
3355         skb = sk_validate_xmit_skb(skb, dev);
3356         if (unlikely(!skb))
3357                 goto out_null;
3358
3359         if (netif_needs_gso(skb, features)) {
3360                 struct sk_buff *segs;
3361
3362                 segs = skb_gso_segment(skb, features);
3363                 if (IS_ERR(segs)) {
3364                         goto out_kfree_skb;
3365                 } else if (segs) {
3366                         consume_skb(skb);
3367                         skb = segs;
3368                 }
3369         } else {
3370                 if (skb_needs_linearize(skb, features) &&
3371                     __skb_linearize(skb))
3372                         goto out_kfree_skb;
3373
3374                 /* If packet is not checksummed and device does not
3375                  * support checksumming for this protocol, complete
3376                  * checksumming here.
3377                  */
3378                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3379                         if (skb->encapsulation)
3380                                 skb_set_inner_transport_header(skb,
3381                                                                skb_checksum_start_offset(skb));
3382                         else
3383                                 skb_set_transport_header(skb,
3384                                                          skb_checksum_start_offset(skb));
3385                         if (skb_csum_hwoffload_help(skb, features))
3386                                 goto out_kfree_skb;
3387                 }
3388         }
3389
3390         skb = validate_xmit_xfrm(skb, features, again);
3391
3392         return skb;
3393
3394 out_kfree_skb:
3395         kfree_skb(skb);
3396 out_null:
3397         atomic_long_inc(&dev->tx_dropped);
3398         return NULL;
3399 }
3400
3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3402 {
3403         struct sk_buff *next, *head = NULL, *tail;
3404
3405         for (; skb != NULL; skb = next) {
3406                 next = skb->next;
3407                 skb_mark_not_on_list(skb);
3408
3409                 /* in case skb wont be segmented, point to itself */
3410                 skb->prev = skb;
3411
3412                 skb = validate_xmit_skb(skb, dev, again);
3413                 if (!skb)
3414                         continue;
3415
3416                 if (!head)
3417                         head = skb;
3418                 else
3419                         tail->next = skb;
3420                 /* If skb was segmented, skb->prev points to
3421                  * the last segment. If not, it still contains skb.
3422                  */
3423                 tail = skb->prev;
3424         }
3425         return head;
3426 }
3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3428
3429 static void qdisc_pkt_len_init(struct sk_buff *skb)
3430 {
3431         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3432
3433         qdisc_skb_cb(skb)->pkt_len = skb->len;
3434
3435         /* To get more precise estimation of bytes sent on wire,
3436          * we add to pkt_len the headers size of all segments
3437          */
3438         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3439                 unsigned int hdr_len;
3440                 u16 gso_segs = shinfo->gso_segs;
3441
3442                 /* mac layer + network layer */
3443                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3444
3445                 /* + transport layer */
3446                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3447                         const struct tcphdr *th;
3448                         struct tcphdr _tcphdr;
3449
3450                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3451                                                 sizeof(_tcphdr), &_tcphdr);
3452                         if (likely(th))
3453                                 hdr_len += __tcp_hdrlen(th);
3454                 } else {
3455                         struct udphdr _udphdr;
3456
3457                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3458                                                sizeof(_udphdr), &_udphdr))
3459                                 hdr_len += sizeof(struct udphdr);
3460                 }
3461
3462                 if (shinfo->gso_type & SKB_GSO_DODGY)
3463                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3464                                                 shinfo->gso_size);
3465
3466                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3467         }
3468 }
3469
3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3471                                  struct net_device *dev,
3472                                  struct netdev_queue *txq)
3473 {
3474         spinlock_t *root_lock = qdisc_lock(q);
3475         struct sk_buff *to_free = NULL;
3476         bool contended;
3477         int rc;
3478
3479         qdisc_calculate_pkt_len(skb, q);
3480
3481         if (q->flags & TCQ_F_NOLOCK) {
3482                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3483                         __qdisc_drop(skb, &to_free);
3484                         rc = NET_XMIT_DROP;
3485                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3486                            qdisc_run_begin(q)) {
3487                         qdisc_bstats_cpu_update(q, skb);
3488
3489                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3490                                 __qdisc_run(q);
3491
3492                         qdisc_run_end(q);
3493                         rc = NET_XMIT_SUCCESS;
3494                 } else {
3495                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3496                         qdisc_run(q);
3497                 }
3498
3499                 if (unlikely(to_free))
3500                         kfree_skb_list(to_free);
3501                 return rc;
3502         }
3503
3504         /*
3505          * Heuristic to force contended enqueues to serialize on a
3506          * separate lock before trying to get qdisc main lock.
3507          * This permits qdisc->running owner to get the lock more
3508          * often and dequeue packets faster.
3509          */
3510         contended = qdisc_is_running(q);
3511         if (unlikely(contended))
3512                 spin_lock(&q->busylock);
3513
3514         spin_lock(root_lock);
3515         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3516                 __qdisc_drop(skb, &to_free);
3517                 rc = NET_XMIT_DROP;
3518         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3519                    qdisc_run_begin(q)) {
3520                 /*
3521                  * This is a work-conserving queue; there are no old skbs
3522                  * waiting to be sent out; and the qdisc is not running -
3523                  * xmit the skb directly.
3524                  */
3525
3526                 qdisc_bstats_update(q, skb);
3527
3528                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3529                         if (unlikely(contended)) {
3530                                 spin_unlock(&q->busylock);
3531                                 contended = false;
3532                         }
3533                         __qdisc_run(q);
3534                 }
3535
3536                 qdisc_run_end(q);
3537                 rc = NET_XMIT_SUCCESS;
3538         } else {
3539                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3540                 if (qdisc_run_begin(q)) {
3541                         if (unlikely(contended)) {
3542                                 spin_unlock(&q->busylock);
3543                                 contended = false;
3544                         }
3545                         __qdisc_run(q);
3546                         qdisc_run_end(q);
3547                 }
3548         }
3549         spin_unlock(root_lock);
3550         if (unlikely(to_free))
3551                 kfree_skb_list(to_free);
3552         if (unlikely(contended))
3553                 spin_unlock(&q->busylock);
3554         return rc;
3555 }
3556
3557 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3558 static void skb_update_prio(struct sk_buff *skb)
3559 {
3560         const struct netprio_map *map;
3561         const struct sock *sk;
3562         unsigned int prioidx;
3563
3564         if (skb->priority)
3565                 return;
3566         map = rcu_dereference_bh(skb->dev->priomap);
3567         if (!map)
3568                 return;
3569         sk = skb_to_full_sk(skb);
3570         if (!sk)
3571                 return;
3572
3573         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3574
3575         if (prioidx < map->priomap_len)
3576                 skb->priority = map->priomap[prioidx];
3577 }
3578 #else
3579 #define skb_update_prio(skb)
3580 #endif
3581
3582 /**
3583  *      dev_loopback_xmit - loop back @skb
3584  *      @net: network namespace this loopback is happening in
3585  *      @sk:  sk needed to be a netfilter okfn
3586  *      @skb: buffer to transmit
3587  */
3588 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3589 {
3590         skb_reset_mac_header(skb);
3591         __skb_pull(skb, skb_network_offset(skb));
3592         skb->pkt_type = PACKET_LOOPBACK;
3593         skb->ip_summed = CHECKSUM_UNNECESSARY;
3594         WARN_ON(!skb_dst(skb));
3595         skb_dst_force(skb);
3596         netif_rx_ni(skb);
3597         return 0;
3598 }
3599 EXPORT_SYMBOL(dev_loopback_xmit);
3600
3601 #ifdef CONFIG_NET_EGRESS
3602 static struct sk_buff *
3603 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3604 {
3605         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3606         struct tcf_result cl_res;
3607
3608         if (!miniq)
3609                 return skb;
3610
3611         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3612         mini_qdisc_bstats_cpu_update(miniq, skb);
3613
3614         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3615         case TC_ACT_OK:
3616         case TC_ACT_RECLASSIFY:
3617                 skb->tc_index = TC_H_MIN(cl_res.classid);
3618                 break;
3619         case TC_ACT_SHOT:
3620                 mini_qdisc_qstats_cpu_drop(miniq);
3621                 *ret = NET_XMIT_DROP;
3622                 kfree_skb(skb);
3623                 return NULL;
3624         case TC_ACT_STOLEN:
3625         case TC_ACT_QUEUED:
3626         case TC_ACT_TRAP:
3627                 *ret = NET_XMIT_SUCCESS;
3628                 consume_skb(skb);
3629                 return NULL;
3630         case TC_ACT_REDIRECT:
3631                 /* No need to push/pop skb's mac_header here on egress! */
3632                 skb_do_redirect(skb);
3633                 *ret = NET_XMIT_SUCCESS;
3634                 return NULL;
3635         default:
3636                 break;
3637         }
3638
3639         return skb;
3640 }
3641 #endif /* CONFIG_NET_EGRESS */
3642
3643 #ifdef CONFIG_XPS
3644 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3645                                struct xps_dev_maps *dev_maps, unsigned int tci)
3646 {
3647         struct xps_map *map;
3648         int queue_index = -1;
3649
3650         if (dev->num_tc) {
3651                 tci *= dev->num_tc;
3652                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3653         }
3654
3655         map = rcu_dereference(dev_maps->attr_map[tci]);
3656         if (map) {
3657                 if (map->len == 1)
3658                         queue_index = map->queues[0];
3659                 else
3660                         queue_index = map->queues[reciprocal_scale(
3661                                                 skb_get_hash(skb), map->len)];
3662                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3663                         queue_index = -1;
3664         }
3665         return queue_index;
3666 }
3667 #endif
3668
3669 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3670                          struct sk_buff *skb)
3671 {
3672 #ifdef CONFIG_XPS
3673         struct xps_dev_maps *dev_maps;
3674         struct sock *sk = skb->sk;
3675         int queue_index = -1;
3676
3677         if (!static_key_false(&xps_needed))
3678                 return -1;
3679
3680         rcu_read_lock();
3681         if (!static_key_false(&xps_rxqs_needed))
3682                 goto get_cpus_map;
3683
3684         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3685         if (dev_maps) {
3686                 int tci = sk_rx_queue_get(sk);
3687
3688                 if (tci >= 0 && tci < dev->num_rx_queues)
3689                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690                                                           tci);
3691         }
3692
3693 get_cpus_map:
3694         if (queue_index < 0) {
3695                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3696                 if (dev_maps) {
3697                         unsigned int tci = skb->sender_cpu - 1;
3698
3699                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3700                                                           tci);
3701                 }
3702         }
3703         rcu_read_unlock();
3704
3705         return queue_index;
3706 #else
3707         return -1;
3708 #endif
3709 }
3710
3711 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3712                      struct net_device *sb_dev)
3713 {
3714         return 0;
3715 }
3716 EXPORT_SYMBOL(dev_pick_tx_zero);
3717
3718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3719                        struct net_device *sb_dev)
3720 {
3721         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3722 }
3723 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3724
3725 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3726                      struct net_device *sb_dev)
3727 {
3728         struct sock *sk = skb->sk;
3729         int queue_index = sk_tx_queue_get(sk);
3730
3731         sb_dev = sb_dev ? : dev;
3732
3733         if (queue_index < 0 || skb->ooo_okay ||
3734             queue_index >= dev->real_num_tx_queues) {
3735                 int new_index = get_xps_queue(dev, sb_dev, skb);
3736
3737                 if (new_index < 0)
3738                         new_index = skb_tx_hash(dev, sb_dev, skb);
3739
3740                 if (queue_index != new_index && sk &&
3741                     sk_fullsock(sk) &&
3742                     rcu_access_pointer(sk->sk_dst_cache))
3743                         sk_tx_queue_set(sk, new_index);
3744
3745                 queue_index = new_index;
3746         }
3747
3748         return queue_index;
3749 }
3750 EXPORT_SYMBOL(netdev_pick_tx);
3751
3752 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3753                                          struct sk_buff *skb,
3754                                          struct net_device *sb_dev)
3755 {
3756         int queue_index = 0;
3757
3758 #ifdef CONFIG_XPS
3759         u32 sender_cpu = skb->sender_cpu - 1;
3760
3761         if (sender_cpu >= (u32)NR_CPUS)
3762                 skb->sender_cpu = raw_smp_processor_id() + 1;
3763 #endif
3764
3765         if (dev->real_num_tx_queues != 1) {
3766                 const struct net_device_ops *ops = dev->netdev_ops;
3767
3768                 if (ops->ndo_select_queue)
3769                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3770                 else
3771                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3772
3773                 queue_index = netdev_cap_txqueue(dev, queue_index);
3774         }
3775
3776         skb_set_queue_mapping(skb, queue_index);
3777         return netdev_get_tx_queue(dev, queue_index);
3778 }
3779
3780 /**
3781  *      __dev_queue_xmit - transmit a buffer
3782  *      @skb: buffer to transmit
3783  *      @sb_dev: suboordinate device used for L2 forwarding offload
3784  *
3785  *      Queue a buffer for transmission to a network device. The caller must
3786  *      have set the device and priority and built the buffer before calling
3787  *      this function. The function can be called from an interrupt.
3788  *
3789  *      A negative errno code is returned on a failure. A success does not
3790  *      guarantee the frame will be transmitted as it may be dropped due
3791  *      to congestion or traffic shaping.
3792  *
3793  * -----------------------------------------------------------------------------------
3794  *      I notice this method can also return errors from the queue disciplines,
3795  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3796  *      be positive.
3797  *
3798  *      Regardless of the return value, the skb is consumed, so it is currently
3799  *      difficult to retry a send to this method.  (You can bump the ref count
3800  *      before sending to hold a reference for retry if you are careful.)
3801  *
3802  *      When calling this method, interrupts MUST be enabled.  This is because
3803  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3804  *          --BLG
3805  */
3806 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3807 {
3808         struct net_device *dev = skb->dev;
3809         struct netdev_queue *txq;
3810         struct Qdisc *q;
3811         int rc = -ENOMEM;
3812         bool again = false;
3813
3814         skb_reset_mac_header(skb);
3815
3816         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3817                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3818
3819         /* Disable soft irqs for various locks below. Also
3820          * stops preemption for RCU.
3821          */
3822         rcu_read_lock_bh();
3823
3824         skb_update_prio(skb);
3825
3826         qdisc_pkt_len_init(skb);
3827 #ifdef CONFIG_NET_CLS_ACT
3828         skb->tc_at_ingress = 0;
3829 # ifdef CONFIG_NET_EGRESS
3830         if (static_branch_unlikely(&egress_needed_key)) {
3831                 skb = sch_handle_egress(skb, &rc, dev);
3832                 if (!skb)
3833                         goto out;
3834         }
3835 # endif
3836 #endif
3837         /* If device/qdisc don't need skb->dst, release it right now while
3838          * its hot in this cpu cache.
3839          */
3840         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3841                 skb_dst_drop(skb);
3842         else
3843                 skb_dst_force(skb);
3844
3845         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3846         q = rcu_dereference_bh(txq->qdisc);
3847
3848         trace_net_dev_queue(skb);
3849         if (q->enqueue) {
3850                 rc = __dev_xmit_skb(skb, q, dev, txq);
3851                 goto out;
3852         }
3853
3854         /* The device has no queue. Common case for software devices:
3855          * loopback, all the sorts of tunnels...
3856
3857          * Really, it is unlikely that netif_tx_lock protection is necessary
3858          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3859          * counters.)
3860          * However, it is possible, that they rely on protection
3861          * made by us here.
3862
3863          * Check this and shot the lock. It is not prone from deadlocks.
3864          *Either shot noqueue qdisc, it is even simpler 8)
3865          */
3866         if (dev->flags & IFF_UP) {
3867                 int cpu = smp_processor_id(); /* ok because BHs are off */
3868
3869                 if (txq->xmit_lock_owner != cpu) {
3870                         if (dev_xmit_recursion())
3871                                 goto recursion_alert;
3872
3873                         skb = validate_xmit_skb(skb, dev, &again);
3874                         if (!skb)
3875                                 goto out;
3876
3877                         HARD_TX_LOCK(dev, txq, cpu);
3878
3879                         if (!netif_xmit_stopped(txq)) {
3880                                 dev_xmit_recursion_inc();
3881                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3882                                 dev_xmit_recursion_dec();
3883                                 if (dev_xmit_complete(rc)) {
3884                                         HARD_TX_UNLOCK(dev, txq);
3885                                         goto out;
3886                                 }
3887                         }
3888                         HARD_TX_UNLOCK(dev, txq);
3889                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3890                                              dev->name);
3891                 } else {
3892                         /* Recursion is detected! It is possible,
3893                          * unfortunately
3894                          */
3895 recursion_alert:
3896                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3897                                              dev->name);
3898                 }
3899         }
3900
3901         rc = -ENETDOWN;
3902         rcu_read_unlock_bh();
3903
3904         atomic_long_inc(&dev->tx_dropped);
3905         kfree_skb_list(skb);
3906         return rc;
3907 out:
3908         rcu_read_unlock_bh();
3909         return rc;
3910 }
3911
3912 int dev_queue_xmit(struct sk_buff *skb)
3913 {
3914         return __dev_queue_xmit(skb, NULL);
3915 }
3916 EXPORT_SYMBOL(dev_queue_xmit);
3917
3918 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3919 {
3920         return __dev_queue_xmit(skb, sb_dev);
3921 }
3922 EXPORT_SYMBOL(dev_queue_xmit_accel);
3923
3924 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3925 {
3926         struct net_device *dev = skb->dev;
3927         struct sk_buff *orig_skb = skb;
3928         struct netdev_queue *txq;
3929         int ret = NETDEV_TX_BUSY;
3930         bool again = false;
3931
3932         if (unlikely(!netif_running(dev) ||
3933                      !netif_carrier_ok(dev)))
3934                 goto drop;
3935
3936         skb = validate_xmit_skb_list(skb, dev, &again);
3937         if (skb != orig_skb)
3938                 goto drop;
3939
3940         skb_set_queue_mapping(skb, queue_id);
3941         txq = skb_get_tx_queue(dev, skb);
3942
3943         local_bh_disable();
3944
3945         HARD_TX_LOCK(dev, txq, smp_processor_id());
3946         if (!netif_xmit_frozen_or_drv_stopped(txq))
3947                 ret = netdev_start_xmit(skb, dev, txq, false);
3948         HARD_TX_UNLOCK(dev, txq);
3949
3950         local_bh_enable();
3951
3952         if (!dev_xmit_complete(ret))
3953                 kfree_skb(skb);
3954
3955         return ret;
3956 drop:
3957         atomic_long_inc(&dev->tx_dropped);
3958         kfree_skb_list(skb);
3959         return NET_XMIT_DROP;
3960 }
3961 EXPORT_SYMBOL(dev_direct_xmit);
3962
3963 /*************************************************************************
3964  *                      Receiver routines
3965  *************************************************************************/
3966
3967 int netdev_max_backlog __read_mostly = 1000;
3968 EXPORT_SYMBOL(netdev_max_backlog);
3969
3970 int netdev_tstamp_prequeue __read_mostly = 1;
3971 int netdev_budget __read_mostly = 300;
3972 unsigned int __read_mostly netdev_budget_usecs = 2000;
3973 int weight_p __read_mostly = 64;           /* old backlog weight */
3974 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3975 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3976 int dev_rx_weight __read_mostly = 64;
3977 int dev_tx_weight __read_mostly = 64;
3978
3979 /* Called with irq disabled */
3980 static inline void ____napi_schedule(struct softnet_data *sd,
3981                                      struct napi_struct *napi)
3982 {
3983         list_add_tail(&napi->poll_list, &sd->poll_list);
3984         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3985 }
3986
3987 #ifdef CONFIG_RPS
3988
3989 /* One global table that all flow-based protocols share. */
3990 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3991 EXPORT_SYMBOL(rps_sock_flow_table);
3992 u32 rps_cpu_mask __read_mostly;
3993 EXPORT_SYMBOL(rps_cpu_mask);
3994
3995 struct static_key_false rps_needed __read_mostly;
3996 EXPORT_SYMBOL(rps_needed);
3997 struct static_key_false rfs_needed __read_mostly;
3998 EXPORT_SYMBOL(rfs_needed);
3999
4000 static struct rps_dev_flow *
4001 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4002             struct rps_dev_flow *rflow, u16 next_cpu)
4003 {
4004         if (next_cpu < nr_cpu_ids) {
4005 #ifdef CONFIG_RFS_ACCEL
4006                 struct netdev_rx_queue *rxqueue;
4007                 struct rps_dev_flow_table *flow_table;
4008                 struct rps_dev_flow *old_rflow;
4009                 u32 flow_id;
4010                 u16 rxq_index;
4011                 int rc;
4012
4013                 /* Should we steer this flow to a different hardware queue? */
4014                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4015                     !(dev->features & NETIF_F_NTUPLE))
4016                         goto out;
4017                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4018                 if (rxq_index == skb_get_rx_queue(skb))
4019                         goto out;
4020
4021                 rxqueue = dev->_rx + rxq_index;
4022                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4023                 if (!flow_table)
4024                         goto out;
4025                 flow_id = skb_get_hash(skb) & flow_table->mask;
4026                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4027                                                         rxq_index, flow_id);
4028                 if (rc < 0)
4029                         goto out;
4030                 old_rflow = rflow;
4031                 rflow = &flow_table->flows[flow_id];
4032                 rflow->filter = rc;
4033                 if (old_rflow->filter == rflow->filter)
4034                         old_rflow->filter = RPS_NO_FILTER;
4035         out:
4036 #endif
4037                 rflow->last_qtail =
4038                         per_cpu(softnet_data, next_cpu).input_queue_head;
4039         }
4040
4041         rflow->cpu = next_cpu;
4042         return rflow;
4043 }
4044
4045 /*
4046  * get_rps_cpu is called from netif_receive_skb and returns the target
4047  * CPU from the RPS map of the receiving queue for a given skb.
4048  * rcu_read_lock must be held on entry.
4049  */
4050 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4051                        struct rps_dev_flow **rflowp)
4052 {
4053         const struct rps_sock_flow_table *sock_flow_table;
4054         struct netdev_rx_queue *rxqueue = dev->_rx;
4055         struct rps_dev_flow_table *flow_table;
4056         struct rps_map *map;
4057         int cpu = -1;
4058         u32 tcpu;
4059         u32 hash;
4060
4061         if (skb_rx_queue_recorded(skb)) {
4062                 u16 index = skb_get_rx_queue(skb);
4063
4064                 if (unlikely(index >= dev->real_num_rx_queues)) {
4065                         WARN_ONCE(dev->real_num_rx_queues > 1,
4066                                   "%s received packet on queue %u, but number "
4067                                   "of RX queues is %u\n",
4068                                   dev->name, index, dev->real_num_rx_queues);
4069                         goto done;
4070                 }
4071                 rxqueue += index;
4072         }
4073
4074         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4075
4076         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4077         map = rcu_dereference(rxqueue->rps_map);
4078         if (!flow_table && !map)
4079                 goto done;
4080
4081         skb_reset_network_header(skb);
4082         hash = skb_get_hash(skb);
4083         if (!hash)
4084                 goto done;
4085
4086         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4087         if (flow_table && sock_flow_table) {
4088                 struct rps_dev_flow *rflow;
4089                 u32 next_cpu;
4090                 u32 ident;
4091
4092                 /* First check into global flow table if there is a match */
4093                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4094                 if ((ident ^ hash) & ~rps_cpu_mask)
4095                         goto try_rps;
4096
4097                 next_cpu = ident & rps_cpu_mask;
4098
4099                 /* OK, now we know there is a match,
4100                  * we can look at the local (per receive queue) flow table
4101                  */
4102                 rflow = &flow_table->flows[hash & flow_table->mask];
4103                 tcpu = rflow->cpu;
4104
4105                 /*
4106                  * If the desired CPU (where last recvmsg was done) is
4107                  * different from current CPU (one in the rx-queue flow
4108                  * table entry), switch if one of the following holds:
4109                  *   - Current CPU is unset (>= nr_cpu_ids).
4110                  *   - Current CPU is offline.
4111                  *   - The current CPU's queue tail has advanced beyond the
4112                  *     last packet that was enqueued using this table entry.
4113                  *     This guarantees that all previous packets for the flow
4114                  *     have been dequeued, thus preserving in order delivery.
4115                  */
4116                 if (unlikely(tcpu != next_cpu) &&
4117                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4118                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4119                       rflow->last_qtail)) >= 0)) {
4120                         tcpu = next_cpu;
4121                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4122                 }
4123
4124                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4125                         *rflowp = rflow;
4126                         cpu = tcpu;
4127                         goto done;
4128                 }
4129         }
4130
4131 try_rps:
4132
4133         if (map) {
4134                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4135                 if (cpu_online(tcpu)) {
4136                         cpu = tcpu;
4137                         goto done;
4138                 }
4139         }
4140
4141 done:
4142         return cpu;
4143 }
4144
4145 #ifdef CONFIG_RFS_ACCEL
4146
4147 /**
4148  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4149  * @dev: Device on which the filter was set
4150  * @rxq_index: RX queue index
4151  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4152  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4153  *
4154  * Drivers that implement ndo_rx_flow_steer() should periodically call
4155  * this function for each installed filter and remove the filters for
4156  * which it returns %true.
4157  */
4158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4159                          u32 flow_id, u16 filter_id)
4160 {
4161         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4162         struct rps_dev_flow_table *flow_table;
4163         struct rps_dev_flow *rflow;
4164         bool expire = true;
4165         unsigned int cpu;
4166
4167         rcu_read_lock();
4168         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4169         if (flow_table && flow_id <= flow_table->mask) {
4170                 rflow = &flow_table->flows[flow_id];
4171                 cpu = READ_ONCE(rflow->cpu);
4172                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4173                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4174                            rflow->last_qtail) <
4175                      (int)(10 * flow_table->mask)))
4176                         expire = false;
4177         }
4178         rcu_read_unlock();
4179         return expire;
4180 }
4181 EXPORT_SYMBOL(rps_may_expire_flow);
4182
4183 #endif /* CONFIG_RFS_ACCEL */
4184
4185 /* Called from hardirq (IPI) context */
4186 static void rps_trigger_softirq(void *data)
4187 {
4188         struct softnet_data *sd = data;
4189
4190         ____napi_schedule(sd, &sd->backlog);
4191         sd->received_rps++;
4192 }
4193
4194 #endif /* CONFIG_RPS */
4195
4196 /*
4197  * Check if this softnet_data structure is another cpu one
4198  * If yes, queue it to our IPI list and return 1
4199  * If no, return 0
4200  */
4201 static int rps_ipi_queued(struct softnet_data *sd)
4202 {
4203 #ifdef CONFIG_RPS
4204         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4205
4206         if (sd != mysd) {
4207                 sd->rps_ipi_next = mysd->rps_ipi_list;
4208                 mysd->rps_ipi_list = sd;
4209
4210                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4211                 return 1;
4212         }
4213 #endif /* CONFIG_RPS */
4214         return 0;
4215 }
4216
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4219 #endif
4220
4221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4222 {
4223 #ifdef CONFIG_NET_FLOW_LIMIT
4224         struct sd_flow_limit *fl;
4225         struct softnet_data *sd;
4226         unsigned int old_flow, new_flow;
4227
4228         if (qlen < (netdev_max_backlog >> 1))
4229                 return false;
4230
4231         sd = this_cpu_ptr(&softnet_data);
4232
4233         rcu_read_lock();
4234         fl = rcu_dereference(sd->flow_limit);
4235         if (fl) {
4236                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4237                 old_flow = fl->history[fl->history_head];
4238                 fl->history[fl->history_head] = new_flow;
4239
4240                 fl->history_head++;
4241                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4242
4243                 if (likely(fl->buckets[old_flow]))
4244                         fl->buckets[old_flow]--;
4245
4246                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4247                         fl->count++;
4248                         rcu_read_unlock();
4249                         return true;
4250                 }
4251         }
4252         rcu_read_unlock();
4253 #endif
4254         return false;
4255 }
4256
4257 /*
4258  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4259  * queue (may be a remote CPU queue).
4260  */
4261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4262                               unsigned int *qtail)
4263 {
4264         struct softnet_data *sd;
4265         unsigned long flags;
4266         unsigned int qlen;
4267
4268         sd = &per_cpu(softnet_data, cpu);
4269
4270         local_irq_save(flags);
4271
4272         rps_lock(sd);
4273         if (!netif_running(skb->dev))
4274                 goto drop;
4275         qlen = skb_queue_len(&sd->input_pkt_queue);
4276         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4277                 if (qlen) {
4278 enqueue:
4279                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4280                         input_queue_tail_incr_save(sd, qtail);
4281                         rps_unlock(sd);
4282                         local_irq_restore(flags);
4283                         return NET_RX_SUCCESS;
4284                 }
4285
4286                 /* Schedule NAPI for backlog device
4287                  * We can use non atomic operation since we own the queue lock
4288                  */
4289                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4290                         if (!rps_ipi_queued(sd))
4291                                 ____napi_schedule(sd, &sd->backlog);
4292                 }
4293                 goto enqueue;
4294         }
4295
4296 drop:
4297         sd->dropped++;
4298         rps_unlock(sd);
4299
4300         local_irq_restore(flags);
4301
4302         atomic_long_inc(&skb->dev->rx_dropped);
4303         kfree_skb(skb);
4304         return NET_RX_DROP;
4305 }
4306
4307 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4308 {
4309         struct net_device *dev = skb->dev;
4310         struct netdev_rx_queue *rxqueue;
4311
4312         rxqueue = dev->_rx;
4313
4314         if (skb_rx_queue_recorded(skb)) {
4315                 u16 index = skb_get_rx_queue(skb);
4316
4317                 if (unlikely(index >= dev->real_num_rx_queues)) {
4318                         WARN_ONCE(dev->real_num_rx_queues > 1,
4319                                   "%s received packet on queue %u, but number "
4320                                   "of RX queues is %u\n",
4321                                   dev->name, index, dev->real_num_rx_queues);
4322
4323                         return rxqueue; /* Return first rxqueue */
4324                 }
4325                 rxqueue += index;
4326         }
4327         return rxqueue;
4328 }
4329
4330 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4331                                      struct xdp_buff *xdp,
4332                                      struct bpf_prog *xdp_prog)
4333 {
4334         struct netdev_rx_queue *rxqueue;
4335         void *orig_data, *orig_data_end;
4336         u32 metalen, act = XDP_DROP;
4337         __be16 orig_eth_type;
4338         struct ethhdr *eth;
4339         bool orig_bcast;
4340         int hlen, off;
4341         u32 mac_len;
4342
4343         /* Reinjected packets coming from act_mirred or similar should
4344          * not get XDP generic processing.
4345          */
4346         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4347                 return XDP_PASS;
4348
4349         /* XDP packets must be linear and must have sufficient headroom
4350          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4351          * native XDP provides, thus we need to do it here as well.
4352          */
4353         if (skb_is_nonlinear(skb) ||
4354             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4355                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4356                 int troom = skb->tail + skb->data_len - skb->end;
4357
4358                 /* In case we have to go down the path and also linearize,
4359                  * then lets do the pskb_expand_head() work just once here.
4360                  */
4361                 if (pskb_expand_head(skb,
4362                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4363                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4364                         goto do_drop;
4365                 if (skb_linearize(skb))
4366                         goto do_drop;
4367         }
4368
4369         /* The XDP program wants to see the packet starting at the MAC
4370          * header.
4371          */
4372         mac_len = skb->data - skb_mac_header(skb);
4373         hlen = skb_headlen(skb) + mac_len;
4374         xdp->data = skb->data - mac_len;
4375         xdp->data_meta = xdp->data;
4376         xdp->data_end = xdp->data + hlen;
4377         xdp->data_hard_start = skb->data - skb_headroom(skb);
4378         orig_data_end = xdp->data_end;
4379         orig_data = xdp->data;
4380         eth = (struct ethhdr *)xdp->data;
4381         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4382         orig_eth_type = eth->h_proto;
4383
4384         rxqueue = netif_get_rxqueue(skb);
4385         xdp->rxq = &rxqueue->xdp_rxq;
4386
4387         act = bpf_prog_run_xdp(xdp_prog, xdp);
4388
4389         off = xdp->data - orig_data;
4390         if (off > 0)
4391                 __skb_pull(skb, off);
4392         else if (off < 0)
4393                 __skb_push(skb, -off);
4394         skb->mac_header += off;
4395
4396         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4397          * pckt.
4398          */
4399         off = orig_data_end - xdp->data_end;
4400         if (off != 0) {
4401                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4402                 skb->len -= off;
4403
4404         }
4405
4406         /* check if XDP changed eth hdr such SKB needs update */
4407         eth = (struct ethhdr *)xdp->data;
4408         if ((orig_eth_type != eth->h_proto) ||
4409             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4410                 __skb_push(skb, ETH_HLEN);
4411                 skb->protocol = eth_type_trans(skb, skb->dev);
4412         }
4413
4414         switch (act) {
4415         case XDP_REDIRECT:
4416         case XDP_TX:
4417                 __skb_push(skb, mac_len);
4418                 break;
4419         case XDP_PASS:
4420                 metalen = xdp->data - xdp->data_meta;
4421                 if (metalen)
4422                         skb_metadata_set(skb, metalen);
4423                 break;
4424         default:
4425                 bpf_warn_invalid_xdp_action(act);
4426                 /* fall through */
4427         case XDP_ABORTED:
4428                 trace_xdp_exception(skb->dev, xdp_prog, act);
4429                 /* fall through */
4430         case XDP_DROP:
4431         do_drop:
4432                 kfree_skb(skb);
4433                 break;
4434         }
4435
4436         return act;
4437 }
4438
4439 /* When doing generic XDP we have to bypass the qdisc layer and the
4440  * network taps in order to match in-driver-XDP behavior.
4441  */
4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4443 {
4444         struct net_device *dev = skb->dev;
4445         struct netdev_queue *txq;
4446         bool free_skb = true;
4447         int cpu, rc;
4448
4449         txq = netdev_core_pick_tx(dev, skb, NULL);
4450         cpu = smp_processor_id();
4451         HARD_TX_LOCK(dev, txq, cpu);
4452         if (!netif_xmit_stopped(txq)) {
4453                 rc = netdev_start_xmit(skb, dev, txq, 0);
4454                 if (dev_xmit_complete(rc))
4455                         free_skb = false;
4456         }
4457         HARD_TX_UNLOCK(dev, txq);
4458         if (free_skb) {
4459                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4460                 kfree_skb(skb);
4461         }
4462 }
4463 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4464
4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4466
4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4468 {
4469         if (xdp_prog) {
4470                 struct xdp_buff xdp;
4471                 u32 act;
4472                 int err;
4473
4474                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4475                 if (act != XDP_PASS) {
4476                         switch (act) {
4477                         case XDP_REDIRECT:
4478                                 err = xdp_do_generic_redirect(skb->dev, skb,
4479                                                               &xdp, xdp_prog);
4480                                 if (err)
4481                                         goto out_redir;
4482                                 break;
4483                         case XDP_TX:
4484                                 generic_xdp_tx(skb, xdp_prog);
4485                                 break;
4486                         }
4487                         return XDP_DROP;
4488                 }
4489         }
4490         return XDP_PASS;
4491 out_redir:
4492         kfree_skb(skb);
4493         return XDP_DROP;
4494 }
4495 EXPORT_SYMBOL_GPL(do_xdp_generic);
4496
4497 static int netif_rx_internal(struct sk_buff *skb)
4498 {
4499         int ret;
4500
4501         net_timestamp_check(netdev_tstamp_prequeue, skb);
4502
4503         trace_netif_rx(skb);
4504
4505 #ifdef CONFIG_RPS
4506         if (static_branch_unlikely(&rps_needed)) {
4507                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4508                 int cpu;
4509
4510                 preempt_disable();
4511                 rcu_read_lock();
4512
4513                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514                 if (cpu < 0)
4515                         cpu = smp_processor_id();
4516
4517                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
4519                 rcu_read_unlock();
4520                 preempt_enable();
4521         } else
4522 #endif
4523         {
4524                 unsigned int qtail;
4525
4526                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527                 put_cpu();
4528         }
4529         return ret;
4530 }
4531
4532 /**
4533  *      netif_rx        -       post buffer to the network code
4534  *      @skb: buffer to post
4535  *
4536  *      This function receives a packet from a device driver and queues it for
4537  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4538  *      may be dropped during processing for congestion control or by the
4539  *      protocol layers.
4540  *
4541  *      return values:
4542  *      NET_RX_SUCCESS  (no congestion)
4543  *      NET_RX_DROP     (packet was dropped)
4544  *
4545  */
4546
4547 int netif_rx(struct sk_buff *skb)
4548 {
4549         int ret;
4550
4551         trace_netif_rx_entry(skb);
4552
4553         ret = netif_rx_internal(skb);
4554         trace_netif_rx_exit(ret);
4555
4556         return ret;
4557 }
4558 EXPORT_SYMBOL(netif_rx);
4559
4560 int netif_rx_ni(struct sk_buff *skb)
4561 {
4562         int err;
4563
4564         trace_netif_rx_ni_entry(skb);
4565
4566         preempt_disable();
4567         err = netif_rx_internal(skb);
4568         if (local_softirq_pending())
4569                 do_softirq();
4570         preempt_enable();
4571         trace_netif_rx_ni_exit(err);
4572
4573         return err;
4574 }
4575 EXPORT_SYMBOL(netif_rx_ni);
4576
4577 static __latent_entropy void net_tx_action(struct softirq_action *h)
4578 {
4579         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580
4581         if (sd->completion_queue) {
4582                 struct sk_buff *clist;
4583
4584                 local_irq_disable();
4585                 clist = sd->completion_queue;
4586                 sd->completion_queue = NULL;
4587                 local_irq_enable();
4588
4589                 while (clist) {
4590                         struct sk_buff *skb = clist;
4591
4592                         clist = clist->next;
4593
4594                         WARN_ON(refcount_read(&skb->users));
4595                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596                                 trace_consume_skb(skb);
4597                         else
4598                                 trace_kfree_skb(skb, net_tx_action);
4599
4600                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601                                 __kfree_skb(skb);
4602                         else
4603                                 __kfree_skb_defer(skb);
4604                 }
4605
4606                 __kfree_skb_flush();
4607         }
4608
4609         if (sd->output_queue) {
4610                 struct Qdisc *head;
4611
4612                 local_irq_disable();
4613                 head = sd->output_queue;
4614                 sd->output_queue = NULL;
4615                 sd->output_queue_tailp = &sd->output_queue;
4616                 local_irq_enable();
4617
4618                 while (head) {
4619                         struct Qdisc *q = head;
4620                         spinlock_t *root_lock = NULL;
4621
4622                         head = head->next_sched;
4623
4624                         if (!(q->flags & TCQ_F_NOLOCK)) {
4625                                 root_lock = qdisc_lock(q);
4626                                 spin_lock(root_lock);
4627                         }
4628                         /* We need to make sure head->next_sched is read
4629                          * before clearing __QDISC_STATE_SCHED
4630                          */
4631                         smp_mb__before_atomic();
4632                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4633                         qdisc_run(q);
4634                         if (root_lock)
4635                                 spin_unlock(root_lock);
4636                 }
4637         }
4638
4639         xfrm_dev_backlog(sd);
4640 }
4641
4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643 /* This hook is defined here for ATM LANE */
4644 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645                              unsigned char *addr) __read_mostly;
4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647 #endif
4648
4649 static inline struct sk_buff *
4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651                    struct net_device *orig_dev)
4652 {
4653 #ifdef CONFIG_NET_CLS_ACT
4654         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655         struct tcf_result cl_res;
4656
4657         /* If there's at least one ingress present somewhere (so
4658          * we get here via enabled static key), remaining devices
4659          * that are not configured with an ingress qdisc will bail
4660          * out here.
4661          */
4662         if (!miniq)
4663                 return skb;
4664
4665         if (*pt_prev) {
4666                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667                 *pt_prev = NULL;
4668         }
4669
4670         qdisc_skb_cb(skb)->pkt_len = skb->len;
4671         skb->tc_at_ingress = 1;
4672         mini_qdisc_bstats_cpu_update(miniq, skb);
4673
4674         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675         case TC_ACT_OK:
4676         case TC_ACT_RECLASSIFY:
4677                 skb->tc_index = TC_H_MIN(cl_res.classid);
4678                 break;
4679         case TC_ACT_SHOT:
4680                 mini_qdisc_qstats_cpu_drop(miniq);
4681                 kfree_skb(skb);
4682                 return NULL;
4683         case TC_ACT_STOLEN:
4684         case TC_ACT_QUEUED:
4685         case TC_ACT_TRAP:
4686                 consume_skb(skb);
4687                 return NULL;
4688         case TC_ACT_REDIRECT:
4689                 /* skb_mac_header check was done by cls/act_bpf, so
4690                  * we can safely push the L2 header back before
4691                  * redirecting to another netdev
4692                  */
4693                 __skb_push(skb, skb->mac_len);
4694                 skb_do_redirect(skb);
4695                 return NULL;
4696         case TC_ACT_REINSERT:
4697                 /* this does not scrub the packet, and updates stats on error */
4698                 skb_tc_reinsert(skb, &cl_res);
4699                 return NULL;
4700         default:
4701                 break;
4702         }
4703 #endif /* CONFIG_NET_CLS_ACT */
4704         return skb;
4705 }
4706
4707 /**
4708  *      netdev_is_rx_handler_busy - check if receive handler is registered
4709  *      @dev: device to check
4710  *
4711  *      Check if a receive handler is already registered for a given device.
4712  *      Return true if there one.
4713  *
4714  *      The caller must hold the rtnl_mutex.
4715  */
4716 bool netdev_is_rx_handler_busy(struct net_device *dev)
4717 {
4718         ASSERT_RTNL();
4719         return dev && rtnl_dereference(dev->rx_handler);
4720 }
4721 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722
4723 /**
4724  *      netdev_rx_handler_register - register receive handler
4725  *      @dev: device to register a handler for
4726  *      @rx_handler: receive handler to register
4727  *      @rx_handler_data: data pointer that is used by rx handler
4728  *
4729  *      Register a receive handler for a device. This handler will then be
4730  *      called from __netif_receive_skb. A negative errno code is returned
4731  *      on a failure.
4732  *
4733  *      The caller must hold the rtnl_mutex.
4734  *
4735  *      For a general description of rx_handler, see enum rx_handler_result.
4736  */
4737 int netdev_rx_handler_register(struct net_device *dev,
4738                                rx_handler_func_t *rx_handler,
4739                                void *rx_handler_data)
4740 {
4741         if (netdev_is_rx_handler_busy(dev))
4742                 return -EBUSY;
4743
4744         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745                 return -EINVAL;
4746
4747         /* Note: rx_handler_data must be set before rx_handler */
4748         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4749         rcu_assign_pointer(dev->rx_handler, rx_handler);
4750
4751         return 0;
4752 }
4753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754
4755 /**
4756  *      netdev_rx_handler_unregister - unregister receive handler
4757  *      @dev: device to unregister a handler from
4758  *
4759  *      Unregister a receive handler from a device.
4760  *
4761  *      The caller must hold the rtnl_mutex.
4762  */
4763 void netdev_rx_handler_unregister(struct net_device *dev)
4764 {
4765
4766         ASSERT_RTNL();
4767         RCU_INIT_POINTER(dev->rx_handler, NULL);
4768         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769          * section has a guarantee to see a non NULL rx_handler_data
4770          * as well.
4771          */
4772         synchronize_net();
4773         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4774 }
4775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776
4777 /*
4778  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779  * the special handling of PFMEMALLOC skbs.
4780  */
4781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782 {
4783         switch (skb->protocol) {
4784         case htons(ETH_P_ARP):
4785         case htons(ETH_P_IP):
4786         case htons(ETH_P_IPV6):
4787         case htons(ETH_P_8021Q):
4788         case htons(ETH_P_8021AD):
4789                 return true;
4790         default:
4791                 return false;
4792         }
4793 }
4794
4795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796                              int *ret, struct net_device *orig_dev)
4797 {
4798 #ifdef CONFIG_NETFILTER_INGRESS
4799         if (nf_hook_ingress_active(skb)) {
4800                 int ingress_retval;
4801
4802                 if (*pt_prev) {
4803                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4804                         *pt_prev = NULL;
4805                 }
4806
4807                 rcu_read_lock();
4808                 ingress_retval = nf_hook_ingress(skb);
4809                 rcu_read_unlock();
4810                 return ingress_retval;
4811         }
4812 #endif /* CONFIG_NETFILTER_INGRESS */
4813         return 0;
4814 }
4815
4816 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817                                     struct packet_type **ppt_prev)
4818 {
4819         struct packet_type *ptype, *pt_prev;
4820         rx_handler_func_t *rx_handler;
4821         struct net_device *orig_dev;
4822         bool deliver_exact = false;
4823         int ret = NET_RX_DROP;
4824         __be16 type;
4825
4826         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4827
4828         trace_netif_receive_skb(skb);
4829
4830         orig_dev = skb->dev;
4831
4832         skb_reset_network_header(skb);
4833         if (!skb_transport_header_was_set(skb))
4834                 skb_reset_transport_header(skb);
4835         skb_reset_mac_len(skb);
4836
4837         pt_prev = NULL;
4838
4839 another_round:
4840         skb->skb_iif = skb->dev->ifindex;
4841
4842         __this_cpu_inc(softnet_data.processed);
4843
4844         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4845                 int ret2;
4846
4847                 preempt_disable();
4848                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4849                 preempt_enable();
4850
4851                 if (ret2 != XDP_PASS)
4852                         return NET_RX_DROP;
4853                 skb_reset_mac_len(skb);
4854         }
4855
4856         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4857             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4858                 skb = skb_vlan_untag(skb);
4859                 if (unlikely(!skb))
4860                         goto out;
4861         }
4862
4863         if (skb_skip_tc_classify(skb))
4864                 goto skip_classify;
4865
4866         if (pfmemalloc)
4867                 goto skip_taps;
4868
4869         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4870                 if (pt_prev)
4871                         ret = deliver_skb(skb, pt_prev, orig_dev);
4872                 pt_prev = ptype;
4873         }
4874
4875         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4876                 if (pt_prev)
4877                         ret = deliver_skb(skb, pt_prev, orig_dev);
4878                 pt_prev = ptype;
4879         }
4880
4881 skip_taps:
4882 #ifdef CONFIG_NET_INGRESS
4883         if (static_branch_unlikely(&ingress_needed_key)) {
4884                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4885                 if (!skb)
4886                         goto out;
4887
4888                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4889                         goto out;
4890         }
4891 #endif
4892         skb_reset_tc(skb);
4893 skip_classify:
4894         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4895                 goto drop;
4896
4897         if (skb_vlan_tag_present(skb)) {
4898                 if (pt_prev) {
4899                         ret = deliver_skb(skb, pt_prev, orig_dev);
4900                         pt_prev = NULL;
4901                 }
4902                 if (vlan_do_receive(&skb))
4903                         goto another_round;
4904                 else if (unlikely(!skb))
4905                         goto out;
4906         }
4907
4908         rx_handler = rcu_dereference(skb->dev->rx_handler);
4909         if (rx_handler) {
4910                 if (pt_prev) {
4911                         ret = deliver_skb(skb, pt_prev, orig_dev);
4912                         pt_prev = NULL;
4913                 }
4914                 switch (rx_handler(&skb)) {
4915                 case RX_HANDLER_CONSUMED:
4916                         ret = NET_RX_SUCCESS;
4917                         goto out;
4918                 case RX_HANDLER_ANOTHER:
4919                         goto another_round;
4920                 case RX_HANDLER_EXACT:
4921                         deliver_exact = true;
4922                 case RX_HANDLER_PASS:
4923                         break;
4924                 default:
4925                         BUG();
4926                 }
4927         }
4928
4929         if (unlikely(skb_vlan_tag_present(skb))) {
4930                 if (skb_vlan_tag_get_id(skb))
4931                         skb->pkt_type = PACKET_OTHERHOST;
4932                 /* Note: we might in the future use prio bits
4933                  * and set skb->priority like in vlan_do_receive()
4934                  * For the time being, just ignore Priority Code Point
4935                  */
4936                 __vlan_hwaccel_clear_tag(skb);
4937         }
4938
4939         type = skb->protocol;
4940
4941         /* deliver only exact match when indicated */
4942         if (likely(!deliver_exact)) {
4943                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4944                                        &ptype_base[ntohs(type) &
4945                                                    PTYPE_HASH_MASK]);
4946         }
4947
4948         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949                                &orig_dev->ptype_specific);
4950
4951         if (unlikely(skb->dev != orig_dev)) {
4952                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4953                                        &skb->dev->ptype_specific);
4954         }
4955
4956         if (pt_prev) {
4957                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4958                         goto drop;
4959                 *ppt_prev = pt_prev;
4960         } else {
4961 drop:
4962                 if (!deliver_exact)
4963                         atomic_long_inc(&skb->dev->rx_dropped);
4964                 else
4965                         atomic_long_inc(&skb->dev->rx_nohandler);
4966                 kfree_skb(skb);
4967                 /* Jamal, now you will not able to escape explaining
4968                  * me how you were going to use this. :-)
4969                  */
4970                 ret = NET_RX_DROP;
4971         }
4972
4973 out:
4974         return ret;
4975 }
4976
4977 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4978 {
4979         struct net_device *orig_dev = skb->dev;
4980         struct packet_type *pt_prev = NULL;
4981         int ret;
4982
4983         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4984         if (pt_prev)
4985                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4986                                          skb->dev, pt_prev, orig_dev);
4987         return ret;
4988 }
4989
4990 /**
4991  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4992  *      @skb: buffer to process
4993  *
4994  *      More direct receive version of netif_receive_skb().  It should
4995  *      only be used by callers that have a need to skip RPS and Generic XDP.
4996  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4997  *
4998  *      This function may only be called from softirq context and interrupts
4999  *      should be enabled.
5000  *
5001  *      Return values (usually ignored):
5002  *      NET_RX_SUCCESS: no congestion
5003  *      NET_RX_DROP: packet was dropped
5004  */
5005 int netif_receive_skb_core(struct sk_buff *skb)
5006 {
5007         int ret;
5008
5009         rcu_read_lock();
5010         ret = __netif_receive_skb_one_core(skb, false);
5011         rcu_read_unlock();
5012
5013         return ret;
5014 }
5015 EXPORT_SYMBOL(netif_receive_skb_core);
5016
5017 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5018                                                   struct packet_type *pt_prev,
5019                                                   struct net_device *orig_dev)
5020 {
5021         struct sk_buff *skb, *next;
5022
5023         if (!pt_prev)
5024                 return;
5025         if (list_empty(head))
5026                 return;
5027         if (pt_prev->list_func != NULL)
5028                 pt_prev->list_func(head, pt_prev, orig_dev);
5029         else
5030                 list_for_each_entry_safe(skb, next, head, list) {
5031                         skb_list_del_init(skb);
5032                         INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5033                                            skb->dev, pt_prev, orig_dev);
5034                 }
5035 }
5036
5037 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5038 {
5039         /* Fast-path assumptions:
5040          * - There is no RX handler.
5041          * - Only one packet_type matches.
5042          * If either of these fails, we will end up doing some per-packet
5043          * processing in-line, then handling the 'last ptype' for the whole
5044          * sublist.  This can't cause out-of-order delivery to any single ptype,
5045          * because the 'last ptype' must be constant across the sublist, and all
5046          * other ptypes are handled per-packet.
5047          */
5048         /* Current (common) ptype of sublist */
5049         struct packet_type *pt_curr = NULL;
5050         /* Current (common) orig_dev of sublist */
5051         struct net_device *od_curr = NULL;
5052         struct list_head sublist;
5053         struct sk_buff *skb, *next;
5054
5055         INIT_LIST_HEAD(&sublist);
5056         list_for_each_entry_safe(skb, next, head, list) {
5057                 struct net_device *orig_dev = skb->dev;
5058                 struct packet_type *pt_prev = NULL;
5059
5060                 skb_list_del_init(skb);
5061                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5062                 if (!pt_prev)
5063                         continue;
5064                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5065                         /* dispatch old sublist */
5066                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5067                         /* start new sublist */
5068                         INIT_LIST_HEAD(&sublist);
5069                         pt_curr = pt_prev;
5070                         od_curr = orig_dev;
5071                 }
5072                 list_add_tail(&skb->list, &sublist);
5073         }
5074
5075         /* dispatch final sublist */
5076         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5077 }
5078
5079 static int __netif_receive_skb(struct sk_buff *skb)
5080 {
5081         int ret;
5082
5083         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5084                 unsigned int noreclaim_flag;
5085
5086                 /*
5087                  * PFMEMALLOC skbs are special, they should
5088                  * - be delivered to SOCK_MEMALLOC sockets only
5089                  * - stay away from userspace
5090                  * - have bounded memory usage
5091                  *
5092                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5093                  * context down to all allocation sites.
5094                  */
5095                 noreclaim_flag = memalloc_noreclaim_save();
5096                 ret = __netif_receive_skb_one_core(skb, true);
5097                 memalloc_noreclaim_restore(noreclaim_flag);
5098         } else
5099                 ret = __netif_receive_skb_one_core(skb, false);
5100
5101         return ret;
5102 }
5103
5104 static void __netif_receive_skb_list(struct list_head *head)
5105 {
5106         unsigned long noreclaim_flag = 0;
5107         struct sk_buff *skb, *next;
5108         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5109
5110         list_for_each_entry_safe(skb, next, head, list) {
5111                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5112                         struct list_head sublist;
5113
5114                         /* Handle the previous sublist */
5115                         list_cut_before(&sublist, head, &skb->list);
5116                         if (!list_empty(&sublist))
5117                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5118                         pfmemalloc = !pfmemalloc;
5119                         /* See comments in __netif_receive_skb */
5120                         if (pfmemalloc)
5121                                 noreclaim_flag = memalloc_noreclaim_save();
5122                         else
5123                                 memalloc_noreclaim_restore(noreclaim_flag);
5124                 }
5125         }
5126         /* Handle the remaining sublist */
5127         if (!list_empty(head))
5128                 __netif_receive_skb_list_core(head, pfmemalloc);
5129         /* Restore pflags */
5130         if (pfmemalloc)
5131                 memalloc_noreclaim_restore(noreclaim_flag);
5132 }
5133
5134 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5135 {
5136         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5137         struct bpf_prog *new = xdp->prog;
5138         int ret = 0;
5139
5140         switch (xdp->command) {
5141         case XDP_SETUP_PROG:
5142                 rcu_assign_pointer(dev->xdp_prog, new);
5143                 if (old)
5144                         bpf_prog_put(old);
5145
5146                 if (old && !new) {
5147                         static_branch_dec(&generic_xdp_needed_key);
5148                 } else if (new && !old) {
5149                         static_branch_inc(&generic_xdp_needed_key);
5150                         dev_disable_lro(dev);
5151                         dev_disable_gro_hw(dev);
5152                 }
5153                 break;
5154
5155         case XDP_QUERY_PROG:
5156                 xdp->prog_id = old ? old->aux->id : 0;
5157                 break;
5158
5159         default:
5160                 ret = -EINVAL;
5161                 break;
5162         }
5163
5164         return ret;
5165 }
5166
5167 static int netif_receive_skb_internal(struct sk_buff *skb)
5168 {
5169         int ret;
5170
5171         net_timestamp_check(netdev_tstamp_prequeue, skb);
5172
5173         if (skb_defer_rx_timestamp(skb))
5174                 return NET_RX_SUCCESS;
5175
5176         rcu_read_lock();
5177 #ifdef CONFIG_RPS
5178         if (static_branch_unlikely(&rps_needed)) {
5179                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5180                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181
5182                 if (cpu >= 0) {
5183                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5184                         rcu_read_unlock();
5185                         return ret;
5186                 }
5187         }
5188 #endif
5189         ret = __netif_receive_skb(skb);
5190         rcu_read_unlock();
5191         return ret;
5192 }
5193
5194 static void netif_receive_skb_list_internal(struct list_head *head)
5195 {
5196         struct sk_buff *skb, *next;
5197         struct list_head sublist;
5198
5199         INIT_LIST_HEAD(&sublist);
5200         list_for_each_entry_safe(skb, next, head, list) {
5201                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5202                 skb_list_del_init(skb);
5203                 if (!skb_defer_rx_timestamp(skb))
5204                         list_add_tail(&skb->list, &sublist);
5205         }
5206         list_splice_init(&sublist, head);
5207
5208         rcu_read_lock();
5209 #ifdef CONFIG_RPS
5210         if (static_branch_unlikely(&rps_needed)) {
5211                 list_for_each_entry_safe(skb, next, head, list) {
5212                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5213                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5214
5215                         if (cpu >= 0) {
5216                                 /* Will be handled, remove from list */
5217                                 skb_list_del_init(skb);
5218                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5219                         }
5220                 }
5221         }
5222 #endif
5223         __netif_receive_skb_list(head);
5224         rcu_read_unlock();
5225 }
5226
5227 /**
5228  *      netif_receive_skb - process receive buffer from network
5229  *      @skb: buffer to process
5230  *
5231  *      netif_receive_skb() is the main receive data processing function.
5232  *      It always succeeds. The buffer may be dropped during processing
5233  *      for congestion control or by the protocol layers.
5234  *
5235  *      This function may only be called from softirq context and interrupts
5236  *      should be enabled.
5237  *
5238  *      Return values (usually ignored):
5239  *      NET_RX_SUCCESS: no congestion
5240  *      NET_RX_DROP: packet was dropped
5241  */
5242 int netif_receive_skb(struct sk_buff *skb)
5243 {
5244         int ret;
5245
5246         trace_netif_receive_skb_entry(skb);
5247
5248         ret = netif_receive_skb_internal(skb);
5249         trace_netif_receive_skb_exit(ret);
5250
5251         return ret;
5252 }
5253 EXPORT_SYMBOL(netif_receive_skb);
5254
5255 /**
5256  *      netif_receive_skb_list - process many receive buffers from network
5257  *      @head: list of skbs to process.
5258  *
5259  *      Since return value of netif_receive_skb() is normally ignored, and
5260  *      wouldn't be meaningful for a list, this function returns void.
5261  *
5262  *      This function may only be called from softirq context and interrupts
5263  *      should be enabled.
5264  */
5265 void netif_receive_skb_list(struct list_head *head)
5266 {
5267         struct sk_buff *skb;
5268
5269         if (list_empty(head))
5270                 return;
5271         if (trace_netif_receive_skb_list_entry_enabled()) {
5272                 list_for_each_entry(skb, head, list)
5273                         trace_netif_receive_skb_list_entry(skb);
5274         }
5275         netif_receive_skb_list_internal(head);
5276         trace_netif_receive_skb_list_exit(0);
5277 }
5278 EXPORT_SYMBOL(netif_receive_skb_list);
5279
5280 DEFINE_PER_CPU(struct work_struct, flush_works);
5281
5282 /* Network device is going away, flush any packets still pending */
5283 static void flush_backlog(struct work_struct *work)
5284 {
5285         struct sk_buff *skb, *tmp;
5286         struct softnet_data *sd;
5287
5288         local_bh_disable();
5289         sd = this_cpu_ptr(&softnet_data);
5290
5291         local_irq_disable();
5292         rps_lock(sd);
5293         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5294                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5295                         __skb_unlink(skb, &sd->input_pkt_queue);
5296                         kfree_skb(skb);
5297                         input_queue_head_incr(sd);
5298                 }
5299         }
5300         rps_unlock(sd);
5301         local_irq_enable();
5302
5303         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5304                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5305                         __skb_unlink(skb, &sd->process_queue);
5306                         kfree_skb(skb);
5307                         input_queue_head_incr(sd);
5308                 }
5309         }
5310         local_bh_enable();
5311 }
5312
5313 static void flush_all_backlogs(void)
5314 {
5315         unsigned int cpu;
5316
5317         get_online_cpus();
5318
5319         for_each_online_cpu(cpu)
5320                 queue_work_on(cpu, system_highpri_wq,
5321                               per_cpu_ptr(&flush_works, cpu));
5322
5323         for_each_online_cpu(cpu)
5324                 flush_work(per_cpu_ptr(&flush_works, cpu));
5325
5326         put_online_cpus();
5327 }
5328
5329 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5330 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5331 static int napi_gro_complete(struct sk_buff *skb)
5332 {
5333         struct packet_offload *ptype;
5334         __be16 type = skb->protocol;
5335         struct list_head *head = &offload_base;
5336         int err = -ENOENT;
5337
5338         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5339
5340         if (NAPI_GRO_CB(skb)->count == 1) {
5341                 skb_shinfo(skb)->gso_size = 0;
5342                 goto out;
5343         }
5344
5345         rcu_read_lock();
5346         list_for_each_entry_rcu(ptype, head, list) {
5347                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5348                         continue;
5349
5350                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5351                                          ipv6_gro_complete, inet_gro_complete,
5352                                          skb, 0);
5353                 break;
5354         }
5355         rcu_read_unlock();
5356
5357         if (err) {
5358                 WARN_ON(&ptype->list == head);
5359                 kfree_skb(skb);
5360                 return NET_RX_SUCCESS;
5361         }
5362
5363 out:
5364         return netif_receive_skb_internal(skb);
5365 }
5366
5367 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5368                                    bool flush_old)
5369 {
5370         struct list_head *head = &napi->gro_hash[index].list;
5371         struct sk_buff *skb, *p;
5372
5373         list_for_each_entry_safe_reverse(skb, p, head, list) {
5374                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5375                         return;
5376                 skb_list_del_init(skb);
5377                 napi_gro_complete(skb);
5378                 napi->gro_hash[index].count--;
5379         }
5380
5381         if (!napi->gro_hash[index].count)
5382                 __clear_bit(index, &napi->gro_bitmask);
5383 }
5384
5385 /* napi->gro_hash[].list contains packets ordered by age.
5386  * youngest packets at the head of it.
5387  * Complete skbs in reverse order to reduce latencies.
5388  */
5389 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5390 {
5391         unsigned long bitmask = napi->gro_bitmask;
5392         unsigned int i, base = ~0U;
5393
5394         while ((i = ffs(bitmask)) != 0) {
5395                 bitmask >>= i;
5396                 base += i;
5397                 __napi_gro_flush_chain(napi, base, flush_old);
5398         }
5399 }
5400 EXPORT_SYMBOL(napi_gro_flush);
5401
5402 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5403                                           struct sk_buff *skb)
5404 {
5405         unsigned int maclen = skb->dev->hard_header_len;
5406         u32 hash = skb_get_hash_raw(skb);
5407         struct list_head *head;
5408         struct sk_buff *p;
5409
5410         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5411         list_for_each_entry(p, head, list) {
5412                 unsigned long diffs;
5413
5414                 NAPI_GRO_CB(p)->flush = 0;
5415
5416                 if (hash != skb_get_hash_raw(p)) {
5417                         NAPI_GRO_CB(p)->same_flow = 0;
5418                         continue;
5419                 }
5420
5421                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5422                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5423                 if (skb_vlan_tag_present(p))
5424                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5425                 diffs |= skb_metadata_dst_cmp(p, skb);
5426                 diffs |= skb_metadata_differs(p, skb);
5427                 if (maclen == ETH_HLEN)
5428                         diffs |= compare_ether_header(skb_mac_header(p),
5429                                                       skb_mac_header(skb));
5430                 else if (!diffs)
5431                         diffs = memcmp(skb_mac_header(p),
5432                                        skb_mac_header(skb),
5433                                        maclen);
5434                 NAPI_GRO_CB(p)->same_flow = !diffs;
5435         }
5436
5437         return head;
5438 }
5439
5440 static void skb_gro_reset_offset(struct sk_buff *skb)
5441 {
5442         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5443         const skb_frag_t *frag0 = &pinfo->frags[0];
5444
5445         NAPI_GRO_CB(skb)->data_offset = 0;
5446         NAPI_GRO_CB(skb)->frag0 = NULL;
5447         NAPI_GRO_CB(skb)->frag0_len = 0;
5448
5449         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5450             pinfo->nr_frags &&
5451             !PageHighMem(skb_frag_page(frag0))) {
5452                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5453                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5454                                                     skb_frag_size(frag0),
5455                                                     skb->end - skb->tail);
5456         }
5457 }
5458
5459 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5460 {
5461         struct skb_shared_info *pinfo = skb_shinfo(skb);
5462
5463         BUG_ON(skb->end - skb->tail < grow);
5464
5465         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5466
5467         skb->data_len -= grow;
5468         skb->tail += grow;
5469
5470         pinfo->frags[0].page_offset += grow;
5471         skb_frag_size_sub(&pinfo->frags[0], grow);
5472
5473         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5474                 skb_frag_unref(skb, 0);
5475                 memmove(pinfo->frags, pinfo->frags + 1,
5476                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5477         }
5478 }
5479
5480 static void gro_flush_oldest(struct list_head *head)
5481 {
5482         struct sk_buff *oldest;
5483
5484         oldest = list_last_entry(head, struct sk_buff, list);
5485
5486         /* We are called with head length >= MAX_GRO_SKBS, so this is
5487          * impossible.
5488          */
5489         if (WARN_ON_ONCE(!oldest))
5490                 return;
5491
5492         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5493          * SKB to the chain.
5494          */
5495         skb_list_del_init(oldest);
5496         napi_gro_complete(oldest);
5497 }
5498
5499 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5500                                                            struct sk_buff *));
5501 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5502                                                            struct sk_buff *));
5503 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5504 {
5505         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5506         struct list_head *head = &offload_base;
5507         struct packet_offload *ptype;
5508         __be16 type = skb->protocol;
5509         struct list_head *gro_head;
5510         struct sk_buff *pp = NULL;
5511         enum gro_result ret;
5512         int same_flow;
5513         int grow;
5514
5515         if (netif_elide_gro(skb->dev))
5516                 goto normal;
5517
5518         gro_head = gro_list_prepare(napi, skb);
5519
5520         rcu_read_lock();
5521         list_for_each_entry_rcu(ptype, head, list) {
5522                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5523                         continue;
5524
5525                 skb_set_network_header(skb, skb_gro_offset(skb));
5526                 skb_reset_mac_len(skb);
5527                 NAPI_GRO_CB(skb)->same_flow = 0;
5528                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5529                 NAPI_GRO_CB(skb)->free = 0;
5530                 NAPI_GRO_CB(skb)->encap_mark = 0;
5531                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5532                 NAPI_GRO_CB(skb)->is_fou = 0;
5533                 NAPI_GRO_CB(skb)->is_atomic = 1;
5534                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5535
5536                 /* Setup for GRO checksum validation */
5537                 switch (skb->ip_summed) {
5538                 case CHECKSUM_COMPLETE:
5539                         NAPI_GRO_CB(skb)->csum = skb->csum;
5540                         NAPI_GRO_CB(skb)->csum_valid = 1;
5541                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5542                         break;
5543                 case CHECKSUM_UNNECESSARY:
5544                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5545                         NAPI_GRO_CB(skb)->csum_valid = 0;
5546                         break;
5547                 default:
5548                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5549                         NAPI_GRO_CB(skb)->csum_valid = 0;
5550                 }
5551
5552                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5553                                         ipv6_gro_receive, inet_gro_receive,
5554                                         gro_head, skb);
5555                 break;
5556         }
5557         rcu_read_unlock();
5558
5559         if (&ptype->list == head)
5560                 goto normal;
5561
5562         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5563                 ret = GRO_CONSUMED;
5564                 goto ok;
5565         }
5566
5567         same_flow = NAPI_GRO_CB(skb)->same_flow;
5568         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5569
5570         if (pp) {
5571                 skb_list_del_init(pp);
5572                 napi_gro_complete(pp);
5573                 napi->gro_hash[hash].count--;
5574         }
5575
5576         if (same_flow)
5577                 goto ok;
5578
5579         if (NAPI_GRO_CB(skb)->flush)
5580                 goto normal;
5581
5582         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5583                 gro_flush_oldest(gro_head);
5584         } else {
5585                 napi->gro_hash[hash].count++;
5586         }
5587         NAPI_GRO_CB(skb)->count = 1;
5588         NAPI_GRO_CB(skb)->age = jiffies;
5589         NAPI_GRO_CB(skb)->last = skb;
5590         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5591         list_add(&skb->list, gro_head);
5592         ret = GRO_HELD;
5593
5594 pull:
5595         grow = skb_gro_offset(skb) - skb_headlen(skb);
5596         if (grow > 0)
5597                 gro_pull_from_frag0(skb, grow);
5598 ok:
5599         if (napi->gro_hash[hash].count) {
5600                 if (!test_bit(hash, &napi->gro_bitmask))
5601                         __set_bit(hash, &napi->gro_bitmask);
5602         } else if (test_bit(hash, &napi->gro_bitmask)) {
5603                 __clear_bit(hash, &napi->gro_bitmask);
5604         }
5605
5606         return ret;
5607
5608 normal:
5609         ret = GRO_NORMAL;
5610         goto pull;
5611 }
5612
5613 struct packet_offload *gro_find_receive_by_type(__be16 type)
5614 {
5615         struct list_head *offload_head = &offload_base;
5616         struct packet_offload *ptype;
5617
5618         list_for_each_entry_rcu(ptype, offload_head, list) {
5619                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5620                         continue;
5621                 return ptype;
5622         }
5623         return NULL;
5624 }
5625 EXPORT_SYMBOL(gro_find_receive_by_type);
5626
5627 struct packet_offload *gro_find_complete_by_type(__be16 type)
5628 {
5629         struct list_head *offload_head = &offload_base;
5630         struct packet_offload *ptype;
5631
5632         list_for_each_entry_rcu(ptype, offload_head, list) {
5633                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5634                         continue;
5635                 return ptype;
5636         }
5637         return NULL;
5638 }
5639 EXPORT_SYMBOL(gro_find_complete_by_type);
5640
5641 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5642 {
5643         skb_dst_drop(skb);
5644         secpath_reset(skb);
5645         kmem_cache_free(skbuff_head_cache, skb);
5646 }
5647
5648 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5649 {
5650         switch (ret) {
5651         case GRO_NORMAL:
5652                 if (netif_receive_skb_internal(skb))
5653                         ret = GRO_DROP;
5654                 break;
5655
5656         case GRO_DROP:
5657                 kfree_skb(skb);
5658                 break;
5659
5660         case GRO_MERGED_FREE:
5661                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5662                         napi_skb_free_stolen_head(skb);
5663                 else
5664                         __kfree_skb(skb);
5665                 break;
5666
5667         case GRO_HELD:
5668         case GRO_MERGED:
5669         case GRO_CONSUMED:
5670                 break;
5671         }
5672
5673         return ret;
5674 }
5675
5676 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5677 {
5678         gro_result_t ret;
5679
5680         skb_mark_napi_id(skb, napi);
5681         trace_napi_gro_receive_entry(skb);
5682
5683         skb_gro_reset_offset(skb);
5684
5685         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5686         trace_napi_gro_receive_exit(ret);
5687
5688         return ret;
5689 }
5690 EXPORT_SYMBOL(napi_gro_receive);
5691
5692 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5693 {
5694         if (unlikely(skb->pfmemalloc)) {
5695                 consume_skb(skb);
5696                 return;
5697         }
5698         __skb_pull(skb, skb_headlen(skb));
5699         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5700         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5701         __vlan_hwaccel_clear_tag(skb);
5702         skb->dev = napi->dev;
5703         skb->skb_iif = 0;
5704
5705         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5706         skb->pkt_type = PACKET_HOST;
5707
5708         skb->encapsulation = 0;
5709         skb_shinfo(skb)->gso_type = 0;
5710         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5711         secpath_reset(skb);
5712
5713         napi->skb = skb;
5714 }
5715
5716 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5717 {
5718         struct sk_buff *skb = napi->skb;
5719
5720         if (!skb) {
5721                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5722                 if (skb) {
5723                         napi->skb = skb;
5724                         skb_mark_napi_id(skb, napi);
5725                 }
5726         }
5727         return skb;
5728 }
5729 EXPORT_SYMBOL(napi_get_frags);
5730
5731 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5732                                       struct sk_buff *skb,
5733                                       gro_result_t ret)
5734 {
5735         switch (ret) {
5736         case GRO_NORMAL:
5737         case GRO_HELD:
5738                 __skb_push(skb, ETH_HLEN);
5739                 skb->protocol = eth_type_trans(skb, skb->dev);
5740                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5741                         ret = GRO_DROP;
5742                 break;
5743
5744         case GRO_DROP:
5745                 napi_reuse_skb(napi, skb);
5746                 break;
5747
5748         case GRO_MERGED_FREE:
5749                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5750                         napi_skb_free_stolen_head(skb);
5751                 else
5752                         napi_reuse_skb(napi, skb);
5753                 break;
5754
5755         case GRO_MERGED:
5756         case GRO_CONSUMED:
5757                 break;
5758         }
5759
5760         return ret;
5761 }
5762
5763 /* Upper GRO stack assumes network header starts at gro_offset=0
5764  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5765  * We copy ethernet header into skb->data to have a common layout.
5766  */
5767 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5768 {
5769         struct sk_buff *skb = napi->skb;
5770         const struct ethhdr *eth;
5771         unsigned int hlen = sizeof(*eth);
5772
5773         napi->skb = NULL;
5774
5775         skb_reset_mac_header(skb);
5776         skb_gro_reset_offset(skb);
5777
5778         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5779                 eth = skb_gro_header_slow(skb, hlen, 0);
5780                 if (unlikely(!eth)) {
5781                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5782                                              __func__, napi->dev->name);
5783                         napi_reuse_skb(napi, skb);
5784                         return NULL;
5785                 }
5786         } else {
5787                 eth = (const struct ethhdr *)skb->data;
5788                 gro_pull_from_frag0(skb, hlen);
5789                 NAPI_GRO_CB(skb)->frag0 += hlen;
5790                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5791         }
5792         __skb_pull(skb, hlen);
5793
5794         /*
5795          * This works because the only protocols we care about don't require
5796          * special handling.
5797          * We'll fix it up properly in napi_frags_finish()
5798          */
5799         skb->protocol = eth->h_proto;
5800
5801         return skb;
5802 }
5803
5804 gro_result_t napi_gro_frags(struct napi_struct *napi)
5805 {
5806         gro_result_t ret;
5807         struct sk_buff *skb = napi_frags_skb(napi);
5808
5809         if (!skb)
5810                 return GRO_DROP;
5811
5812         trace_napi_gro_frags_entry(skb);
5813
5814         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5815         trace_napi_gro_frags_exit(ret);
5816
5817         return ret;
5818 }
5819 EXPORT_SYMBOL(napi_gro_frags);
5820
5821 /* Compute the checksum from gro_offset and return the folded value
5822  * after adding in any pseudo checksum.
5823  */
5824 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5825 {
5826         __wsum wsum;
5827         __sum16 sum;
5828
5829         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5830
5831         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5832         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5833         /* See comments in __skb_checksum_complete(). */
5834         if (likely(!sum)) {
5835                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5836                     !skb->csum_complete_sw)
5837                         netdev_rx_csum_fault(skb->dev, skb);
5838         }
5839
5840         NAPI_GRO_CB(skb)->csum = wsum;
5841         NAPI_GRO_CB(skb)->csum_valid = 1;
5842
5843         return sum;
5844 }
5845 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5846
5847 static void net_rps_send_ipi(struct softnet_data *remsd)
5848 {
5849 #ifdef CONFIG_RPS
5850         while (remsd) {
5851                 struct softnet_data *next = remsd->rps_ipi_next;
5852
5853                 if (cpu_online(remsd->cpu))
5854                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5855                 remsd = next;
5856         }
5857 #endif
5858 }
5859
5860 /*
5861  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5862  * Note: called with local irq disabled, but exits with local irq enabled.
5863  */
5864 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5865 {
5866 #ifdef CONFIG_RPS
5867         struct softnet_data *remsd = sd->rps_ipi_list;
5868
5869         if (remsd) {
5870                 sd->rps_ipi_list = NULL;
5871
5872                 local_irq_enable();
5873
5874                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5875                 net_rps_send_ipi(remsd);
5876         } else
5877 #endif
5878                 local_irq_enable();
5879 }
5880
5881 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5882 {
5883 #ifdef CONFIG_RPS
5884         return sd->rps_ipi_list != NULL;
5885 #else
5886         return false;
5887 #endif
5888 }
5889
5890 static int process_backlog(struct napi_struct *napi, int quota)
5891 {
5892         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5893         bool again = true;
5894         int work = 0;
5895
5896         /* Check if we have pending ipi, its better to send them now,
5897          * not waiting net_rx_action() end.
5898          */
5899         if (sd_has_rps_ipi_waiting(sd)) {
5900                 local_irq_disable();
5901                 net_rps_action_and_irq_enable(sd);
5902         }
5903
5904         napi->weight = dev_rx_weight;
5905         while (again) {
5906                 struct sk_buff *skb;
5907
5908                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5909                         rcu_read_lock();
5910                         __netif_receive_skb(skb);
5911                         rcu_read_unlock();
5912                         input_queue_head_incr(sd);
5913                         if (++work >= quota)
5914                                 return work;
5915
5916                 }
5917
5918                 local_irq_disable();
5919                 rps_lock(sd);
5920                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5921                         /*
5922                          * Inline a custom version of __napi_complete().
5923                          * only current cpu owns and manipulates this napi,
5924                          * and NAPI_STATE_SCHED is the only possible flag set
5925                          * on backlog.
5926                          * We can use a plain write instead of clear_bit(),
5927                          * and we dont need an smp_mb() memory barrier.
5928                          */
5929                         napi->state = 0;
5930                         again = false;
5931                 } else {
5932                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5933                                                    &sd->process_queue);
5934                 }
5935                 rps_unlock(sd);
5936                 local_irq_enable();
5937         }
5938
5939         return work;
5940 }
5941
5942 /**
5943  * __napi_schedule - schedule for receive
5944  * @n: entry to schedule
5945  *
5946  * The entry's receive function will be scheduled to run.
5947  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5948  */
5949 void __napi_schedule(struct napi_struct *n)
5950 {
5951         unsigned long flags;
5952
5953         local_irq_save(flags);
5954         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5955         local_irq_restore(flags);
5956 }
5957 EXPORT_SYMBOL(__napi_schedule);
5958
5959 /**
5960  *      napi_schedule_prep - check if napi can be scheduled
5961  *      @n: napi context
5962  *
5963  * Test if NAPI routine is already running, and if not mark
5964  * it as running.  This is used as a condition variable
5965  * insure only one NAPI poll instance runs.  We also make
5966  * sure there is no pending NAPI disable.
5967  */
5968 bool napi_schedule_prep(struct napi_struct *n)
5969 {
5970         unsigned long val, new;
5971
5972         do {
5973                 val = READ_ONCE(n->state);
5974                 if (unlikely(val & NAPIF_STATE_DISABLE))
5975                         return false;
5976                 new = val | NAPIF_STATE_SCHED;
5977
5978                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5979                  * This was suggested by Alexander Duyck, as compiler
5980                  * emits better code than :
5981                  * if (val & NAPIF_STATE_SCHED)
5982                  *     new |= NAPIF_STATE_MISSED;
5983                  */
5984                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5985                                                    NAPIF_STATE_MISSED;
5986         } while (cmpxchg(&n->state, val, new) != val);
5987
5988         return !(val & NAPIF_STATE_SCHED);
5989 }
5990 EXPORT_SYMBOL(napi_schedule_prep);
5991
5992 /**
5993  * __napi_schedule_irqoff - schedule for receive
5994  * @n: entry to schedule
5995  *
5996  * Variant of __napi_schedule() assuming hard irqs are masked
5997  */
5998 void __napi_schedule_irqoff(struct napi_struct *n)
5999 {
6000         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6001 }
6002 EXPORT_SYMBOL(__napi_schedule_irqoff);
6003
6004 bool napi_complete_done(struct napi_struct *n, int work_done)
6005 {
6006         unsigned long flags, val, new;
6007
6008         /*
6009          * 1) Don't let napi dequeue from the cpu poll list
6010          *    just in case its running on a different cpu.
6011          * 2) If we are busy polling, do nothing here, we have
6012          *    the guarantee we will be called later.
6013          */
6014         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6015                                  NAPIF_STATE_IN_BUSY_POLL)))
6016                 return false;
6017
6018         if (n->gro_bitmask) {
6019                 unsigned long timeout = 0;
6020
6021                 if (work_done)
6022                         timeout = n->dev->gro_flush_timeout;
6023
6024                 /* When the NAPI instance uses a timeout and keeps postponing
6025                  * it, we need to bound somehow the time packets are kept in
6026                  * the GRO layer
6027                  */
6028                 napi_gro_flush(n, !!timeout);
6029                 if (timeout)
6030                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6031                                       HRTIMER_MODE_REL_PINNED);
6032         }
6033         if (unlikely(!list_empty(&n->poll_list))) {
6034                 /* If n->poll_list is not empty, we need to mask irqs */
6035                 local_irq_save(flags);
6036                 list_del_init(&n->poll_list);
6037                 local_irq_restore(flags);
6038         }
6039
6040         do {
6041                 val = READ_ONCE(n->state);
6042
6043                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6044
6045                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6046
6047                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6048                  * because we will call napi->poll() one more time.
6049                  * This C code was suggested by Alexander Duyck to help gcc.
6050                  */
6051                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6052                                                     NAPIF_STATE_SCHED;
6053         } while (cmpxchg(&n->state, val, new) != val);
6054
6055         if (unlikely(val & NAPIF_STATE_MISSED)) {
6056                 __napi_schedule(n);
6057                 return false;
6058         }
6059
6060         return true;
6061 }
6062 EXPORT_SYMBOL(napi_complete_done);
6063
6064 /* must be called under rcu_read_lock(), as we dont take a reference */
6065 static struct napi_struct *napi_by_id(unsigned int napi_id)
6066 {
6067         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6068         struct napi_struct *napi;
6069
6070         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6071                 if (napi->napi_id == napi_id)
6072                         return napi;
6073
6074         return NULL;
6075 }
6076
6077 #if defined(CONFIG_NET_RX_BUSY_POLL)
6078
6079 #define BUSY_POLL_BUDGET 8
6080
6081 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6082 {
6083         int rc;
6084
6085         /* Busy polling means there is a high chance device driver hard irq
6086          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6087          * set in napi_schedule_prep().
6088          * Since we are about to call napi->poll() once more, we can safely
6089          * clear NAPI_STATE_MISSED.
6090          *
6091          * Note: x86 could use a single "lock and ..." instruction
6092          * to perform these two clear_bit()
6093          */
6094         clear_bit(NAPI_STATE_MISSED, &napi->state);
6095         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6096
6097         local_bh_disable();
6098
6099         /* All we really want here is to re-enable device interrupts.
6100          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6101          */
6102         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6103         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6104         netpoll_poll_unlock(have_poll_lock);
6105         if (rc == BUSY_POLL_BUDGET)
6106                 __napi_schedule(napi);
6107         local_bh_enable();
6108 }
6109
6110 void napi_busy_loop(unsigned int napi_id,
6111                     bool (*loop_end)(void *, unsigned long),
6112                     void *loop_end_arg)
6113 {
6114         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6115         int (*napi_poll)(struct napi_struct *napi, int budget);
6116         void *have_poll_lock = NULL;
6117         struct napi_struct *napi;
6118
6119 restart:
6120         napi_poll = NULL;
6121
6122         rcu_read_lock();
6123
6124         napi = napi_by_id(napi_id);
6125         if (!napi)
6126                 goto out;
6127
6128         preempt_disable();
6129         for (;;) {
6130                 int work = 0;
6131
6132                 local_bh_disable();
6133                 if (!napi_poll) {
6134                         unsigned long val = READ_ONCE(napi->state);
6135
6136                         /* If multiple threads are competing for this napi,
6137                          * we avoid dirtying napi->state as much as we can.
6138                          */
6139                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6140                                    NAPIF_STATE_IN_BUSY_POLL))
6141                                 goto count;
6142                         if (cmpxchg(&napi->state, val,
6143                                     val | NAPIF_STATE_IN_BUSY_POLL |
6144                                           NAPIF_STATE_SCHED) != val)
6145                                 goto count;
6146                         have_poll_lock = netpoll_poll_lock(napi);
6147                         napi_poll = napi->poll;
6148                 }
6149                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6150                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6151 count:
6152                 if (work > 0)
6153                         __NET_ADD_STATS(dev_net(napi->dev),
6154                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6155                 local_bh_enable();
6156
6157                 if (!loop_end || loop_end(loop_end_arg, start_time))
6158                         break;
6159
6160                 if (unlikely(need_resched())) {
6161                         if (napi_poll)
6162                                 busy_poll_stop(napi, have_poll_lock);
6163                         preempt_enable();
6164                         rcu_read_unlock();
6165                         cond_resched();
6166                         if (loop_end(loop_end_arg, start_time))
6167                                 return;
6168                         goto restart;
6169                 }
6170                 cpu_relax();
6171         }
6172         if (napi_poll)
6173                 busy_poll_stop(napi, have_poll_lock);
6174         preempt_enable();
6175 out:
6176         rcu_read_unlock();
6177 }
6178 EXPORT_SYMBOL(napi_busy_loop);
6179
6180 #endif /* CONFIG_NET_RX_BUSY_POLL */
6181
6182 static void napi_hash_add(struct napi_struct *napi)
6183 {
6184         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6185             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6186                 return;
6187
6188         spin_lock(&napi_hash_lock);
6189
6190         /* 0..NR_CPUS range is reserved for sender_cpu use */
6191         do {
6192                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6193                         napi_gen_id = MIN_NAPI_ID;
6194         } while (napi_by_id(napi_gen_id));
6195         napi->napi_id = napi_gen_id;
6196
6197         hlist_add_head_rcu(&napi->napi_hash_node,
6198                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6199
6200         spin_unlock(&napi_hash_lock);
6201 }
6202
6203 /* Warning : caller is responsible to make sure rcu grace period
6204  * is respected before freeing memory containing @napi
6205  */
6206 bool napi_hash_del(struct napi_struct *napi)
6207 {
6208         bool rcu_sync_needed = false;
6209
6210         spin_lock(&napi_hash_lock);
6211
6212         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6213                 rcu_sync_needed = true;
6214                 hlist_del_rcu(&napi->napi_hash_node);
6215         }
6216         spin_unlock(&napi_hash_lock);
6217         return rcu_sync_needed;
6218 }
6219 EXPORT_SYMBOL_GPL(napi_hash_del);
6220
6221 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6222 {
6223         struct napi_struct *napi;
6224
6225         napi = container_of(timer, struct napi_struct, timer);
6226
6227         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6228          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6229          */
6230         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6231             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6232                 __napi_schedule_irqoff(napi);
6233
6234         return HRTIMER_NORESTART;
6235 }
6236
6237 static void init_gro_hash(struct napi_struct *napi)
6238 {
6239         int i;
6240
6241         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6242                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6243                 napi->gro_hash[i].count = 0;
6244         }
6245         napi->gro_bitmask = 0;
6246 }
6247
6248 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6249                     int (*poll)(struct napi_struct *, int), int weight)
6250 {
6251         INIT_LIST_HEAD(&napi->poll_list);
6252         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6253         napi->timer.function = napi_watchdog;
6254         init_gro_hash(napi);
6255         napi->skb = NULL;
6256         napi->poll = poll;
6257         if (weight > NAPI_POLL_WEIGHT)
6258                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6259                                 weight);
6260         napi->weight = weight;
6261         list_add(&napi->dev_list, &dev->napi_list);
6262         napi->dev = dev;
6263 #ifdef CONFIG_NETPOLL
6264         napi->poll_owner = -1;
6265 #endif
6266         set_bit(NAPI_STATE_SCHED, &napi->state);
6267         napi_hash_add(napi);
6268 }
6269 EXPORT_SYMBOL(netif_napi_add);
6270
6271 void napi_disable(struct napi_struct *n)
6272 {
6273         might_sleep();
6274         set_bit(NAPI_STATE_DISABLE, &n->state);
6275
6276         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6277                 msleep(1);
6278         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6279                 msleep(1);
6280
6281         hrtimer_cancel(&n->timer);
6282
6283         clear_bit(NAPI_STATE_DISABLE, &n->state);
6284 }
6285 EXPORT_SYMBOL(napi_disable);
6286
6287 static void flush_gro_hash(struct napi_struct *napi)
6288 {
6289         int i;
6290
6291         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6292                 struct sk_buff *skb, *n;
6293
6294                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6295                         kfree_skb(skb);
6296                 napi->gro_hash[i].count = 0;
6297         }
6298 }
6299
6300 /* Must be called in process context */
6301 void netif_napi_del(struct napi_struct *napi)
6302 {
6303         might_sleep();
6304         if (napi_hash_del(napi))
6305                 synchronize_net();
6306         list_del_init(&napi->dev_list);
6307         napi_free_frags(napi);
6308
6309         flush_gro_hash(napi);
6310         napi->gro_bitmask = 0;
6311 }
6312 EXPORT_SYMBOL(netif_napi_del);
6313
6314 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6315 {
6316         void *have;
6317         int work, weight;
6318
6319         list_del_init(&n->poll_list);
6320
6321         have = netpoll_poll_lock(n);
6322
6323         weight = n->weight;
6324
6325         /* This NAPI_STATE_SCHED test is for avoiding a race
6326          * with netpoll's poll_napi().  Only the entity which
6327          * obtains the lock and sees NAPI_STATE_SCHED set will
6328          * actually make the ->poll() call.  Therefore we avoid
6329          * accidentally calling ->poll() when NAPI is not scheduled.
6330          */
6331         work = 0;
6332         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6333                 work = n->poll(n, weight);
6334                 trace_napi_poll(n, work, weight);
6335         }
6336
6337         WARN_ON_ONCE(work > weight);
6338
6339         if (likely(work < weight))
6340                 goto out_unlock;
6341
6342         /* Drivers must not modify the NAPI state if they
6343          * consume the entire weight.  In such cases this code
6344          * still "owns" the NAPI instance and therefore can
6345          * move the instance around on the list at-will.
6346          */
6347         if (unlikely(napi_disable_pending(n))) {
6348                 napi_complete(n);
6349                 goto out_unlock;
6350         }
6351
6352         if (n->gro_bitmask) {
6353                 /* flush too old packets
6354                  * If HZ < 1000, flush all packets.
6355                  */
6356                 napi_gro_flush(n, HZ >= 1000);
6357         }
6358
6359         /* Some drivers may have called napi_schedule
6360          * prior to exhausting their budget.
6361          */
6362         if (unlikely(!list_empty(&n->poll_list))) {
6363                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6364                              n->dev ? n->dev->name : "backlog");
6365                 goto out_unlock;
6366         }
6367
6368         list_add_tail(&n->poll_list, repoll);
6369
6370 out_unlock:
6371         netpoll_poll_unlock(have);
6372
6373         return work;
6374 }
6375
6376 static __latent_entropy void net_rx_action(struct softirq_action *h)
6377 {
6378         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6379         unsigned long time_limit = jiffies +
6380                 usecs_to_jiffies(netdev_budget_usecs);
6381         int budget = netdev_budget;
6382         LIST_HEAD(list);
6383         LIST_HEAD(repoll);
6384
6385         local_irq_disable();
6386         list_splice_init(&sd->poll_list, &list);
6387         local_irq_enable();
6388
6389         for (;;) {
6390                 struct napi_struct *n;
6391
6392                 if (list_empty(&list)) {
6393                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6394                                 goto out;
6395                         break;
6396                 }
6397
6398                 n = list_first_entry(&list, struct napi_struct, poll_list);
6399                 budget -= napi_poll(n, &repoll);
6400
6401                 /* If softirq window is exhausted then punt.
6402                  * Allow this to run for 2 jiffies since which will allow
6403                  * an average latency of 1.5/HZ.
6404                  */
6405                 if (unlikely(budget <= 0 ||
6406                              time_after_eq(jiffies, time_limit))) {
6407                         sd->time_squeeze++;
6408                         break;
6409                 }
6410         }
6411
6412         local_irq_disable();
6413
6414         list_splice_tail_init(&sd->poll_list, &list);
6415         list_splice_tail(&repoll, &list);
6416         list_splice(&list, &sd->poll_list);
6417         if (!list_empty(&sd->poll_list))
6418                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6419
6420         net_rps_action_and_irq_enable(sd);
6421 out:
6422         __kfree_skb_flush();
6423 }
6424
6425 struct netdev_adjacent {
6426         struct net_device *dev;
6427
6428         /* upper master flag, there can only be one master device per list */
6429         bool master;
6430
6431         /* counter for the number of times this device was added to us */
6432         u16 ref_nr;
6433
6434         /* private field for the users */
6435         void *private;
6436
6437         struct list_head list;
6438         struct rcu_head rcu;
6439 };
6440
6441 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6442                                                  struct list_head *adj_list)
6443 {
6444         struct netdev_adjacent *adj;
6445
6446         list_for_each_entry(adj, adj_list, list) {
6447                 if (adj->dev == adj_dev)
6448                         return adj;
6449         }
6450         return NULL;
6451 }
6452
6453 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6454 {
6455         struct net_device *dev = data;
6456
6457         return upper_dev == dev;
6458 }
6459
6460 /**
6461  * netdev_has_upper_dev - Check if device is linked to an upper device
6462  * @dev: device
6463  * @upper_dev: upper device to check
6464  *
6465  * Find out if a device is linked to specified upper device and return true
6466  * in case it is. Note that this checks only immediate upper device,
6467  * not through a complete stack of devices. The caller must hold the RTNL lock.
6468  */
6469 bool netdev_has_upper_dev(struct net_device *dev,
6470                           struct net_device *upper_dev)
6471 {
6472         ASSERT_RTNL();
6473
6474         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6475                                              upper_dev);
6476 }
6477 EXPORT_SYMBOL(netdev_has_upper_dev);
6478
6479 /**
6480  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6481  * @dev: device
6482  * @upper_dev: upper device to check
6483  *
6484  * Find out if a device is linked to specified upper device and return true
6485  * in case it is. Note that this checks the entire upper device chain.
6486  * The caller must hold rcu lock.
6487  */
6488
6489 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6490                                   struct net_device *upper_dev)
6491 {
6492         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6493                                                upper_dev);
6494 }
6495 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6496
6497 /**
6498  * netdev_has_any_upper_dev - Check if device is linked to some device
6499  * @dev: device
6500  *
6501  * Find out if a device is linked to an upper device and return true in case
6502  * it is. The caller must hold the RTNL lock.
6503  */
6504 bool netdev_has_any_upper_dev(struct net_device *dev)
6505 {
6506         ASSERT_RTNL();
6507
6508         return !list_empty(&dev->adj_list.upper);
6509 }
6510 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6511
6512 /**
6513  * netdev_master_upper_dev_get - Get master upper device
6514  * @dev: device
6515  *
6516  * Find a master upper device and return pointer to it or NULL in case
6517  * it's not there. The caller must hold the RTNL lock.
6518  */
6519 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6520 {
6521         struct netdev_adjacent *upper;
6522
6523         ASSERT_RTNL();
6524
6525         if (list_empty(&dev->adj_list.upper))
6526                 return NULL;
6527
6528         upper = list_first_entry(&dev->adj_list.upper,
6529                                  struct netdev_adjacent, list);
6530         if (likely(upper->master))
6531                 return upper->dev;
6532         return NULL;
6533 }
6534 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6535
6536 /**
6537  * netdev_has_any_lower_dev - Check if device is linked to some device
6538  * @dev: device
6539  *
6540  * Find out if a device is linked to a lower device and return true in case
6541  * it is. The caller must hold the RTNL lock.
6542  */
6543 static bool netdev_has_any_lower_dev(struct net_device *dev)
6544 {
6545         ASSERT_RTNL();
6546
6547         return !list_empty(&dev->adj_list.lower);
6548 }
6549
6550 void *netdev_adjacent_get_private(struct list_head *adj_list)
6551 {
6552         struct netdev_adjacent *adj;
6553
6554         adj = list_entry(adj_list, struct netdev_adjacent, list);
6555
6556         return adj->private;
6557 }
6558 EXPORT_SYMBOL(netdev_adjacent_get_private);
6559
6560 /**
6561  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6562  * @dev: device
6563  * @iter: list_head ** of the current position
6564  *
6565  * Gets the next device from the dev's upper list, starting from iter
6566  * position. The caller must hold RCU read lock.
6567  */
6568 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6569                                                  struct list_head **iter)
6570 {
6571         struct netdev_adjacent *upper;
6572
6573         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6574
6575         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6576
6577         if (&upper->list == &dev->adj_list.upper)
6578                 return NULL;
6579
6580         *iter = &upper->list;
6581
6582         return upper->dev;
6583 }
6584 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6585
6586 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6587                                                     struct list_head **iter)
6588 {
6589         struct netdev_adjacent *upper;
6590
6591         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6592
6593         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6594
6595         if (&upper->list == &dev->adj_list.upper)
6596                 return NULL;
6597
6598         *iter = &upper->list;
6599
6600         return upper->dev;
6601 }
6602
6603 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6604                                   int (*fn)(struct net_device *dev,
6605                                             void *data),
6606                                   void *data)
6607 {
6608         struct net_device *udev;
6609         struct list_head *iter;
6610         int ret;
6611
6612         for (iter = &dev->adj_list.upper,
6613              udev = netdev_next_upper_dev_rcu(dev, &iter);
6614              udev;
6615              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6616                 /* first is the upper device itself */
6617                 ret = fn(udev, data);
6618                 if (ret)
6619                         return ret;
6620
6621                 /* then look at all of its upper devices */
6622                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6623                 if (ret)
6624                         return ret;
6625         }
6626
6627         return 0;
6628 }
6629 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6630
6631 /**
6632  * netdev_lower_get_next_private - Get the next ->private from the
6633  *                                 lower neighbour list
6634  * @dev: device
6635  * @iter: list_head ** of the current position
6636  *
6637  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6638  * list, starting from iter position. The caller must hold either hold the
6639  * RTNL lock or its own locking that guarantees that the neighbour lower
6640  * list will remain unchanged.
6641  */
6642 void *netdev_lower_get_next_private(struct net_device *dev,
6643                                     struct list_head **iter)
6644 {
6645         struct netdev_adjacent *lower;
6646
6647         lower = list_entry(*iter, struct netdev_adjacent, list);
6648
6649         if (&lower->list == &dev->adj_list.lower)
6650                 return NULL;
6651
6652         *iter = lower->list.next;
6653
6654         return lower->private;
6655 }
6656 EXPORT_SYMBOL(netdev_lower_get_next_private);
6657
6658 /**
6659  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6660  *                                     lower neighbour list, RCU
6661  *                                     variant
6662  * @dev: device
6663  * @iter: list_head ** of the current position
6664  *
6665  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6666  * list, starting from iter position. The caller must hold RCU read lock.
6667  */
6668 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6669                                         struct list_head **iter)
6670 {
6671         struct netdev_adjacent *lower;
6672
6673         WARN_ON_ONCE(!rcu_read_lock_held());
6674
6675         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6676
6677         if (&lower->list == &dev->adj_list.lower)
6678                 return NULL;
6679
6680         *iter = &lower->list;
6681
6682         return lower->private;
6683 }
6684 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6685
6686 /**
6687  * netdev_lower_get_next - Get the next device from the lower neighbour
6688  *                         list
6689  * @dev: device
6690  * @iter: list_head ** of the current position
6691  *
6692  * Gets the next netdev_adjacent from the dev's lower neighbour
6693  * list, starting from iter position. The caller must hold RTNL lock or
6694  * its own locking that guarantees that the neighbour lower
6695  * list will remain unchanged.
6696  */
6697 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6698 {
6699         struct netdev_adjacent *lower;
6700
6701         lower = list_entry(*iter, struct netdev_adjacent, list);
6702
6703         if (&lower->list == &dev->adj_list.lower)
6704                 return NULL;
6705
6706         *iter = lower->list.next;
6707
6708         return lower->dev;
6709 }
6710 EXPORT_SYMBOL(netdev_lower_get_next);
6711
6712 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6713                                                 struct list_head **iter)
6714 {
6715         struct netdev_adjacent *lower;
6716
6717         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6718
6719         if (&lower->list == &dev->adj_list.lower)
6720                 return NULL;
6721
6722         *iter = &lower->list;
6723
6724         return lower->dev;
6725 }
6726
6727 int netdev_walk_all_lower_dev(struct net_device *dev,
6728                               int (*fn)(struct net_device *dev,
6729                                         void *data),
6730                               void *data)
6731 {
6732         struct net_device *ldev;
6733         struct list_head *iter;
6734         int ret;
6735
6736         for (iter = &dev->adj_list.lower,
6737              ldev = netdev_next_lower_dev(dev, &iter);
6738              ldev;
6739              ldev = netdev_next_lower_dev(dev, &iter)) {
6740                 /* first is the lower device itself */
6741                 ret = fn(ldev, data);
6742                 if (ret)
6743                         return ret;
6744
6745                 /* then look at all of its lower devices */
6746                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6747                 if (ret)
6748                         return ret;
6749         }
6750
6751         return 0;
6752 }
6753 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6754
6755 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6756                                                     struct list_head **iter)
6757 {
6758         struct netdev_adjacent *lower;
6759
6760         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6761         if (&lower->list == &dev->adj_list.lower)
6762                 return NULL;
6763
6764         *iter = &lower->list;
6765
6766         return lower->dev;
6767 }
6768
6769 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6770                                   int (*fn)(struct net_device *dev,
6771                                             void *data),
6772                                   void *data)
6773 {
6774         struct net_device *ldev;
6775         struct list_head *iter;
6776         int ret;
6777
6778         for (iter = &dev->adj_list.lower,
6779              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6780              ldev;
6781              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6782                 /* first is the lower device itself */
6783                 ret = fn(ldev, data);
6784                 if (ret)
6785                         return ret;
6786
6787                 /* then look at all of its lower devices */
6788                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6789                 if (ret)
6790                         return ret;
6791         }
6792
6793         return 0;
6794 }
6795 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6796
6797 /**
6798  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6799  *                                     lower neighbour list, RCU
6800  *                                     variant
6801  * @dev: device
6802  *
6803  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6804  * list. The caller must hold RCU read lock.
6805  */
6806 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6807 {
6808         struct netdev_adjacent *lower;
6809
6810         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6811                         struct netdev_adjacent, list);
6812         if (lower)
6813                 return lower->private;
6814         return NULL;
6815 }
6816 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6817
6818 /**
6819  * netdev_master_upper_dev_get_rcu - Get master upper device
6820  * @dev: device
6821  *
6822  * Find a master upper device and return pointer to it or NULL in case
6823  * it's not there. The caller must hold the RCU read lock.
6824  */
6825 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6826 {
6827         struct netdev_adjacent *upper;
6828
6829         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6830                                        struct netdev_adjacent, list);
6831         if (upper && likely(upper->master))
6832                 return upper->dev;
6833         return NULL;
6834 }
6835 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6836
6837 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6838                               struct net_device *adj_dev,
6839                               struct list_head *dev_list)
6840 {
6841         char linkname[IFNAMSIZ+7];
6842
6843         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6844                 "upper_%s" : "lower_%s", adj_dev->name);
6845         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6846                                  linkname);
6847 }
6848 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6849                                char *name,
6850                                struct list_head *dev_list)
6851 {
6852         char linkname[IFNAMSIZ+7];
6853
6854         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6855                 "upper_%s" : "lower_%s", name);
6856         sysfs_remove_link(&(dev->dev.kobj), linkname);
6857 }
6858
6859 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6860                                                  struct net_device *adj_dev,
6861                                                  struct list_head *dev_list)
6862 {
6863         return (dev_list == &dev->adj_list.upper ||
6864                 dev_list == &dev->adj_list.lower) &&
6865                 net_eq(dev_net(dev), dev_net(adj_dev));
6866 }
6867
6868 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6869                                         struct net_device *adj_dev,
6870                                         struct list_head *dev_list,
6871                                         void *private, bool master)
6872 {
6873         struct netdev_adjacent *adj;
6874         int ret;
6875
6876         adj = __netdev_find_adj(adj_dev, dev_list);
6877
6878         if (adj) {
6879                 adj->ref_nr += 1;
6880                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6881                          dev->name, adj_dev->name, adj->ref_nr);
6882
6883                 return 0;
6884         }
6885
6886         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6887         if (!adj)
6888                 return -ENOMEM;
6889
6890         adj->dev = adj_dev;
6891         adj->master = master;
6892         adj->ref_nr = 1;
6893         adj->private = private;
6894         dev_hold(adj_dev);
6895
6896         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6897                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6898
6899         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6900                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6901                 if (ret)
6902                         goto free_adj;
6903         }
6904
6905         /* Ensure that master link is always the first item in list. */
6906         if (master) {
6907                 ret = sysfs_create_link(&(dev->dev.kobj),
6908                                         &(adj_dev->dev.kobj), "master");
6909                 if (ret)
6910                         goto remove_symlinks;
6911
6912                 list_add_rcu(&adj->list, dev_list);
6913         } else {
6914                 list_add_tail_rcu(&adj->list, dev_list);
6915         }
6916
6917         return 0;
6918
6919 remove_symlinks:
6920         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6921                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6922 free_adj:
6923         kfree(adj);
6924         dev_put(adj_dev);
6925
6926         return ret;
6927 }
6928
6929 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6930                                          struct net_device *adj_dev,
6931                                          u16 ref_nr,
6932                                          struct list_head *dev_list)
6933 {
6934         struct netdev_adjacent *adj;
6935
6936         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6937                  dev->name, adj_dev->name, ref_nr);
6938
6939         adj = __netdev_find_adj(adj_dev, dev_list);
6940
6941         if (!adj) {
6942                 pr_err("Adjacency does not exist for device %s from %s\n",
6943                        dev->name, adj_dev->name);
6944                 WARN_ON(1);
6945                 return;
6946         }
6947
6948         if (adj->ref_nr > ref_nr) {
6949                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6950                          dev->name, adj_dev->name, ref_nr,
6951                          adj->ref_nr - ref_nr);
6952                 adj->ref_nr -= ref_nr;
6953                 return;
6954         }
6955
6956         if (adj->master)
6957                 sysfs_remove_link(&(dev->dev.kobj), "master");
6958
6959         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6960                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6961
6962         list_del_rcu(&adj->list);
6963         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6964                  adj_dev->name, dev->name, adj_dev->name);
6965         dev_put(adj_dev);
6966         kfree_rcu(adj, rcu);
6967 }
6968
6969 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6970                                             struct net_device *upper_dev,
6971                                             struct list_head *up_list,
6972                                             struct list_head *down_list,
6973                                             void *private, bool master)
6974 {
6975         int ret;
6976
6977         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6978                                            private, master);
6979         if (ret)
6980                 return ret;
6981
6982         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6983                                            private, false);
6984         if (ret) {
6985                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6986                 return ret;
6987         }
6988
6989         return 0;
6990 }
6991
6992 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6993                                                struct net_device *upper_dev,
6994                                                u16 ref_nr,
6995                                                struct list_head *up_list,
6996                                                struct list_head *down_list)
6997 {
6998         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6999         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7000 }
7001
7002 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7003                                                 struct net_device *upper_dev,
7004                                                 void *private, bool master)
7005 {
7006         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7007                                                 &dev->adj_list.upper,
7008                                                 &upper_dev->adj_list.lower,
7009                                                 private, master);
7010 }
7011
7012 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7013                                                    struct net_device *upper_dev)
7014 {
7015         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7016                                            &dev->adj_list.upper,
7017                                            &upper_dev->adj_list.lower);
7018 }
7019
7020 static int __netdev_upper_dev_link(struct net_device *dev,
7021                                    struct net_device *upper_dev, bool master,
7022                                    void *upper_priv, void *upper_info,
7023                                    struct netlink_ext_ack *extack)
7024 {
7025         struct netdev_notifier_changeupper_info changeupper_info = {
7026                 .info = {
7027                         .dev = dev,
7028                         .extack = extack,
7029                 },
7030                 .upper_dev = upper_dev,
7031                 .master = master,
7032                 .linking = true,
7033                 .upper_info = upper_info,
7034         };
7035         struct net_device *master_dev;
7036         int ret = 0;
7037
7038         ASSERT_RTNL();
7039
7040         if (dev == upper_dev)
7041                 return -EBUSY;
7042
7043         /* To prevent loops, check if dev is not upper device to upper_dev. */
7044         if (netdev_has_upper_dev(upper_dev, dev))
7045                 return -EBUSY;
7046
7047         if (!master) {
7048                 if (netdev_has_upper_dev(dev, upper_dev))
7049                         return -EEXIST;
7050         } else {
7051                 master_dev = netdev_master_upper_dev_get(dev);
7052                 if (master_dev)
7053                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7054         }
7055
7056         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7057                                             &changeupper_info.info);
7058         ret = notifier_to_errno(ret);
7059         if (ret)
7060                 return ret;
7061
7062         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7063                                                    master);
7064         if (ret)
7065                 return ret;
7066
7067         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7068                                             &changeupper_info.info);
7069         ret = notifier_to_errno(ret);
7070         if (ret)
7071                 goto rollback;
7072
7073         return 0;
7074
7075 rollback:
7076         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7077
7078         return ret;
7079 }
7080
7081 /**
7082  * netdev_upper_dev_link - Add a link to the upper device
7083  * @dev: device
7084  * @upper_dev: new upper device
7085  * @extack: netlink extended ack
7086  *
7087  * Adds a link to device which is upper to this one. The caller must hold
7088  * the RTNL lock. On a failure a negative errno code is returned.
7089  * On success the reference counts are adjusted and the function
7090  * returns zero.
7091  */
7092 int netdev_upper_dev_link(struct net_device *dev,
7093                           struct net_device *upper_dev,
7094                           struct netlink_ext_ack *extack)
7095 {
7096         return __netdev_upper_dev_link(dev, upper_dev, false,
7097                                        NULL, NULL, extack);
7098 }
7099 EXPORT_SYMBOL(netdev_upper_dev_link);
7100
7101 /**
7102  * netdev_master_upper_dev_link - Add a master link to the upper device
7103  * @dev: device
7104  * @upper_dev: new upper device
7105  * @upper_priv: upper device private
7106  * @upper_info: upper info to be passed down via notifier
7107  * @extack: netlink extended ack
7108  *
7109  * Adds a link to device which is upper to this one. In this case, only
7110  * one master upper device can be linked, although other non-master devices
7111  * might be linked as well. The caller must hold the RTNL lock.
7112  * On a failure a negative errno code is returned. On success the reference
7113  * counts are adjusted and the function returns zero.
7114  */
7115 int netdev_master_upper_dev_link(struct net_device *dev,
7116                                  struct net_device *upper_dev,
7117                                  void *upper_priv, void *upper_info,
7118                                  struct netlink_ext_ack *extack)
7119 {
7120         return __netdev_upper_dev_link(dev, upper_dev, true,
7121                                        upper_priv, upper_info, extack);
7122 }
7123 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7124
7125 /**
7126  * netdev_upper_dev_unlink - Removes a link to upper device
7127  * @dev: device
7128  * @upper_dev: new upper device
7129  *
7130  * Removes a link to device which is upper to this one. The caller must hold
7131  * the RTNL lock.
7132  */
7133 void netdev_upper_dev_unlink(struct net_device *dev,
7134                              struct net_device *upper_dev)
7135 {
7136         struct netdev_notifier_changeupper_info changeupper_info = {
7137                 .info = {
7138                         .dev = dev,
7139                 },
7140                 .upper_dev = upper_dev,
7141                 .linking = false,
7142         };
7143
7144         ASSERT_RTNL();
7145
7146         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7147
7148         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7149                                       &changeupper_info.info);
7150
7151         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7152
7153         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7154                                       &changeupper_info.info);
7155 }
7156 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7157
7158 /**
7159  * netdev_bonding_info_change - Dispatch event about slave change
7160  * @dev: device
7161  * @bonding_info: info to dispatch
7162  *
7163  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7164  * The caller must hold the RTNL lock.
7165  */
7166 void netdev_bonding_info_change(struct net_device *dev,
7167                                 struct netdev_bonding_info *bonding_info)
7168 {
7169         struct netdev_notifier_bonding_info info = {
7170                 .info.dev = dev,
7171         };
7172
7173         memcpy(&info.bonding_info, bonding_info,
7174                sizeof(struct netdev_bonding_info));
7175         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7176                                       &info.info);
7177 }
7178 EXPORT_SYMBOL(netdev_bonding_info_change);
7179
7180 static void netdev_adjacent_add_links(struct net_device *dev)
7181 {
7182         struct netdev_adjacent *iter;
7183
7184         struct net *net = dev_net(dev);
7185
7186         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7187                 if (!net_eq(net, dev_net(iter->dev)))
7188                         continue;
7189                 netdev_adjacent_sysfs_add(iter->dev, dev,
7190                                           &iter->dev->adj_list.lower);
7191                 netdev_adjacent_sysfs_add(dev, iter->dev,
7192                                           &dev->adj_list.upper);
7193         }
7194
7195         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7196                 if (!net_eq(net, dev_net(iter->dev)))
7197                         continue;
7198                 netdev_adjacent_sysfs_add(iter->dev, dev,
7199                                           &iter->dev->adj_list.upper);
7200                 netdev_adjacent_sysfs_add(dev, iter->dev,
7201                                           &dev->adj_list.lower);
7202         }
7203 }
7204
7205 static void netdev_adjacent_del_links(struct net_device *dev)
7206 {
7207         struct netdev_adjacent *iter;
7208
7209         struct net *net = dev_net(dev);
7210
7211         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7212                 if (!net_eq(net, dev_net(iter->dev)))
7213                         continue;
7214                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7215                                           &iter->dev->adj_list.lower);
7216                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7217                                           &dev->adj_list.upper);
7218         }
7219
7220         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7221                 if (!net_eq(net, dev_net(iter->dev)))
7222                         continue;
7223                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7224                                           &iter->dev->adj_list.upper);
7225                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7226                                           &dev->adj_list.lower);
7227         }
7228 }
7229
7230 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7231 {
7232         struct netdev_adjacent *iter;
7233
7234         struct net *net = dev_net(dev);
7235
7236         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7237                 if (!net_eq(net, dev_net(iter->dev)))
7238                         continue;
7239                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7240                                           &iter->dev->adj_list.lower);
7241                 netdev_adjacent_sysfs_add(iter->dev, dev,
7242                                           &iter->dev->adj_list.lower);
7243         }
7244
7245         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7246                 if (!net_eq(net, dev_net(iter->dev)))
7247                         continue;
7248                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7249                                           &iter->dev->adj_list.upper);
7250                 netdev_adjacent_sysfs_add(iter->dev, dev,
7251                                           &iter->dev->adj_list.upper);
7252         }
7253 }
7254
7255 void *netdev_lower_dev_get_private(struct net_device *dev,
7256                                    struct net_device *lower_dev)
7257 {
7258         struct netdev_adjacent *lower;
7259
7260         if (!lower_dev)
7261                 return NULL;
7262         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7263         if (!lower)
7264                 return NULL;
7265
7266         return lower->private;
7267 }
7268 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7269
7270
7271 int dev_get_nest_level(struct net_device *dev)
7272 {
7273         struct net_device *lower = NULL;
7274         struct list_head *iter;
7275         int max_nest = -1;
7276         int nest;
7277
7278         ASSERT_RTNL();
7279
7280         netdev_for_each_lower_dev(dev, lower, iter) {
7281                 nest = dev_get_nest_level(lower);
7282                 if (max_nest < nest)
7283                         max_nest = nest;
7284         }
7285
7286         return max_nest + 1;
7287 }
7288 EXPORT_SYMBOL(dev_get_nest_level);
7289
7290 /**
7291  * netdev_lower_change - Dispatch event about lower device state change
7292  * @lower_dev: device
7293  * @lower_state_info: state to dispatch
7294  *
7295  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7296  * The caller must hold the RTNL lock.
7297  */
7298 void netdev_lower_state_changed(struct net_device *lower_dev,
7299                                 void *lower_state_info)
7300 {
7301         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7302                 .info.dev = lower_dev,
7303         };
7304
7305         ASSERT_RTNL();
7306         changelowerstate_info.lower_state_info = lower_state_info;
7307         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7308                                       &changelowerstate_info.info);
7309 }
7310 EXPORT_SYMBOL(netdev_lower_state_changed);
7311
7312 static void dev_change_rx_flags(struct net_device *dev, int flags)
7313 {
7314         const struct net_device_ops *ops = dev->netdev_ops;
7315
7316         if (ops->ndo_change_rx_flags)
7317                 ops->ndo_change_rx_flags(dev, flags);
7318 }
7319
7320 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7321 {
7322         unsigned int old_flags = dev->flags;
7323         kuid_t uid;
7324         kgid_t gid;
7325
7326         ASSERT_RTNL();
7327
7328         dev->flags |= IFF_PROMISC;
7329         dev->promiscuity += inc;
7330         if (dev->promiscuity == 0) {
7331                 /*
7332                  * Avoid overflow.
7333                  * If inc causes overflow, untouch promisc and return error.
7334                  */
7335                 if (inc < 0)
7336                         dev->flags &= ~IFF_PROMISC;
7337                 else {
7338                         dev->promiscuity -= inc;
7339                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7340                                 dev->name);
7341                         return -EOVERFLOW;
7342                 }
7343         }
7344         if (dev->flags != old_flags) {
7345                 pr_info("device %s %s promiscuous mode\n",
7346                         dev->name,
7347                         dev->flags & IFF_PROMISC ? "entered" : "left");
7348                 if (audit_enabled) {
7349                         current_uid_gid(&uid, &gid);
7350                         audit_log(audit_context(), GFP_ATOMIC,
7351                                   AUDIT_ANOM_PROMISCUOUS,
7352                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7353                                   dev->name, (dev->flags & IFF_PROMISC),
7354                                   (old_flags & IFF_PROMISC),
7355                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7356                                   from_kuid(&init_user_ns, uid),
7357                                   from_kgid(&init_user_ns, gid),
7358                                   audit_get_sessionid(current));
7359                 }
7360
7361                 dev_change_rx_flags(dev, IFF_PROMISC);
7362         }
7363         if (notify)
7364                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7365         return 0;
7366 }
7367
7368 /**
7369  *      dev_set_promiscuity     - update promiscuity count on a device
7370  *      @dev: device
7371  *      @inc: modifier
7372  *
7373  *      Add or remove promiscuity from a device. While the count in the device
7374  *      remains above zero the interface remains promiscuous. Once it hits zero
7375  *      the device reverts back to normal filtering operation. A negative inc
7376  *      value is used to drop promiscuity on the device.
7377  *      Return 0 if successful or a negative errno code on error.
7378  */
7379 int dev_set_promiscuity(struct net_device *dev, int inc)
7380 {
7381         unsigned int old_flags = dev->flags;
7382         int err;
7383
7384         err = __dev_set_promiscuity(dev, inc, true);
7385         if (err < 0)
7386                 return err;
7387         if (dev->flags != old_flags)
7388                 dev_set_rx_mode(dev);
7389         return err;
7390 }
7391 EXPORT_SYMBOL(dev_set_promiscuity);
7392
7393 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7394 {
7395         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7396
7397         ASSERT_RTNL();
7398
7399         dev->flags |= IFF_ALLMULTI;
7400         dev->allmulti += inc;
7401         if (dev->allmulti == 0) {
7402                 /*
7403                  * Avoid overflow.
7404                  * If inc causes overflow, untouch allmulti and return error.
7405                  */
7406                 if (inc < 0)
7407                         dev->flags &= ~IFF_ALLMULTI;
7408                 else {
7409                         dev->allmulti -= inc;
7410                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7411                                 dev->name);
7412                         return -EOVERFLOW;
7413                 }
7414         }
7415         if (dev->flags ^ old_flags) {
7416                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7417                 dev_set_rx_mode(dev);
7418                 if (notify)
7419                         __dev_notify_flags(dev, old_flags,
7420                                            dev->gflags ^ old_gflags);
7421         }
7422         return 0;
7423 }
7424
7425 /**
7426  *      dev_set_allmulti        - update allmulti count on a device
7427  *      @dev: device
7428  *      @inc: modifier
7429  *
7430  *      Add or remove reception of all multicast frames to a device. While the
7431  *      count in the device remains above zero the interface remains listening
7432  *      to all interfaces. Once it hits zero the device reverts back to normal
7433  *      filtering operation. A negative @inc value is used to drop the counter
7434  *      when releasing a resource needing all multicasts.
7435  *      Return 0 if successful or a negative errno code on error.
7436  */
7437
7438 int dev_set_allmulti(struct net_device *dev, int inc)
7439 {
7440         return __dev_set_allmulti(dev, inc, true);
7441 }
7442 EXPORT_SYMBOL(dev_set_allmulti);
7443
7444 /*
7445  *      Upload unicast and multicast address lists to device and
7446  *      configure RX filtering. When the device doesn't support unicast
7447  *      filtering it is put in promiscuous mode while unicast addresses
7448  *      are present.
7449  */
7450 void __dev_set_rx_mode(struct net_device *dev)
7451 {
7452         const struct net_device_ops *ops = dev->netdev_ops;
7453
7454         /* dev_open will call this function so the list will stay sane. */
7455         if (!(dev->flags&IFF_UP))
7456                 return;
7457
7458         if (!netif_device_present(dev))
7459                 return;
7460
7461         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7462                 /* Unicast addresses changes may only happen under the rtnl,
7463                  * therefore calling __dev_set_promiscuity here is safe.
7464                  */
7465                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7466                         __dev_set_promiscuity(dev, 1, false);
7467                         dev->uc_promisc = true;
7468                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7469                         __dev_set_promiscuity(dev, -1, false);
7470                         dev->uc_promisc = false;
7471                 }
7472         }
7473
7474         if (ops->ndo_set_rx_mode)
7475                 ops->ndo_set_rx_mode(dev);
7476 }
7477
7478 void dev_set_rx_mode(struct net_device *dev)
7479 {
7480         netif_addr_lock_bh(dev);
7481         __dev_set_rx_mode(dev);
7482         netif_addr_unlock_bh(dev);
7483 }
7484
7485 /**
7486  *      dev_get_flags - get flags reported to userspace
7487  *      @dev: device
7488  *
7489  *      Get the combination of flag bits exported through APIs to userspace.
7490  */
7491 unsigned int dev_get_flags(const struct net_device *dev)
7492 {
7493         unsigned int flags;
7494
7495         flags = (dev->flags & ~(IFF_PROMISC |
7496                                 IFF_ALLMULTI |
7497                                 IFF_RUNNING |
7498                                 IFF_LOWER_UP |
7499                                 IFF_DORMANT)) |
7500                 (dev->gflags & (IFF_PROMISC |
7501                                 IFF_ALLMULTI));
7502
7503         if (netif_running(dev)) {
7504                 if (netif_oper_up(dev))
7505                         flags |= IFF_RUNNING;
7506                 if (netif_carrier_ok(dev))
7507                         flags |= IFF_LOWER_UP;
7508                 if (netif_dormant(dev))
7509                         flags |= IFF_DORMANT;
7510         }
7511
7512         return flags;
7513 }
7514 EXPORT_SYMBOL(dev_get_flags);
7515
7516 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7517                        struct netlink_ext_ack *extack)
7518 {
7519         unsigned int old_flags = dev->flags;
7520         int ret;
7521
7522         ASSERT_RTNL();
7523
7524         /*
7525          *      Set the flags on our device.
7526          */
7527
7528         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7529                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7530                                IFF_AUTOMEDIA)) |
7531                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7532                                     IFF_ALLMULTI));
7533
7534         /*
7535          *      Load in the correct multicast list now the flags have changed.
7536          */
7537
7538         if ((old_flags ^ flags) & IFF_MULTICAST)
7539                 dev_change_rx_flags(dev, IFF_MULTICAST);
7540
7541         dev_set_rx_mode(dev);
7542
7543         /*
7544          *      Have we downed the interface. We handle IFF_UP ourselves
7545          *      according to user attempts to set it, rather than blindly
7546          *      setting it.
7547          */
7548
7549         ret = 0;
7550         if ((old_flags ^ flags) & IFF_UP) {
7551                 if (old_flags & IFF_UP)
7552                         __dev_close(dev);
7553                 else
7554                         ret = __dev_open(dev, extack);
7555         }
7556
7557         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7558                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7559                 unsigned int old_flags = dev->flags;
7560
7561                 dev->gflags ^= IFF_PROMISC;
7562
7563                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7564                         if (dev->flags != old_flags)
7565                                 dev_set_rx_mode(dev);
7566         }
7567
7568         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7569          * is important. Some (broken) drivers set IFF_PROMISC, when
7570          * IFF_ALLMULTI is requested not asking us and not reporting.
7571          */
7572         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7573                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7574
7575                 dev->gflags ^= IFF_ALLMULTI;
7576                 __dev_set_allmulti(dev, inc, false);
7577         }
7578
7579         return ret;
7580 }
7581
7582 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7583                         unsigned int gchanges)
7584 {
7585         unsigned int changes = dev->flags ^ old_flags;
7586
7587         if (gchanges)
7588                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7589
7590         if (changes & IFF_UP) {
7591                 if (dev->flags & IFF_UP)
7592                         call_netdevice_notifiers(NETDEV_UP, dev);
7593                 else
7594                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7595         }
7596
7597         if (dev->flags & IFF_UP &&
7598             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7599                 struct netdev_notifier_change_info change_info = {
7600                         .info = {
7601                                 .dev = dev,
7602                         },
7603                         .flags_changed = changes,
7604                 };
7605
7606                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7607         }
7608 }
7609
7610 /**
7611  *      dev_change_flags - change device settings
7612  *      @dev: device
7613  *      @flags: device state flags
7614  *      @extack: netlink extended ack
7615  *
7616  *      Change settings on device based state flags. The flags are
7617  *      in the userspace exported format.
7618  */
7619 int dev_change_flags(struct net_device *dev, unsigned int flags,
7620                      struct netlink_ext_ack *extack)
7621 {
7622         int ret;
7623         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7624
7625         ret = __dev_change_flags(dev, flags, extack);
7626         if (ret < 0)
7627                 return ret;
7628
7629         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7630         __dev_notify_flags(dev, old_flags, changes);
7631         return ret;
7632 }
7633 EXPORT_SYMBOL(dev_change_flags);
7634
7635 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7636 {
7637         const struct net_device_ops *ops = dev->netdev_ops;
7638
7639         if (ops->ndo_change_mtu)
7640                 return ops->ndo_change_mtu(dev, new_mtu);
7641
7642         dev->mtu = new_mtu;
7643         return 0;
7644 }
7645 EXPORT_SYMBOL(__dev_set_mtu);
7646
7647 /**
7648  *      dev_set_mtu_ext - Change maximum transfer unit
7649  *      @dev: device
7650  *      @new_mtu: new transfer unit
7651  *      @extack: netlink extended ack
7652  *
7653  *      Change the maximum transfer size of the network device.
7654  */
7655 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7656                     struct netlink_ext_ack *extack)
7657 {
7658         int err, orig_mtu;
7659
7660         if (new_mtu == dev->mtu)
7661                 return 0;
7662
7663         /* MTU must be positive, and in range */
7664         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7665                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7666                 return -EINVAL;
7667         }
7668
7669         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7670                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7671                 return -EINVAL;
7672         }
7673
7674         if (!netif_device_present(dev))
7675                 return -ENODEV;
7676
7677         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7678         err = notifier_to_errno(err);
7679         if (err)
7680                 return err;
7681
7682         orig_mtu = dev->mtu;
7683         err = __dev_set_mtu(dev, new_mtu);
7684
7685         if (!err) {
7686                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7687                                                    orig_mtu);
7688                 err = notifier_to_errno(err);
7689                 if (err) {
7690                         /* setting mtu back and notifying everyone again,
7691                          * so that they have a chance to revert changes.
7692                          */
7693                         __dev_set_mtu(dev, orig_mtu);
7694                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7695                                                      new_mtu);
7696                 }
7697         }
7698         return err;
7699 }
7700
7701 int dev_set_mtu(struct net_device *dev, int new_mtu)
7702 {
7703         struct netlink_ext_ack extack;
7704         int err;
7705
7706         memset(&extack, 0, sizeof(extack));
7707         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7708         if (err && extack._msg)
7709                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7710         return err;
7711 }
7712 EXPORT_SYMBOL(dev_set_mtu);
7713
7714 /**
7715  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7716  *      @dev: device
7717  *      @new_len: new tx queue length
7718  */
7719 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7720 {
7721         unsigned int orig_len = dev->tx_queue_len;
7722         int res;
7723
7724         if (new_len != (unsigned int)new_len)
7725                 return -ERANGE;
7726
7727         if (new_len != orig_len) {
7728                 dev->tx_queue_len = new_len;
7729                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7730                 res = notifier_to_errno(res);
7731                 if (res)
7732                         goto err_rollback;
7733                 res = dev_qdisc_change_tx_queue_len(dev);
7734                 if (res)
7735                         goto err_rollback;
7736         }
7737
7738         return 0;
7739
7740 err_rollback:
7741         netdev_err(dev, "refused to change device tx_queue_len\n");
7742         dev->tx_queue_len = orig_len;
7743         return res;
7744 }
7745
7746 /**
7747  *      dev_set_group - Change group this device belongs to
7748  *      @dev: device
7749  *      @new_group: group this device should belong to
7750  */
7751 void dev_set_group(struct net_device *dev, int new_group)
7752 {
7753         dev->group = new_group;
7754 }
7755 EXPORT_SYMBOL(dev_set_group);
7756
7757 /**
7758  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7759  *      @dev: device
7760  *      @addr: new address
7761  *      @extack: netlink extended ack
7762  */
7763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7764                               struct netlink_ext_ack *extack)
7765 {
7766         struct netdev_notifier_pre_changeaddr_info info = {
7767                 .info.dev = dev,
7768                 .info.extack = extack,
7769                 .dev_addr = addr,
7770         };
7771         int rc;
7772
7773         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7774         return notifier_to_errno(rc);
7775 }
7776 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7777
7778 /**
7779  *      dev_set_mac_address - Change Media Access Control Address
7780  *      @dev: device
7781  *      @sa: new address
7782  *      @extack: netlink extended ack
7783  *
7784  *      Change the hardware (MAC) address of the device
7785  */
7786 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7787                         struct netlink_ext_ack *extack)
7788 {
7789         const struct net_device_ops *ops = dev->netdev_ops;
7790         int err;
7791
7792         if (!ops->ndo_set_mac_address)
7793                 return -EOPNOTSUPP;
7794         if (sa->sa_family != dev->type)
7795                 return -EINVAL;
7796         if (!netif_device_present(dev))
7797                 return -ENODEV;
7798         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7799         if (err)
7800                 return err;
7801         err = ops->ndo_set_mac_address(dev, sa);
7802         if (err)
7803                 return err;
7804         dev->addr_assign_type = NET_ADDR_SET;
7805         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7806         add_device_randomness(dev->dev_addr, dev->addr_len);
7807         return 0;
7808 }
7809 EXPORT_SYMBOL(dev_set_mac_address);
7810
7811 /**
7812  *      dev_change_carrier - Change device carrier
7813  *      @dev: device
7814  *      @new_carrier: new value
7815  *
7816  *      Change device carrier
7817  */
7818 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7819 {
7820         const struct net_device_ops *ops = dev->netdev_ops;
7821
7822         if (!ops->ndo_change_carrier)
7823                 return -EOPNOTSUPP;
7824         if (!netif_device_present(dev))
7825                 return -ENODEV;
7826         return ops->ndo_change_carrier(dev, new_carrier);
7827 }
7828 EXPORT_SYMBOL(dev_change_carrier);
7829
7830 /**
7831  *      dev_get_phys_port_id - Get device physical port ID
7832  *      @dev: device
7833  *      @ppid: port ID
7834  *
7835  *      Get device physical port ID
7836  */
7837 int dev_get_phys_port_id(struct net_device *dev,
7838                          struct netdev_phys_item_id *ppid)
7839 {
7840         const struct net_device_ops *ops = dev->netdev_ops;
7841
7842         if (!ops->ndo_get_phys_port_id)
7843                 return -EOPNOTSUPP;
7844         return ops->ndo_get_phys_port_id(dev, ppid);
7845 }
7846 EXPORT_SYMBOL(dev_get_phys_port_id);
7847
7848 /**
7849  *      dev_get_phys_port_name - Get device physical port name
7850  *      @dev: device
7851  *      @name: port name
7852  *      @len: limit of bytes to copy to name
7853  *
7854  *      Get device physical port name
7855  */
7856 int dev_get_phys_port_name(struct net_device *dev,
7857                            char *name, size_t len)
7858 {
7859         const struct net_device_ops *ops = dev->netdev_ops;
7860         int err;
7861
7862         if (ops->ndo_get_phys_port_name) {
7863                 err = ops->ndo_get_phys_port_name(dev, name, len);
7864                 if (err != -EOPNOTSUPP)
7865                         return err;
7866         }
7867         return devlink_compat_phys_port_name_get(dev, name, len);
7868 }
7869 EXPORT_SYMBOL(dev_get_phys_port_name);
7870
7871 /**
7872  *      dev_get_port_parent_id - Get the device's port parent identifier
7873  *      @dev: network device
7874  *      @ppid: pointer to a storage for the port's parent identifier
7875  *      @recurse: allow/disallow recursion to lower devices
7876  *
7877  *      Get the devices's port parent identifier
7878  */
7879 int dev_get_port_parent_id(struct net_device *dev,
7880                            struct netdev_phys_item_id *ppid,
7881                            bool recurse)
7882 {
7883         const struct net_device_ops *ops = dev->netdev_ops;
7884         struct netdev_phys_item_id first = { };
7885         struct net_device *lower_dev;
7886         struct list_head *iter;
7887         int err;
7888
7889         if (ops->ndo_get_port_parent_id) {
7890                 err = ops->ndo_get_port_parent_id(dev, ppid);
7891                 if (err != -EOPNOTSUPP)
7892                         return err;
7893         }
7894
7895         err = devlink_compat_switch_id_get(dev, ppid);
7896         if (!err || err != -EOPNOTSUPP)
7897                 return err;
7898
7899         if (!recurse)
7900                 return -EOPNOTSUPP;
7901
7902         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7903                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7904                 if (err)
7905                         break;
7906                 if (!first.id_len)
7907                         first = *ppid;
7908                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7909                         return -ENODATA;
7910         }
7911
7912         return err;
7913 }
7914 EXPORT_SYMBOL(dev_get_port_parent_id);
7915
7916 /**
7917  *      netdev_port_same_parent_id - Indicate if two network devices have
7918  *      the same port parent identifier
7919  *      @a: first network device
7920  *      @b: second network device
7921  */
7922 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7923 {
7924         struct netdev_phys_item_id a_id = { };
7925         struct netdev_phys_item_id b_id = { };
7926
7927         if (dev_get_port_parent_id(a, &a_id, true) ||
7928             dev_get_port_parent_id(b, &b_id, true))
7929                 return false;
7930
7931         return netdev_phys_item_id_same(&a_id, &b_id);
7932 }
7933 EXPORT_SYMBOL(netdev_port_same_parent_id);
7934
7935 /**
7936  *      dev_change_proto_down - update protocol port state information
7937  *      @dev: device
7938  *      @proto_down: new value
7939  *
7940  *      This info can be used by switch drivers to set the phys state of the
7941  *      port.
7942  */
7943 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7944 {
7945         const struct net_device_ops *ops = dev->netdev_ops;
7946
7947         if (!ops->ndo_change_proto_down)
7948                 return -EOPNOTSUPP;
7949         if (!netif_device_present(dev))
7950                 return -ENODEV;
7951         return ops->ndo_change_proto_down(dev, proto_down);
7952 }
7953 EXPORT_SYMBOL(dev_change_proto_down);
7954
7955 /**
7956  *      dev_change_proto_down_generic - generic implementation for
7957  *      ndo_change_proto_down that sets carrier according to
7958  *      proto_down.
7959  *
7960  *      @dev: device
7961  *      @proto_down: new value
7962  */
7963 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7964 {
7965         if (proto_down)
7966                 netif_carrier_off(dev);
7967         else
7968                 netif_carrier_on(dev);
7969         dev->proto_down = proto_down;
7970         return 0;
7971 }
7972 EXPORT_SYMBOL(dev_change_proto_down_generic);
7973
7974 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7975                     enum bpf_netdev_command cmd)
7976 {
7977         struct netdev_bpf xdp;
7978
7979         if (!bpf_op)
7980                 return 0;
7981
7982         memset(&xdp, 0, sizeof(xdp));
7983         xdp.command = cmd;
7984
7985         /* Query must always succeed. */
7986         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7987
7988         return xdp.prog_id;
7989 }
7990
7991 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7992                            struct netlink_ext_ack *extack, u32 flags,
7993                            struct bpf_prog *prog)
7994 {
7995         struct netdev_bpf xdp;
7996
7997         memset(&xdp, 0, sizeof(xdp));
7998         if (flags & XDP_FLAGS_HW_MODE)
7999                 xdp.command = XDP_SETUP_PROG_HW;
8000         else
8001                 xdp.command = XDP_SETUP_PROG;
8002         xdp.extack = extack;
8003         xdp.flags = flags;
8004         xdp.prog = prog;
8005
8006         return bpf_op(dev, &xdp);
8007 }
8008
8009 static void dev_xdp_uninstall(struct net_device *dev)
8010 {
8011         struct netdev_bpf xdp;
8012         bpf_op_t ndo_bpf;
8013
8014         /* Remove generic XDP */
8015         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8016
8017         /* Remove from the driver */
8018         ndo_bpf = dev->netdev_ops->ndo_bpf;
8019         if (!ndo_bpf)
8020                 return;
8021
8022         memset(&xdp, 0, sizeof(xdp));
8023         xdp.command = XDP_QUERY_PROG;
8024         WARN_ON(ndo_bpf(dev, &xdp));
8025         if (xdp.prog_id)
8026                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8027                                         NULL));
8028
8029         /* Remove HW offload */
8030         memset(&xdp, 0, sizeof(xdp));
8031         xdp.command = XDP_QUERY_PROG_HW;
8032         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8033                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8034                                         NULL));
8035 }
8036
8037 /**
8038  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8039  *      @dev: device
8040  *      @extack: netlink extended ack
8041  *      @fd: new program fd or negative value to clear
8042  *      @flags: xdp-related flags
8043  *
8044  *      Set or clear a bpf program for a device
8045  */
8046 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8047                       int fd, u32 flags)
8048 {
8049         const struct net_device_ops *ops = dev->netdev_ops;
8050         enum bpf_netdev_command query;
8051         struct bpf_prog *prog = NULL;
8052         bpf_op_t bpf_op, bpf_chk;
8053         bool offload;
8054         int err;
8055
8056         ASSERT_RTNL();
8057
8058         offload = flags & XDP_FLAGS_HW_MODE;
8059         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8060
8061         bpf_op = bpf_chk = ops->ndo_bpf;
8062         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8063                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8064                 return -EOPNOTSUPP;
8065         }
8066         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8067                 bpf_op = generic_xdp_install;
8068         if (bpf_op == bpf_chk)
8069                 bpf_chk = generic_xdp_install;
8070
8071         if (fd >= 0) {
8072                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8073                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8074                         return -EEXIST;
8075                 }
8076                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8077                     __dev_xdp_query(dev, bpf_op, query)) {
8078                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8079                         return -EBUSY;
8080                 }
8081
8082                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8083                                              bpf_op == ops->ndo_bpf);
8084                 if (IS_ERR(prog))
8085                         return PTR_ERR(prog);
8086
8087                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8088                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8089                         bpf_prog_put(prog);
8090                         return -EINVAL;
8091                 }
8092         }
8093
8094         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8095         if (err < 0 && prog)
8096                 bpf_prog_put(prog);
8097
8098         return err;
8099 }
8100
8101 /**
8102  *      dev_new_index   -       allocate an ifindex
8103  *      @net: the applicable net namespace
8104  *
8105  *      Returns a suitable unique value for a new device interface
8106  *      number.  The caller must hold the rtnl semaphore or the
8107  *      dev_base_lock to be sure it remains unique.
8108  */
8109 static int dev_new_index(struct net *net)
8110 {
8111         int ifindex = net->ifindex;
8112
8113         for (;;) {
8114                 if (++ifindex <= 0)
8115                         ifindex = 1;
8116                 if (!__dev_get_by_index(net, ifindex))
8117                         return net->ifindex = ifindex;
8118         }
8119 }
8120
8121 /* Delayed registration/unregisteration */
8122 static LIST_HEAD(net_todo_list);
8123 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8124
8125 static void net_set_todo(struct net_device *dev)
8126 {
8127         list_add_tail(&dev->todo_list, &net_todo_list);
8128         dev_net(dev)->dev_unreg_count++;
8129 }
8130
8131 static void rollback_registered_many(struct list_head *head)
8132 {
8133         struct net_device *dev, *tmp;
8134         LIST_HEAD(close_head);
8135
8136         BUG_ON(dev_boot_phase);
8137         ASSERT_RTNL();
8138
8139         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8140                 /* Some devices call without registering
8141                  * for initialization unwind. Remove those
8142                  * devices and proceed with the remaining.
8143                  */
8144                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8145                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8146                                  dev->name, dev);
8147
8148                         WARN_ON(1);
8149                         list_del(&dev->unreg_list);
8150                         continue;
8151                 }
8152                 dev->dismantle = true;
8153                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8154         }
8155
8156         /* If device is running, close it first. */
8157         list_for_each_entry(dev, head, unreg_list)
8158                 list_add_tail(&dev->close_list, &close_head);
8159         dev_close_many(&close_head, true);
8160
8161         list_for_each_entry(dev, head, unreg_list) {
8162                 /* And unlink it from device chain. */
8163                 unlist_netdevice(dev);
8164
8165                 dev->reg_state = NETREG_UNREGISTERING;
8166         }
8167         flush_all_backlogs();
8168
8169         synchronize_net();
8170
8171         list_for_each_entry(dev, head, unreg_list) {
8172                 struct sk_buff *skb = NULL;
8173
8174                 /* Shutdown queueing discipline. */
8175                 dev_shutdown(dev);
8176
8177                 dev_xdp_uninstall(dev);
8178
8179                 /* Notify protocols, that we are about to destroy
8180                  * this device. They should clean all the things.
8181                  */
8182                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8183
8184                 if (!dev->rtnl_link_ops ||
8185                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8186                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8187                                                      GFP_KERNEL, NULL, 0);
8188
8189                 /*
8190                  *      Flush the unicast and multicast chains
8191                  */
8192                 dev_uc_flush(dev);
8193                 dev_mc_flush(dev);
8194
8195                 if (dev->netdev_ops->ndo_uninit)
8196                         dev->netdev_ops->ndo_uninit(dev);
8197
8198                 if (skb)
8199                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8200
8201                 /* Notifier chain MUST detach us all upper devices. */
8202                 WARN_ON(netdev_has_any_upper_dev(dev));
8203                 WARN_ON(netdev_has_any_lower_dev(dev));
8204
8205                 /* Remove entries from kobject tree */
8206                 netdev_unregister_kobject(dev);
8207 #ifdef CONFIG_XPS
8208                 /* Remove XPS queueing entries */
8209                 netif_reset_xps_queues_gt(dev, 0);
8210 #endif
8211         }
8212
8213         synchronize_net();
8214
8215         list_for_each_entry(dev, head, unreg_list)
8216                 dev_put(dev);
8217 }
8218
8219 static void rollback_registered(struct net_device *dev)
8220 {
8221         LIST_HEAD(single);
8222
8223         list_add(&dev->unreg_list, &single);
8224         rollback_registered_many(&single);
8225         list_del(&single);
8226 }
8227
8228 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8229         struct net_device *upper, netdev_features_t features)
8230 {
8231         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8232         netdev_features_t feature;
8233         int feature_bit;
8234
8235         for_each_netdev_feature(upper_disables, feature_bit) {
8236                 feature = __NETIF_F_BIT(feature_bit);
8237                 if (!(upper->wanted_features & feature)
8238                     && (features & feature)) {
8239                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8240                                    &feature, upper->name);
8241                         features &= ~feature;
8242                 }
8243         }
8244
8245         return features;
8246 }
8247
8248 static void netdev_sync_lower_features(struct net_device *upper,
8249         struct net_device *lower, netdev_features_t features)
8250 {
8251         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8252         netdev_features_t feature;
8253         int feature_bit;
8254
8255         for_each_netdev_feature(upper_disables, feature_bit) {
8256                 feature = __NETIF_F_BIT(feature_bit);
8257                 if (!(features & feature) && (lower->features & feature)) {
8258                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8259                                    &feature, lower->name);
8260                         lower->wanted_features &= ~feature;
8261                         netdev_update_features(lower);
8262
8263                         if (unlikely(lower->features & feature))
8264                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8265                                             &feature, lower->name);
8266                 }
8267         }
8268 }
8269
8270 static netdev_features_t netdev_fix_features(struct net_device *dev,
8271         netdev_features_t features)
8272 {
8273         /* Fix illegal checksum combinations */
8274         if ((features & NETIF_F_HW_CSUM) &&
8275             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8276                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8277                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8278         }
8279
8280         /* TSO requires that SG is present as well. */
8281         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8282                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8283                 features &= ~NETIF_F_ALL_TSO;
8284         }
8285
8286         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8287                                         !(features & NETIF_F_IP_CSUM)) {
8288                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8289                 features &= ~NETIF_F_TSO;
8290                 features &= ~NETIF_F_TSO_ECN;
8291         }
8292
8293         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8294                                          !(features & NETIF_F_IPV6_CSUM)) {
8295                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8296                 features &= ~NETIF_F_TSO6;
8297         }
8298
8299         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8300         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8301                 features &= ~NETIF_F_TSO_MANGLEID;
8302
8303         /* TSO ECN requires that TSO is present as well. */
8304         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8305                 features &= ~NETIF_F_TSO_ECN;
8306
8307         /* Software GSO depends on SG. */
8308         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8309                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8310                 features &= ~NETIF_F_GSO;
8311         }
8312
8313         /* GSO partial features require GSO partial be set */
8314         if ((features & dev->gso_partial_features) &&
8315             !(features & NETIF_F_GSO_PARTIAL)) {
8316                 netdev_dbg(dev,
8317                            "Dropping partially supported GSO features since no GSO partial.\n");
8318                 features &= ~dev->gso_partial_features;
8319         }
8320
8321         if (!(features & NETIF_F_RXCSUM)) {
8322                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8323                  * successfully merged by hardware must also have the
8324                  * checksum verified by hardware.  If the user does not
8325                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8326                  */
8327                 if (features & NETIF_F_GRO_HW) {
8328                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8329                         features &= ~NETIF_F_GRO_HW;
8330                 }
8331         }
8332
8333         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8334         if (features & NETIF_F_RXFCS) {
8335                 if (features & NETIF_F_LRO) {
8336                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8337                         features &= ~NETIF_F_LRO;
8338                 }
8339
8340                 if (features & NETIF_F_GRO_HW) {
8341                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8342                         features &= ~NETIF_F_GRO_HW;
8343                 }
8344         }
8345
8346         return features;
8347 }
8348
8349 int __netdev_update_features(struct net_device *dev)
8350 {
8351         struct net_device *upper, *lower;
8352         netdev_features_t features;
8353         struct list_head *iter;
8354         int err = -1;
8355
8356         ASSERT_RTNL();
8357
8358         features = netdev_get_wanted_features(dev);
8359
8360         if (dev->netdev_ops->ndo_fix_features)
8361                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8362
8363         /* driver might be less strict about feature dependencies */
8364         features = netdev_fix_features(dev, features);
8365
8366         /* some features can't be enabled if they're off an an upper device */
8367         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8368                 features = netdev_sync_upper_features(dev, upper, features);
8369
8370         if (dev->features == features)
8371                 goto sync_lower;
8372
8373         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8374                 &dev->features, &features);
8375
8376         if (dev->netdev_ops->ndo_set_features)
8377                 err = dev->netdev_ops->ndo_set_features(dev, features);
8378         else
8379                 err = 0;
8380
8381         if (unlikely(err < 0)) {
8382                 netdev_err(dev,
8383                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8384                         err, &features, &dev->features);
8385                 /* return non-0 since some features might have changed and
8386                  * it's better to fire a spurious notification than miss it
8387                  */
8388                 return -1;
8389         }
8390
8391 sync_lower:
8392         /* some features must be disabled on lower devices when disabled
8393          * on an upper device (think: bonding master or bridge)
8394          */
8395         netdev_for_each_lower_dev(dev, lower, iter)
8396                 netdev_sync_lower_features(dev, lower, features);
8397
8398         if (!err) {
8399                 netdev_features_t diff = features ^ dev->features;
8400
8401                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8402                         /* udp_tunnel_{get,drop}_rx_info both need
8403                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8404                          * device, or they won't do anything.
8405                          * Thus we need to update dev->features
8406                          * *before* calling udp_tunnel_get_rx_info,
8407                          * but *after* calling udp_tunnel_drop_rx_info.
8408                          */
8409                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8410                                 dev->features = features;
8411                                 udp_tunnel_get_rx_info(dev);
8412                         } else {
8413                                 udp_tunnel_drop_rx_info(dev);
8414                         }
8415                 }
8416
8417                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8418                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8419                                 dev->features = features;
8420                                 err |= vlan_get_rx_ctag_filter_info(dev);
8421                         } else {
8422                                 vlan_drop_rx_ctag_filter_info(dev);
8423                         }
8424                 }
8425
8426                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8427                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8428                                 dev->features = features;
8429                                 err |= vlan_get_rx_stag_filter_info(dev);
8430                         } else {
8431                                 vlan_drop_rx_stag_filter_info(dev);
8432                         }
8433                 }
8434
8435                 dev->features = features;
8436         }
8437
8438         return err < 0 ? 0 : 1;
8439 }
8440
8441 /**
8442  *      netdev_update_features - recalculate device features
8443  *      @dev: the device to check
8444  *
8445  *      Recalculate dev->features set and send notifications if it
8446  *      has changed. Should be called after driver or hardware dependent
8447  *      conditions might have changed that influence the features.
8448  */
8449 void netdev_update_features(struct net_device *dev)
8450 {
8451         if (__netdev_update_features(dev))
8452                 netdev_features_change(dev);
8453 }
8454 EXPORT_SYMBOL(netdev_update_features);
8455
8456 /**
8457  *      netdev_change_features - recalculate device features
8458  *      @dev: the device to check
8459  *
8460  *      Recalculate dev->features set and send notifications even
8461  *      if they have not changed. Should be called instead of
8462  *      netdev_update_features() if also dev->vlan_features might
8463  *      have changed to allow the changes to be propagated to stacked
8464  *      VLAN devices.
8465  */
8466 void netdev_change_features(struct net_device *dev)
8467 {
8468         __netdev_update_features(dev);
8469         netdev_features_change(dev);
8470 }
8471 EXPORT_SYMBOL(netdev_change_features);
8472
8473 /**
8474  *      netif_stacked_transfer_operstate -      transfer operstate
8475  *      @rootdev: the root or lower level device to transfer state from
8476  *      @dev: the device to transfer operstate to
8477  *
8478  *      Transfer operational state from root to device. This is normally
8479  *      called when a stacking relationship exists between the root
8480  *      device and the device(a leaf device).
8481  */
8482 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8483                                         struct net_device *dev)
8484 {
8485         if (rootdev->operstate == IF_OPER_DORMANT)
8486                 netif_dormant_on(dev);
8487         else
8488                 netif_dormant_off(dev);
8489
8490         if (netif_carrier_ok(rootdev))
8491                 netif_carrier_on(dev);
8492         else
8493                 netif_carrier_off(dev);
8494 }
8495 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8496
8497 static int netif_alloc_rx_queues(struct net_device *dev)
8498 {
8499         unsigned int i, count = dev->num_rx_queues;
8500         struct netdev_rx_queue *rx;
8501         size_t sz = count * sizeof(*rx);
8502         int err = 0;
8503
8504         BUG_ON(count < 1);
8505
8506         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8507         if (!rx)
8508                 return -ENOMEM;
8509
8510         dev->_rx = rx;
8511
8512         for (i = 0; i < count; i++) {
8513                 rx[i].dev = dev;
8514
8515                 /* XDP RX-queue setup */
8516                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8517                 if (err < 0)
8518                         goto err_rxq_info;
8519         }
8520         return 0;
8521
8522 err_rxq_info:
8523         /* Rollback successful reg's and free other resources */
8524         while (i--)
8525                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8526         kvfree(dev->_rx);
8527         dev->_rx = NULL;
8528         return err;
8529 }
8530
8531 static void netif_free_rx_queues(struct net_device *dev)
8532 {
8533         unsigned int i, count = dev->num_rx_queues;
8534
8535         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8536         if (!dev->_rx)
8537                 return;
8538
8539         for (i = 0; i < count; i++)
8540                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8541
8542         kvfree(dev->_rx);
8543 }
8544
8545 static void netdev_init_one_queue(struct net_device *dev,
8546                                   struct netdev_queue *queue, void *_unused)
8547 {
8548         /* Initialize queue lock */
8549         spin_lock_init(&queue->_xmit_lock);
8550         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8551         queue->xmit_lock_owner = -1;
8552         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8553         queue->dev = dev;
8554 #ifdef CONFIG_BQL
8555         dql_init(&queue->dql, HZ);
8556 #endif
8557 }
8558
8559 static void netif_free_tx_queues(struct net_device *dev)
8560 {
8561         kvfree(dev->_tx);
8562 }
8563
8564 static int netif_alloc_netdev_queues(struct net_device *dev)
8565 {
8566         unsigned int count = dev->num_tx_queues;
8567         struct netdev_queue *tx;
8568         size_t sz = count * sizeof(*tx);
8569
8570         if (count < 1 || count > 0xffff)
8571                 return -EINVAL;
8572
8573         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8574         if (!tx)
8575                 return -ENOMEM;
8576
8577         dev->_tx = tx;
8578
8579         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8580         spin_lock_init(&dev->tx_global_lock);
8581
8582         return 0;
8583 }
8584
8585 void netif_tx_stop_all_queues(struct net_device *dev)
8586 {
8587         unsigned int i;
8588
8589         for (i = 0; i < dev->num_tx_queues; i++) {
8590                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8591
8592                 netif_tx_stop_queue(txq);
8593         }
8594 }
8595 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8596
8597 /**
8598  *      register_netdevice      - register a network device
8599  *      @dev: device to register
8600  *
8601  *      Take a completed network device structure and add it to the kernel
8602  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8603  *      chain. 0 is returned on success. A negative errno code is returned
8604  *      on a failure to set up the device, or if the name is a duplicate.
8605  *
8606  *      Callers must hold the rtnl semaphore. You may want
8607  *      register_netdev() instead of this.
8608  *
8609  *      BUGS:
8610  *      The locking appears insufficient to guarantee two parallel registers
8611  *      will not get the same name.
8612  */
8613
8614 int register_netdevice(struct net_device *dev)
8615 {
8616         int ret;
8617         struct net *net = dev_net(dev);
8618
8619         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8620                      NETDEV_FEATURE_COUNT);
8621         BUG_ON(dev_boot_phase);
8622         ASSERT_RTNL();
8623
8624         might_sleep();
8625
8626         /* When net_device's are persistent, this will be fatal. */
8627         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8628         BUG_ON(!net);
8629
8630         spin_lock_init(&dev->addr_list_lock);
8631         netdev_set_addr_lockdep_class(dev);
8632
8633         ret = dev_get_valid_name(net, dev, dev->name);
8634         if (ret < 0)
8635                 goto out;
8636
8637         /* Init, if this function is available */
8638         if (dev->netdev_ops->ndo_init) {
8639                 ret = dev->netdev_ops->ndo_init(dev);
8640                 if (ret) {
8641                         if (ret > 0)
8642                                 ret = -EIO;
8643                         goto out;
8644                 }
8645         }
8646
8647         if (((dev->hw_features | dev->features) &
8648              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8649             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8650              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8651                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8652                 ret = -EINVAL;
8653                 goto err_uninit;
8654         }
8655
8656         ret = -EBUSY;
8657         if (!dev->ifindex)
8658                 dev->ifindex = dev_new_index(net);
8659         else if (__dev_get_by_index(net, dev->ifindex))
8660                 goto err_uninit;
8661
8662         /* Transfer changeable features to wanted_features and enable
8663          * software offloads (GSO and GRO).
8664          */
8665         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8666         dev->features |= NETIF_F_SOFT_FEATURES;
8667
8668         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8669                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8670                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8671         }
8672
8673         dev->wanted_features = dev->features & dev->hw_features;
8674
8675         if (!(dev->flags & IFF_LOOPBACK))
8676                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8677
8678         /* If IPv4 TCP segmentation offload is supported we should also
8679          * allow the device to enable segmenting the frame with the option
8680          * of ignoring a static IP ID value.  This doesn't enable the
8681          * feature itself but allows the user to enable it later.
8682          */
8683         if (dev->hw_features & NETIF_F_TSO)
8684                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8685         if (dev->vlan_features & NETIF_F_TSO)
8686                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8687         if (dev->mpls_features & NETIF_F_TSO)
8688                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8689         if (dev->hw_enc_features & NETIF_F_TSO)
8690                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8691
8692         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8693          */
8694         dev->vlan_features |= NETIF_F_HIGHDMA;
8695
8696         /* Make NETIF_F_SG inheritable to tunnel devices.
8697          */
8698         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8699
8700         /* Make NETIF_F_SG inheritable to MPLS.
8701          */
8702         dev->mpls_features |= NETIF_F_SG;
8703
8704         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8705         ret = notifier_to_errno(ret);
8706         if (ret)
8707                 goto err_uninit;
8708
8709         ret = netdev_register_kobject(dev);
8710         if (ret)
8711                 goto err_uninit;
8712         dev->reg_state = NETREG_REGISTERED;
8713
8714         __netdev_update_features(dev);
8715
8716         /*
8717          *      Default initial state at registry is that the
8718          *      device is present.
8719          */
8720
8721         set_bit(__LINK_STATE_PRESENT, &dev->state);
8722
8723         linkwatch_init_dev(dev);
8724
8725         dev_init_scheduler(dev);
8726         dev_hold(dev);
8727         list_netdevice(dev);
8728         add_device_randomness(dev->dev_addr, dev->addr_len);
8729
8730         /* If the device has permanent device address, driver should
8731          * set dev_addr and also addr_assign_type should be set to
8732          * NET_ADDR_PERM (default value).
8733          */
8734         if (dev->addr_assign_type == NET_ADDR_PERM)
8735                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8736
8737         /* Notify protocols, that a new device appeared. */
8738         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8739         ret = notifier_to_errno(ret);
8740         if (ret) {
8741                 rollback_registered(dev);
8742                 dev->reg_state = NETREG_UNREGISTERED;
8743         }
8744         /*
8745          *      Prevent userspace races by waiting until the network
8746          *      device is fully setup before sending notifications.
8747          */
8748         if (!dev->rtnl_link_ops ||
8749             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8750                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8751
8752 out:
8753         return ret;
8754
8755 err_uninit:
8756         if (dev->netdev_ops->ndo_uninit)
8757                 dev->netdev_ops->ndo_uninit(dev);
8758         if (dev->priv_destructor)
8759                 dev->priv_destructor(dev);
8760         goto out;
8761 }
8762 EXPORT_SYMBOL(register_netdevice);
8763
8764 /**
8765  *      init_dummy_netdev       - init a dummy network device for NAPI
8766  *      @dev: device to init
8767  *
8768  *      This takes a network device structure and initialize the minimum
8769  *      amount of fields so it can be used to schedule NAPI polls without
8770  *      registering a full blown interface. This is to be used by drivers
8771  *      that need to tie several hardware interfaces to a single NAPI
8772  *      poll scheduler due to HW limitations.
8773  */
8774 int init_dummy_netdev(struct net_device *dev)
8775 {
8776         /* Clear everything. Note we don't initialize spinlocks
8777          * are they aren't supposed to be taken by any of the
8778          * NAPI code and this dummy netdev is supposed to be
8779          * only ever used for NAPI polls
8780          */
8781         memset(dev, 0, sizeof(struct net_device));
8782
8783         /* make sure we BUG if trying to hit standard
8784          * register/unregister code path
8785          */
8786         dev->reg_state = NETREG_DUMMY;
8787
8788         /* NAPI wants this */
8789         INIT_LIST_HEAD(&dev->napi_list);
8790
8791         /* a dummy interface is started by default */
8792         set_bit(__LINK_STATE_PRESENT, &dev->state);
8793         set_bit(__LINK_STATE_START, &dev->state);
8794
8795         /* napi_busy_loop stats accounting wants this */
8796         dev_net_set(dev, &init_net);
8797
8798         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8799          * because users of this 'device' dont need to change
8800          * its refcount.
8801          */
8802
8803         return 0;
8804 }
8805 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8806
8807
8808 /**
8809  *      register_netdev - register a network device
8810  *      @dev: device to register
8811  *
8812  *      Take a completed network device structure and add it to the kernel
8813  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8814  *      chain. 0 is returned on success. A negative errno code is returned
8815  *      on a failure to set up the device, or if the name is a duplicate.
8816  *
8817  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8818  *      and expands the device name if you passed a format string to
8819  *      alloc_netdev.
8820  */
8821 int register_netdev(struct net_device *dev)
8822 {
8823         int err;
8824
8825         if (rtnl_lock_killable())
8826                 return -EINTR;
8827         err = register_netdevice(dev);
8828         rtnl_unlock();
8829         return err;
8830 }
8831 EXPORT_SYMBOL(register_netdev);
8832
8833 int netdev_refcnt_read(const struct net_device *dev)
8834 {
8835         int i, refcnt = 0;
8836
8837         for_each_possible_cpu(i)
8838                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8839         return refcnt;
8840 }
8841 EXPORT_SYMBOL(netdev_refcnt_read);
8842
8843 /**
8844  * netdev_wait_allrefs - wait until all references are gone.
8845  * @dev: target net_device
8846  *
8847  * This is called when unregistering network devices.
8848  *
8849  * Any protocol or device that holds a reference should register
8850  * for netdevice notification, and cleanup and put back the
8851  * reference if they receive an UNREGISTER event.
8852  * We can get stuck here if buggy protocols don't correctly
8853  * call dev_put.
8854  */
8855 static void netdev_wait_allrefs(struct net_device *dev)
8856 {
8857         unsigned long rebroadcast_time, warning_time;
8858         int refcnt;
8859
8860         linkwatch_forget_dev(dev);
8861
8862         rebroadcast_time = warning_time = jiffies;
8863         refcnt = netdev_refcnt_read(dev);
8864
8865         while (refcnt != 0) {
8866                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8867                         rtnl_lock();
8868
8869                         /* Rebroadcast unregister notification */
8870                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8871
8872                         __rtnl_unlock();
8873                         rcu_barrier();
8874                         rtnl_lock();
8875
8876                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8877                                      &dev->state)) {
8878                                 /* We must not have linkwatch events
8879                                  * pending on unregister. If this
8880                                  * happens, we simply run the queue
8881                                  * unscheduled, resulting in a noop
8882                                  * for this device.
8883                                  */
8884                                 linkwatch_run_queue();
8885                         }
8886
8887                         __rtnl_unlock();
8888
8889                         rebroadcast_time = jiffies;
8890                 }
8891
8892                 msleep(250);
8893
8894                 refcnt = netdev_refcnt_read(dev);
8895
8896                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8897                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8898                                  dev->name, refcnt);
8899                         warning_time = jiffies;
8900                 }
8901         }
8902 }
8903
8904 /* The sequence is:
8905  *
8906  *      rtnl_lock();
8907  *      ...
8908  *      register_netdevice(x1);
8909  *      register_netdevice(x2);
8910  *      ...
8911  *      unregister_netdevice(y1);
8912  *      unregister_netdevice(y2);
8913  *      ...
8914  *      rtnl_unlock();
8915  *      free_netdev(y1);
8916  *      free_netdev(y2);
8917  *
8918  * We are invoked by rtnl_unlock().
8919  * This allows us to deal with problems:
8920  * 1) We can delete sysfs objects which invoke hotplug
8921  *    without deadlocking with linkwatch via keventd.
8922  * 2) Since we run with the RTNL semaphore not held, we can sleep
8923  *    safely in order to wait for the netdev refcnt to drop to zero.
8924  *
8925  * We must not return until all unregister events added during
8926  * the interval the lock was held have been completed.
8927  */
8928 void netdev_run_todo(void)
8929 {
8930         struct list_head list;
8931
8932         /* Snapshot list, allow later requests */
8933         list_replace_init(&net_todo_list, &list);
8934
8935         __rtnl_unlock();
8936
8937
8938         /* Wait for rcu callbacks to finish before next phase */
8939         if (!list_empty(&list))
8940                 rcu_barrier();
8941
8942         while (!list_empty(&list)) {
8943                 struct net_device *dev
8944                         = list_first_entry(&list, struct net_device, todo_list);
8945                 list_del(&dev->todo_list);
8946
8947                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8948                         pr_err("network todo '%s' but state %d\n",
8949                                dev->name, dev->reg_state);
8950                         dump_stack();
8951                         continue;
8952                 }
8953
8954                 dev->reg_state = NETREG_UNREGISTERED;
8955
8956                 netdev_wait_allrefs(dev);
8957
8958                 /* paranoia */
8959                 BUG_ON(netdev_refcnt_read(dev));
8960                 BUG_ON(!list_empty(&dev->ptype_all));
8961                 BUG_ON(!list_empty(&dev->ptype_specific));
8962                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8963                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8964 #if IS_ENABLED(CONFIG_DECNET)
8965                 WARN_ON(dev->dn_ptr);
8966 #endif
8967                 if (dev->priv_destructor)
8968                         dev->priv_destructor(dev);
8969                 if (dev->needs_free_netdev)
8970                         free_netdev(dev);
8971
8972                 /* Report a network device has been unregistered */
8973                 rtnl_lock();
8974                 dev_net(dev)->dev_unreg_count--;
8975                 __rtnl_unlock();
8976                 wake_up(&netdev_unregistering_wq);
8977
8978                 /* Free network device */
8979                 kobject_put(&dev->dev.kobj);
8980         }
8981 }
8982
8983 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8984  * all the same fields in the same order as net_device_stats, with only
8985  * the type differing, but rtnl_link_stats64 may have additional fields
8986  * at the end for newer counters.
8987  */
8988 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8989                              const struct net_device_stats *netdev_stats)
8990 {
8991 #if BITS_PER_LONG == 64
8992         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8993         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8994         /* zero out counters that only exist in rtnl_link_stats64 */
8995         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8996                sizeof(*stats64) - sizeof(*netdev_stats));
8997 #else
8998         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8999         const unsigned long *src = (const unsigned long *)netdev_stats;
9000         u64 *dst = (u64 *)stats64;
9001
9002         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9003         for (i = 0; i < n; i++)
9004                 dst[i] = src[i];
9005         /* zero out counters that only exist in rtnl_link_stats64 */
9006         memset((char *)stats64 + n * sizeof(u64), 0,
9007                sizeof(*stats64) - n * sizeof(u64));
9008 #endif
9009 }
9010 EXPORT_SYMBOL(netdev_stats_to_stats64);
9011
9012 /**
9013  *      dev_get_stats   - get network device statistics
9014  *      @dev: device to get statistics from
9015  *      @storage: place to store stats
9016  *
9017  *      Get network statistics from device. Return @storage.
9018  *      The device driver may provide its own method by setting
9019  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9020  *      otherwise the internal statistics structure is used.
9021  */
9022 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9023                                         struct rtnl_link_stats64 *storage)
9024 {
9025         const struct net_device_ops *ops = dev->netdev_ops;
9026
9027         if (ops->ndo_get_stats64) {
9028                 memset(storage, 0, sizeof(*storage));
9029                 ops->ndo_get_stats64(dev, storage);
9030         } else if (ops->ndo_get_stats) {
9031                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9032         } else {
9033                 netdev_stats_to_stats64(storage, &dev->stats);
9034         }
9035         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9036         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9037         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9038         return storage;
9039 }
9040 EXPORT_SYMBOL(dev_get_stats);
9041
9042 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9043 {
9044         struct netdev_queue *queue = dev_ingress_queue(dev);
9045
9046 #ifdef CONFIG_NET_CLS_ACT
9047         if (queue)
9048                 return queue;
9049         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9050         if (!queue)
9051                 return NULL;
9052         netdev_init_one_queue(dev, queue, NULL);
9053         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9054         queue->qdisc_sleeping = &noop_qdisc;
9055         rcu_assign_pointer(dev->ingress_queue, queue);
9056 #endif
9057         return queue;
9058 }
9059
9060 static const struct ethtool_ops default_ethtool_ops;
9061
9062 void netdev_set_default_ethtool_ops(struct net_device *dev,
9063                                     const struct ethtool_ops *ops)
9064 {
9065         if (dev->ethtool_ops == &default_ethtool_ops)
9066                 dev->ethtool_ops = ops;
9067 }
9068 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9069
9070 void netdev_freemem(struct net_device *dev)
9071 {
9072         char *addr = (char *)dev - dev->padded;
9073
9074         kvfree(addr);
9075 }
9076
9077 /**
9078  * alloc_netdev_mqs - allocate network device
9079  * @sizeof_priv: size of private data to allocate space for
9080  * @name: device name format string
9081  * @name_assign_type: origin of device name
9082  * @setup: callback to initialize device
9083  * @txqs: the number of TX subqueues to allocate
9084  * @rxqs: the number of RX subqueues to allocate
9085  *
9086  * Allocates a struct net_device with private data area for driver use
9087  * and performs basic initialization.  Also allocates subqueue structs
9088  * for each queue on the device.
9089  */
9090 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9091                 unsigned char name_assign_type,
9092                 void (*setup)(struct net_device *),
9093                 unsigned int txqs, unsigned int rxqs)
9094 {
9095         struct net_device *dev;
9096         unsigned int alloc_size;
9097         struct net_device *p;
9098
9099         BUG_ON(strlen(name) >= sizeof(dev->name));
9100
9101         if (txqs < 1) {
9102                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9103                 return NULL;
9104         }
9105
9106         if (rxqs < 1) {
9107                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9108                 return NULL;
9109         }
9110
9111         alloc_size = sizeof(struct net_device);
9112         if (sizeof_priv) {
9113                 /* ensure 32-byte alignment of private area */
9114                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9115                 alloc_size += sizeof_priv;
9116         }
9117         /* ensure 32-byte alignment of whole construct */
9118         alloc_size += NETDEV_ALIGN - 1;
9119
9120         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9121         if (!p)
9122                 return NULL;
9123
9124         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9125         dev->padded = (char *)dev - (char *)p;
9126
9127         dev->pcpu_refcnt = alloc_percpu(int);
9128         if (!dev->pcpu_refcnt)
9129                 goto free_dev;
9130
9131         if (dev_addr_init(dev))
9132                 goto free_pcpu;
9133
9134         dev_mc_init(dev);
9135         dev_uc_init(dev);
9136
9137         dev_net_set(dev, &init_net);
9138
9139         dev->gso_max_size = GSO_MAX_SIZE;
9140         dev->gso_max_segs = GSO_MAX_SEGS;
9141
9142         INIT_LIST_HEAD(&dev->napi_list);
9143         INIT_LIST_HEAD(&dev->unreg_list);
9144         INIT_LIST_HEAD(&dev->close_list);
9145         INIT_LIST_HEAD(&dev->link_watch_list);
9146         INIT_LIST_HEAD(&dev->adj_list.upper);
9147         INIT_LIST_HEAD(&dev->adj_list.lower);
9148         INIT_LIST_HEAD(&dev->ptype_all);
9149         INIT_LIST_HEAD(&dev->ptype_specific);
9150 #ifdef CONFIG_NET_SCHED
9151         hash_init(dev->qdisc_hash);
9152 #endif
9153         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9154         setup(dev);
9155
9156         if (!dev->tx_queue_len) {
9157                 dev->priv_flags |= IFF_NO_QUEUE;
9158                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9159         }
9160
9161         dev->num_tx_queues = txqs;
9162         dev->real_num_tx_queues = txqs;
9163         if (netif_alloc_netdev_queues(dev))
9164                 goto free_all;
9165
9166         dev->num_rx_queues = rxqs;
9167         dev->real_num_rx_queues = rxqs;
9168         if (netif_alloc_rx_queues(dev))
9169                 goto free_all;
9170
9171         strcpy(dev->name, name);
9172         dev->name_assign_type = name_assign_type;
9173         dev->group = INIT_NETDEV_GROUP;
9174         if (!dev->ethtool_ops)
9175                 dev->ethtool_ops = &default_ethtool_ops;
9176
9177         nf_hook_ingress_init(dev);
9178
9179         return dev;
9180
9181 free_all:
9182         free_netdev(dev);
9183         return NULL;
9184
9185 free_pcpu:
9186         free_percpu(dev->pcpu_refcnt);
9187 free_dev:
9188         netdev_freemem(dev);
9189         return NULL;
9190 }
9191 EXPORT_SYMBOL(alloc_netdev_mqs);
9192
9193 /**
9194  * free_netdev - free network device
9195  * @dev: device
9196  *
9197  * This function does the last stage of destroying an allocated device
9198  * interface. The reference to the device object is released. If this
9199  * is the last reference then it will be freed.Must be called in process
9200  * context.
9201  */
9202 void free_netdev(struct net_device *dev)
9203 {
9204         struct napi_struct *p, *n;
9205
9206         might_sleep();
9207         netif_free_tx_queues(dev);
9208         netif_free_rx_queues(dev);
9209
9210         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9211
9212         /* Flush device addresses */
9213         dev_addr_flush(dev);
9214
9215         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9216                 netif_napi_del(p);
9217
9218         free_percpu(dev->pcpu_refcnt);
9219         dev->pcpu_refcnt = NULL;
9220
9221         /*  Compatibility with error handling in drivers */
9222         if (dev->reg_state == NETREG_UNINITIALIZED) {
9223                 netdev_freemem(dev);
9224                 return;
9225         }
9226
9227         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9228         dev->reg_state = NETREG_RELEASED;
9229
9230         /* will free via device release */
9231         put_device(&dev->dev);
9232 }
9233 EXPORT_SYMBOL(free_netdev);
9234
9235 /**
9236  *      synchronize_net -  Synchronize with packet receive processing
9237  *
9238  *      Wait for packets currently being received to be done.
9239  *      Does not block later packets from starting.
9240  */
9241 void synchronize_net(void)
9242 {
9243         might_sleep();
9244         if (rtnl_is_locked())
9245                 synchronize_rcu_expedited();
9246         else
9247                 synchronize_rcu();
9248 }
9249 EXPORT_SYMBOL(synchronize_net);
9250
9251 /**
9252  *      unregister_netdevice_queue - remove device from the kernel
9253  *      @dev: device
9254  *      @head: list
9255  *
9256  *      This function shuts down a device interface and removes it
9257  *      from the kernel tables.
9258  *      If head not NULL, device is queued to be unregistered later.
9259  *
9260  *      Callers must hold the rtnl semaphore.  You may want
9261  *      unregister_netdev() instead of this.
9262  */
9263
9264 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9265 {
9266         ASSERT_RTNL();
9267
9268         if (head) {
9269                 list_move_tail(&dev->unreg_list, head);
9270         } else {
9271                 rollback_registered(dev);
9272                 /* Finish processing unregister after unlock */
9273                 net_set_todo(dev);
9274         }
9275 }
9276 EXPORT_SYMBOL(unregister_netdevice_queue);
9277
9278 /**
9279  *      unregister_netdevice_many - unregister many devices
9280  *      @head: list of devices
9281  *
9282  *  Note: As most callers use a stack allocated list_head,
9283  *  we force a list_del() to make sure stack wont be corrupted later.
9284  */
9285 void unregister_netdevice_many(struct list_head *head)
9286 {
9287         struct net_device *dev;
9288
9289         if (!list_empty(head)) {
9290                 rollback_registered_many(head);
9291                 list_for_each_entry(dev, head, unreg_list)
9292                         net_set_todo(dev);
9293                 list_del(head);
9294         }
9295 }
9296 EXPORT_SYMBOL(unregister_netdevice_many);
9297
9298 /**
9299  *      unregister_netdev - remove device from the kernel
9300  *      @dev: device
9301  *
9302  *      This function shuts down a device interface and removes it
9303  *      from the kernel tables.
9304  *
9305  *      This is just a wrapper for unregister_netdevice that takes
9306  *      the rtnl semaphore.  In general you want to use this and not
9307  *      unregister_netdevice.
9308  */
9309 void unregister_netdev(struct net_device *dev)
9310 {
9311         rtnl_lock();
9312         unregister_netdevice(dev);
9313         rtnl_unlock();
9314 }
9315 EXPORT_SYMBOL(unregister_netdev);
9316
9317 /**
9318  *      dev_change_net_namespace - move device to different nethost namespace
9319  *      @dev: device
9320  *      @net: network namespace
9321  *      @pat: If not NULL name pattern to try if the current device name
9322  *            is already taken in the destination network namespace.
9323  *
9324  *      This function shuts down a device interface and moves it
9325  *      to a new network namespace. On success 0 is returned, on
9326  *      a failure a netagive errno code is returned.
9327  *
9328  *      Callers must hold the rtnl semaphore.
9329  */
9330
9331 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9332 {
9333         int err, new_nsid, new_ifindex;
9334
9335         ASSERT_RTNL();
9336
9337         /* Don't allow namespace local devices to be moved. */
9338         err = -EINVAL;
9339         if (dev->features & NETIF_F_NETNS_LOCAL)
9340                 goto out;
9341
9342         /* Ensure the device has been registrered */
9343         if (dev->reg_state != NETREG_REGISTERED)
9344                 goto out;
9345
9346         /* Get out if there is nothing todo */
9347         err = 0;
9348         if (net_eq(dev_net(dev), net))
9349                 goto out;
9350
9351         /* Pick the destination device name, and ensure
9352          * we can use it in the destination network namespace.
9353          */
9354         err = -EEXIST;
9355         if (__dev_get_by_name(net, dev->name)) {
9356                 /* We get here if we can't use the current device name */
9357                 if (!pat)
9358                         goto out;
9359                 err = dev_get_valid_name(net, dev, pat);
9360                 if (err < 0)
9361                         goto out;
9362         }
9363
9364         /*
9365          * And now a mini version of register_netdevice unregister_netdevice.
9366          */
9367
9368         /* If device is running close it first. */
9369         dev_close(dev);
9370
9371         /* And unlink it from device chain */
9372         unlist_netdevice(dev);
9373
9374         synchronize_net();
9375
9376         /* Shutdown queueing discipline. */
9377         dev_shutdown(dev);
9378
9379         /* Notify protocols, that we are about to destroy
9380          * this device. They should clean all the things.
9381          *
9382          * Note that dev->reg_state stays at NETREG_REGISTERED.
9383          * This is wanted because this way 8021q and macvlan know
9384          * the device is just moving and can keep their slaves up.
9385          */
9386         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9387         rcu_barrier();
9388
9389         new_nsid = peernet2id_alloc(dev_net(dev), net);
9390         /* If there is an ifindex conflict assign a new one */
9391         if (__dev_get_by_index(net, dev->ifindex))
9392                 new_ifindex = dev_new_index(net);
9393         else
9394                 new_ifindex = dev->ifindex;
9395
9396         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9397                             new_ifindex);
9398
9399         /*
9400          *      Flush the unicast and multicast chains
9401          */
9402         dev_uc_flush(dev);
9403         dev_mc_flush(dev);
9404
9405         /* Send a netdev-removed uevent to the old namespace */
9406         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9407         netdev_adjacent_del_links(dev);
9408
9409         /* Actually switch the network namespace */
9410         dev_net_set(dev, net);
9411         dev->ifindex = new_ifindex;
9412
9413         /* Send a netdev-add uevent to the new namespace */
9414         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9415         netdev_adjacent_add_links(dev);
9416
9417         /* Fixup kobjects */
9418         err = device_rename(&dev->dev, dev->name);
9419         WARN_ON(err);
9420
9421         /* Add the device back in the hashes */
9422         list_netdevice(dev);
9423
9424         /* Notify protocols, that a new device appeared. */
9425         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9426
9427         /*
9428          *      Prevent userspace races by waiting until the network
9429          *      device is fully setup before sending notifications.
9430          */
9431         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9432
9433         synchronize_net();
9434         err = 0;
9435 out:
9436         return err;
9437 }
9438 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9439
9440 static int dev_cpu_dead(unsigned int oldcpu)
9441 {
9442         struct sk_buff **list_skb;
9443         struct sk_buff *skb;
9444         unsigned int cpu;
9445         struct softnet_data *sd, *oldsd, *remsd = NULL;
9446
9447         local_irq_disable();
9448         cpu = smp_processor_id();
9449         sd = &per_cpu(softnet_data, cpu);
9450         oldsd = &per_cpu(softnet_data, oldcpu);
9451
9452         /* Find end of our completion_queue. */
9453         list_skb = &sd->completion_queue;
9454         while (*list_skb)
9455                 list_skb = &(*list_skb)->next;
9456         /* Append completion queue from offline CPU. */
9457         *list_skb = oldsd->completion_queue;
9458         oldsd->completion_queue = NULL;
9459
9460         /* Append output queue from offline CPU. */
9461         if (oldsd->output_queue) {
9462                 *sd->output_queue_tailp = oldsd->output_queue;
9463                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9464                 oldsd->output_queue = NULL;
9465                 oldsd->output_queue_tailp = &oldsd->output_queue;
9466         }
9467         /* Append NAPI poll list from offline CPU, with one exception :
9468          * process_backlog() must be called by cpu owning percpu backlog.
9469          * We properly handle process_queue & input_pkt_queue later.
9470          */
9471         while (!list_empty(&oldsd->poll_list)) {
9472                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9473                                                             struct napi_struct,
9474                                                             poll_list);
9475
9476                 list_del_init(&napi->poll_list);
9477                 if (napi->poll == process_backlog)
9478                         napi->state = 0;
9479                 else
9480                         ____napi_schedule(sd, napi);
9481         }
9482
9483         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9484         local_irq_enable();
9485
9486 #ifdef CONFIG_RPS
9487         remsd = oldsd->rps_ipi_list;
9488         oldsd->rps_ipi_list = NULL;
9489 #endif
9490         /* send out pending IPI's on offline CPU */
9491         net_rps_send_ipi(remsd);
9492
9493         /* Process offline CPU's input_pkt_queue */
9494         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9495                 netif_rx_ni(skb);
9496                 input_queue_head_incr(oldsd);
9497         }
9498         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9499                 netif_rx_ni(skb);
9500                 input_queue_head_incr(oldsd);
9501         }
9502
9503         return 0;
9504 }
9505
9506 /**
9507  *      netdev_increment_features - increment feature set by one
9508  *      @all: current feature set
9509  *      @one: new feature set
9510  *      @mask: mask feature set
9511  *
9512  *      Computes a new feature set after adding a device with feature set
9513  *      @one to the master device with current feature set @all.  Will not
9514  *      enable anything that is off in @mask. Returns the new feature set.
9515  */
9516 netdev_features_t netdev_increment_features(netdev_features_t all,
9517         netdev_features_t one, netdev_features_t mask)
9518 {
9519         if (mask & NETIF_F_HW_CSUM)
9520                 mask |= NETIF_F_CSUM_MASK;
9521         mask |= NETIF_F_VLAN_CHALLENGED;
9522
9523         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9524         all &= one | ~NETIF_F_ALL_FOR_ALL;
9525
9526         /* If one device supports hw checksumming, set for all. */
9527         if (all & NETIF_F_HW_CSUM)
9528                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9529
9530         return all;
9531 }
9532 EXPORT_SYMBOL(netdev_increment_features);
9533
9534 static struct hlist_head * __net_init netdev_create_hash(void)
9535 {
9536         int i;
9537         struct hlist_head *hash;
9538
9539         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9540         if (hash != NULL)
9541                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9542                         INIT_HLIST_HEAD(&hash[i]);
9543
9544         return hash;
9545 }
9546
9547 /* Initialize per network namespace state */
9548 static int __net_init netdev_init(struct net *net)
9549 {
9550         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9551                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9552
9553         if (net != &init_net)
9554                 INIT_LIST_HEAD(&net->dev_base_head);
9555
9556         net->dev_name_head = netdev_create_hash();
9557         if (net->dev_name_head == NULL)
9558                 goto err_name;
9559
9560         net->dev_index_head = netdev_create_hash();
9561         if (net->dev_index_head == NULL)
9562                 goto err_idx;
9563
9564         return 0;
9565
9566 err_idx:
9567         kfree(net->dev_name_head);
9568 err_name:
9569         return -ENOMEM;
9570 }
9571
9572 /**
9573  *      netdev_drivername - network driver for the device
9574  *      @dev: network device
9575  *
9576  *      Determine network driver for device.
9577  */
9578 const char *netdev_drivername(const struct net_device *dev)
9579 {
9580         const struct device_driver *driver;
9581         const struct device *parent;
9582         const char *empty = "";
9583
9584         parent = dev->dev.parent;
9585         if (!parent)
9586                 return empty;
9587
9588         driver = parent->driver;
9589         if (driver && driver->name)
9590                 return driver->name;
9591         return empty;
9592 }
9593
9594 static void __netdev_printk(const char *level, const struct net_device *dev,
9595                             struct va_format *vaf)
9596 {
9597         if (dev && dev->dev.parent) {
9598                 dev_printk_emit(level[1] - '0',
9599                                 dev->dev.parent,
9600                                 "%s %s %s%s: %pV",
9601                                 dev_driver_string(dev->dev.parent),
9602                                 dev_name(dev->dev.parent),
9603                                 netdev_name(dev), netdev_reg_state(dev),
9604                                 vaf);
9605         } else if (dev) {
9606                 printk("%s%s%s: %pV",
9607                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9608         } else {
9609                 printk("%s(NULL net_device): %pV", level, vaf);
9610         }
9611 }
9612
9613 void netdev_printk(const char *level, const struct net_device *dev,
9614                    const char *format, ...)
9615 {
9616         struct va_format vaf;
9617         va_list args;
9618
9619         va_start(args, format);
9620
9621         vaf.fmt = format;
9622         vaf.va = &args;
9623
9624         __netdev_printk(level, dev, &vaf);
9625
9626         va_end(args);
9627 }
9628 EXPORT_SYMBOL(netdev_printk);
9629
9630 #define define_netdev_printk_level(func, level)                 \
9631 void func(const struct net_device *dev, const char *fmt, ...)   \
9632 {                                                               \
9633         struct va_format vaf;                                   \
9634         va_list args;                                           \
9635                                                                 \
9636         va_start(args, fmt);                                    \
9637                                                                 \
9638         vaf.fmt = fmt;                                          \
9639         vaf.va = &args;                                         \
9640                                                                 \
9641         __netdev_printk(level, dev, &vaf);                      \
9642                                                                 \
9643         va_end(args);                                           \
9644 }                                                               \
9645 EXPORT_SYMBOL(func);
9646
9647 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9648 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9649 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9650 define_netdev_printk_level(netdev_err, KERN_ERR);
9651 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9652 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9653 define_netdev_printk_level(netdev_info, KERN_INFO);
9654
9655 static void __net_exit netdev_exit(struct net *net)
9656 {
9657         kfree(net->dev_name_head);
9658         kfree(net->dev_index_head);
9659         if (net != &init_net)
9660                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9661 }
9662
9663 static struct pernet_operations __net_initdata netdev_net_ops = {
9664         .init = netdev_init,
9665         .exit = netdev_exit,
9666 };
9667
9668 static void __net_exit default_device_exit(struct net *net)
9669 {
9670         struct net_device *dev, *aux;
9671         /*
9672          * Push all migratable network devices back to the
9673          * initial network namespace
9674          */
9675         rtnl_lock();
9676         for_each_netdev_safe(net, dev, aux) {
9677                 int err;
9678                 char fb_name[IFNAMSIZ];
9679
9680                 /* Ignore unmoveable devices (i.e. loopback) */
9681                 if (dev->features & NETIF_F_NETNS_LOCAL)
9682                         continue;
9683
9684                 /* Leave virtual devices for the generic cleanup */
9685                 if (dev->rtnl_link_ops)
9686                         continue;
9687
9688                 /* Push remaining network devices to init_net */
9689                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9690                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9691                 if (err) {
9692                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9693                                  __func__, dev->name, err);
9694                         BUG();
9695                 }
9696         }
9697         rtnl_unlock();
9698 }
9699
9700 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9701 {
9702         /* Return with the rtnl_lock held when there are no network
9703          * devices unregistering in any network namespace in net_list.
9704          */
9705         struct net *net;
9706         bool unregistering;
9707         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9708
9709         add_wait_queue(&netdev_unregistering_wq, &wait);
9710         for (;;) {
9711                 unregistering = false;
9712                 rtnl_lock();
9713                 list_for_each_entry(net, net_list, exit_list) {
9714                         if (net->dev_unreg_count > 0) {
9715                                 unregistering = true;
9716                                 break;
9717                         }
9718                 }
9719                 if (!unregistering)
9720                         break;
9721                 __rtnl_unlock();
9722
9723                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9724         }
9725         remove_wait_queue(&netdev_unregistering_wq, &wait);
9726 }
9727
9728 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9729 {
9730         /* At exit all network devices most be removed from a network
9731          * namespace.  Do this in the reverse order of registration.
9732          * Do this across as many network namespaces as possible to
9733          * improve batching efficiency.
9734          */
9735         struct net_device *dev;
9736         struct net *net;
9737         LIST_HEAD(dev_kill_list);
9738
9739         /* To prevent network device cleanup code from dereferencing
9740          * loopback devices or network devices that have been freed
9741          * wait here for all pending unregistrations to complete,
9742          * before unregistring the loopback device and allowing the
9743          * network namespace be freed.
9744          *
9745          * The netdev todo list containing all network devices
9746          * unregistrations that happen in default_device_exit_batch
9747          * will run in the rtnl_unlock() at the end of
9748          * default_device_exit_batch.
9749          */
9750         rtnl_lock_unregistering(net_list);
9751         list_for_each_entry(net, net_list, exit_list) {
9752                 for_each_netdev_reverse(net, dev) {
9753                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9754                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9755                         else
9756                                 unregister_netdevice_queue(dev, &dev_kill_list);
9757                 }
9758         }
9759         unregister_netdevice_many(&dev_kill_list);
9760         rtnl_unlock();
9761 }
9762
9763 static struct pernet_operations __net_initdata default_device_ops = {
9764         .exit = default_device_exit,
9765         .exit_batch = default_device_exit_batch,
9766 };
9767
9768 /*
9769  *      Initialize the DEV module. At boot time this walks the device list and
9770  *      unhooks any devices that fail to initialise (normally hardware not
9771  *      present) and leaves us with a valid list of present and active devices.
9772  *
9773  */
9774
9775 /*
9776  *       This is called single threaded during boot, so no need
9777  *       to take the rtnl semaphore.
9778  */
9779 static int __init net_dev_init(void)
9780 {
9781         int i, rc = -ENOMEM;
9782
9783         BUG_ON(!dev_boot_phase);
9784
9785         if (dev_proc_init())
9786                 goto out;
9787
9788         if (netdev_kobject_init())
9789                 goto out;
9790
9791         INIT_LIST_HEAD(&ptype_all);
9792         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9793                 INIT_LIST_HEAD(&ptype_base[i]);
9794
9795         INIT_LIST_HEAD(&offload_base);
9796
9797         if (register_pernet_subsys(&netdev_net_ops))
9798                 goto out;
9799
9800         /*
9801          *      Initialise the packet receive queues.
9802          */
9803
9804         for_each_possible_cpu(i) {
9805                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9806                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9807
9808                 INIT_WORK(flush, flush_backlog);
9809
9810                 skb_queue_head_init(&sd->input_pkt_queue);
9811                 skb_queue_head_init(&sd->process_queue);
9812 #ifdef CONFIG_XFRM_OFFLOAD
9813                 skb_queue_head_init(&sd->xfrm_backlog);
9814 #endif
9815                 INIT_LIST_HEAD(&sd->poll_list);
9816                 sd->output_queue_tailp = &sd->output_queue;
9817 #ifdef CONFIG_RPS
9818                 sd->csd.func = rps_trigger_softirq;
9819                 sd->csd.info = sd;
9820                 sd->cpu = i;
9821 #endif
9822
9823                 init_gro_hash(&sd->backlog);
9824                 sd->backlog.poll = process_backlog;
9825                 sd->backlog.weight = weight_p;
9826         }
9827
9828         dev_boot_phase = 0;
9829
9830         /* The loopback device is special if any other network devices
9831          * is present in a network namespace the loopback device must
9832          * be present. Since we now dynamically allocate and free the
9833          * loopback device ensure this invariant is maintained by
9834          * keeping the loopback device as the first device on the
9835          * list of network devices.  Ensuring the loopback devices
9836          * is the first device that appears and the last network device
9837          * that disappears.
9838          */
9839         if (register_pernet_device(&loopback_net_ops))
9840                 goto out;
9841
9842         if (register_pernet_device(&default_device_ops))
9843                 goto out;
9844
9845         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9846         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9847
9848         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9849                                        NULL, dev_cpu_dead);
9850         WARN_ON(rc < 0);
9851         rc = 0;
9852 out:
9853         return rc;
9854 }
9855
9856 subsys_initcall(net_dev_init);