Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / net / bluetooth / hci_core.c
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
40
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
43 #include "smp.h"
44 #include "leds.h"
45
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
49
50 /* HCI device list */
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
53
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
57
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
60
61 /* ---- HCI debugfs entries ---- */
62
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64                              size_t count, loff_t *ppos)
65 {
66         struct hci_dev *hdev = file->private_data;
67         char buf[3];
68
69         buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70         buf[1] = '\n';
71         buf[2] = '\0';
72         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73 }
74
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76                               size_t count, loff_t *ppos)
77 {
78         struct hci_dev *hdev = file->private_data;
79         struct sk_buff *skb;
80         bool enable;
81         int err;
82
83         if (!test_bit(HCI_UP, &hdev->flags))
84                 return -ENETDOWN;
85
86         err = kstrtobool_from_user(user_buf, count, &enable);
87         if (err)
88                 return err;
89
90         if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91                 return -EALREADY;
92
93         hci_req_sync_lock(hdev);
94         if (enable)
95                 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96                                      HCI_CMD_TIMEOUT);
97         else
98                 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99                                      HCI_CMD_TIMEOUT);
100         hci_req_sync_unlock(hdev);
101
102         if (IS_ERR(skb))
103                 return PTR_ERR(skb);
104
105         kfree_skb(skb);
106
107         hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109         return count;
110 }
111
112 static const struct file_operations dut_mode_fops = {
113         .open           = simple_open,
114         .read           = dut_mode_read,
115         .write          = dut_mode_write,
116         .llseek         = default_llseek,
117 };
118
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120                                 size_t count, loff_t *ppos)
121 {
122         struct hci_dev *hdev = file->private_data;
123         char buf[3];
124
125         buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126         buf[1] = '\n';
127         buf[2] = '\0';
128         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129 }
130
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132                                  size_t count, loff_t *ppos)
133 {
134         struct hci_dev *hdev = file->private_data;
135         bool enable;
136         int err;
137
138         err = kstrtobool_from_user(user_buf, count, &enable);
139         if (err)
140                 return err;
141
142         /* When the diagnostic flags are not persistent and the transport
143          * is not active or in user channel operation, then there is no need
144          * for the vendor callback. Instead just store the desired value and
145          * the setting will be programmed when the controller gets powered on.
146          */
147         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148             (!test_bit(HCI_RUNNING, &hdev->flags) ||
149              hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150                 goto done;
151
152         hci_req_sync_lock(hdev);
153         err = hdev->set_diag(hdev, enable);
154         hci_req_sync_unlock(hdev);
155
156         if (err < 0)
157                 return err;
158
159 done:
160         if (enable)
161                 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162         else
163                 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165         return count;
166 }
167
168 static const struct file_operations vendor_diag_fops = {
169         .open           = simple_open,
170         .read           = vendor_diag_read,
171         .write          = vendor_diag_write,
172         .llseek         = default_llseek,
173 };
174
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
176 {
177         debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178                             &dut_mode_fops);
179
180         if (hdev->set_diag)
181                 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182                                     &vendor_diag_fops);
183 }
184
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
186 {
187         BT_DBG("%s %ld", req->hdev->name, opt);
188
189         /* Reset device */
190         set_bit(HCI_RESET, &req->hdev->flags);
191         hci_req_add(req, HCI_OP_RESET, 0, NULL);
192         return 0;
193 }
194
195 static void bredr_init(struct hci_request *req)
196 {
197         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199         /* Read Local Supported Features */
200         hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202         /* Read Local Version */
203         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205         /* Read BD Address */
206         hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207 }
208
209 static void amp_init1(struct hci_request *req)
210 {
211         req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213         /* Read Local Version */
214         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216         /* Read Local Supported Commands */
217         hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219         /* Read Local AMP Info */
220         hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222         /* Read Data Blk size */
223         hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225         /* Read Flow Control Mode */
226         hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228         /* Read Location Data */
229         hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230 }
231
232 static int amp_init2(struct hci_request *req)
233 {
234         /* Read Local Supported Features. Not all AMP controllers
235          * support this so it's placed conditionally in the second
236          * stage init.
237          */
238         if (req->hdev->commands[14] & 0x20)
239                 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241         return 0;
242 }
243
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
245 {
246         struct hci_dev *hdev = req->hdev;
247
248         BT_DBG("%s %ld", hdev->name, opt);
249
250         /* Reset */
251         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252                 hci_reset_req(req, 0);
253
254         switch (hdev->dev_type) {
255         case HCI_PRIMARY:
256                 bredr_init(req);
257                 break;
258         case HCI_AMP:
259                 amp_init1(req);
260                 break;
261         default:
262                 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263                 break;
264         }
265
266         return 0;
267 }
268
269 static void bredr_setup(struct hci_request *req)
270 {
271         __le16 param;
272         __u8 flt_type;
273
274         /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275         hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277         /* Read Class of Device */
278         hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280         /* Read Local Name */
281         hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283         /* Read Voice Setting */
284         hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286         /* Read Number of Supported IAC */
287         hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289         /* Read Current IAC LAP */
290         hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292         /* Clear Event Filters */
293         flt_type = HCI_FLT_CLEAR_ALL;
294         hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296         /* Connection accept timeout ~20 secs */
297         param = cpu_to_le16(0x7d00);
298         hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
299 }
300
301 static void le_setup(struct hci_request *req)
302 {
303         struct hci_dev *hdev = req->hdev;
304
305         /* Read LE Buffer Size */
306         hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308         /* Read LE Local Supported Features */
309         hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311         /* Read LE Supported States */
312         hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314         /* LE-only controllers have LE implicitly enabled */
315         if (!lmp_bredr_capable(hdev))
316                 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317 }
318
319 static void hci_setup_event_mask(struct hci_request *req)
320 {
321         struct hci_dev *hdev = req->hdev;
322
323         /* The second byte is 0xff instead of 0x9f (two reserved bits
324          * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325          * command otherwise.
326          */
327         u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329         /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330          * any event mask for pre 1.2 devices.
331          */
332         if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333                 return;
334
335         if (lmp_bredr_capable(hdev)) {
336                 events[4] |= 0x01; /* Flow Specification Complete */
337         } else {
338                 /* Use a different default for LE-only devices */
339                 memset(events, 0, sizeof(events));
340                 events[1] |= 0x20; /* Command Complete */
341                 events[1] |= 0x40; /* Command Status */
342                 events[1] |= 0x80; /* Hardware Error */
343
344                 /* If the controller supports the Disconnect command, enable
345                  * the corresponding event. In addition enable packet flow
346                  * control related events.
347                  */
348                 if (hdev->commands[0] & 0x20) {
349                         events[0] |= 0x10; /* Disconnection Complete */
350                         events[2] |= 0x04; /* Number of Completed Packets */
351                         events[3] |= 0x02; /* Data Buffer Overflow */
352                 }
353
354                 /* If the controller supports the Read Remote Version
355                  * Information command, enable the corresponding event.
356                  */
357                 if (hdev->commands[2] & 0x80)
358                         events[1] |= 0x08; /* Read Remote Version Information
359                                             * Complete
360                                             */
361
362                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363                         events[0] |= 0x80; /* Encryption Change */
364                         events[5] |= 0x80; /* Encryption Key Refresh Complete */
365                 }
366         }
367
368         if (lmp_inq_rssi_capable(hdev) ||
369             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370                 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372         if (lmp_ext_feat_capable(hdev))
373                 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375         if (lmp_esco_capable(hdev)) {
376                 events[5] |= 0x08; /* Synchronous Connection Complete */
377                 events[5] |= 0x10; /* Synchronous Connection Changed */
378         }
379
380         if (lmp_sniffsubr_capable(hdev))
381                 events[5] |= 0x20; /* Sniff Subrating */
382
383         if (lmp_pause_enc_capable(hdev))
384                 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386         if (lmp_ext_inq_capable(hdev))
387                 events[5] |= 0x40; /* Extended Inquiry Result */
388
389         if (lmp_no_flush_capable(hdev))
390                 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392         if (lmp_lsto_capable(hdev))
393                 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395         if (lmp_ssp_capable(hdev)) {
396                 events[6] |= 0x01;      /* IO Capability Request */
397                 events[6] |= 0x02;      /* IO Capability Response */
398                 events[6] |= 0x04;      /* User Confirmation Request */
399                 events[6] |= 0x08;      /* User Passkey Request */
400                 events[6] |= 0x10;      /* Remote OOB Data Request */
401                 events[6] |= 0x20;      /* Simple Pairing Complete */
402                 events[7] |= 0x04;      /* User Passkey Notification */
403                 events[7] |= 0x08;      /* Keypress Notification */
404                 events[7] |= 0x10;      /* Remote Host Supported
405                                          * Features Notification
406                                          */
407         }
408
409         if (lmp_le_capable(hdev))
410                 events[7] |= 0x20;      /* LE Meta-Event */
411
412         hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413 }
414
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
416 {
417         struct hci_dev *hdev = req->hdev;
418
419         if (hdev->dev_type == HCI_AMP)
420                 return amp_init2(req);
421
422         if (lmp_bredr_capable(hdev))
423                 bredr_setup(req);
424         else
425                 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427         if (lmp_le_capable(hdev))
428                 le_setup(req);
429
430         /* All Bluetooth 1.2 and later controllers should support the
431          * HCI command for reading the local supported commands.
432          *
433          * Unfortunately some controllers indicate Bluetooth 1.2 support,
434          * but do not have support for this command. If that is the case,
435          * the driver can quirk the behavior and skip reading the local
436          * supported commands.
437          */
438         if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439             !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440                 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442         if (lmp_ssp_capable(hdev)) {
443                 /* When SSP is available, then the host features page
444                  * should also be available as well. However some
445                  * controllers list the max_page as 0 as long as SSP
446                  * has not been enabled. To achieve proper debugging
447                  * output, force the minimum max_page to 1 at least.
448                  */
449                 hdev->max_page = 0x01;
450
451                 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452                         u8 mode = 0x01;
453
454                         hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455                                     sizeof(mode), &mode);
456                 } else {
457                         struct hci_cp_write_eir cp;
458
459                         memset(hdev->eir, 0, sizeof(hdev->eir));
460                         memset(&cp, 0, sizeof(cp));
461
462                         hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463                 }
464         }
465
466         if (lmp_inq_rssi_capable(hdev) ||
467             test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468                 u8 mode;
469
470                 /* If Extended Inquiry Result events are supported, then
471                  * they are clearly preferred over Inquiry Result with RSSI
472                  * events.
473                  */
474                 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476                 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477         }
478
479         if (lmp_inq_tx_pwr_capable(hdev))
480                 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482         if (lmp_ext_feat_capable(hdev)) {
483                 struct hci_cp_read_local_ext_features cp;
484
485                 cp.page = 0x01;
486                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487                             sizeof(cp), &cp);
488         }
489
490         if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491                 u8 enable = 1;
492                 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493                             &enable);
494         }
495
496         return 0;
497 }
498
499 static void hci_setup_link_policy(struct hci_request *req)
500 {
501         struct hci_dev *hdev = req->hdev;
502         struct hci_cp_write_def_link_policy cp;
503         u16 link_policy = 0;
504
505         if (lmp_rswitch_capable(hdev))
506                 link_policy |= HCI_LP_RSWITCH;
507         if (lmp_hold_capable(hdev))
508                 link_policy |= HCI_LP_HOLD;
509         if (lmp_sniff_capable(hdev))
510                 link_policy |= HCI_LP_SNIFF;
511         if (lmp_park_capable(hdev))
512                 link_policy |= HCI_LP_PARK;
513
514         cp.policy = cpu_to_le16(link_policy);
515         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516 }
517
518 static void hci_set_le_support(struct hci_request *req)
519 {
520         struct hci_dev *hdev = req->hdev;
521         struct hci_cp_write_le_host_supported cp;
522
523         /* LE-only devices do not support explicit enablement */
524         if (!lmp_bredr_capable(hdev))
525                 return;
526
527         memset(&cp, 0, sizeof(cp));
528
529         if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530                 cp.le = 0x01;
531                 cp.simul = 0x00;
532         }
533
534         if (cp.le != lmp_host_le_capable(hdev))
535                 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536                             &cp);
537 }
538
539 static void hci_set_event_mask_page_2(struct hci_request *req)
540 {
541         struct hci_dev *hdev = req->hdev;
542         u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543         bool changed = false;
544
545         /* If Connectionless Slave Broadcast master role is supported
546          * enable all necessary events for it.
547          */
548         if (lmp_csb_master_capable(hdev)) {
549                 events[1] |= 0x40;      /* Triggered Clock Capture */
550                 events[1] |= 0x80;      /* Synchronization Train Complete */
551                 events[2] |= 0x10;      /* Slave Page Response Timeout */
552                 events[2] |= 0x20;      /* CSB Channel Map Change */
553                 changed = true;
554         }
555
556         /* If Connectionless Slave Broadcast slave role is supported
557          * enable all necessary events for it.
558          */
559         if (lmp_csb_slave_capable(hdev)) {
560                 events[2] |= 0x01;      /* Synchronization Train Received */
561                 events[2] |= 0x02;      /* CSB Receive */
562                 events[2] |= 0x04;      /* CSB Timeout */
563                 events[2] |= 0x08;      /* Truncated Page Complete */
564                 changed = true;
565         }
566
567         /* Enable Authenticated Payload Timeout Expired event if supported */
568         if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569                 events[2] |= 0x80;
570                 changed = true;
571         }
572
573         /* Some Broadcom based controllers indicate support for Set Event
574          * Mask Page 2 command, but then actually do not support it. Since
575          * the default value is all bits set to zero, the command is only
576          * required if the event mask has to be changed. In case no change
577          * to the event mask is needed, skip this command.
578          */
579         if (changed)
580                 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581                             sizeof(events), events);
582 }
583
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
585 {
586         struct hci_dev *hdev = req->hdev;
587         u8 p;
588
589         hci_setup_event_mask(req);
590
591         if (hdev->commands[6] & 0x20 &&
592             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593                 struct hci_cp_read_stored_link_key cp;
594
595                 bacpy(&cp.bdaddr, BDADDR_ANY);
596                 cp.read_all = 0x01;
597                 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598         }
599
600         if (hdev->commands[5] & 0x10)
601                 hci_setup_link_policy(req);
602
603         if (hdev->commands[8] & 0x01)
604                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606         /* Some older Broadcom based Bluetooth 1.2 controllers do not
607          * support the Read Page Scan Type command. Check support for
608          * this command in the bit mask of supported commands.
609          */
610         if (hdev->commands[13] & 0x01)
611                 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613         if (lmp_le_capable(hdev)) {
614                 u8 events[8];
615
616                 memset(events, 0, sizeof(events));
617
618                 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619                         events[0] |= 0x10;      /* LE Long Term Key Request */
620
621                 /* If controller supports the Connection Parameters Request
622                  * Link Layer Procedure, enable the corresponding event.
623                  */
624                 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625                         events[0] |= 0x20;      /* LE Remote Connection
626                                                  * Parameter Request
627                                                  */
628
629                 /* If the controller supports the Data Length Extension
630                  * feature, enable the corresponding event.
631                  */
632                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633                         events[0] |= 0x40;      /* LE Data Length Change */
634
635                 /* If the controller supports Extended Scanner Filter
636                  * Policies, enable the correspondig event.
637                  */
638                 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639                         events[1] |= 0x04;      /* LE Direct Advertising
640                                                  * Report
641                                                  */
642
643                 /* If the controller supports Channel Selection Algorithm #2
644                  * feature, enable the corresponding event.
645                  */
646                 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647                         events[2] |= 0x08;      /* LE Channel Selection
648                                                  * Algorithm
649                                                  */
650
651                 /* If the controller supports the LE Set Scan Enable command,
652                  * enable the corresponding advertising report event.
653                  */
654                 if (hdev->commands[26] & 0x08)
655                         events[0] |= 0x02;      /* LE Advertising Report */
656
657                 /* If the controller supports the LE Create Connection
658                  * command, enable the corresponding event.
659                  */
660                 if (hdev->commands[26] & 0x10)
661                         events[0] |= 0x01;      /* LE Connection Complete */
662
663                 /* If the controller supports the LE Connection Update
664                  * command, enable the corresponding event.
665                  */
666                 if (hdev->commands[27] & 0x04)
667                         events[0] |= 0x04;      /* LE Connection Update
668                                                  * Complete
669                                                  */
670
671                 /* If the controller supports the LE Read Remote Used Features
672                  * command, enable the corresponding event.
673                  */
674                 if (hdev->commands[27] & 0x20)
675                         events[0] |= 0x08;      /* LE Read Remote Used
676                                                  * Features Complete
677                                                  */
678
679                 /* If the controller supports the LE Read Local P-256
680                  * Public Key command, enable the corresponding event.
681                  */
682                 if (hdev->commands[34] & 0x02)
683                         events[0] |= 0x80;      /* LE Read Local P-256
684                                                  * Public Key Complete
685                                                  */
686
687                 /* If the controller supports the LE Generate DHKey
688                  * command, enable the corresponding event.
689                  */
690                 if (hdev->commands[34] & 0x04)
691                         events[1] |= 0x01;      /* LE Generate DHKey Complete */
692
693                 /* If the controller supports the LE Set Default PHY or
694                  * LE Set PHY commands, enable the corresponding event.
695                  */
696                 if (hdev->commands[35] & (0x20 | 0x40))
697                         events[1] |= 0x08;        /* LE PHY Update Complete */
698
699                 /* If the controller supports LE Set Extended Scan Parameters
700                  * and LE Set Extended Scan Enable commands, enable the
701                  * corresponding event.
702                  */
703                 if (use_ext_scan(hdev))
704                         events[1] |= 0x10;      /* LE Extended Advertising
705                                                  * Report
706                                                  */
707
708                 /* If the controller supports the LE Extended Create Connection
709                  * command, enable the corresponding event.
710                  */
711                 if (use_ext_conn(hdev))
712                         events[1] |= 0x02;      /* LE Enhanced Connection
713                                                  * Complete
714                                                  */
715
716                 /* If the controller supports the LE Extended Advertising
717                  * command, enable the corresponding event.
718                  */
719                 if (ext_adv_capable(hdev))
720                         events[2] |= 0x02;      /* LE Advertising Set
721                                                  * Terminated
722                                                  */
723
724                 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725                             events);
726
727                 /* Read LE Advertising Channel TX Power */
728                 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729                         /* HCI TS spec forbids mixing of legacy and extended
730                          * advertising commands wherein READ_ADV_TX_POWER is
731                          * also included. So do not call it if extended adv
732                          * is supported otherwise controller will return
733                          * COMMAND_DISALLOWED for extended commands.
734                          */
735                         hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736                 }
737
738                 if (hdev->commands[26] & 0x40) {
739                         /* Read LE White List Size */
740                         hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741                                     0, NULL);
742                 }
743
744                 if (hdev->commands[26] & 0x80) {
745                         /* Clear LE White List */
746                         hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747                 }
748
749                 if (hdev->commands[34] & 0x40) {
750                         /* Read LE Resolving List Size */
751                         hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752                                     0, NULL);
753                 }
754
755                 if (hdev->commands[34] & 0x20) {
756                         /* Clear LE Resolving List */
757                         hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758                 }
759
760                 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761                         /* Read LE Maximum Data Length */
762                         hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764                         /* Read LE Suggested Default Data Length */
765                         hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766                 }
767
768                 if (ext_adv_capable(hdev)) {
769                         /* Read LE Number of Supported Advertising Sets */
770                         hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771                                     0, NULL);
772                 }
773
774                 hci_set_le_support(req);
775         }
776
777         /* Read features beyond page 1 if available */
778         for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779                 struct hci_cp_read_local_ext_features cp;
780
781                 cp.page = p;
782                 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783                             sizeof(cp), &cp);
784         }
785
786         return 0;
787 }
788
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
790 {
791         struct hci_dev *hdev = req->hdev;
792
793         /* Some Broadcom based Bluetooth controllers do not support the
794          * Delete Stored Link Key command. They are clearly indicating its
795          * absence in the bit mask of supported commands.
796          *
797          * Check the supported commands and only if the the command is marked
798          * as supported send it. If not supported assume that the controller
799          * does not have actual support for stored link keys which makes this
800          * command redundant anyway.
801          *
802          * Some controllers indicate that they support handling deleting
803          * stored link keys, but they don't. The quirk lets a driver
804          * just disable this command.
805          */
806         if (hdev->commands[6] & 0x80 &&
807             !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808                 struct hci_cp_delete_stored_link_key cp;
809
810                 bacpy(&cp.bdaddr, BDADDR_ANY);
811                 cp.delete_all = 0x01;
812                 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813                             sizeof(cp), &cp);
814         }
815
816         /* Set event mask page 2 if the HCI command for it is supported */
817         if (hdev->commands[22] & 0x04)
818                 hci_set_event_mask_page_2(req);
819
820         /* Read local codec list if the HCI command is supported */
821         if (hdev->commands[29] & 0x20)
822                 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824         /* Get MWS transport configuration if the HCI command is supported */
825         if (hdev->commands[30] & 0x08)
826                 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828         /* Check for Synchronization Train support */
829         if (lmp_sync_train_capable(hdev))
830                 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832         /* Enable Secure Connections if supported and configured */
833         if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834             bredr_sc_enabled(hdev)) {
835                 u8 support = 0x01;
836
837                 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838                             sizeof(support), &support);
839         }
840
841         /* Set Suggested Default Data Length to maximum if supported */
842         if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843                 struct hci_cp_le_write_def_data_len cp;
844
845                 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
846                 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
847                 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848         }
849
850         /* Set Default PHY parameters if command is supported */
851         if (hdev->commands[35] & 0x20) {
852                 struct hci_cp_le_set_default_phy cp;
853
854                 cp.all_phys = 0x00;
855                 cp.tx_phys = hdev->le_tx_def_phys;
856                 cp.rx_phys = hdev->le_rx_def_phys;
857
858                 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859         }
860
861         return 0;
862 }
863
864 static int __hci_init(struct hci_dev *hdev)
865 {
866         int err;
867
868         err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869         if (err < 0)
870                 return err;
871
872         if (hci_dev_test_flag(hdev, HCI_SETUP))
873                 hci_debugfs_create_basic(hdev);
874
875         err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876         if (err < 0)
877                 return err;
878
879         /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880          * BR/EDR/LE type controllers. AMP controllers only need the
881          * first two stages of init.
882          */
883         if (hdev->dev_type != HCI_PRIMARY)
884                 return 0;
885
886         err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887         if (err < 0)
888                 return err;
889
890         err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891         if (err < 0)
892                 return err;
893
894         /* This function is only called when the controller is actually in
895          * configured state. When the controller is marked as unconfigured,
896          * this initialization procedure is not run.
897          *
898          * It means that it is possible that a controller runs through its
899          * setup phase and then discovers missing settings. If that is the
900          * case, then this function will not be called. It then will only
901          * be called during the config phase.
902          *
903          * So only when in setup phase or config phase, create the debugfs
904          * entries and register the SMP channels.
905          */
906         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907             !hci_dev_test_flag(hdev, HCI_CONFIG))
908                 return 0;
909
910         hci_debugfs_create_common(hdev);
911
912         if (lmp_bredr_capable(hdev))
913                 hci_debugfs_create_bredr(hdev);
914
915         if (lmp_le_capable(hdev))
916                 hci_debugfs_create_le(hdev);
917
918         return 0;
919 }
920
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
922 {
923         struct hci_dev *hdev = req->hdev;
924
925         BT_DBG("%s %ld", hdev->name, opt);
926
927         /* Reset */
928         if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929                 hci_reset_req(req, 0);
930
931         /* Read Local Version */
932         hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934         /* Read BD Address */
935         if (hdev->set_bdaddr)
936                 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938         return 0;
939 }
940
941 static int __hci_unconf_init(struct hci_dev *hdev)
942 {
943         int err;
944
945         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946                 return 0;
947
948         err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949         if (err < 0)
950                 return err;
951
952         if (hci_dev_test_flag(hdev, HCI_SETUP))
953                 hci_debugfs_create_basic(hdev);
954
955         return 0;
956 }
957
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
959 {
960         __u8 scan = opt;
961
962         BT_DBG("%s %x", req->hdev->name, scan);
963
964         /* Inquiry and Page scans */
965         hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966         return 0;
967 }
968
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
970 {
971         __u8 auth = opt;
972
973         BT_DBG("%s %x", req->hdev->name, auth);
974
975         /* Authentication */
976         hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977         return 0;
978 }
979
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981 {
982         __u8 encrypt = opt;
983
984         BT_DBG("%s %x", req->hdev->name, encrypt);
985
986         /* Encryption */
987         hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988         return 0;
989 }
990
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992 {
993         __le16 policy = cpu_to_le16(opt);
994
995         BT_DBG("%s %x", req->hdev->name, policy);
996
997         /* Default link policy */
998         hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999         return 0;
1000 }
1001
1002 /* Get HCI device by index.
1003  * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1005 {
1006         struct hci_dev *hdev = NULL, *d;
1007
1008         BT_DBG("%d", index);
1009
1010         if (index < 0)
1011                 return NULL;
1012
1013         read_lock(&hci_dev_list_lock);
1014         list_for_each_entry(d, &hci_dev_list, list) {
1015                 if (d->id == index) {
1016                         hdev = hci_dev_hold(d);
1017                         break;
1018                 }
1019         }
1020         read_unlock(&hci_dev_list_lock);
1021         return hdev;
1022 }
1023
1024 /* ---- Inquiry support ---- */
1025
1026 bool hci_discovery_active(struct hci_dev *hdev)
1027 {
1028         struct discovery_state *discov = &hdev->discovery;
1029
1030         switch (discov->state) {
1031         case DISCOVERY_FINDING:
1032         case DISCOVERY_RESOLVING:
1033                 return true;
1034
1035         default:
1036                 return false;
1037         }
1038 }
1039
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041 {
1042         int old_state = hdev->discovery.state;
1043
1044         BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046         if (old_state == state)
1047                 return;
1048
1049         hdev->discovery.state = state;
1050
1051         switch (state) {
1052         case DISCOVERY_STOPPED:
1053                 hci_update_background_scan(hdev);
1054
1055                 if (old_state != DISCOVERY_STARTING)
1056                         mgmt_discovering(hdev, 0);
1057                 break;
1058         case DISCOVERY_STARTING:
1059                 break;
1060         case DISCOVERY_FINDING:
1061                 mgmt_discovering(hdev, 1);
1062                 break;
1063         case DISCOVERY_RESOLVING:
1064                 break;
1065         case DISCOVERY_STOPPING:
1066                 break;
1067         }
1068 }
1069
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071 {
1072         struct discovery_state *cache = &hdev->discovery;
1073         struct inquiry_entry *p, *n;
1074
1075         list_for_each_entry_safe(p, n, &cache->all, all) {
1076                 list_del(&p->all);
1077                 kfree(p);
1078         }
1079
1080         INIT_LIST_HEAD(&cache->unknown);
1081         INIT_LIST_HEAD(&cache->resolve);
1082 }
1083
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085                                                bdaddr_t *bdaddr)
1086 {
1087         struct discovery_state *cache = &hdev->discovery;
1088         struct inquiry_entry *e;
1089
1090         BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092         list_for_each_entry(e, &cache->all, all) {
1093                 if (!bacmp(&e->data.bdaddr, bdaddr))
1094                         return e;
1095         }
1096
1097         return NULL;
1098 }
1099
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101                                                        bdaddr_t *bdaddr)
1102 {
1103         struct discovery_state *cache = &hdev->discovery;
1104         struct inquiry_entry *e;
1105
1106         BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108         list_for_each_entry(e, &cache->unknown, list) {
1109                 if (!bacmp(&e->data.bdaddr, bdaddr))
1110                         return e;
1111         }
1112
1113         return NULL;
1114 }
1115
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117                                                        bdaddr_t *bdaddr,
1118                                                        int state)
1119 {
1120         struct discovery_state *cache = &hdev->discovery;
1121         struct inquiry_entry *e;
1122
1123         BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125         list_for_each_entry(e, &cache->resolve, list) {
1126                 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127                         return e;
1128                 if (!bacmp(&e->data.bdaddr, bdaddr))
1129                         return e;
1130         }
1131
1132         return NULL;
1133 }
1134
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136                                       struct inquiry_entry *ie)
1137 {
1138         struct discovery_state *cache = &hdev->discovery;
1139         struct list_head *pos = &cache->resolve;
1140         struct inquiry_entry *p;
1141
1142         list_del(&ie->list);
1143
1144         list_for_each_entry(p, &cache->resolve, list) {
1145                 if (p->name_state != NAME_PENDING &&
1146                     abs(p->data.rssi) >= abs(ie->data.rssi))
1147                         break;
1148                 pos = &p->list;
1149         }
1150
1151         list_add(&ie->list, pos);
1152 }
1153
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155                              bool name_known)
1156 {
1157         struct discovery_state *cache = &hdev->discovery;
1158         struct inquiry_entry *ie;
1159         u32 flags = 0;
1160
1161         BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163         hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165         if (!data->ssp_mode)
1166                 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168         ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169         if (ie) {
1170                 if (!ie->data.ssp_mode)
1171                         flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173                 if (ie->name_state == NAME_NEEDED &&
1174                     data->rssi != ie->data.rssi) {
1175                         ie->data.rssi = data->rssi;
1176                         hci_inquiry_cache_update_resolve(hdev, ie);
1177                 }
1178
1179                 goto update;
1180         }
1181
1182         /* Entry not in the cache. Add new one. */
1183         ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184         if (!ie) {
1185                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186                 goto done;
1187         }
1188
1189         list_add(&ie->all, &cache->all);
1190
1191         if (name_known) {
1192                 ie->name_state = NAME_KNOWN;
1193         } else {
1194                 ie->name_state = NAME_NOT_KNOWN;
1195                 list_add(&ie->list, &cache->unknown);
1196         }
1197
1198 update:
1199         if (name_known && ie->name_state != NAME_KNOWN &&
1200             ie->name_state != NAME_PENDING) {
1201                 ie->name_state = NAME_KNOWN;
1202                 list_del(&ie->list);
1203         }
1204
1205         memcpy(&ie->data, data, sizeof(*data));
1206         ie->timestamp = jiffies;
1207         cache->timestamp = jiffies;
1208
1209         if (ie->name_state == NAME_NOT_KNOWN)
1210                 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212 done:
1213         return flags;
1214 }
1215
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217 {
1218         struct discovery_state *cache = &hdev->discovery;
1219         struct inquiry_info *info = (struct inquiry_info *) buf;
1220         struct inquiry_entry *e;
1221         int copied = 0;
1222
1223         list_for_each_entry(e, &cache->all, all) {
1224                 struct inquiry_data *data = &e->data;
1225
1226                 if (copied >= num)
1227                         break;
1228
1229                 bacpy(&info->bdaddr, &data->bdaddr);
1230                 info->pscan_rep_mode    = data->pscan_rep_mode;
1231                 info->pscan_period_mode = data->pscan_period_mode;
1232                 info->pscan_mode        = data->pscan_mode;
1233                 memcpy(info->dev_class, data->dev_class, 3);
1234                 info->clock_offset      = data->clock_offset;
1235
1236                 info++;
1237                 copied++;
1238         }
1239
1240         BT_DBG("cache %p, copied %d", cache, copied);
1241         return copied;
1242 }
1243
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245 {
1246         struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247         struct hci_dev *hdev = req->hdev;
1248         struct hci_cp_inquiry cp;
1249
1250         BT_DBG("%s", hdev->name);
1251
1252         if (test_bit(HCI_INQUIRY, &hdev->flags))
1253                 return 0;
1254
1255         /* Start Inquiry */
1256         memcpy(&cp.lap, &ir->lap, 3);
1257         cp.length  = ir->length;
1258         cp.num_rsp = ir->num_rsp;
1259         hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261         return 0;
1262 }
1263
1264 int hci_inquiry(void __user *arg)
1265 {
1266         __u8 __user *ptr = arg;
1267         struct hci_inquiry_req ir;
1268         struct hci_dev *hdev;
1269         int err = 0, do_inquiry = 0, max_rsp;
1270         long timeo;
1271         __u8 *buf;
1272
1273         if (copy_from_user(&ir, ptr, sizeof(ir)))
1274                 return -EFAULT;
1275
1276         hdev = hci_dev_get(ir.dev_id);
1277         if (!hdev)
1278                 return -ENODEV;
1279
1280         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281                 err = -EBUSY;
1282                 goto done;
1283         }
1284
1285         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286                 err = -EOPNOTSUPP;
1287                 goto done;
1288         }
1289
1290         if (hdev->dev_type != HCI_PRIMARY) {
1291                 err = -EOPNOTSUPP;
1292                 goto done;
1293         }
1294
1295         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296                 err = -EOPNOTSUPP;
1297                 goto done;
1298         }
1299
1300         hci_dev_lock(hdev);
1301         if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302             inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303                 hci_inquiry_cache_flush(hdev);
1304                 do_inquiry = 1;
1305         }
1306         hci_dev_unlock(hdev);
1307
1308         timeo = ir.length * msecs_to_jiffies(2000);
1309
1310         if (do_inquiry) {
1311                 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312                                    timeo, NULL);
1313                 if (err < 0)
1314                         goto done;
1315
1316                 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317                  * cleared). If it is interrupted by a signal, return -EINTR.
1318                  */
1319                 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320                                 TASK_INTERRUPTIBLE))
1321                         return -EINTR;
1322         }
1323
1324         /* for unlimited number of responses we will use buffer with
1325          * 255 entries
1326          */
1327         max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329         /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330          * copy it to the user space.
1331          */
1332         buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333         if (!buf) {
1334                 err = -ENOMEM;
1335                 goto done;
1336         }
1337
1338         hci_dev_lock(hdev);
1339         ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340         hci_dev_unlock(hdev);
1341
1342         BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344         if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345                 ptr += sizeof(ir);
1346                 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347                                  ir.num_rsp))
1348                         err = -EFAULT;
1349         } else
1350                 err = -EFAULT;
1351
1352         kfree(buf);
1353
1354 done:
1355         hci_dev_put(hdev);
1356         return err;
1357 }
1358
1359 /**
1360  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361  *                                     (BD_ADDR) for a HCI device from
1362  *                                     a firmware node property.
1363  * @hdev:       The HCI device
1364  *
1365  * Search the firmware node for 'local-bd-address'.
1366  *
1367  * All-zero BD addresses are rejected, because those could be properties
1368  * that exist in the firmware tables, but were not updated by the firmware. For
1369  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370  */
1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372 {
1373         struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374         bdaddr_t ba;
1375         int ret;
1376
1377         ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378                                             (u8 *)&ba, sizeof(ba));
1379         if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380                 return;
1381
1382         bacpy(&hdev->public_addr, &ba);
1383 }
1384
1385 static int hci_dev_do_open(struct hci_dev *hdev)
1386 {
1387         int ret = 0;
1388
1389         BT_DBG("%s %p", hdev->name, hdev);
1390
1391         hci_req_sync_lock(hdev);
1392
1393         if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394                 ret = -ENODEV;
1395                 goto done;
1396         }
1397
1398         if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400                 /* Check for rfkill but allow the HCI setup stage to
1401                  * proceed (which in itself doesn't cause any RF activity).
1402                  */
1403                 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404                         ret = -ERFKILL;
1405                         goto done;
1406                 }
1407
1408                 /* Check for valid public address or a configured static
1409                  * random adddress, but let the HCI setup proceed to
1410                  * be able to determine if there is a public address
1411                  * or not.
1412                  *
1413                  * In case of user channel usage, it is not important
1414                  * if a public address or static random address is
1415                  * available.
1416                  *
1417                  * This check is only valid for BR/EDR controllers
1418                  * since AMP controllers do not have an address.
1419                  */
1420                 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421                     hdev->dev_type == HCI_PRIMARY &&
1422                     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423                     !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424                         ret = -EADDRNOTAVAIL;
1425                         goto done;
1426                 }
1427         }
1428
1429         if (test_bit(HCI_UP, &hdev->flags)) {
1430                 ret = -EALREADY;
1431                 goto done;
1432         }
1433
1434         if (hdev->open(hdev)) {
1435                 ret = -EIO;
1436                 goto done;
1437         }
1438
1439         set_bit(HCI_RUNNING, &hdev->flags);
1440         hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442         atomic_set(&hdev->cmd_cnt, 1);
1443         set_bit(HCI_INIT, &hdev->flags);
1444
1445         if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446             test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447                 bool invalid_bdaddr;
1448
1449                 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1450
1451                 if (hdev->setup)
1452                         ret = hdev->setup(hdev);
1453
1454                 /* The transport driver can set the quirk to mark the
1455                  * BD_ADDR invalid before creating the HCI device or in
1456                  * its setup callback.
1457                  */
1458                 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1459                                           &hdev->quirks);
1460
1461                 if (ret)
1462                         goto setup_failed;
1463
1464                 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1465                         if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1466                                 hci_dev_get_bd_addr_from_property(hdev);
1467
1468                         if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1469                             hdev->set_bdaddr) {
1470                                 ret = hdev->set_bdaddr(hdev,
1471                                                        &hdev->public_addr);
1472
1473                                 /* If setting of the BD_ADDR from the device
1474                                  * property succeeds, then treat the address
1475                                  * as valid even if the invalid BD_ADDR
1476                                  * quirk indicates otherwise.
1477                                  */
1478                                 if (!ret)
1479                                         invalid_bdaddr = false;
1480                         }
1481                 }
1482
1483 setup_failed:
1484                 /* The transport driver can set these quirks before
1485                  * creating the HCI device or in its setup callback.
1486                  *
1487                  * For the invalid BD_ADDR quirk it is possible that
1488                  * it becomes a valid address if the bootloader does
1489                  * provide it (see above).
1490                  *
1491                  * In case any of them is set, the controller has to
1492                  * start up as unconfigured.
1493                  */
1494                 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1495                     invalid_bdaddr)
1496                         hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1497
1498                 /* For an unconfigured controller it is required to
1499                  * read at least the version information provided by
1500                  * the Read Local Version Information command.
1501                  *
1502                  * If the set_bdaddr driver callback is provided, then
1503                  * also the original Bluetooth public device address
1504                  * will be read using the Read BD Address command.
1505                  */
1506                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1507                         ret = __hci_unconf_init(hdev);
1508         }
1509
1510         if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1511                 /* If public address change is configured, ensure that
1512                  * the address gets programmed. If the driver does not
1513                  * support changing the public address, fail the power
1514                  * on procedure.
1515                  */
1516                 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1517                     hdev->set_bdaddr)
1518                         ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1519                 else
1520                         ret = -EADDRNOTAVAIL;
1521         }
1522
1523         if (!ret) {
1524                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1525                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1526                         ret = __hci_init(hdev);
1527                         if (!ret && hdev->post_init)
1528                                 ret = hdev->post_init(hdev);
1529                 }
1530         }
1531
1532         /* If the HCI Reset command is clearing all diagnostic settings,
1533          * then they need to be reprogrammed after the init procedure
1534          * completed.
1535          */
1536         if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1537             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1538             hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1539                 ret = hdev->set_diag(hdev, true);
1540
1541         clear_bit(HCI_INIT, &hdev->flags);
1542
1543         if (!ret) {
1544                 hci_dev_hold(hdev);
1545                 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1546                 hci_adv_instances_set_rpa_expired(hdev, true);
1547                 set_bit(HCI_UP, &hdev->flags);
1548                 hci_sock_dev_event(hdev, HCI_DEV_UP);
1549                 hci_leds_update_powered(hdev, true);
1550                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1551                     !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1552                     !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1553                     !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1554                     hci_dev_test_flag(hdev, HCI_MGMT) &&
1555                     hdev->dev_type == HCI_PRIMARY) {
1556                         ret = __hci_req_hci_power_on(hdev);
1557                         mgmt_power_on(hdev, ret);
1558                 }
1559         } else {
1560                 /* Init failed, cleanup */
1561                 flush_work(&hdev->tx_work);
1562                 flush_work(&hdev->cmd_work);
1563                 flush_work(&hdev->rx_work);
1564
1565                 skb_queue_purge(&hdev->cmd_q);
1566                 skb_queue_purge(&hdev->rx_q);
1567
1568                 if (hdev->flush)
1569                         hdev->flush(hdev);
1570
1571                 if (hdev->sent_cmd) {
1572                         kfree_skb(hdev->sent_cmd);
1573                         hdev->sent_cmd = NULL;
1574                 }
1575
1576                 clear_bit(HCI_RUNNING, &hdev->flags);
1577                 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1578
1579                 hdev->close(hdev);
1580                 hdev->flags &= BIT(HCI_RAW);
1581         }
1582
1583 done:
1584         hci_req_sync_unlock(hdev);
1585         return ret;
1586 }
1587
1588 /* ---- HCI ioctl helpers ---- */
1589
1590 int hci_dev_open(__u16 dev)
1591 {
1592         struct hci_dev *hdev;
1593         int err;
1594
1595         hdev = hci_dev_get(dev);
1596         if (!hdev)
1597                 return -ENODEV;
1598
1599         /* Devices that are marked as unconfigured can only be powered
1600          * up as user channel. Trying to bring them up as normal devices
1601          * will result into a failure. Only user channel operation is
1602          * possible.
1603          *
1604          * When this function is called for a user channel, the flag
1605          * HCI_USER_CHANNEL will be set first before attempting to
1606          * open the device.
1607          */
1608         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1609             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1610                 err = -EOPNOTSUPP;
1611                 goto done;
1612         }
1613
1614         /* We need to ensure that no other power on/off work is pending
1615          * before proceeding to call hci_dev_do_open. This is
1616          * particularly important if the setup procedure has not yet
1617          * completed.
1618          */
1619         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1620                 cancel_delayed_work(&hdev->power_off);
1621
1622         /* After this call it is guaranteed that the setup procedure
1623          * has finished. This means that error conditions like RFKILL
1624          * or no valid public or static random address apply.
1625          */
1626         flush_workqueue(hdev->req_workqueue);
1627
1628         /* For controllers not using the management interface and that
1629          * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1630          * so that pairing works for them. Once the management interface
1631          * is in use this bit will be cleared again and userspace has
1632          * to explicitly enable it.
1633          */
1634         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1635             !hci_dev_test_flag(hdev, HCI_MGMT))
1636                 hci_dev_set_flag(hdev, HCI_BONDABLE);
1637
1638         err = hci_dev_do_open(hdev);
1639
1640 done:
1641         hci_dev_put(hdev);
1642         return err;
1643 }
1644
1645 /* This function requires the caller holds hdev->lock */
1646 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1647 {
1648         struct hci_conn_params *p;
1649
1650         list_for_each_entry(p, &hdev->le_conn_params, list) {
1651                 if (p->conn) {
1652                         hci_conn_drop(p->conn);
1653                         hci_conn_put(p->conn);
1654                         p->conn = NULL;
1655                 }
1656                 list_del_init(&p->action);
1657         }
1658
1659         BT_DBG("All LE pending actions cleared");
1660 }
1661
1662 int hci_dev_do_close(struct hci_dev *hdev)
1663 {
1664         bool auto_off;
1665
1666         BT_DBG("%s %p", hdev->name, hdev);
1667
1668         if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1669             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1670             test_bit(HCI_UP, &hdev->flags)) {
1671                 /* Execute vendor specific shutdown routine */
1672                 if (hdev->shutdown)
1673                         hdev->shutdown(hdev);
1674         }
1675
1676         cancel_delayed_work(&hdev->power_off);
1677
1678         hci_request_cancel_all(hdev);
1679         hci_req_sync_lock(hdev);
1680
1681         if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1682                 cancel_delayed_work_sync(&hdev->cmd_timer);
1683                 hci_req_sync_unlock(hdev);
1684                 return 0;
1685         }
1686
1687         hci_leds_update_powered(hdev, false);
1688
1689         /* Flush RX and TX works */
1690         flush_work(&hdev->tx_work);
1691         flush_work(&hdev->rx_work);
1692
1693         if (hdev->discov_timeout > 0) {
1694                 hdev->discov_timeout = 0;
1695                 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1696                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1697         }
1698
1699         if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1700                 cancel_delayed_work(&hdev->service_cache);
1701
1702         if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1703                 struct adv_info *adv_instance;
1704
1705                 cancel_delayed_work_sync(&hdev->rpa_expired);
1706
1707                 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1708                         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1709         }
1710
1711         /* Avoid potential lockdep warnings from the *_flush() calls by
1712          * ensuring the workqueue is empty up front.
1713          */
1714         drain_workqueue(hdev->workqueue);
1715
1716         hci_dev_lock(hdev);
1717
1718         hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1719
1720         auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1721
1722         if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1723             !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1724             hci_dev_test_flag(hdev, HCI_MGMT))
1725                 __mgmt_power_off(hdev);
1726
1727         hci_inquiry_cache_flush(hdev);
1728         hci_pend_le_actions_clear(hdev);
1729         hci_conn_hash_flush(hdev);
1730         hci_dev_unlock(hdev);
1731
1732         smp_unregister(hdev);
1733
1734         hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1735
1736         if (hdev->flush)
1737                 hdev->flush(hdev);
1738
1739         /* Reset device */
1740         skb_queue_purge(&hdev->cmd_q);
1741         atomic_set(&hdev->cmd_cnt, 1);
1742         if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1743             !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1744                 set_bit(HCI_INIT, &hdev->flags);
1745                 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1746                 clear_bit(HCI_INIT, &hdev->flags);
1747         }
1748
1749         /* flush cmd  work */
1750         flush_work(&hdev->cmd_work);
1751
1752         /* Drop queues */
1753         skb_queue_purge(&hdev->rx_q);
1754         skb_queue_purge(&hdev->cmd_q);
1755         skb_queue_purge(&hdev->raw_q);
1756
1757         /* Drop last sent command */
1758         if (hdev->sent_cmd) {
1759                 cancel_delayed_work_sync(&hdev->cmd_timer);
1760                 kfree_skb(hdev->sent_cmd);
1761                 hdev->sent_cmd = NULL;
1762         }
1763
1764         clear_bit(HCI_RUNNING, &hdev->flags);
1765         hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1766
1767         /* After this point our queues are empty
1768          * and no tasks are scheduled. */
1769         hdev->close(hdev);
1770
1771         /* Clear flags */
1772         hdev->flags &= BIT(HCI_RAW);
1773         hci_dev_clear_volatile_flags(hdev);
1774
1775         /* Controller radio is available but is currently powered down */
1776         hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1777
1778         memset(hdev->eir, 0, sizeof(hdev->eir));
1779         memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1780         bacpy(&hdev->random_addr, BDADDR_ANY);
1781
1782         hci_req_sync_unlock(hdev);
1783
1784         hci_dev_put(hdev);
1785         return 0;
1786 }
1787
1788 int hci_dev_close(__u16 dev)
1789 {
1790         struct hci_dev *hdev;
1791         int err;
1792
1793         hdev = hci_dev_get(dev);
1794         if (!hdev)
1795                 return -ENODEV;
1796
1797         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1798                 err = -EBUSY;
1799                 goto done;
1800         }
1801
1802         if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1803                 cancel_delayed_work(&hdev->power_off);
1804
1805         err = hci_dev_do_close(hdev);
1806
1807 done:
1808         hci_dev_put(hdev);
1809         return err;
1810 }
1811
1812 static int hci_dev_do_reset(struct hci_dev *hdev)
1813 {
1814         int ret;
1815
1816         BT_DBG("%s %p", hdev->name, hdev);
1817
1818         hci_req_sync_lock(hdev);
1819
1820         /* Drop queues */
1821         skb_queue_purge(&hdev->rx_q);
1822         skb_queue_purge(&hdev->cmd_q);
1823
1824         /* Avoid potential lockdep warnings from the *_flush() calls by
1825          * ensuring the workqueue is empty up front.
1826          */
1827         drain_workqueue(hdev->workqueue);
1828
1829         hci_dev_lock(hdev);
1830         hci_inquiry_cache_flush(hdev);
1831         hci_conn_hash_flush(hdev);
1832         hci_dev_unlock(hdev);
1833
1834         if (hdev->flush)
1835                 hdev->flush(hdev);
1836
1837         atomic_set(&hdev->cmd_cnt, 1);
1838         hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1839
1840         ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1841
1842         hci_req_sync_unlock(hdev);
1843         return ret;
1844 }
1845
1846 int hci_dev_reset(__u16 dev)
1847 {
1848         struct hci_dev *hdev;
1849         int err;
1850
1851         hdev = hci_dev_get(dev);
1852         if (!hdev)
1853                 return -ENODEV;
1854
1855         if (!test_bit(HCI_UP, &hdev->flags)) {
1856                 err = -ENETDOWN;
1857                 goto done;
1858         }
1859
1860         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1861                 err = -EBUSY;
1862                 goto done;
1863         }
1864
1865         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1866                 err = -EOPNOTSUPP;
1867                 goto done;
1868         }
1869
1870         err = hci_dev_do_reset(hdev);
1871
1872 done:
1873         hci_dev_put(hdev);
1874         return err;
1875 }
1876
1877 int hci_dev_reset_stat(__u16 dev)
1878 {
1879         struct hci_dev *hdev;
1880         int ret = 0;
1881
1882         hdev = hci_dev_get(dev);
1883         if (!hdev)
1884                 return -ENODEV;
1885
1886         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1887                 ret = -EBUSY;
1888                 goto done;
1889         }
1890
1891         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1892                 ret = -EOPNOTSUPP;
1893                 goto done;
1894         }
1895
1896         memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1897
1898 done:
1899         hci_dev_put(hdev);
1900         return ret;
1901 }
1902
1903 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1904 {
1905         bool conn_changed, discov_changed;
1906
1907         BT_DBG("%s scan 0x%02x", hdev->name, scan);
1908
1909         if ((scan & SCAN_PAGE))
1910                 conn_changed = !hci_dev_test_and_set_flag(hdev,
1911                                                           HCI_CONNECTABLE);
1912         else
1913                 conn_changed = hci_dev_test_and_clear_flag(hdev,
1914                                                            HCI_CONNECTABLE);
1915
1916         if ((scan & SCAN_INQUIRY)) {
1917                 discov_changed = !hci_dev_test_and_set_flag(hdev,
1918                                                             HCI_DISCOVERABLE);
1919         } else {
1920                 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1921                 discov_changed = hci_dev_test_and_clear_flag(hdev,
1922                                                              HCI_DISCOVERABLE);
1923         }
1924
1925         if (!hci_dev_test_flag(hdev, HCI_MGMT))
1926                 return;
1927
1928         if (conn_changed || discov_changed) {
1929                 /* In case this was disabled through mgmt */
1930                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1931
1932                 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1933                         hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1934
1935                 mgmt_new_settings(hdev);
1936         }
1937 }
1938
1939 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1940 {
1941         struct hci_dev *hdev;
1942         struct hci_dev_req dr;
1943         int err = 0;
1944
1945         if (copy_from_user(&dr, arg, sizeof(dr)))
1946                 return -EFAULT;
1947
1948         hdev = hci_dev_get(dr.dev_id);
1949         if (!hdev)
1950                 return -ENODEV;
1951
1952         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1953                 err = -EBUSY;
1954                 goto done;
1955         }
1956
1957         if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1958                 err = -EOPNOTSUPP;
1959                 goto done;
1960         }
1961
1962         if (hdev->dev_type != HCI_PRIMARY) {
1963                 err = -EOPNOTSUPP;
1964                 goto done;
1965         }
1966
1967         if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1968                 err = -EOPNOTSUPP;
1969                 goto done;
1970         }
1971
1972         switch (cmd) {
1973         case HCISETAUTH:
1974                 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1975                                    HCI_INIT_TIMEOUT, NULL);
1976                 break;
1977
1978         case HCISETENCRYPT:
1979                 if (!lmp_encrypt_capable(hdev)) {
1980                         err = -EOPNOTSUPP;
1981                         break;
1982                 }
1983
1984                 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1985                         /* Auth must be enabled first */
1986                         err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1987                                            HCI_INIT_TIMEOUT, NULL);
1988                         if (err)
1989                                 break;
1990                 }
1991
1992                 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1993                                    HCI_INIT_TIMEOUT, NULL);
1994                 break;
1995
1996         case HCISETSCAN:
1997                 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1998                                    HCI_INIT_TIMEOUT, NULL);
1999
2000                 /* Ensure that the connectable and discoverable states
2001                  * get correctly modified as this was a non-mgmt change.
2002                  */
2003                 if (!err)
2004                         hci_update_scan_state(hdev, dr.dev_opt);
2005                 break;
2006
2007         case HCISETLINKPOL:
2008                 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2009                                    HCI_INIT_TIMEOUT, NULL);
2010                 break;
2011
2012         case HCISETLINKMODE:
2013                 hdev->link_mode = ((__u16) dr.dev_opt) &
2014                                         (HCI_LM_MASTER | HCI_LM_ACCEPT);
2015                 break;
2016
2017         case HCISETPTYPE:
2018                 if (hdev->pkt_type == (__u16) dr.dev_opt)
2019                         break;
2020
2021                 hdev->pkt_type = (__u16) dr.dev_opt;
2022                 mgmt_phy_configuration_changed(hdev, NULL);
2023                 break;
2024
2025         case HCISETACLMTU:
2026                 hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2027                 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2028                 break;
2029
2030         case HCISETSCOMTU:
2031                 hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2032                 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2033                 break;
2034
2035         default:
2036                 err = -EINVAL;
2037                 break;
2038         }
2039
2040 done:
2041         hci_dev_put(hdev);
2042         return err;
2043 }
2044
2045 int hci_get_dev_list(void __user *arg)
2046 {
2047         struct hci_dev *hdev;
2048         struct hci_dev_list_req *dl;
2049         struct hci_dev_req *dr;
2050         int n = 0, size, err;
2051         __u16 dev_num;
2052
2053         if (get_user(dev_num, (__u16 __user *) arg))
2054                 return -EFAULT;
2055
2056         if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2057                 return -EINVAL;
2058
2059         size = sizeof(*dl) + dev_num * sizeof(*dr);
2060
2061         dl = kzalloc(size, GFP_KERNEL);
2062         if (!dl)
2063                 return -ENOMEM;
2064
2065         dr = dl->dev_req;
2066
2067         read_lock(&hci_dev_list_lock);
2068         list_for_each_entry(hdev, &hci_dev_list, list) {
2069                 unsigned long flags = hdev->flags;
2070
2071                 /* When the auto-off is configured it means the transport
2072                  * is running, but in that case still indicate that the
2073                  * device is actually down.
2074                  */
2075                 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2076                         flags &= ~BIT(HCI_UP);
2077
2078                 (dr + n)->dev_id  = hdev->id;
2079                 (dr + n)->dev_opt = flags;
2080
2081                 if (++n >= dev_num)
2082                         break;
2083         }
2084         read_unlock(&hci_dev_list_lock);
2085
2086         dl->dev_num = n;
2087         size = sizeof(*dl) + n * sizeof(*dr);
2088
2089         err = copy_to_user(arg, dl, size);
2090         kfree(dl);
2091
2092         return err ? -EFAULT : 0;
2093 }
2094
2095 int hci_get_dev_info(void __user *arg)
2096 {
2097         struct hci_dev *hdev;
2098         struct hci_dev_info di;
2099         unsigned long flags;
2100         int err = 0;
2101
2102         if (copy_from_user(&di, arg, sizeof(di)))
2103                 return -EFAULT;
2104
2105         hdev = hci_dev_get(di.dev_id);
2106         if (!hdev)
2107                 return -ENODEV;
2108
2109         /* When the auto-off is configured it means the transport
2110          * is running, but in that case still indicate that the
2111          * device is actually down.
2112          */
2113         if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2114                 flags = hdev->flags & ~BIT(HCI_UP);
2115         else
2116                 flags = hdev->flags;
2117
2118         strcpy(di.name, hdev->name);
2119         di.bdaddr   = hdev->bdaddr;
2120         di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2121         di.flags    = flags;
2122         di.pkt_type = hdev->pkt_type;
2123         if (lmp_bredr_capable(hdev)) {
2124                 di.acl_mtu  = hdev->acl_mtu;
2125                 di.acl_pkts = hdev->acl_pkts;
2126                 di.sco_mtu  = hdev->sco_mtu;
2127                 di.sco_pkts = hdev->sco_pkts;
2128         } else {
2129                 di.acl_mtu  = hdev->le_mtu;
2130                 di.acl_pkts = hdev->le_pkts;
2131                 di.sco_mtu  = 0;
2132                 di.sco_pkts = 0;
2133         }
2134         di.link_policy = hdev->link_policy;
2135         di.link_mode   = hdev->link_mode;
2136
2137         memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2138         memcpy(&di.features, &hdev->features, sizeof(di.features));
2139
2140         if (copy_to_user(arg, &di, sizeof(di)))
2141                 err = -EFAULT;
2142
2143         hci_dev_put(hdev);
2144
2145         return err;
2146 }
2147
2148 /* ---- Interface to HCI drivers ---- */
2149
2150 static int hci_rfkill_set_block(void *data, bool blocked)
2151 {
2152         struct hci_dev *hdev = data;
2153
2154         BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2155
2156         if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2157                 return -EBUSY;
2158
2159         if (blocked) {
2160                 hci_dev_set_flag(hdev, HCI_RFKILLED);
2161                 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2162                     !hci_dev_test_flag(hdev, HCI_CONFIG))
2163                         hci_dev_do_close(hdev);
2164         } else {
2165                 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2166         }
2167
2168         return 0;
2169 }
2170
2171 static const struct rfkill_ops hci_rfkill_ops = {
2172         .set_block = hci_rfkill_set_block,
2173 };
2174
2175 static void hci_power_on(struct work_struct *work)
2176 {
2177         struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2178         int err;
2179
2180         BT_DBG("%s", hdev->name);
2181
2182         if (test_bit(HCI_UP, &hdev->flags) &&
2183             hci_dev_test_flag(hdev, HCI_MGMT) &&
2184             hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2185                 cancel_delayed_work(&hdev->power_off);
2186                 hci_req_sync_lock(hdev);
2187                 err = __hci_req_hci_power_on(hdev);
2188                 hci_req_sync_unlock(hdev);
2189                 mgmt_power_on(hdev, err);
2190                 return;
2191         }
2192
2193         err = hci_dev_do_open(hdev);
2194         if (err < 0) {
2195                 hci_dev_lock(hdev);
2196                 mgmt_set_powered_failed(hdev, err);
2197                 hci_dev_unlock(hdev);
2198                 return;
2199         }
2200
2201         /* During the HCI setup phase, a few error conditions are
2202          * ignored and they need to be checked now. If they are still
2203          * valid, it is important to turn the device back off.
2204          */
2205         if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2206             hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2207             (hdev->dev_type == HCI_PRIMARY &&
2208              !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2209              !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2210                 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2211                 hci_dev_do_close(hdev);
2212         } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2213                 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2214                                    HCI_AUTO_OFF_TIMEOUT);
2215         }
2216
2217         if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2218                 /* For unconfigured devices, set the HCI_RAW flag
2219                  * so that userspace can easily identify them.
2220                  */
2221                 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2222                         set_bit(HCI_RAW, &hdev->flags);
2223
2224                 /* For fully configured devices, this will send
2225                  * the Index Added event. For unconfigured devices,
2226                  * it will send Unconfigued Index Added event.
2227                  *
2228                  * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2229                  * and no event will be send.
2230                  */
2231                 mgmt_index_added(hdev);
2232         } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2233                 /* When the controller is now configured, then it
2234                  * is important to clear the HCI_RAW flag.
2235                  */
2236                 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2237                         clear_bit(HCI_RAW, &hdev->flags);
2238
2239                 /* Powering on the controller with HCI_CONFIG set only
2240                  * happens with the transition from unconfigured to
2241                  * configured. This will send the Index Added event.
2242                  */
2243                 mgmt_index_added(hdev);
2244         }
2245 }
2246
2247 static void hci_power_off(struct work_struct *work)
2248 {
2249         struct hci_dev *hdev = container_of(work, struct hci_dev,
2250                                             power_off.work);
2251
2252         BT_DBG("%s", hdev->name);
2253
2254         hci_dev_do_close(hdev);
2255 }
2256
2257 static void hci_error_reset(struct work_struct *work)
2258 {
2259         struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2260
2261         BT_DBG("%s", hdev->name);
2262
2263         if (hdev->hw_error)
2264                 hdev->hw_error(hdev, hdev->hw_error_code);
2265         else
2266                 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2267
2268         if (hci_dev_do_close(hdev))
2269                 return;
2270
2271         hci_dev_do_open(hdev);
2272 }
2273
2274 void hci_uuids_clear(struct hci_dev *hdev)
2275 {
2276         struct bt_uuid *uuid, *tmp;
2277
2278         list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2279                 list_del(&uuid->list);
2280                 kfree(uuid);
2281         }
2282 }
2283
2284 void hci_link_keys_clear(struct hci_dev *hdev)
2285 {
2286         struct link_key *key;
2287
2288         list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2289                 list_del_rcu(&key->list);
2290                 kfree_rcu(key, rcu);
2291         }
2292 }
2293
2294 void hci_smp_ltks_clear(struct hci_dev *hdev)
2295 {
2296         struct smp_ltk *k;
2297
2298         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2299                 list_del_rcu(&k->list);
2300                 kfree_rcu(k, rcu);
2301         }
2302 }
2303
2304 void hci_smp_irks_clear(struct hci_dev *hdev)
2305 {
2306         struct smp_irk *k;
2307
2308         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2309                 list_del_rcu(&k->list);
2310                 kfree_rcu(k, rcu);
2311         }
2312 }
2313
2314 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2315 {
2316         struct link_key *k;
2317
2318         rcu_read_lock();
2319         list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2320                 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2321                         rcu_read_unlock();
2322                         return k;
2323                 }
2324         }
2325         rcu_read_unlock();
2326
2327         return NULL;
2328 }
2329
2330 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2331                                u8 key_type, u8 old_key_type)
2332 {
2333         /* Legacy key */
2334         if (key_type < 0x03)
2335                 return true;
2336
2337         /* Debug keys are insecure so don't store them persistently */
2338         if (key_type == HCI_LK_DEBUG_COMBINATION)
2339                 return false;
2340
2341         /* Changed combination key and there's no previous one */
2342         if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2343                 return false;
2344
2345         /* Security mode 3 case */
2346         if (!conn)
2347                 return true;
2348
2349         /* BR/EDR key derived using SC from an LE link */
2350         if (conn->type == LE_LINK)
2351                 return true;
2352
2353         /* Neither local nor remote side had no-bonding as requirement */
2354         if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2355                 return true;
2356
2357         /* Local side had dedicated bonding as requirement */
2358         if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2359                 return true;
2360
2361         /* Remote side had dedicated bonding as requirement */
2362         if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2363                 return true;
2364
2365         /* If none of the above criteria match, then don't store the key
2366          * persistently */
2367         return false;
2368 }
2369
2370 static u8 ltk_role(u8 type)
2371 {
2372         if (type == SMP_LTK)
2373                 return HCI_ROLE_MASTER;
2374
2375         return HCI_ROLE_SLAVE;
2376 }
2377
2378 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2379                              u8 addr_type, u8 role)
2380 {
2381         struct smp_ltk *k;
2382
2383         rcu_read_lock();
2384         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2385                 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2386                         continue;
2387
2388                 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2389                         rcu_read_unlock();
2390                         return k;
2391                 }
2392         }
2393         rcu_read_unlock();
2394
2395         return NULL;
2396 }
2397
2398 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2399 {
2400         struct smp_irk *irk;
2401
2402         rcu_read_lock();
2403         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2404                 if (!bacmp(&irk->rpa, rpa)) {
2405                         rcu_read_unlock();
2406                         return irk;
2407                 }
2408         }
2409
2410         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2411                 if (smp_irk_matches(hdev, irk->val, rpa)) {
2412                         bacpy(&irk->rpa, rpa);
2413                         rcu_read_unlock();
2414                         return irk;
2415                 }
2416         }
2417         rcu_read_unlock();
2418
2419         return NULL;
2420 }
2421
2422 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2423                                      u8 addr_type)
2424 {
2425         struct smp_irk *irk;
2426
2427         /* Identity Address must be public or static random */
2428         if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2429                 return NULL;
2430
2431         rcu_read_lock();
2432         list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2433                 if (addr_type == irk->addr_type &&
2434                     bacmp(bdaddr, &irk->bdaddr) == 0) {
2435                         rcu_read_unlock();
2436                         return irk;
2437                 }
2438         }
2439         rcu_read_unlock();
2440
2441         return NULL;
2442 }
2443
2444 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2445                                   bdaddr_t *bdaddr, u8 *val, u8 type,
2446                                   u8 pin_len, bool *persistent)
2447 {
2448         struct link_key *key, *old_key;
2449         u8 old_key_type;
2450
2451         old_key = hci_find_link_key(hdev, bdaddr);
2452         if (old_key) {
2453                 old_key_type = old_key->type;
2454                 key = old_key;
2455         } else {
2456                 old_key_type = conn ? conn->key_type : 0xff;
2457                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2458                 if (!key)
2459                         return NULL;
2460                 list_add_rcu(&key->list, &hdev->link_keys);
2461         }
2462
2463         BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2464
2465         /* Some buggy controller combinations generate a changed
2466          * combination key for legacy pairing even when there's no
2467          * previous key */
2468         if (type == HCI_LK_CHANGED_COMBINATION &&
2469             (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2470                 type = HCI_LK_COMBINATION;
2471                 if (conn)
2472                         conn->key_type = type;
2473         }
2474
2475         bacpy(&key->bdaddr, bdaddr);
2476         memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2477         key->pin_len = pin_len;
2478
2479         if (type == HCI_LK_CHANGED_COMBINATION)
2480                 key->type = old_key_type;
2481         else
2482                 key->type = type;
2483
2484         if (persistent)
2485                 *persistent = hci_persistent_key(hdev, conn, type,
2486                                                  old_key_type);
2487
2488         return key;
2489 }
2490
2491 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2492                             u8 addr_type, u8 type, u8 authenticated,
2493                             u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2494 {
2495         struct smp_ltk *key, *old_key;
2496         u8 role = ltk_role(type);
2497
2498         old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2499         if (old_key)
2500                 key = old_key;
2501         else {
2502                 key = kzalloc(sizeof(*key), GFP_KERNEL);
2503                 if (!key)
2504                         return NULL;
2505                 list_add_rcu(&key->list, &hdev->long_term_keys);
2506         }
2507
2508         bacpy(&key->bdaddr, bdaddr);
2509         key->bdaddr_type = addr_type;
2510         memcpy(key->val, tk, sizeof(key->val));
2511         key->authenticated = authenticated;
2512         key->ediv = ediv;
2513         key->rand = rand;
2514         key->enc_size = enc_size;
2515         key->type = type;
2516
2517         return key;
2518 }
2519
2520 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2521                             u8 addr_type, u8 val[16], bdaddr_t *rpa)
2522 {
2523         struct smp_irk *irk;
2524
2525         irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2526         if (!irk) {
2527                 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2528                 if (!irk)
2529                         return NULL;
2530
2531                 bacpy(&irk->bdaddr, bdaddr);
2532                 irk->addr_type = addr_type;
2533
2534                 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2535         }
2536
2537         memcpy(irk->val, val, 16);
2538         bacpy(&irk->rpa, rpa);
2539
2540         return irk;
2541 }
2542
2543 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2544 {
2545         struct link_key *key;
2546
2547         key = hci_find_link_key(hdev, bdaddr);
2548         if (!key)
2549                 return -ENOENT;
2550
2551         BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2552
2553         list_del_rcu(&key->list);
2554         kfree_rcu(key, rcu);
2555
2556         return 0;
2557 }
2558
2559 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2560 {
2561         struct smp_ltk *k;
2562         int removed = 0;
2563
2564         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2565                 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2566                         continue;
2567
2568                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2569
2570                 list_del_rcu(&k->list);
2571                 kfree_rcu(k, rcu);
2572                 removed++;
2573         }
2574
2575         return removed ? 0 : -ENOENT;
2576 }
2577
2578 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2579 {
2580         struct smp_irk *k;
2581
2582         list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2583                 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2584                         continue;
2585
2586                 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2587
2588                 list_del_rcu(&k->list);
2589                 kfree_rcu(k, rcu);
2590         }
2591 }
2592
2593 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2594 {
2595         struct smp_ltk *k;
2596         struct smp_irk *irk;
2597         u8 addr_type;
2598
2599         if (type == BDADDR_BREDR) {
2600                 if (hci_find_link_key(hdev, bdaddr))
2601                         return true;
2602                 return false;
2603         }
2604
2605         /* Convert to HCI addr type which struct smp_ltk uses */
2606         if (type == BDADDR_LE_PUBLIC)
2607                 addr_type = ADDR_LE_DEV_PUBLIC;
2608         else
2609                 addr_type = ADDR_LE_DEV_RANDOM;
2610
2611         irk = hci_get_irk(hdev, bdaddr, addr_type);
2612         if (irk) {
2613                 bdaddr = &irk->bdaddr;
2614                 addr_type = irk->addr_type;
2615         }
2616
2617         rcu_read_lock();
2618         list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2619                 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2620                         rcu_read_unlock();
2621                         return true;
2622                 }
2623         }
2624         rcu_read_unlock();
2625
2626         return false;
2627 }
2628
2629 /* HCI command timer function */
2630 static void hci_cmd_timeout(struct work_struct *work)
2631 {
2632         struct hci_dev *hdev = container_of(work, struct hci_dev,
2633                                             cmd_timer.work);
2634
2635         if (hdev->sent_cmd) {
2636                 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2637                 u16 opcode = __le16_to_cpu(sent->opcode);
2638
2639                 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2640         } else {
2641                 bt_dev_err(hdev, "command tx timeout");
2642         }
2643
2644         if (hdev->cmd_timeout)
2645                 hdev->cmd_timeout(hdev);
2646
2647         atomic_set(&hdev->cmd_cnt, 1);
2648         queue_work(hdev->workqueue, &hdev->cmd_work);
2649 }
2650
2651 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2652                                           bdaddr_t *bdaddr, u8 bdaddr_type)
2653 {
2654         struct oob_data *data;
2655
2656         list_for_each_entry(data, &hdev->remote_oob_data, list) {
2657                 if (bacmp(bdaddr, &data->bdaddr) != 0)
2658                         continue;
2659                 if (data->bdaddr_type != bdaddr_type)
2660                         continue;
2661                 return data;
2662         }
2663
2664         return NULL;
2665 }
2666
2667 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2668                                u8 bdaddr_type)
2669 {
2670         struct oob_data *data;
2671
2672         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2673         if (!data)
2674                 return -ENOENT;
2675
2676         BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2677
2678         list_del(&data->list);
2679         kfree(data);
2680
2681         return 0;
2682 }
2683
2684 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2685 {
2686         struct oob_data *data, *n;
2687
2688         list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2689                 list_del(&data->list);
2690                 kfree(data);
2691         }
2692 }
2693
2694 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2695                             u8 bdaddr_type, u8 *hash192, u8 *rand192,
2696                             u8 *hash256, u8 *rand256)
2697 {
2698         struct oob_data *data;
2699
2700         data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2701         if (!data) {
2702                 data = kmalloc(sizeof(*data), GFP_KERNEL);
2703                 if (!data)
2704                         return -ENOMEM;
2705
2706                 bacpy(&data->bdaddr, bdaddr);
2707                 data->bdaddr_type = bdaddr_type;
2708                 list_add(&data->list, &hdev->remote_oob_data);
2709         }
2710
2711         if (hash192 && rand192) {
2712                 memcpy(data->hash192, hash192, sizeof(data->hash192));
2713                 memcpy(data->rand192, rand192, sizeof(data->rand192));
2714                 if (hash256 && rand256)
2715                         data->present = 0x03;
2716         } else {
2717                 memset(data->hash192, 0, sizeof(data->hash192));
2718                 memset(data->rand192, 0, sizeof(data->rand192));
2719                 if (hash256 && rand256)
2720                         data->present = 0x02;
2721                 else
2722                         data->present = 0x00;
2723         }
2724
2725         if (hash256 && rand256) {
2726                 memcpy(data->hash256, hash256, sizeof(data->hash256));
2727                 memcpy(data->rand256, rand256, sizeof(data->rand256));
2728         } else {
2729                 memset(data->hash256, 0, sizeof(data->hash256));
2730                 memset(data->rand256, 0, sizeof(data->rand256));
2731                 if (hash192 && rand192)
2732                         data->present = 0x01;
2733         }
2734
2735         BT_DBG("%s for %pMR", hdev->name, bdaddr);
2736
2737         return 0;
2738 }
2739
2740 /* This function requires the caller holds hdev->lock */
2741 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2742 {
2743         struct adv_info *adv_instance;
2744
2745         list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2746                 if (adv_instance->instance == instance)
2747                         return adv_instance;
2748         }
2749
2750         return NULL;
2751 }
2752
2753 /* This function requires the caller holds hdev->lock */
2754 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2755 {
2756         struct adv_info *cur_instance;
2757
2758         cur_instance = hci_find_adv_instance(hdev, instance);
2759         if (!cur_instance)
2760                 return NULL;
2761
2762         if (cur_instance == list_last_entry(&hdev->adv_instances,
2763                                             struct adv_info, list))
2764                 return list_first_entry(&hdev->adv_instances,
2765                                                  struct adv_info, list);
2766         else
2767                 return list_next_entry(cur_instance, list);
2768 }
2769
2770 /* This function requires the caller holds hdev->lock */
2771 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2772 {
2773         struct adv_info *adv_instance;
2774
2775         adv_instance = hci_find_adv_instance(hdev, instance);
2776         if (!adv_instance)
2777                 return -ENOENT;
2778
2779         BT_DBG("%s removing %dMR", hdev->name, instance);
2780
2781         if (hdev->cur_adv_instance == instance) {
2782                 if (hdev->adv_instance_timeout) {
2783                         cancel_delayed_work(&hdev->adv_instance_expire);
2784                         hdev->adv_instance_timeout = 0;
2785                 }
2786                 hdev->cur_adv_instance = 0x00;
2787         }
2788
2789         cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2790
2791         list_del(&adv_instance->list);
2792         kfree(adv_instance);
2793
2794         hdev->adv_instance_cnt--;
2795
2796         return 0;
2797 }
2798
2799 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2800 {
2801         struct adv_info *adv_instance, *n;
2802
2803         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2804                 adv_instance->rpa_expired = rpa_expired;
2805 }
2806
2807 /* This function requires the caller holds hdev->lock */
2808 void hci_adv_instances_clear(struct hci_dev *hdev)
2809 {
2810         struct adv_info *adv_instance, *n;
2811
2812         if (hdev->adv_instance_timeout) {
2813                 cancel_delayed_work(&hdev->adv_instance_expire);
2814                 hdev->adv_instance_timeout = 0;
2815         }
2816
2817         list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2818                 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2819                 list_del(&adv_instance->list);
2820                 kfree(adv_instance);
2821         }
2822
2823         hdev->adv_instance_cnt = 0;
2824         hdev->cur_adv_instance = 0x00;
2825 }
2826
2827 static void adv_instance_rpa_expired(struct work_struct *work)
2828 {
2829         struct adv_info *adv_instance = container_of(work, struct adv_info,
2830                                                      rpa_expired_cb.work);
2831
2832         BT_DBG("");
2833
2834         adv_instance->rpa_expired = true;
2835 }
2836
2837 /* This function requires the caller holds hdev->lock */
2838 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2839                          u16 adv_data_len, u8 *adv_data,
2840                          u16 scan_rsp_len, u8 *scan_rsp_data,
2841                          u16 timeout, u16 duration)
2842 {
2843         struct adv_info *adv_instance;
2844
2845         adv_instance = hci_find_adv_instance(hdev, instance);
2846         if (adv_instance) {
2847                 memset(adv_instance->adv_data, 0,
2848                        sizeof(adv_instance->adv_data));
2849                 memset(adv_instance->scan_rsp_data, 0,
2850                        sizeof(adv_instance->scan_rsp_data));
2851         } else {
2852                 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2853                     instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2854                         return -EOVERFLOW;
2855
2856                 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2857                 if (!adv_instance)
2858                         return -ENOMEM;
2859
2860                 adv_instance->pending = true;
2861                 adv_instance->instance = instance;
2862                 list_add(&adv_instance->list, &hdev->adv_instances);
2863                 hdev->adv_instance_cnt++;
2864         }
2865
2866         adv_instance->flags = flags;
2867         adv_instance->adv_data_len = adv_data_len;
2868         adv_instance->scan_rsp_len = scan_rsp_len;
2869
2870         if (adv_data_len)
2871                 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2872
2873         if (scan_rsp_len)
2874                 memcpy(adv_instance->scan_rsp_data,
2875                        scan_rsp_data, scan_rsp_len);
2876
2877         adv_instance->timeout = timeout;
2878         adv_instance->remaining_time = timeout;
2879
2880         if (duration == 0)
2881                 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2882         else
2883                 adv_instance->duration = duration;
2884
2885         adv_instance->tx_power = HCI_TX_POWER_INVALID;
2886
2887         INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2888                           adv_instance_rpa_expired);
2889
2890         BT_DBG("%s for %dMR", hdev->name, instance);
2891
2892         return 0;
2893 }
2894
2895 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2896                                          bdaddr_t *bdaddr, u8 type)
2897 {
2898         struct bdaddr_list *b;
2899
2900         list_for_each_entry(b, bdaddr_list, list) {
2901                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2902                         return b;
2903         }
2904
2905         return NULL;
2906 }
2907
2908 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2909                                 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2910                                 u8 type)
2911 {
2912         struct bdaddr_list_with_irk *b;
2913
2914         list_for_each_entry(b, bdaddr_list, list) {
2915                 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2916                         return b;
2917         }
2918
2919         return NULL;
2920 }
2921
2922 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2923 {
2924         struct bdaddr_list *b, *n;
2925
2926         list_for_each_entry_safe(b, n, bdaddr_list, list) {
2927                 list_del(&b->list);
2928                 kfree(b);
2929         }
2930 }
2931
2932 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2933 {
2934         struct bdaddr_list *entry;
2935
2936         if (!bacmp(bdaddr, BDADDR_ANY))
2937                 return -EBADF;
2938
2939         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2940                 return -EEXIST;
2941
2942         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2943         if (!entry)
2944                 return -ENOMEM;
2945
2946         bacpy(&entry->bdaddr, bdaddr);
2947         entry->bdaddr_type = type;
2948
2949         list_add(&entry->list, list);
2950
2951         return 0;
2952 }
2953
2954 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2955                                         u8 type, u8 *peer_irk, u8 *local_irk)
2956 {
2957         struct bdaddr_list_with_irk *entry;
2958
2959         if (!bacmp(bdaddr, BDADDR_ANY))
2960                 return -EBADF;
2961
2962         if (hci_bdaddr_list_lookup(list, bdaddr, type))
2963                 return -EEXIST;
2964
2965         entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2966         if (!entry)
2967                 return -ENOMEM;
2968
2969         bacpy(&entry->bdaddr, bdaddr);
2970         entry->bdaddr_type = type;
2971
2972         if (peer_irk)
2973                 memcpy(entry->peer_irk, peer_irk, 16);
2974
2975         if (local_irk)
2976                 memcpy(entry->local_irk, local_irk, 16);
2977
2978         list_add(&entry->list, list);
2979
2980         return 0;
2981 }
2982
2983 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2984 {
2985         struct bdaddr_list *entry;
2986
2987         if (!bacmp(bdaddr, BDADDR_ANY)) {
2988                 hci_bdaddr_list_clear(list);
2989                 return 0;
2990         }
2991
2992         entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2993         if (!entry)
2994                 return -ENOENT;
2995
2996         list_del(&entry->list);
2997         kfree(entry);
2998
2999         return 0;
3000 }
3001
3002 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3003                                                         u8 type)
3004 {
3005         struct bdaddr_list_with_irk *entry;
3006
3007         if (!bacmp(bdaddr, BDADDR_ANY)) {
3008                 hci_bdaddr_list_clear(list);
3009                 return 0;
3010         }
3011
3012         entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3013         if (!entry)
3014                 return -ENOENT;
3015
3016         list_del(&entry->list);
3017         kfree(entry);
3018
3019         return 0;
3020 }
3021
3022 /* This function requires the caller holds hdev->lock */
3023 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3024                                                bdaddr_t *addr, u8 addr_type)
3025 {
3026         struct hci_conn_params *params;
3027
3028         list_for_each_entry(params, &hdev->le_conn_params, list) {
3029                 if (bacmp(&params->addr, addr) == 0 &&
3030                     params->addr_type == addr_type) {
3031                         return params;
3032                 }
3033         }
3034
3035         return NULL;
3036 }
3037
3038 /* This function requires the caller holds hdev->lock */
3039 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3040                                                   bdaddr_t *addr, u8 addr_type)
3041 {
3042         struct hci_conn_params *param;
3043
3044         list_for_each_entry(param, list, action) {
3045                 if (bacmp(&param->addr, addr) == 0 &&
3046                     param->addr_type == addr_type)
3047                         return param;
3048         }
3049
3050         return NULL;
3051 }
3052
3053 /* This function requires the caller holds hdev->lock */
3054 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3055                                             bdaddr_t *addr, u8 addr_type)
3056 {
3057         struct hci_conn_params *params;
3058
3059         params = hci_conn_params_lookup(hdev, addr, addr_type);
3060         if (params)
3061                 return params;
3062
3063         params = kzalloc(sizeof(*params), GFP_KERNEL);
3064         if (!params) {
3065                 bt_dev_err(hdev, "out of memory");
3066                 return NULL;
3067         }
3068
3069         bacpy(&params->addr, addr);
3070         params->addr_type = addr_type;
3071
3072         list_add(&params->list, &hdev->le_conn_params);
3073         INIT_LIST_HEAD(&params->action);
3074
3075         params->conn_min_interval = hdev->le_conn_min_interval;
3076         params->conn_max_interval = hdev->le_conn_max_interval;
3077         params->conn_latency = hdev->le_conn_latency;
3078         params->supervision_timeout = hdev->le_supv_timeout;
3079         params->auto_connect = HCI_AUTO_CONN_DISABLED;
3080
3081         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3082
3083         return params;
3084 }
3085
3086 static void hci_conn_params_free(struct hci_conn_params *params)
3087 {
3088         if (params->conn) {
3089                 hci_conn_drop(params->conn);
3090                 hci_conn_put(params->conn);
3091         }
3092
3093         list_del(&params->action);
3094         list_del(&params->list);
3095         kfree(params);
3096 }
3097
3098 /* This function requires the caller holds hdev->lock */
3099 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3100 {
3101         struct hci_conn_params *params;
3102
3103         params = hci_conn_params_lookup(hdev, addr, addr_type);
3104         if (!params)
3105                 return;
3106
3107         hci_conn_params_free(params);
3108
3109         hci_update_background_scan(hdev);
3110
3111         BT_DBG("addr %pMR (type %u)", addr, addr_type);
3112 }
3113
3114 /* This function requires the caller holds hdev->lock */
3115 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3116 {
3117         struct hci_conn_params *params, *tmp;
3118
3119         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3120                 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3121                         continue;
3122
3123                 /* If trying to estabilish one time connection to disabled
3124                  * device, leave the params, but mark them as just once.
3125                  */
3126                 if (params->explicit_connect) {
3127                         params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3128                         continue;
3129                 }
3130
3131                 list_del(&params->list);
3132                 kfree(params);
3133         }
3134
3135         BT_DBG("All LE disabled connection parameters were removed");
3136 }
3137
3138 /* This function requires the caller holds hdev->lock */
3139 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3140 {
3141         struct hci_conn_params *params, *tmp;
3142
3143         list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3144                 hci_conn_params_free(params);
3145
3146         BT_DBG("All LE connection parameters were removed");
3147 }
3148
3149 /* Copy the Identity Address of the controller.
3150  *
3151  * If the controller has a public BD_ADDR, then by default use that one.
3152  * If this is a LE only controller without a public address, default to
3153  * the static random address.
3154  *
3155  * For debugging purposes it is possible to force controllers with a
3156  * public address to use the static random address instead.
3157  *
3158  * In case BR/EDR has been disabled on a dual-mode controller and
3159  * userspace has configured a static address, then that address
3160  * becomes the identity address instead of the public BR/EDR address.
3161  */
3162 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3163                                u8 *bdaddr_type)
3164 {
3165         if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3166             !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3167             (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3168              bacmp(&hdev->static_addr, BDADDR_ANY))) {
3169                 bacpy(bdaddr, &hdev->static_addr);
3170                 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3171         } else {
3172                 bacpy(bdaddr, &hdev->bdaddr);
3173                 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3174         }
3175 }
3176
3177 /* Alloc HCI device */
3178 struct hci_dev *hci_alloc_dev(void)
3179 {
3180         struct hci_dev *hdev;
3181
3182         hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3183         if (!hdev)
3184                 return NULL;
3185
3186         hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3187         hdev->esco_type = (ESCO_HV1);
3188         hdev->link_mode = (HCI_LM_ACCEPT);
3189         hdev->num_iac = 0x01;           /* One IAC support is mandatory */
3190         hdev->io_capability = 0x03;     /* No Input No Output */
3191         hdev->manufacturer = 0xffff;    /* Default to internal use */
3192         hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3193         hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3194         hdev->adv_instance_cnt = 0;
3195         hdev->cur_adv_instance = 0x00;
3196         hdev->adv_instance_timeout = 0;
3197
3198         hdev->sniff_max_interval = 800;
3199         hdev->sniff_min_interval = 80;
3200
3201         hdev->le_adv_channel_map = 0x07;
3202         hdev->le_adv_min_interval = 0x0800;
3203         hdev->le_adv_max_interval = 0x0800;
3204         hdev->le_scan_interval = 0x0060;
3205         hdev->le_scan_window = 0x0030;
3206         hdev->le_conn_min_interval = 0x0018;
3207         hdev->le_conn_max_interval = 0x0028;
3208         hdev->le_conn_latency = 0x0000;
3209         hdev->le_supv_timeout = 0x002a;
3210         hdev->le_def_tx_len = 0x001b;
3211         hdev->le_def_tx_time = 0x0148;
3212         hdev->le_max_tx_len = 0x001b;
3213         hdev->le_max_tx_time = 0x0148;
3214         hdev->le_max_rx_len = 0x001b;
3215         hdev->le_max_rx_time = 0x0148;
3216         hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3217         hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3218         hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3219         hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3220         hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3221
3222         hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3223         hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3224         hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3225         hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3226         hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3227         hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3228
3229         mutex_init(&hdev->lock);
3230         mutex_init(&hdev->req_lock);
3231
3232         INIT_LIST_HEAD(&hdev->mgmt_pending);
3233         INIT_LIST_HEAD(&hdev->blacklist);
3234         INIT_LIST_HEAD(&hdev->whitelist);
3235         INIT_LIST_HEAD(&hdev->uuids);
3236         INIT_LIST_HEAD(&hdev->link_keys);
3237         INIT_LIST_HEAD(&hdev->long_term_keys);
3238         INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3239         INIT_LIST_HEAD(&hdev->remote_oob_data);
3240         INIT_LIST_HEAD(&hdev->le_white_list);
3241         INIT_LIST_HEAD(&hdev->le_resolv_list);
3242         INIT_LIST_HEAD(&hdev->le_conn_params);
3243         INIT_LIST_HEAD(&hdev->pend_le_conns);
3244         INIT_LIST_HEAD(&hdev->pend_le_reports);
3245         INIT_LIST_HEAD(&hdev->conn_hash.list);
3246         INIT_LIST_HEAD(&hdev->adv_instances);
3247
3248         INIT_WORK(&hdev->rx_work, hci_rx_work);
3249         INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3250         INIT_WORK(&hdev->tx_work, hci_tx_work);
3251         INIT_WORK(&hdev->power_on, hci_power_on);
3252         INIT_WORK(&hdev->error_reset, hci_error_reset);
3253
3254         INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3255
3256         skb_queue_head_init(&hdev->rx_q);
3257         skb_queue_head_init(&hdev->cmd_q);
3258         skb_queue_head_init(&hdev->raw_q);
3259
3260         init_waitqueue_head(&hdev->req_wait_q);
3261
3262         INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3263
3264         hci_request_setup(hdev);
3265
3266         hci_init_sysfs(hdev);
3267         discovery_init(hdev);
3268
3269         return hdev;
3270 }
3271 EXPORT_SYMBOL(hci_alloc_dev);
3272
3273 /* Free HCI device */
3274 void hci_free_dev(struct hci_dev *hdev)
3275 {
3276         /* will free via device release */
3277         put_device(&hdev->dev);
3278 }
3279 EXPORT_SYMBOL(hci_free_dev);
3280
3281 /* Register HCI device */
3282 int hci_register_dev(struct hci_dev *hdev)
3283 {
3284         int id, error;
3285
3286         if (!hdev->open || !hdev->close || !hdev->send)
3287                 return -EINVAL;
3288
3289         /* Do not allow HCI_AMP devices to register at index 0,
3290          * so the index can be used as the AMP controller ID.
3291          */
3292         switch (hdev->dev_type) {
3293         case HCI_PRIMARY:
3294                 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3295                 break;
3296         case HCI_AMP:
3297                 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3298                 break;
3299         default:
3300                 return -EINVAL;
3301         }
3302
3303         if (id < 0)
3304                 return id;
3305
3306         sprintf(hdev->name, "hci%d", id);
3307         hdev->id = id;
3308
3309         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3310
3311         hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3312         if (!hdev->workqueue) {
3313                 error = -ENOMEM;
3314                 goto err;
3315         }
3316
3317         hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3318                                                       hdev->name);
3319         if (!hdev->req_workqueue) {
3320                 destroy_workqueue(hdev->workqueue);
3321                 error = -ENOMEM;
3322                 goto err;
3323         }
3324
3325         if (!IS_ERR_OR_NULL(bt_debugfs))
3326                 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3327
3328         dev_set_name(&hdev->dev, "%s", hdev->name);
3329
3330         error = device_add(&hdev->dev);
3331         if (error < 0)
3332                 goto err_wqueue;
3333
3334         hci_leds_init(hdev);
3335
3336         hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3337                                     RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3338                                     hdev);
3339         if (hdev->rfkill) {
3340                 if (rfkill_register(hdev->rfkill) < 0) {
3341                         rfkill_destroy(hdev->rfkill);
3342                         hdev->rfkill = NULL;
3343                 }
3344         }
3345
3346         if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3347                 hci_dev_set_flag(hdev, HCI_RFKILLED);
3348
3349         hci_dev_set_flag(hdev, HCI_SETUP);
3350         hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3351
3352         if (hdev->dev_type == HCI_PRIMARY) {
3353                 /* Assume BR/EDR support until proven otherwise (such as
3354                  * through reading supported features during init.
3355                  */
3356                 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3357         }
3358
3359         write_lock(&hci_dev_list_lock);
3360         list_add(&hdev->list, &hci_dev_list);
3361         write_unlock(&hci_dev_list_lock);
3362
3363         /* Devices that are marked for raw-only usage are unconfigured
3364          * and should not be included in normal operation.
3365          */
3366         if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3367                 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3368
3369         hci_sock_dev_event(hdev, HCI_DEV_REG);
3370         hci_dev_hold(hdev);
3371
3372         queue_work(hdev->req_workqueue, &hdev->power_on);
3373
3374         return id;
3375
3376 err_wqueue:
3377         destroy_workqueue(hdev->workqueue);
3378         destroy_workqueue(hdev->req_workqueue);
3379 err:
3380         ida_simple_remove(&hci_index_ida, hdev->id);
3381
3382         return error;
3383 }
3384 EXPORT_SYMBOL(hci_register_dev);
3385
3386 /* Unregister HCI device */
3387 void hci_unregister_dev(struct hci_dev *hdev)
3388 {
3389         int id;
3390
3391         BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3392
3393         hci_dev_set_flag(hdev, HCI_UNREGISTER);
3394
3395         id = hdev->id;
3396
3397         write_lock(&hci_dev_list_lock);
3398         list_del(&hdev->list);
3399         write_unlock(&hci_dev_list_lock);
3400
3401         cancel_work_sync(&hdev->power_on);
3402
3403         hci_dev_do_close(hdev);
3404
3405         if (!test_bit(HCI_INIT, &hdev->flags) &&
3406             !hci_dev_test_flag(hdev, HCI_SETUP) &&
3407             !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3408                 hci_dev_lock(hdev);
3409                 mgmt_index_removed(hdev);
3410                 hci_dev_unlock(hdev);
3411         }
3412
3413         /* mgmt_index_removed should take care of emptying the
3414          * pending list */
3415         BUG_ON(!list_empty(&hdev->mgmt_pending));
3416
3417         hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3418
3419         if (hdev->rfkill) {
3420                 rfkill_unregister(hdev->rfkill);
3421                 rfkill_destroy(hdev->rfkill);
3422         }
3423
3424         device_del(&hdev->dev);
3425
3426         debugfs_remove_recursive(hdev->debugfs);
3427         kfree_const(hdev->hw_info);
3428         kfree_const(hdev->fw_info);
3429
3430         destroy_workqueue(hdev->workqueue);
3431         destroy_workqueue(hdev->req_workqueue);
3432
3433         hci_dev_lock(hdev);
3434         hci_bdaddr_list_clear(&hdev->blacklist);
3435         hci_bdaddr_list_clear(&hdev->whitelist);
3436         hci_uuids_clear(hdev);
3437         hci_link_keys_clear(hdev);
3438         hci_smp_ltks_clear(hdev);
3439         hci_smp_irks_clear(hdev);
3440         hci_remote_oob_data_clear(hdev);
3441         hci_adv_instances_clear(hdev);
3442         hci_bdaddr_list_clear(&hdev->le_white_list);
3443         hci_bdaddr_list_clear(&hdev->le_resolv_list);
3444         hci_conn_params_clear_all(hdev);
3445         hci_discovery_filter_clear(hdev);
3446         hci_dev_unlock(hdev);
3447
3448         hci_dev_put(hdev);
3449
3450         ida_simple_remove(&hci_index_ida, id);
3451 }
3452 EXPORT_SYMBOL(hci_unregister_dev);
3453
3454 /* Suspend HCI device */
3455 int hci_suspend_dev(struct hci_dev *hdev)
3456 {
3457         hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3458         return 0;
3459 }
3460 EXPORT_SYMBOL(hci_suspend_dev);
3461
3462 /* Resume HCI device */
3463 int hci_resume_dev(struct hci_dev *hdev)
3464 {
3465         hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3466         return 0;
3467 }
3468 EXPORT_SYMBOL(hci_resume_dev);
3469
3470 /* Reset HCI device */
3471 int hci_reset_dev(struct hci_dev *hdev)
3472 {
3473         static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3474         struct sk_buff *skb;
3475
3476         skb = bt_skb_alloc(3, GFP_ATOMIC);
3477         if (!skb)
3478                 return -ENOMEM;
3479
3480         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3481         skb_put_data(skb, hw_err, 3);
3482
3483         /* Send Hardware Error to upper stack */
3484         return hci_recv_frame(hdev, skb);
3485 }
3486 EXPORT_SYMBOL(hci_reset_dev);
3487
3488 /* Receive frame from HCI drivers */
3489 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3490 {
3491         if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3492                       && !test_bit(HCI_INIT, &hdev->flags))) {
3493                 kfree_skb(skb);
3494                 return -ENXIO;
3495         }
3496
3497         if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3498             hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3499             hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3500                 kfree_skb(skb);
3501                 return -EINVAL;
3502         }
3503
3504         /* Incoming skb */
3505         bt_cb(skb)->incoming = 1;
3506
3507         /* Time stamp */
3508         __net_timestamp(skb);
3509
3510         skb_queue_tail(&hdev->rx_q, skb);
3511         queue_work(hdev->workqueue, &hdev->rx_work);
3512
3513         return 0;
3514 }
3515 EXPORT_SYMBOL(hci_recv_frame);
3516
3517 /* Receive diagnostic message from HCI drivers */
3518 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3519 {
3520         /* Mark as diagnostic packet */
3521         hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3522
3523         /* Time stamp */
3524         __net_timestamp(skb);
3525
3526         skb_queue_tail(&hdev->rx_q, skb);
3527         queue_work(hdev->workqueue, &hdev->rx_work);
3528
3529         return 0;
3530 }
3531 EXPORT_SYMBOL(hci_recv_diag);
3532
3533 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3534 {
3535         va_list vargs;
3536
3537         va_start(vargs, fmt);
3538         kfree_const(hdev->hw_info);
3539         hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3540         va_end(vargs);
3541 }
3542 EXPORT_SYMBOL(hci_set_hw_info);
3543
3544 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3545 {
3546         va_list vargs;
3547
3548         va_start(vargs, fmt);
3549         kfree_const(hdev->fw_info);
3550         hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3551         va_end(vargs);
3552 }
3553 EXPORT_SYMBOL(hci_set_fw_info);
3554
3555 /* ---- Interface to upper protocols ---- */
3556
3557 int hci_register_cb(struct hci_cb *cb)
3558 {
3559         BT_DBG("%p name %s", cb, cb->name);
3560
3561         mutex_lock(&hci_cb_list_lock);
3562         list_add_tail(&cb->list, &hci_cb_list);
3563         mutex_unlock(&hci_cb_list_lock);
3564
3565         return 0;
3566 }
3567 EXPORT_SYMBOL(hci_register_cb);
3568
3569 int hci_unregister_cb(struct hci_cb *cb)
3570 {
3571         BT_DBG("%p name %s", cb, cb->name);
3572
3573         mutex_lock(&hci_cb_list_lock);
3574         list_del(&cb->list);
3575         mutex_unlock(&hci_cb_list_lock);
3576
3577         return 0;
3578 }
3579 EXPORT_SYMBOL(hci_unregister_cb);
3580
3581 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3582 {
3583         int err;
3584
3585         BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3586                skb->len);
3587
3588         /* Time stamp */
3589         __net_timestamp(skb);
3590
3591         /* Send copy to monitor */
3592         hci_send_to_monitor(hdev, skb);
3593
3594         if (atomic_read(&hdev->promisc)) {
3595                 /* Send copy to the sockets */
3596                 hci_send_to_sock(hdev, skb);
3597         }
3598
3599         /* Get rid of skb owner, prior to sending to the driver. */
3600         skb_orphan(skb);
3601
3602         if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3603                 kfree_skb(skb);
3604                 return;
3605         }
3606
3607         err = hdev->send(hdev, skb);
3608         if (err < 0) {
3609                 bt_dev_err(hdev, "sending frame failed (%d)", err);
3610                 kfree_skb(skb);
3611         }
3612 }
3613
3614 /* Send HCI command */
3615 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3616                  const void *param)
3617 {
3618         struct sk_buff *skb;
3619
3620         BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3621
3622         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3623         if (!skb) {
3624                 bt_dev_err(hdev, "no memory for command");
3625                 return -ENOMEM;
3626         }
3627
3628         /* Stand-alone HCI commands must be flagged as
3629          * single-command requests.
3630          */
3631         bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3632
3633         skb_queue_tail(&hdev->cmd_q, skb);
3634         queue_work(hdev->workqueue, &hdev->cmd_work);
3635
3636         return 0;
3637 }
3638
3639 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3640                    const void *param)
3641 {
3642         struct sk_buff *skb;
3643
3644         if (hci_opcode_ogf(opcode) != 0x3f) {
3645                 /* A controller receiving a command shall respond with either
3646                  * a Command Status Event or a Command Complete Event.
3647                  * Therefore, all standard HCI commands must be sent via the
3648                  * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3649                  * Some vendors do not comply with this rule for vendor-specific
3650                  * commands and do not return any event. We want to support
3651                  * unresponded commands for such cases only.
3652                  */
3653                 bt_dev_err(hdev, "unresponded command not supported");
3654                 return -EINVAL;
3655         }
3656
3657         skb = hci_prepare_cmd(hdev, opcode, plen, param);
3658         if (!skb) {
3659                 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3660                            opcode);
3661                 return -ENOMEM;
3662         }
3663
3664         hci_send_frame(hdev, skb);
3665
3666         return 0;
3667 }
3668 EXPORT_SYMBOL(__hci_cmd_send);
3669
3670 /* Get data from the previously sent command */
3671 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3672 {
3673         struct hci_command_hdr *hdr;
3674
3675         if (!hdev->sent_cmd)
3676                 return NULL;
3677
3678         hdr = (void *) hdev->sent_cmd->data;
3679
3680         if (hdr->opcode != cpu_to_le16(opcode))
3681                 return NULL;
3682
3683         BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3684
3685         return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3686 }
3687
3688 /* Send HCI command and wait for command commplete event */
3689 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3690                              const void *param, u32 timeout)
3691 {
3692         struct sk_buff *skb;
3693
3694         if (!test_bit(HCI_UP, &hdev->flags))
3695                 return ERR_PTR(-ENETDOWN);
3696
3697         bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3698
3699         hci_req_sync_lock(hdev);
3700         skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3701         hci_req_sync_unlock(hdev);
3702
3703         return skb;
3704 }
3705 EXPORT_SYMBOL(hci_cmd_sync);
3706
3707 /* Send ACL data */
3708 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3709 {
3710         struct hci_acl_hdr *hdr;
3711         int len = skb->len;
3712
3713         skb_push(skb, HCI_ACL_HDR_SIZE);
3714         skb_reset_transport_header(skb);
3715         hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3716         hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3717         hdr->dlen   = cpu_to_le16(len);
3718 }
3719
3720 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3721                           struct sk_buff *skb, __u16 flags)
3722 {
3723         struct hci_conn *conn = chan->conn;
3724         struct hci_dev *hdev = conn->hdev;
3725         struct sk_buff *list;
3726
3727         skb->len = skb_headlen(skb);
3728         skb->data_len = 0;
3729
3730         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3731
3732         switch (hdev->dev_type) {
3733         case HCI_PRIMARY:
3734                 hci_add_acl_hdr(skb, conn->handle, flags);
3735                 break;
3736         case HCI_AMP:
3737                 hci_add_acl_hdr(skb, chan->handle, flags);
3738                 break;
3739         default:
3740                 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3741                 return;
3742         }
3743
3744         list = skb_shinfo(skb)->frag_list;
3745         if (!list) {
3746                 /* Non fragmented */
3747                 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3748
3749                 skb_queue_tail(queue, skb);
3750         } else {
3751                 /* Fragmented */
3752                 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3753
3754                 skb_shinfo(skb)->frag_list = NULL;
3755
3756                 /* Queue all fragments atomically. We need to use spin_lock_bh
3757                  * here because of 6LoWPAN links, as there this function is
3758                  * called from softirq and using normal spin lock could cause
3759                  * deadlocks.
3760                  */
3761                 spin_lock_bh(&queue->lock);
3762
3763                 __skb_queue_tail(queue, skb);
3764
3765                 flags &= ~ACL_START;
3766                 flags |= ACL_CONT;
3767                 do {
3768                         skb = list; list = list->next;
3769
3770                         hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3771                         hci_add_acl_hdr(skb, conn->handle, flags);
3772
3773                         BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3774
3775                         __skb_queue_tail(queue, skb);
3776                 } while (list);
3777
3778                 spin_unlock_bh(&queue->lock);
3779         }
3780 }
3781
3782 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3783 {
3784         struct hci_dev *hdev = chan->conn->hdev;
3785
3786         BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3787
3788         hci_queue_acl(chan, &chan->data_q, skb, flags);
3789
3790         queue_work(hdev->workqueue, &hdev->tx_work);
3791 }
3792
3793 /* Send SCO data */
3794 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3795 {
3796         struct hci_dev *hdev = conn->hdev;
3797         struct hci_sco_hdr hdr;
3798
3799         BT_DBG("%s len %d", hdev->name, skb->len);
3800
3801         hdr.handle = cpu_to_le16(conn->handle);
3802         hdr.dlen   = skb->len;
3803
3804         skb_push(skb, HCI_SCO_HDR_SIZE);
3805         skb_reset_transport_header(skb);
3806         memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3807
3808         hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3809
3810         skb_queue_tail(&conn->data_q, skb);
3811         queue_work(hdev->workqueue, &hdev->tx_work);
3812 }
3813
3814 /* ---- HCI TX task (outgoing data) ---- */
3815
3816 /* HCI Connection scheduler */
3817 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3818                                      int *quote)
3819 {
3820         struct hci_conn_hash *h = &hdev->conn_hash;
3821         struct hci_conn *conn = NULL, *c;
3822         unsigned int num = 0, min = ~0;
3823
3824         /* We don't have to lock device here. Connections are always
3825          * added and removed with TX task disabled. */
3826
3827         rcu_read_lock();
3828
3829         list_for_each_entry_rcu(c, &h->list, list) {
3830                 if (c->type != type || skb_queue_empty(&c->data_q))
3831                         continue;
3832
3833                 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3834                         continue;
3835
3836                 num++;
3837
3838                 if (c->sent < min) {
3839                         min  = c->sent;
3840                         conn = c;
3841                 }
3842
3843                 if (hci_conn_num(hdev, type) == num)
3844                         break;
3845         }
3846
3847         rcu_read_unlock();
3848
3849         if (conn) {
3850                 int cnt, q;
3851
3852                 switch (conn->type) {
3853                 case ACL_LINK:
3854                         cnt = hdev->acl_cnt;
3855                         break;
3856                 case SCO_LINK:
3857                 case ESCO_LINK:
3858                         cnt = hdev->sco_cnt;
3859                         break;
3860                 case LE_LINK:
3861                         cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3862                         break;
3863                 default:
3864                         cnt = 0;
3865                         bt_dev_err(hdev, "unknown link type %d", conn->type);
3866                 }
3867
3868                 q = cnt / num;
3869                 *quote = q ? q : 1;
3870         } else
3871                 *quote = 0;
3872
3873         BT_DBG("conn %p quote %d", conn, *quote);
3874         return conn;
3875 }
3876
3877 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3878 {
3879         struct hci_conn_hash *h = &hdev->conn_hash;
3880         struct hci_conn *c;
3881
3882         bt_dev_err(hdev, "link tx timeout");
3883
3884         rcu_read_lock();
3885
3886         /* Kill stalled connections */
3887         list_for_each_entry_rcu(c, &h->list, list) {
3888                 if (c->type == type && c->sent) {
3889                         bt_dev_err(hdev, "killing stalled connection %pMR",
3890                                    &c->dst);
3891                         hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3892                 }
3893         }
3894
3895         rcu_read_unlock();
3896 }
3897
3898 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3899                                       int *quote)
3900 {
3901         struct hci_conn_hash *h = &hdev->conn_hash;
3902         struct hci_chan *chan = NULL;
3903         unsigned int num = 0, min = ~0, cur_prio = 0;
3904         struct hci_conn *conn;
3905         int cnt, q, conn_num = 0;
3906
3907         BT_DBG("%s", hdev->name);
3908
3909         rcu_read_lock();
3910
3911         list_for_each_entry_rcu(conn, &h->list, list) {
3912                 struct hci_chan *tmp;
3913
3914                 if (conn->type != type)
3915                         continue;
3916
3917                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3918                         continue;
3919
3920                 conn_num++;
3921
3922                 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3923                         struct sk_buff *skb;
3924
3925                         if (skb_queue_empty(&tmp->data_q))
3926                                 continue;
3927
3928                         skb = skb_peek(&tmp->data_q);
3929                         if (skb->priority < cur_prio)
3930                                 continue;
3931
3932                         if (skb->priority > cur_prio) {
3933                                 num = 0;
3934                                 min = ~0;
3935                                 cur_prio = skb->priority;
3936                         }
3937
3938                         num++;
3939
3940                         if (conn->sent < min) {
3941                                 min  = conn->sent;
3942                                 chan = tmp;
3943                         }
3944                 }
3945
3946                 if (hci_conn_num(hdev, type) == conn_num)
3947                         break;
3948         }
3949
3950         rcu_read_unlock();
3951
3952         if (!chan)
3953                 return NULL;
3954
3955         switch (chan->conn->type) {
3956         case ACL_LINK:
3957                 cnt = hdev->acl_cnt;
3958                 break;
3959         case AMP_LINK:
3960                 cnt = hdev->block_cnt;
3961                 break;
3962         case SCO_LINK:
3963         case ESCO_LINK:
3964                 cnt = hdev->sco_cnt;
3965                 break;
3966         case LE_LINK:
3967                 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3968                 break;
3969         default:
3970                 cnt = 0;
3971                 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3972         }
3973
3974         q = cnt / num;
3975         *quote = q ? q : 1;
3976         BT_DBG("chan %p quote %d", chan, *quote);
3977         return chan;
3978 }
3979
3980 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3981 {
3982         struct hci_conn_hash *h = &hdev->conn_hash;
3983         struct hci_conn *conn;
3984         int num = 0;
3985
3986         BT_DBG("%s", hdev->name);
3987
3988         rcu_read_lock();
3989
3990         list_for_each_entry_rcu(conn, &h->list, list) {
3991                 struct hci_chan *chan;
3992
3993                 if (conn->type != type)
3994                         continue;
3995
3996                 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3997                         continue;
3998
3999                 num++;
4000
4001                 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4002                         struct sk_buff *skb;
4003
4004                         if (chan->sent) {
4005                                 chan->sent = 0;
4006                                 continue;
4007                         }
4008
4009                         if (skb_queue_empty(&chan->data_q))
4010                                 continue;
4011
4012                         skb = skb_peek(&chan->data_q);
4013                         if (skb->priority >= HCI_PRIO_MAX - 1)
4014                                 continue;
4015
4016                         skb->priority = HCI_PRIO_MAX - 1;
4017
4018                         BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4019                                skb->priority);
4020                 }
4021
4022                 if (hci_conn_num(hdev, type) == num)
4023                         break;
4024         }
4025
4026         rcu_read_unlock();
4027
4028 }
4029
4030 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4031 {
4032         /* Calculate count of blocks used by this packet */
4033         return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4034 }
4035
4036 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4037 {
4038         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4039                 /* ACL tx timeout must be longer than maximum
4040                  * link supervision timeout (40.9 seconds) */
4041                 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4042                                        HCI_ACL_TX_TIMEOUT))
4043                         hci_link_tx_to(hdev, ACL_LINK);
4044         }
4045 }
4046
4047 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4048 {
4049         unsigned int cnt = hdev->acl_cnt;
4050         struct hci_chan *chan;
4051         struct sk_buff *skb;
4052         int quote;
4053
4054         __check_timeout(hdev, cnt);
4055
4056         while (hdev->acl_cnt &&
4057                (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4058                 u32 priority = (skb_peek(&chan->data_q))->priority;
4059                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4060                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4061                                skb->len, skb->priority);
4062
4063                         /* Stop if priority has changed */
4064                         if (skb->priority < priority)
4065                                 break;
4066
4067                         skb = skb_dequeue(&chan->data_q);
4068
4069                         hci_conn_enter_active_mode(chan->conn,
4070                                                    bt_cb(skb)->force_active);
4071
4072                         hci_send_frame(hdev, skb);
4073                         hdev->acl_last_tx = jiffies;
4074
4075                         hdev->acl_cnt--;
4076                         chan->sent++;
4077                         chan->conn->sent++;
4078                 }
4079         }
4080
4081         if (cnt != hdev->acl_cnt)
4082                 hci_prio_recalculate(hdev, ACL_LINK);
4083 }
4084
4085 static void hci_sched_acl_blk(struct hci_dev *hdev)
4086 {
4087         unsigned int cnt = hdev->block_cnt;
4088         struct hci_chan *chan;
4089         struct sk_buff *skb;
4090         int quote;
4091         u8 type;
4092
4093         __check_timeout(hdev, cnt);
4094
4095         BT_DBG("%s", hdev->name);
4096
4097         if (hdev->dev_type == HCI_AMP)
4098                 type = AMP_LINK;
4099         else
4100                 type = ACL_LINK;
4101
4102         while (hdev->block_cnt > 0 &&
4103                (chan = hci_chan_sent(hdev, type, &quote))) {
4104                 u32 priority = (skb_peek(&chan->data_q))->priority;
4105                 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4106                         int blocks;
4107
4108                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4109                                skb->len, skb->priority);
4110
4111                         /* Stop if priority has changed */
4112                         if (skb->priority < priority)
4113                                 break;
4114
4115                         skb = skb_dequeue(&chan->data_q);
4116
4117                         blocks = __get_blocks(hdev, skb);
4118                         if (blocks > hdev->block_cnt)
4119                                 return;
4120
4121                         hci_conn_enter_active_mode(chan->conn,
4122                                                    bt_cb(skb)->force_active);
4123
4124                         hci_send_frame(hdev, skb);
4125                         hdev->acl_last_tx = jiffies;
4126
4127                         hdev->block_cnt -= blocks;
4128                         quote -= blocks;
4129
4130                         chan->sent += blocks;
4131                         chan->conn->sent += blocks;
4132                 }
4133         }
4134
4135         if (cnt != hdev->block_cnt)
4136                 hci_prio_recalculate(hdev, type);
4137 }
4138
4139 static void hci_sched_acl(struct hci_dev *hdev)
4140 {
4141         BT_DBG("%s", hdev->name);
4142
4143         /* No ACL link over BR/EDR controller */
4144         if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4145                 return;
4146
4147         /* No AMP link over AMP controller */
4148         if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4149                 return;
4150
4151         switch (hdev->flow_ctl_mode) {
4152         case HCI_FLOW_CTL_MODE_PACKET_BASED:
4153                 hci_sched_acl_pkt(hdev);
4154                 break;
4155
4156         case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4157                 hci_sched_acl_blk(hdev);
4158                 break;
4159         }
4160 }
4161
4162 /* Schedule SCO */
4163 static void hci_sched_sco(struct hci_dev *hdev)
4164 {
4165         struct hci_conn *conn;
4166         struct sk_buff *skb;
4167         int quote;
4168
4169         BT_DBG("%s", hdev->name);
4170
4171         if (!hci_conn_num(hdev, SCO_LINK))
4172                 return;
4173
4174         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4175                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4176                         BT_DBG("skb %p len %d", skb, skb->len);
4177                         hci_send_frame(hdev, skb);
4178
4179                         conn->sent++;
4180                         if (conn->sent == ~0)
4181                                 conn->sent = 0;
4182                 }
4183         }
4184 }
4185
4186 static void hci_sched_esco(struct hci_dev *hdev)
4187 {
4188         struct hci_conn *conn;
4189         struct sk_buff *skb;
4190         int quote;
4191
4192         BT_DBG("%s", hdev->name);
4193
4194         if (!hci_conn_num(hdev, ESCO_LINK))
4195                 return;
4196
4197         while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4198                                                      &quote))) {
4199                 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4200                         BT_DBG("skb %p len %d", skb, skb->len);
4201                         hci_send_frame(hdev, skb);
4202
4203                         conn->sent++;
4204                         if (conn->sent == ~0)
4205                                 conn->sent = 0;
4206                 }
4207         }
4208 }
4209
4210 static void hci_sched_le(struct hci_dev *hdev)
4211 {
4212         struct hci_chan *chan;
4213         struct sk_buff *skb;
4214         int quote, cnt, tmp;
4215
4216         BT_DBG("%s", hdev->name);
4217
4218         if (!hci_conn_num(hdev, LE_LINK))
4219                 return;
4220
4221         if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4222                 /* LE tx timeout must be longer than maximum
4223                  * link supervision timeout (40.9 seconds) */
4224                 if (!hdev->le_cnt && hdev->le_pkts &&
4225                     time_after(jiffies, hdev->le_last_tx + HZ * 45))
4226                         hci_link_tx_to(hdev, LE_LINK);
4227         }
4228
4229         cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4230         tmp = cnt;
4231         while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4232                 u32 priority = (skb_peek(&chan->data_q))->priority;
4233                 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4234                         BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4235                                skb->len, skb->priority);
4236
4237                         /* Stop if priority has changed */
4238                         if (skb->priority < priority)
4239                                 break;
4240
4241                         skb = skb_dequeue(&chan->data_q);
4242
4243                         hci_send_frame(hdev, skb);
4244                         hdev->le_last_tx = jiffies;
4245
4246                         cnt--;
4247                         chan->sent++;
4248                         chan->conn->sent++;
4249                 }
4250         }
4251
4252         if (hdev->le_pkts)
4253                 hdev->le_cnt = cnt;
4254         else
4255                 hdev->acl_cnt = cnt;
4256
4257         if (cnt != tmp)
4258                 hci_prio_recalculate(hdev, LE_LINK);
4259 }
4260
4261 static void hci_tx_work(struct work_struct *work)
4262 {
4263         struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4264         struct sk_buff *skb;
4265
4266         BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4267                hdev->sco_cnt, hdev->le_cnt);
4268
4269         if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4270                 /* Schedule queues and send stuff to HCI driver */
4271                 hci_sched_acl(hdev);
4272                 hci_sched_sco(hdev);
4273                 hci_sched_esco(hdev);
4274                 hci_sched_le(hdev);
4275         }
4276
4277         /* Send next queued raw (unknown type) packet */
4278         while ((skb = skb_dequeue(&hdev->raw_q)))
4279                 hci_send_frame(hdev, skb);
4280 }
4281
4282 /* ----- HCI RX task (incoming data processing) ----- */
4283
4284 /* ACL data packet */
4285 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4286 {
4287         struct hci_acl_hdr *hdr = (void *) skb->data;
4288         struct hci_conn *conn;
4289         __u16 handle, flags;
4290
4291         skb_pull(skb, HCI_ACL_HDR_SIZE);
4292
4293         handle = __le16_to_cpu(hdr->handle);
4294         flags  = hci_flags(handle);
4295         handle = hci_handle(handle);
4296
4297         BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4298                handle, flags);
4299
4300         hdev->stat.acl_rx++;
4301
4302         hci_dev_lock(hdev);
4303         conn = hci_conn_hash_lookup_handle(hdev, handle);
4304         hci_dev_unlock(hdev);
4305
4306         if (conn) {
4307                 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4308
4309                 /* Send to upper protocol */
4310                 l2cap_recv_acldata(conn, skb, flags);
4311                 return;
4312         } else {
4313                 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4314                            handle);
4315         }
4316
4317         kfree_skb(skb);
4318 }
4319
4320 /* SCO data packet */
4321 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4322 {
4323         struct hci_sco_hdr *hdr = (void *) skb->data;
4324         struct hci_conn *conn;
4325         __u16 handle;
4326
4327         skb_pull(skb, HCI_SCO_HDR_SIZE);
4328
4329         handle = __le16_to_cpu(hdr->handle);
4330
4331         BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4332
4333         hdev->stat.sco_rx++;
4334
4335         hci_dev_lock(hdev);
4336         conn = hci_conn_hash_lookup_handle(hdev, handle);
4337         hci_dev_unlock(hdev);
4338
4339         if (conn) {
4340                 /* Send to upper protocol */
4341                 sco_recv_scodata(conn, skb);
4342                 return;
4343         } else {
4344                 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4345                            handle);
4346         }
4347
4348         kfree_skb(skb);
4349 }
4350
4351 static bool hci_req_is_complete(struct hci_dev *hdev)
4352 {
4353         struct sk_buff *skb;
4354
4355         skb = skb_peek(&hdev->cmd_q);
4356         if (!skb)
4357                 return true;
4358
4359         return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4360 }
4361
4362 static void hci_resend_last(struct hci_dev *hdev)
4363 {
4364         struct hci_command_hdr *sent;
4365         struct sk_buff *skb;
4366         u16 opcode;
4367
4368         if (!hdev->sent_cmd)
4369                 return;
4370
4371         sent = (void *) hdev->sent_cmd->data;
4372         opcode = __le16_to_cpu(sent->opcode);
4373         if (opcode == HCI_OP_RESET)
4374                 return;
4375
4376         skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4377         if (!skb)
4378                 return;
4379
4380         skb_queue_head(&hdev->cmd_q, skb);
4381         queue_work(hdev->workqueue, &hdev->cmd_work);
4382 }
4383
4384 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4385                           hci_req_complete_t *req_complete,
4386                           hci_req_complete_skb_t *req_complete_skb)
4387 {
4388         struct sk_buff *skb;
4389         unsigned long flags;
4390
4391         BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4392
4393         /* If the completed command doesn't match the last one that was
4394          * sent we need to do special handling of it.
4395          */
4396         if (!hci_sent_cmd_data(hdev, opcode)) {
4397                 /* Some CSR based controllers generate a spontaneous
4398                  * reset complete event during init and any pending
4399                  * command will never be completed. In such a case we
4400                  * need to resend whatever was the last sent
4401                  * command.
4402                  */
4403                 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4404                         hci_resend_last(hdev);
4405
4406                 return;
4407         }
4408
4409         /* If we reach this point this event matches the last command sent */
4410         hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4411
4412         /* If the command succeeded and there's still more commands in
4413          * this request the request is not yet complete.
4414          */
4415         if (!status && !hci_req_is_complete(hdev))
4416                 return;
4417
4418         /* If this was the last command in a request the complete
4419          * callback would be found in hdev->sent_cmd instead of the
4420          * command queue (hdev->cmd_q).
4421          */
4422         if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4423                 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4424                 return;
4425         }
4426
4427         if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4428                 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4429                 return;
4430         }
4431
4432         /* Remove all pending commands belonging to this request */
4433         spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4434         while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4435                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4436                         __skb_queue_head(&hdev->cmd_q, skb);
4437                         break;
4438                 }
4439
4440                 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4441                         *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4442                 else
4443                         *req_complete = bt_cb(skb)->hci.req_complete;
4444                 kfree_skb(skb);
4445         }
4446         spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4447 }
4448
4449 static void hci_rx_work(struct work_struct *work)
4450 {
4451         struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4452         struct sk_buff *skb;
4453
4454         BT_DBG("%s", hdev->name);
4455
4456         while ((skb = skb_dequeue(&hdev->rx_q))) {
4457                 /* Send copy to monitor */
4458                 hci_send_to_monitor(hdev, skb);
4459
4460                 if (atomic_read(&hdev->promisc)) {
4461                         /* Send copy to the sockets */
4462                         hci_send_to_sock(hdev, skb);
4463                 }
4464
4465                 /* If the device has been opened in HCI_USER_CHANNEL,
4466                  * the userspace has exclusive access to device.
4467                  * When device is HCI_INIT, we still need to process
4468                  * the data packets to the driver in order
4469                  * to complete its setup().
4470                  */
4471                 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4472                     !test_bit(HCI_INIT, &hdev->flags)) {
4473                         kfree_skb(skb);
4474                         continue;
4475                 }
4476
4477                 if (test_bit(HCI_INIT, &hdev->flags)) {
4478                         /* Don't process data packets in this states. */
4479                         switch (hci_skb_pkt_type(skb)) {
4480                         case HCI_ACLDATA_PKT:
4481                         case HCI_SCODATA_PKT:
4482                                 kfree_skb(skb);
4483                                 continue;
4484                         }
4485                 }
4486
4487                 /* Process frame */
4488                 switch (hci_skb_pkt_type(skb)) {
4489                 case HCI_EVENT_PKT:
4490                         BT_DBG("%s Event packet", hdev->name);
4491                         hci_event_packet(hdev, skb);
4492                         break;
4493
4494                 case HCI_ACLDATA_PKT:
4495                         BT_DBG("%s ACL data packet", hdev->name);
4496                         hci_acldata_packet(hdev, skb);
4497                         break;
4498
4499                 case HCI_SCODATA_PKT:
4500                         BT_DBG("%s SCO data packet", hdev->name);
4501                         hci_scodata_packet(hdev, skb);
4502                         break;
4503
4504                 default:
4505                         kfree_skb(skb);
4506                         break;
4507                 }
4508         }
4509 }
4510
4511 static void hci_cmd_work(struct work_struct *work)
4512 {
4513         struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4514         struct sk_buff *skb;
4515
4516         BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4517                atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4518
4519         /* Send queued commands */
4520         if (atomic_read(&hdev->cmd_cnt)) {
4521                 skb = skb_dequeue(&hdev->cmd_q);
4522                 if (!skb)
4523                         return;
4524
4525                 kfree_skb(hdev->sent_cmd);
4526
4527                 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4528                 if (hdev->sent_cmd) {
4529                         if (hci_req_status_pend(hdev))
4530                                 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4531                         atomic_dec(&hdev->cmd_cnt);
4532                         hci_send_frame(hdev, skb);
4533                         if (test_bit(HCI_RESET, &hdev->flags))
4534                                 cancel_delayed_work(&hdev->cmd_timer);
4535                         else
4536                                 schedule_delayed_work(&hdev->cmd_timer,
4537                                                       HCI_CMD_TIMEOUT);
4538                 } else {
4539                         skb_queue_head(&hdev->cmd_q, skb);
4540                         queue_work(hdev->workqueue, &hdev->cmd_work);
4541                 }
4542         }
4543 }