Merge tag 'drm-next-2024-05-25' of https://gitlab.freedesktop.org/drm/kernel
[linux-2.6-block.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54                                  unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56
57 static DEFINE_SPINLOCK(swap_lock);
58 static unsigned int nr_swapfiles;
59 atomic_long_t nr_swap_pages;
60 /*
61  * Some modules use swappable objects and may try to swap them out under
62  * memory pressure (via the shrinker). Before doing so, they may wish to
63  * check to see if any swap space is available.
64  */
65 EXPORT_SYMBOL_GPL(nr_swap_pages);
66 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
67 long total_swap_pages;
68 static int least_priority = -1;
69 unsigned long swapfile_maximum_size;
70 #ifdef CONFIG_MIGRATION
71 bool swap_migration_ad_supported;
72 #endif  /* CONFIG_MIGRATION */
73
74 static const char Bad_file[] = "Bad swap file entry ";
75 static const char Unused_file[] = "Unused swap file entry ";
76 static const char Bad_offset[] = "Bad swap offset entry ";
77 static const char Unused_offset[] = "Unused swap offset entry ";
78
79 /*
80  * all active swap_info_structs
81  * protected with swap_lock, and ordered by priority.
82  */
83 static PLIST_HEAD(swap_active_head);
84
85 /*
86  * all available (active, not full) swap_info_structs
87  * protected with swap_avail_lock, ordered by priority.
88  * This is used by folio_alloc_swap() instead of swap_active_head
89  * because swap_active_head includes all swap_info_structs,
90  * but folio_alloc_swap() doesn't need to look at full ones.
91  * This uses its own lock instead of swap_lock because when a
92  * swap_info_struct changes between not-full/full, it needs to
93  * add/remove itself to/from this list, but the swap_info_struct->lock
94  * is held and the locking order requires swap_lock to be taken
95  * before any swap_info_struct->lock.
96  */
97 static struct plist_head *swap_avail_heads;
98 static DEFINE_SPINLOCK(swap_avail_lock);
99
100 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
101
102 static DEFINE_MUTEX(swapon_mutex);
103
104 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
105 /* Activity counter to indicate that a swapon or swapoff has occurred */
106 static atomic_t proc_poll_event = ATOMIC_INIT(0);
107
108 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
109
110 static struct swap_info_struct *swap_type_to_swap_info(int type)
111 {
112         if (type >= MAX_SWAPFILES)
113                 return NULL;
114
115         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
116 }
117
118 static inline unsigned char swap_count(unsigned char ent)
119 {
120         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
121 }
122
123 /* Reclaim the swap entry anyway if possible */
124 #define TTRS_ANYWAY             0x1
125 /*
126  * Reclaim the swap entry if there are no more mappings of the
127  * corresponding page
128  */
129 #define TTRS_UNMAPPED           0x2
130 /* Reclaim the swap entry if swap is getting full*/
131 #define TTRS_FULL               0x4
132
133 /*
134  * returns number of pages in the folio that backs the swap entry. If positive,
135  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
136  * folio was associated with the swap entry.
137  */
138 static int __try_to_reclaim_swap(struct swap_info_struct *si,
139                                  unsigned long offset, unsigned long flags)
140 {
141         swp_entry_t entry = swp_entry(si->type, offset);
142         struct folio *folio;
143         int ret = 0;
144
145         folio = filemap_get_folio(swap_address_space(entry), offset);
146         if (IS_ERR(folio))
147                 return 0;
148         /*
149          * When this function is called from scan_swap_map_slots() and it's
150          * called by vmscan.c at reclaiming folios. So we hold a folio lock
151          * here. We have to use trylock for avoiding deadlock. This is a special
152          * case and you should use folio_free_swap() with explicit folio_lock()
153          * in usual operations.
154          */
155         if (folio_trylock(folio)) {
156                 if ((flags & TTRS_ANYWAY) ||
157                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
158                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
159                         ret = folio_free_swap(folio);
160                 folio_unlock(folio);
161         }
162         ret = ret ? folio_nr_pages(folio) : -folio_nr_pages(folio);
163         folio_put(folio);
164         return ret;
165 }
166
167 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
168 {
169         struct rb_node *rb = rb_first(&sis->swap_extent_root);
170         return rb_entry(rb, struct swap_extent, rb_node);
171 }
172
173 static inline struct swap_extent *next_se(struct swap_extent *se)
174 {
175         struct rb_node *rb = rb_next(&se->rb_node);
176         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
177 }
178
179 /*
180  * swapon tell device that all the old swap contents can be discarded,
181  * to allow the swap device to optimize its wear-levelling.
182  */
183 static int discard_swap(struct swap_info_struct *si)
184 {
185         struct swap_extent *se;
186         sector_t start_block;
187         sector_t nr_blocks;
188         int err = 0;
189
190         /* Do not discard the swap header page! */
191         se = first_se(si);
192         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
193         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
194         if (nr_blocks) {
195                 err = blkdev_issue_discard(si->bdev, start_block,
196                                 nr_blocks, GFP_KERNEL);
197                 if (err)
198                         return err;
199                 cond_resched();
200         }
201
202         for (se = next_se(se); se; se = next_se(se)) {
203                 start_block = se->start_block << (PAGE_SHIFT - 9);
204                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
205
206                 err = blkdev_issue_discard(si->bdev, start_block,
207                                 nr_blocks, GFP_KERNEL);
208                 if (err)
209                         break;
210
211                 cond_resched();
212         }
213         return err;             /* That will often be -EOPNOTSUPP */
214 }
215
216 static struct swap_extent *
217 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
218 {
219         struct swap_extent *se;
220         struct rb_node *rb;
221
222         rb = sis->swap_extent_root.rb_node;
223         while (rb) {
224                 se = rb_entry(rb, struct swap_extent, rb_node);
225                 if (offset < se->start_page)
226                         rb = rb->rb_left;
227                 else if (offset >= se->start_page + se->nr_pages)
228                         rb = rb->rb_right;
229                 else
230                         return se;
231         }
232         /* It *must* be present */
233         BUG();
234 }
235
236 sector_t swap_folio_sector(struct folio *folio)
237 {
238         struct swap_info_struct *sis = swp_swap_info(folio->swap);
239         struct swap_extent *se;
240         sector_t sector;
241         pgoff_t offset;
242
243         offset = swp_offset(folio->swap);
244         se = offset_to_swap_extent(sis, offset);
245         sector = se->start_block + (offset - se->start_page);
246         return sector << (PAGE_SHIFT - 9);
247 }
248
249 /*
250  * swap allocation tell device that a cluster of swap can now be discarded,
251  * to allow the swap device to optimize its wear-levelling.
252  */
253 static void discard_swap_cluster(struct swap_info_struct *si,
254                                  pgoff_t start_page, pgoff_t nr_pages)
255 {
256         struct swap_extent *se = offset_to_swap_extent(si, start_page);
257
258         while (nr_pages) {
259                 pgoff_t offset = start_page - se->start_page;
260                 sector_t start_block = se->start_block + offset;
261                 sector_t nr_blocks = se->nr_pages - offset;
262
263                 if (nr_blocks > nr_pages)
264                         nr_blocks = nr_pages;
265                 start_page += nr_blocks;
266                 nr_pages -= nr_blocks;
267
268                 start_block <<= PAGE_SHIFT - 9;
269                 nr_blocks <<= PAGE_SHIFT - 9;
270                 if (blkdev_issue_discard(si->bdev, start_block,
271                                         nr_blocks, GFP_NOIO))
272                         break;
273
274                 se = next_se(se);
275         }
276 }
277
278 #ifdef CONFIG_THP_SWAP
279 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
280
281 #define swap_entry_order(order) (order)
282 #else
283 #define SWAPFILE_CLUSTER        256
284
285 /*
286  * Define swap_entry_order() as constant to let compiler to optimize
287  * out some code if !CONFIG_THP_SWAP
288  */
289 #define swap_entry_order(order) 0
290 #endif
291 #define LATENCY_LIMIT           256
292
293 static inline void cluster_set_flag(struct swap_cluster_info *info,
294         unsigned int flag)
295 {
296         info->flags = flag;
297 }
298
299 static inline unsigned int cluster_count(struct swap_cluster_info *info)
300 {
301         return info->data;
302 }
303
304 static inline void cluster_set_count(struct swap_cluster_info *info,
305                                      unsigned int c)
306 {
307         info->data = c;
308 }
309
310 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
311                                          unsigned int c, unsigned int f)
312 {
313         info->flags = f;
314         info->data = c;
315 }
316
317 static inline unsigned int cluster_next(struct swap_cluster_info *info)
318 {
319         return info->data;
320 }
321
322 static inline void cluster_set_next(struct swap_cluster_info *info,
323                                     unsigned int n)
324 {
325         info->data = n;
326 }
327
328 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
329                                          unsigned int n, unsigned int f)
330 {
331         info->flags = f;
332         info->data = n;
333 }
334
335 static inline bool cluster_is_free(struct swap_cluster_info *info)
336 {
337         return info->flags & CLUSTER_FLAG_FREE;
338 }
339
340 static inline bool cluster_is_null(struct swap_cluster_info *info)
341 {
342         return info->flags & CLUSTER_FLAG_NEXT_NULL;
343 }
344
345 static inline void cluster_set_null(struct swap_cluster_info *info)
346 {
347         info->flags = CLUSTER_FLAG_NEXT_NULL;
348         info->data = 0;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384
385         return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448
449         return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map_slots() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460          * It will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467         schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486
487         info = si->cluster_info;
488
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508
509         si = container_of(work, struct swap_info_struct, discard_work);
510
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518         struct swap_info_struct *si;
519
520         si = container_of(ref, struct swap_info_struct, users);
521         complete(&si->comp);
522 }
523
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info;
527
528         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529         cluster_list_del_first(&si->free_clusters, ci);
530         cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535         struct swap_cluster_info *ci = si->cluster_info + idx;
536
537         VM_BUG_ON(cluster_count(ci) != 0);
538         /*
539          * If the swap is discardable, prepare discard the cluster
540          * instead of free it immediately. The cluster will be freed
541          * after discard.
542          */
543         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545                 swap_cluster_schedule_discard(si, idx);
546                 return;
547         }
548
549         __free_cluster(si, idx);
550 }
551
552 /*
553  * The cluster corresponding to page_nr will be used. The cluster will be
554  * removed from free cluster list and its usage counter will be increased by
555  * count.
556  */
557 static void add_cluster_info_page(struct swap_info_struct *p,
558         struct swap_cluster_info *cluster_info, unsigned long page_nr,
559         unsigned long count)
560 {
561         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
562
563         if (!cluster_info)
564                 return;
565         if (cluster_is_free(&cluster_info[idx]))
566                 alloc_cluster(p, idx);
567
568         VM_BUG_ON(cluster_count(&cluster_info[idx]) + count > SWAPFILE_CLUSTER);
569         cluster_set_count(&cluster_info[idx],
570                 cluster_count(&cluster_info[idx]) + count);
571 }
572
573 /*
574  * The cluster corresponding to page_nr will be used. The cluster will be
575  * removed from free cluster list and its usage counter will be increased by 1.
576  */
577 static void inc_cluster_info_page(struct swap_info_struct *p,
578         struct swap_cluster_info *cluster_info, unsigned long page_nr)
579 {
580         add_cluster_info_page(p, cluster_info, page_nr, 1);
581 }
582
583 /*
584  * The cluster corresponding to page_nr decreases one usage. If the usage
585  * counter becomes 0, which means no page in the cluster is in using, we can
586  * optionally discard the cluster and add it to free cluster list.
587  */
588 static void dec_cluster_info_page(struct swap_info_struct *p,
589         struct swap_cluster_info *cluster_info, unsigned long page_nr)
590 {
591         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
592
593         if (!cluster_info)
594                 return;
595
596         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
597         cluster_set_count(&cluster_info[idx],
598                 cluster_count(&cluster_info[idx]) - 1);
599
600         if (cluster_count(&cluster_info[idx]) == 0)
601                 free_cluster(p, idx);
602 }
603
604 /*
605  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
606  * cluster list. Avoiding such abuse to avoid list corruption.
607  */
608 static bool
609 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
610         unsigned long offset, int order)
611 {
612         struct percpu_cluster *percpu_cluster;
613         bool conflict;
614
615         offset /= SWAPFILE_CLUSTER;
616         conflict = !cluster_list_empty(&si->free_clusters) &&
617                 offset != cluster_list_first(&si->free_clusters) &&
618                 cluster_is_free(&si->cluster_info[offset]);
619
620         if (!conflict)
621                 return false;
622
623         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
624         percpu_cluster->next[order] = SWAP_NEXT_INVALID;
625         return true;
626 }
627
628 static inline bool swap_range_empty(char *swap_map, unsigned int start,
629                                     unsigned int nr_pages)
630 {
631         unsigned int i;
632
633         for (i = 0; i < nr_pages; i++) {
634                 if (swap_map[start + i])
635                         return false;
636         }
637
638         return true;
639 }
640
641 /*
642  * Try to get swap entries with specified order from current cpu's swap entry
643  * pool (a cluster). This might involve allocating a new cluster for current CPU
644  * too.
645  */
646 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
647         unsigned long *offset, unsigned long *scan_base, int order)
648 {
649         unsigned int nr_pages = 1 << order;
650         struct percpu_cluster *cluster;
651         struct swap_cluster_info *ci;
652         unsigned int tmp, max;
653
654 new_cluster:
655         cluster = this_cpu_ptr(si->percpu_cluster);
656         tmp = cluster->next[order];
657         if (tmp == SWAP_NEXT_INVALID) {
658                 if (!cluster_list_empty(&si->free_clusters)) {
659                         tmp = cluster_next(&si->free_clusters.head) *
660                                         SWAPFILE_CLUSTER;
661                 } else if (!cluster_list_empty(&si->discard_clusters)) {
662                         /*
663                          * we don't have free cluster but have some clusters in
664                          * discarding, do discard now and reclaim them, then
665                          * reread cluster_next_cpu since we dropped si->lock
666                          */
667                         swap_do_scheduled_discard(si);
668                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
669                         *offset = *scan_base;
670                         goto new_cluster;
671                 } else
672                         return false;
673         }
674
675         /*
676          * Other CPUs can use our cluster if they can't find a free cluster,
677          * check if there is still free entry in the cluster, maintaining
678          * natural alignment.
679          */
680         max = min_t(unsigned long, si->max, ALIGN(tmp + 1, SWAPFILE_CLUSTER));
681         if (tmp < max) {
682                 ci = lock_cluster(si, tmp);
683                 while (tmp < max) {
684                         if (swap_range_empty(si->swap_map, tmp, nr_pages))
685                                 break;
686                         tmp += nr_pages;
687                 }
688                 unlock_cluster(ci);
689         }
690         if (tmp >= max) {
691                 cluster->next[order] = SWAP_NEXT_INVALID;
692                 goto new_cluster;
693         }
694         *offset = tmp;
695         *scan_base = tmp;
696         tmp += nr_pages;
697         cluster->next[order] = tmp < max ? tmp : SWAP_NEXT_INVALID;
698         return true;
699 }
700
701 static void __del_from_avail_list(struct swap_info_struct *p)
702 {
703         int nid;
704
705         assert_spin_locked(&p->lock);
706         for_each_node(nid)
707                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
708 }
709
710 static void del_from_avail_list(struct swap_info_struct *p)
711 {
712         spin_lock(&swap_avail_lock);
713         __del_from_avail_list(p);
714         spin_unlock(&swap_avail_lock);
715 }
716
717 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
718                              unsigned int nr_entries)
719 {
720         unsigned int end = offset + nr_entries - 1;
721
722         if (offset == si->lowest_bit)
723                 si->lowest_bit += nr_entries;
724         if (end == si->highest_bit)
725                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
726         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
727         if (si->inuse_pages == si->pages) {
728                 si->lowest_bit = si->max;
729                 si->highest_bit = 0;
730                 del_from_avail_list(si);
731         }
732 }
733
734 static void add_to_avail_list(struct swap_info_struct *p)
735 {
736         int nid;
737
738         spin_lock(&swap_avail_lock);
739         for_each_node(nid)
740                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
741         spin_unlock(&swap_avail_lock);
742 }
743
744 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
745                             unsigned int nr_entries)
746 {
747         unsigned long begin = offset;
748         unsigned long end = offset + nr_entries - 1;
749         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
750
751         if (offset < si->lowest_bit)
752                 si->lowest_bit = offset;
753         if (end > si->highest_bit) {
754                 bool was_full = !si->highest_bit;
755
756                 WRITE_ONCE(si->highest_bit, end);
757                 if (was_full && (si->flags & SWP_WRITEOK))
758                         add_to_avail_list(si);
759         }
760         if (si->flags & SWP_BLKDEV)
761                 swap_slot_free_notify =
762                         si->bdev->bd_disk->fops->swap_slot_free_notify;
763         else
764                 swap_slot_free_notify = NULL;
765         while (offset <= end) {
766                 arch_swap_invalidate_page(si->type, offset);
767                 if (swap_slot_free_notify)
768                         swap_slot_free_notify(si->bdev, offset);
769                 offset++;
770         }
771         clear_shadow_from_swap_cache(si->type, begin, end);
772
773         /*
774          * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
775          * only after the above cleanups are done.
776          */
777         smp_wmb();
778         atomic_long_add(nr_entries, &nr_swap_pages);
779         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
780 }
781
782 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
783 {
784         unsigned long prev;
785
786         if (!(si->flags & SWP_SOLIDSTATE)) {
787                 si->cluster_next = next;
788                 return;
789         }
790
791         prev = this_cpu_read(*si->cluster_next_cpu);
792         /*
793          * Cross the swap address space size aligned trunk, choose
794          * another trunk randomly to avoid lock contention on swap
795          * address space if possible.
796          */
797         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
798             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
799                 /* No free swap slots available */
800                 if (si->highest_bit <= si->lowest_bit)
801                         return;
802                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
803                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
804                 next = max_t(unsigned int, next, si->lowest_bit);
805         }
806         this_cpu_write(*si->cluster_next_cpu, next);
807 }
808
809 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
810                                              unsigned long offset)
811 {
812         if (data_race(!si->swap_map[offset])) {
813                 spin_lock(&si->lock);
814                 return true;
815         }
816
817         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
818                 spin_lock(&si->lock);
819                 return true;
820         }
821
822         return false;
823 }
824
825 static int scan_swap_map_slots(struct swap_info_struct *si,
826                                unsigned char usage, int nr,
827                                swp_entry_t slots[], int order)
828 {
829         struct swap_cluster_info *ci;
830         unsigned long offset;
831         unsigned long scan_base;
832         unsigned long last_in_cluster = 0;
833         int latency_ration = LATENCY_LIMIT;
834         unsigned int nr_pages = 1 << order;
835         int n_ret = 0;
836         bool scanned_many = false;
837
838         /*
839          * We try to cluster swap pages by allocating them sequentially
840          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
841          * way, however, we resort to first-free allocation, starting
842          * a new cluster.  This prevents us from scattering swap pages
843          * all over the entire swap partition, so that we reduce
844          * overall disk seek times between swap pages.  -- sct
845          * But we do now try to find an empty cluster.  -Andrea
846          * And we let swap pages go all over an SSD partition.  Hugh
847          */
848
849         if (order > 0) {
850                 /*
851                  * Should not even be attempting large allocations when huge
852                  * page swap is disabled.  Warn and fail the allocation.
853                  */
854                 if (!IS_ENABLED(CONFIG_THP_SWAP) ||
855                     nr_pages > SWAPFILE_CLUSTER) {
856                         VM_WARN_ON_ONCE(1);
857                         return 0;
858                 }
859
860                 /*
861                  * Swapfile is not block device or not using clusters so unable
862                  * to allocate large entries.
863                  */
864                 if (!(si->flags & SWP_BLKDEV) || !si->cluster_info)
865                         return 0;
866         }
867
868         si->flags += SWP_SCANNING;
869         /*
870          * Use percpu scan base for SSD to reduce lock contention on
871          * cluster and swap cache.  For HDD, sequential access is more
872          * important.
873          */
874         if (si->flags & SWP_SOLIDSTATE)
875                 scan_base = this_cpu_read(*si->cluster_next_cpu);
876         else
877                 scan_base = si->cluster_next;
878         offset = scan_base;
879
880         /* SSD algorithm */
881         if (si->cluster_info) {
882                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order)) {
883                         if (order > 0)
884                                 goto no_page;
885                         goto scan;
886                 }
887         } else if (unlikely(!si->cluster_nr--)) {
888                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
889                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
890                         goto checks;
891                 }
892
893                 spin_unlock(&si->lock);
894
895                 /*
896                  * If seek is expensive, start searching for new cluster from
897                  * start of partition, to minimize the span of allocated swap.
898                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
899                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
900                  */
901                 scan_base = offset = si->lowest_bit;
902                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
903
904                 /* Locate the first empty (unaligned) cluster */
905                 for (; last_in_cluster <= READ_ONCE(si->highest_bit); offset++) {
906                         if (si->swap_map[offset])
907                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
908                         else if (offset == last_in_cluster) {
909                                 spin_lock(&si->lock);
910                                 offset -= SWAPFILE_CLUSTER - 1;
911                                 si->cluster_next = offset;
912                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
913                                 goto checks;
914                         }
915                         if (unlikely(--latency_ration < 0)) {
916                                 cond_resched();
917                                 latency_ration = LATENCY_LIMIT;
918                         }
919                 }
920
921                 offset = scan_base;
922                 spin_lock(&si->lock);
923                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
924         }
925
926 checks:
927         if (si->cluster_info) {
928                 while (scan_swap_map_ssd_cluster_conflict(si, offset, order)) {
929                 /* take a break if we already got some slots */
930                         if (n_ret)
931                                 goto done;
932                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
933                                                         &scan_base, order)) {
934                                 if (order > 0)
935                                         goto no_page;
936                                 goto scan;
937                         }
938                 }
939         }
940         if (!(si->flags & SWP_WRITEOK))
941                 goto no_page;
942         if (!si->highest_bit)
943                 goto no_page;
944         if (offset > si->highest_bit)
945                 scan_base = offset = si->lowest_bit;
946
947         ci = lock_cluster(si, offset);
948         /* reuse swap entry of cache-only swap if not busy. */
949         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
950                 int swap_was_freed;
951                 unlock_cluster(ci);
952                 spin_unlock(&si->lock);
953                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
954                 spin_lock(&si->lock);
955                 /* entry was freed successfully, try to use this again */
956                 if (swap_was_freed > 0)
957                         goto checks;
958                 goto scan; /* check next one */
959         }
960
961         if (si->swap_map[offset]) {
962                 unlock_cluster(ci);
963                 if (!n_ret)
964                         goto scan;
965                 else
966                         goto done;
967         }
968         memset(si->swap_map + offset, usage, nr_pages);
969         add_cluster_info_page(si, si->cluster_info, offset, nr_pages);
970         unlock_cluster(ci);
971
972         swap_range_alloc(si, offset, nr_pages);
973         slots[n_ret++] = swp_entry(si->type, offset);
974
975         /* got enough slots or reach max slots? */
976         if ((n_ret == nr) || (offset >= si->highest_bit))
977                 goto done;
978
979         /* search for next available slot */
980
981         /* time to take a break? */
982         if (unlikely(--latency_ration < 0)) {
983                 if (n_ret)
984                         goto done;
985                 spin_unlock(&si->lock);
986                 cond_resched();
987                 spin_lock(&si->lock);
988                 latency_ration = LATENCY_LIMIT;
989         }
990
991         /* try to get more slots in cluster */
992         if (si->cluster_info) {
993                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base, order))
994                         goto checks;
995                 if (order > 0)
996                         goto done;
997         } else if (si->cluster_nr && !si->swap_map[++offset]) {
998                 /* non-ssd case, still more slots in cluster? */
999                 --si->cluster_nr;
1000                 goto checks;
1001         }
1002
1003         /*
1004          * Even if there's no free clusters available (fragmented),
1005          * try to scan a little more quickly with lock held unless we
1006          * have scanned too many slots already.
1007          */
1008         if (!scanned_many) {
1009                 unsigned long scan_limit;
1010
1011                 if (offset < scan_base)
1012                         scan_limit = scan_base;
1013                 else
1014                         scan_limit = si->highest_bit;
1015                 for (; offset <= scan_limit && --latency_ration > 0;
1016                      offset++) {
1017                         if (!si->swap_map[offset])
1018                                 goto checks;
1019                 }
1020         }
1021
1022 done:
1023         if (order == 0)
1024                 set_cluster_next(si, offset + 1);
1025         si->flags -= SWP_SCANNING;
1026         return n_ret;
1027
1028 scan:
1029         VM_WARN_ON(order > 0);
1030         spin_unlock(&si->lock);
1031         while (++offset <= READ_ONCE(si->highest_bit)) {
1032                 if (unlikely(--latency_ration < 0)) {
1033                         cond_resched();
1034                         latency_ration = LATENCY_LIMIT;
1035                         scanned_many = true;
1036                 }
1037                 if (swap_offset_available_and_locked(si, offset))
1038                         goto checks;
1039         }
1040         offset = si->lowest_bit;
1041         while (offset < scan_base) {
1042                 if (unlikely(--latency_ration < 0)) {
1043                         cond_resched();
1044                         latency_ration = LATENCY_LIMIT;
1045                         scanned_many = true;
1046                 }
1047                 if (swap_offset_available_and_locked(si, offset))
1048                         goto checks;
1049                 offset++;
1050         }
1051         spin_lock(&si->lock);
1052
1053 no_page:
1054         si->flags -= SWP_SCANNING;
1055         return n_ret;
1056 }
1057
1058 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1059 {
1060         unsigned long offset = idx * SWAPFILE_CLUSTER;
1061         struct swap_cluster_info *ci;
1062
1063         ci = lock_cluster(si, offset);
1064         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1065         cluster_set_count_flag(ci, 0, 0);
1066         free_cluster(si, idx);
1067         unlock_cluster(ci);
1068         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1069 }
1070
1071 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1072 {
1073         int order = swap_entry_order(entry_order);
1074         unsigned long size = 1 << order;
1075         struct swap_info_struct *si, *next;
1076         long avail_pgs;
1077         int n_ret = 0;
1078         int node;
1079
1080         spin_lock(&swap_avail_lock);
1081
1082         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1083         if (avail_pgs <= 0) {
1084                 spin_unlock(&swap_avail_lock);
1085                 goto noswap;
1086         }
1087
1088         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1089
1090         atomic_long_sub(n_goal * size, &nr_swap_pages);
1091
1092 start_over:
1093         node = numa_node_id();
1094         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1095                 /* requeue si to after same-priority siblings */
1096                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1097                 spin_unlock(&swap_avail_lock);
1098                 spin_lock(&si->lock);
1099                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1100                         spin_lock(&swap_avail_lock);
1101                         if (plist_node_empty(&si->avail_lists[node])) {
1102                                 spin_unlock(&si->lock);
1103                                 goto nextsi;
1104                         }
1105                         WARN(!si->highest_bit,
1106                              "swap_info %d in list but !highest_bit\n",
1107                              si->type);
1108                         WARN(!(si->flags & SWP_WRITEOK),
1109                              "swap_info %d in list but !SWP_WRITEOK\n",
1110                              si->type);
1111                         __del_from_avail_list(si);
1112                         spin_unlock(&si->lock);
1113                         goto nextsi;
1114                 }
1115                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1116                                             n_goal, swp_entries, order);
1117                 spin_unlock(&si->lock);
1118                 if (n_ret || size > 1)
1119                         goto check_out;
1120                 cond_resched();
1121
1122                 spin_lock(&swap_avail_lock);
1123 nextsi:
1124                 /*
1125                  * if we got here, it's likely that si was almost full before,
1126                  * and since scan_swap_map_slots() can drop the si->lock,
1127                  * multiple callers probably all tried to get a page from the
1128                  * same si and it filled up before we could get one; or, the si
1129                  * filled up between us dropping swap_avail_lock and taking
1130                  * si->lock. Since we dropped the swap_avail_lock, the
1131                  * swap_avail_head list may have been modified; so if next is
1132                  * still in the swap_avail_head list then try it, otherwise
1133                  * start over if we have not gotten any slots.
1134                  */
1135                 if (plist_node_empty(&next->avail_lists[node]))
1136                         goto start_over;
1137         }
1138
1139         spin_unlock(&swap_avail_lock);
1140
1141 check_out:
1142         if (n_ret < n_goal)
1143                 atomic_long_add((long)(n_goal - n_ret) * size,
1144                                 &nr_swap_pages);
1145 noswap:
1146         return n_ret;
1147 }
1148
1149 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1150 {
1151         struct swap_info_struct *p;
1152         unsigned long offset;
1153
1154         if (!entry.val)
1155                 goto out;
1156         p = swp_swap_info(entry);
1157         if (!p)
1158                 goto bad_nofile;
1159         if (data_race(!(p->flags & SWP_USED)))
1160                 goto bad_device;
1161         offset = swp_offset(entry);
1162         if (offset >= p->max)
1163                 goto bad_offset;
1164         if (data_race(!p->swap_map[swp_offset(entry)]))
1165                 goto bad_free;
1166         return p;
1167
1168 bad_free:
1169         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170         goto out;
1171 bad_offset:
1172         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1173         goto out;
1174 bad_device:
1175         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1176         goto out;
1177 bad_nofile:
1178         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1179 out:
1180         return NULL;
1181 }
1182
1183 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1184                                         struct swap_info_struct *q)
1185 {
1186         struct swap_info_struct *p;
1187
1188         p = _swap_info_get(entry);
1189
1190         if (p != q) {
1191                 if (q != NULL)
1192                         spin_unlock(&q->lock);
1193                 if (p != NULL)
1194                         spin_lock(&p->lock);
1195         }
1196         return p;
1197 }
1198
1199 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1200                                               unsigned long offset,
1201                                               unsigned char usage)
1202 {
1203         unsigned char count;
1204         unsigned char has_cache;
1205
1206         count = p->swap_map[offset];
1207
1208         has_cache = count & SWAP_HAS_CACHE;
1209         count &= ~SWAP_HAS_CACHE;
1210
1211         if (usage == SWAP_HAS_CACHE) {
1212                 VM_BUG_ON(!has_cache);
1213                 has_cache = 0;
1214         } else if (count == SWAP_MAP_SHMEM) {
1215                 /*
1216                  * Or we could insist on shmem.c using a special
1217                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1218                  */
1219                 count = 0;
1220         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1221                 if (count == COUNT_CONTINUED) {
1222                         if (swap_count_continued(p, offset, count))
1223                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1224                         else
1225                                 count = SWAP_MAP_MAX;
1226                 } else
1227                         count--;
1228         }
1229
1230         usage = count | has_cache;
1231         if (usage)
1232                 WRITE_ONCE(p->swap_map[offset], usage);
1233         else
1234                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1235
1236         return usage;
1237 }
1238
1239 /*
1240  * When we get a swap entry, if there aren't some other ways to
1241  * prevent swapoff, such as the folio in swap cache is locked, RCU
1242  * reader side is locked, etc., the swap entry may become invalid
1243  * because of swapoff.  Then, we need to enclose all swap related
1244  * functions with get_swap_device() and put_swap_device(), unless the
1245  * swap functions call get/put_swap_device() by themselves.
1246  *
1247  * RCU reader side lock (including any spinlock) is sufficient to
1248  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1249  * before freeing data structures.
1250  *
1251  * Check whether swap entry is valid in the swap device.  If so,
1252  * return pointer to swap_info_struct, and keep the swap entry valid
1253  * via preventing the swap device from being swapoff, until
1254  * put_swap_device() is called.  Otherwise return NULL.
1255  *
1256  * Notice that swapoff or swapoff+swapon can still happen before the
1257  * percpu_ref_tryget_live() in get_swap_device() or after the
1258  * percpu_ref_put() in put_swap_device() if there isn't any other way
1259  * to prevent swapoff.  The caller must be prepared for that.  For
1260  * example, the following situation is possible.
1261  *
1262  *   CPU1                               CPU2
1263  *   do_swap_page()
1264  *     ...                              swapoff+swapon
1265  *     __read_swap_cache_async()
1266  *       swapcache_prepare()
1267  *         __swap_duplicate()
1268  *           // check swap_map
1269  *     // verify PTE not changed
1270  *
1271  * In __swap_duplicate(), the swap_map need to be checked before
1272  * changing partly because the specified swap entry may be for another
1273  * swap device which has been swapoff.  And in do_swap_page(), after
1274  * the page is read from the swap device, the PTE is verified not
1275  * changed with the page table locked to check whether the swap device
1276  * has been swapoff or swapoff+swapon.
1277  */
1278 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1279 {
1280         struct swap_info_struct *si;
1281         unsigned long offset;
1282
1283         if (!entry.val)
1284                 goto out;
1285         si = swp_swap_info(entry);
1286         if (!si)
1287                 goto bad_nofile;
1288         if (!percpu_ref_tryget_live(&si->users))
1289                 goto out;
1290         /*
1291          * Guarantee the si->users are checked before accessing other
1292          * fields of swap_info_struct.
1293          *
1294          * Paired with the spin_unlock() after setup_swap_info() in
1295          * enable_swap_info().
1296          */
1297         smp_rmb();
1298         offset = swp_offset(entry);
1299         if (offset >= si->max)
1300                 goto put_out;
1301
1302         return si;
1303 bad_nofile:
1304         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1305 out:
1306         return NULL;
1307 put_out:
1308         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1309         percpu_ref_put(&si->users);
1310         return NULL;
1311 }
1312
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314                                        swp_entry_t entry)
1315 {
1316         struct swap_cluster_info *ci;
1317         unsigned long offset = swp_offset(entry);
1318         unsigned char usage;
1319
1320         ci = lock_cluster_or_swap_info(p, offset);
1321         usage = __swap_entry_free_locked(p, offset, 1);
1322         unlock_cluster_or_swap_info(p, ci);
1323         if (!usage)
1324                 free_swap_slot(entry);
1325
1326         return usage;
1327 }
1328
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331         struct swap_cluster_info *ci;
1332         unsigned long offset = swp_offset(entry);
1333         unsigned char count;
1334
1335         ci = lock_cluster(p, offset);
1336         count = p->swap_map[offset];
1337         VM_BUG_ON(count != SWAP_HAS_CACHE);
1338         p->swap_map[offset] = 0;
1339         dec_cluster_info_page(p, p->cluster_info, offset);
1340         unlock_cluster(ci);
1341
1342         mem_cgroup_uncharge_swap(entry, 1);
1343         swap_range_free(p, offset, 1);
1344 }
1345
1346 /*
1347  * Caller has made sure that the swap device corresponding to entry
1348  * is still around or has not been recycled.
1349  */
1350 void swap_free(swp_entry_t entry)
1351 {
1352         struct swap_info_struct *p;
1353
1354         p = _swap_info_get(entry);
1355         if (p)
1356                 __swap_entry_free(p, entry);
1357 }
1358
1359 /*
1360  * Called after dropping swapcache to decrease refcnt to swap entries.
1361  */
1362 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1363 {
1364         unsigned long offset = swp_offset(entry);
1365         unsigned long idx = offset / SWAPFILE_CLUSTER;
1366         struct swap_cluster_info *ci;
1367         struct swap_info_struct *si;
1368         unsigned char *map;
1369         unsigned int i, free_entries = 0;
1370         unsigned char val;
1371         int size = 1 << swap_entry_order(folio_order(folio));
1372
1373         si = _swap_info_get(entry);
1374         if (!si)
1375                 return;
1376
1377         ci = lock_cluster_or_swap_info(si, offset);
1378         if (size == SWAPFILE_CLUSTER) {
1379                 map = si->swap_map + offset;
1380                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1381                         val = map[i];
1382                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1383                         if (val == SWAP_HAS_CACHE)
1384                                 free_entries++;
1385                 }
1386                 if (free_entries == SWAPFILE_CLUSTER) {
1387                         unlock_cluster_or_swap_info(si, ci);
1388                         spin_lock(&si->lock);
1389                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1390                         swap_free_cluster(si, idx);
1391                         spin_unlock(&si->lock);
1392                         return;
1393                 }
1394         }
1395         for (i = 0; i < size; i++, entry.val++) {
1396                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1397                         unlock_cluster_or_swap_info(si, ci);
1398                         free_swap_slot(entry);
1399                         if (i == size - 1)
1400                                 return;
1401                         lock_cluster_or_swap_info(si, offset);
1402                 }
1403         }
1404         unlock_cluster_or_swap_info(si, ci);
1405 }
1406
1407 static int swp_entry_cmp(const void *ent1, const void *ent2)
1408 {
1409         const swp_entry_t *e1 = ent1, *e2 = ent2;
1410
1411         return (int)swp_type(*e1) - (int)swp_type(*e2);
1412 }
1413
1414 void swapcache_free_entries(swp_entry_t *entries, int n)
1415 {
1416         struct swap_info_struct *p, *prev;
1417         int i;
1418
1419         if (n <= 0)
1420                 return;
1421
1422         prev = NULL;
1423         p = NULL;
1424
1425         /*
1426          * Sort swap entries by swap device, so each lock is only taken once.
1427          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1428          * so low that it isn't necessary to optimize further.
1429          */
1430         if (nr_swapfiles > 1)
1431                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1432         for (i = 0; i < n; ++i) {
1433                 p = swap_info_get_cont(entries[i], prev);
1434                 if (p)
1435                         swap_entry_free(p, entries[i]);
1436                 prev = p;
1437         }
1438         if (p)
1439                 spin_unlock(&p->lock);
1440 }
1441
1442 int __swap_count(swp_entry_t entry)
1443 {
1444         struct swap_info_struct *si = swp_swap_info(entry);
1445         pgoff_t offset = swp_offset(entry);
1446
1447         return swap_count(si->swap_map[offset]);
1448 }
1449
1450 /*
1451  * How many references to @entry are currently swapped out?
1452  * This does not give an exact answer when swap count is continued,
1453  * but does include the high COUNT_CONTINUED flag to allow for that.
1454  */
1455 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1456 {
1457         pgoff_t offset = swp_offset(entry);
1458         struct swap_cluster_info *ci;
1459         int count;
1460
1461         ci = lock_cluster_or_swap_info(si, offset);
1462         count = swap_count(si->swap_map[offset]);
1463         unlock_cluster_or_swap_info(si, ci);
1464         return count;
1465 }
1466
1467 /*
1468  * How many references to @entry are currently swapped out?
1469  * This considers COUNT_CONTINUED so it returns exact answer.
1470  */
1471 int swp_swapcount(swp_entry_t entry)
1472 {
1473         int count, tmp_count, n;
1474         struct swap_info_struct *p;
1475         struct swap_cluster_info *ci;
1476         struct page *page;
1477         pgoff_t offset;
1478         unsigned char *map;
1479
1480         p = _swap_info_get(entry);
1481         if (!p)
1482                 return 0;
1483
1484         offset = swp_offset(entry);
1485
1486         ci = lock_cluster_or_swap_info(p, offset);
1487
1488         count = swap_count(p->swap_map[offset]);
1489         if (!(count & COUNT_CONTINUED))
1490                 goto out;
1491
1492         count &= ~COUNT_CONTINUED;
1493         n = SWAP_MAP_MAX + 1;
1494
1495         page = vmalloc_to_page(p->swap_map + offset);
1496         offset &= ~PAGE_MASK;
1497         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1498
1499         do {
1500                 page = list_next_entry(page, lru);
1501                 map = kmap_local_page(page);
1502                 tmp_count = map[offset];
1503                 kunmap_local(map);
1504
1505                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1506                 n *= (SWAP_CONT_MAX + 1);
1507         } while (tmp_count & COUNT_CONTINUED);
1508 out:
1509         unlock_cluster_or_swap_info(p, ci);
1510         return count;
1511 }
1512
1513 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1514                                          swp_entry_t entry, int order)
1515 {
1516         struct swap_cluster_info *ci;
1517         unsigned char *map = si->swap_map;
1518         unsigned int nr_pages = 1 << order;
1519         unsigned long roffset = swp_offset(entry);
1520         unsigned long offset = round_down(roffset, nr_pages);
1521         int i;
1522         bool ret = false;
1523
1524         ci = lock_cluster_or_swap_info(si, offset);
1525         if (!ci || nr_pages == 1) {
1526                 if (swap_count(map[roffset]))
1527                         ret = true;
1528                 goto unlock_out;
1529         }
1530         for (i = 0; i < nr_pages; i++) {
1531                 if (swap_count(map[offset + i])) {
1532                         ret = true;
1533                         break;
1534                 }
1535         }
1536 unlock_out:
1537         unlock_cluster_or_swap_info(si, ci);
1538         return ret;
1539 }
1540
1541 static bool folio_swapped(struct folio *folio)
1542 {
1543         swp_entry_t entry = folio->swap;
1544         struct swap_info_struct *si = _swap_info_get(entry);
1545
1546         if (!si)
1547                 return false;
1548
1549         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1550                 return swap_swapcount(si, entry) != 0;
1551
1552         return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1553 }
1554
1555 /**
1556  * folio_free_swap() - Free the swap space used for this folio.
1557  * @folio: The folio to remove.
1558  *
1559  * If swap is getting full, or if there are no more mappings of this folio,
1560  * then call folio_free_swap to free its swap space.
1561  *
1562  * Return: true if we were able to release the swap space.
1563  */
1564 bool folio_free_swap(struct folio *folio)
1565 {
1566         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1567
1568         if (!folio_test_swapcache(folio))
1569                 return false;
1570         if (folio_test_writeback(folio))
1571                 return false;
1572         if (folio_swapped(folio))
1573                 return false;
1574
1575         /*
1576          * Once hibernation has begun to create its image of memory,
1577          * there's a danger that one of the calls to folio_free_swap()
1578          * - most probably a call from __try_to_reclaim_swap() while
1579          * hibernation is allocating its own swap pages for the image,
1580          * but conceivably even a call from memory reclaim - will free
1581          * the swap from a folio which has already been recorded in the
1582          * image as a clean swapcache folio, and then reuse its swap for
1583          * another page of the image.  On waking from hibernation, the
1584          * original folio might be freed under memory pressure, then
1585          * later read back in from swap, now with the wrong data.
1586          *
1587          * Hibernation suspends storage while it is writing the image
1588          * to disk so check that here.
1589          */
1590         if (pm_suspended_storage())
1591                 return false;
1592
1593         delete_from_swap_cache(folio);
1594         folio_set_dirty(folio);
1595         return true;
1596 }
1597
1598 /**
1599  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1600  *                            reclaim their cache if no more references remain.
1601  * @entry: First entry of range.
1602  * @nr: Number of entries in range.
1603  *
1604  * For each swap entry in the contiguous range, release a reference. If any swap
1605  * entries become free, try to reclaim their underlying folios, if present. The
1606  * offset range is defined by [entry.offset, entry.offset + nr).
1607  */
1608 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1609 {
1610         const unsigned long start_offset = swp_offset(entry);
1611         const unsigned long end_offset = start_offset + nr;
1612         unsigned int type = swp_type(entry);
1613         struct swap_info_struct *si;
1614         bool any_only_cache = false;
1615         unsigned long offset;
1616         unsigned char count;
1617
1618         if (non_swap_entry(entry))
1619                 return;
1620
1621         si = get_swap_device(entry);
1622         if (!si)
1623                 return;
1624
1625         if (WARN_ON(end_offset > si->max))
1626                 goto out;
1627
1628         /*
1629          * First free all entries in the range.
1630          */
1631         for (offset = start_offset; offset < end_offset; offset++) {
1632                 if (data_race(si->swap_map[offset])) {
1633                         count = __swap_entry_free(si, swp_entry(type, offset));
1634                         if (count == SWAP_HAS_CACHE)
1635                                 any_only_cache = true;
1636                 } else {
1637                         WARN_ON_ONCE(1);
1638                 }
1639         }
1640
1641         /*
1642          * Short-circuit the below loop if none of the entries had their
1643          * reference drop to zero.
1644          */
1645         if (!any_only_cache)
1646                 goto out;
1647
1648         /*
1649          * Now go back over the range trying to reclaim the swap cache. This is
1650          * more efficient for large folios because we will only try to reclaim
1651          * the swap once per folio in the common case. If we do
1652          * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1653          * latter will get a reference and lock the folio for every individual
1654          * page but will only succeed once the swap slot for every subpage is
1655          * zero.
1656          */
1657         for (offset = start_offset; offset < end_offset; offset += nr) {
1658                 nr = 1;
1659                 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1660                         /*
1661                          * Folios are always naturally aligned in swap so
1662                          * advance forward to the next boundary. Zero means no
1663                          * folio was found for the swap entry, so advance by 1
1664                          * in this case. Negative value means folio was found
1665                          * but could not be reclaimed. Here we can still advance
1666                          * to the next boundary.
1667                          */
1668                         nr = __try_to_reclaim_swap(si, offset,
1669                                               TTRS_UNMAPPED | TTRS_FULL);
1670                         if (nr == 0)
1671                                 nr = 1;
1672                         else if (nr < 0)
1673                                 nr = -nr;
1674                         nr = ALIGN(offset + 1, nr) - offset;
1675                 }
1676         }
1677
1678 out:
1679         put_swap_device(si);
1680 }
1681
1682 #ifdef CONFIG_HIBERNATION
1683
1684 swp_entry_t get_swap_page_of_type(int type)
1685 {
1686         struct swap_info_struct *si = swap_type_to_swap_info(type);
1687         swp_entry_t entry = {0};
1688
1689         if (!si)
1690                 goto fail;
1691
1692         /* This is called for allocating swap entry, not cache */
1693         spin_lock(&si->lock);
1694         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1695                 atomic_long_dec(&nr_swap_pages);
1696         spin_unlock(&si->lock);
1697 fail:
1698         return entry;
1699 }
1700
1701 /*
1702  * Find the swap type that corresponds to given device (if any).
1703  *
1704  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1705  * from 0, in which the swap header is expected to be located.
1706  *
1707  * This is needed for the suspend to disk (aka swsusp).
1708  */
1709 int swap_type_of(dev_t device, sector_t offset)
1710 {
1711         int type;
1712
1713         if (!device)
1714                 return -1;
1715
1716         spin_lock(&swap_lock);
1717         for (type = 0; type < nr_swapfiles; type++) {
1718                 struct swap_info_struct *sis = swap_info[type];
1719
1720                 if (!(sis->flags & SWP_WRITEOK))
1721                         continue;
1722
1723                 if (device == sis->bdev->bd_dev) {
1724                         struct swap_extent *se = first_se(sis);
1725
1726                         if (se->start_block == offset) {
1727                                 spin_unlock(&swap_lock);
1728                                 return type;
1729                         }
1730                 }
1731         }
1732         spin_unlock(&swap_lock);
1733         return -ENODEV;
1734 }
1735
1736 int find_first_swap(dev_t *device)
1737 {
1738         int type;
1739
1740         spin_lock(&swap_lock);
1741         for (type = 0; type < nr_swapfiles; type++) {
1742                 struct swap_info_struct *sis = swap_info[type];
1743
1744                 if (!(sis->flags & SWP_WRITEOK))
1745                         continue;
1746                 *device = sis->bdev->bd_dev;
1747                 spin_unlock(&swap_lock);
1748                 return type;
1749         }
1750         spin_unlock(&swap_lock);
1751         return -ENODEV;
1752 }
1753
1754 /*
1755  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1756  * corresponding to given index in swap_info (swap type).
1757  */
1758 sector_t swapdev_block(int type, pgoff_t offset)
1759 {
1760         struct swap_info_struct *si = swap_type_to_swap_info(type);
1761         struct swap_extent *se;
1762
1763         if (!si || !(si->flags & SWP_WRITEOK))
1764                 return 0;
1765         se = offset_to_swap_extent(si, offset);
1766         return se->start_block + (offset - se->start_page);
1767 }
1768
1769 /*
1770  * Return either the total number of swap pages of given type, or the number
1771  * of free pages of that type (depending on @free)
1772  *
1773  * This is needed for software suspend
1774  */
1775 unsigned int count_swap_pages(int type, int free)
1776 {
1777         unsigned int n = 0;
1778
1779         spin_lock(&swap_lock);
1780         if ((unsigned int)type < nr_swapfiles) {
1781                 struct swap_info_struct *sis = swap_info[type];
1782
1783                 spin_lock(&sis->lock);
1784                 if (sis->flags & SWP_WRITEOK) {
1785                         n = sis->pages;
1786                         if (free)
1787                                 n -= sis->inuse_pages;
1788                 }
1789                 spin_unlock(&sis->lock);
1790         }
1791         spin_unlock(&swap_lock);
1792         return n;
1793 }
1794 #endif /* CONFIG_HIBERNATION */
1795
1796 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1797 {
1798         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1799 }
1800
1801 /*
1802  * No need to decide whether this PTE shares the swap entry with others,
1803  * just let do_wp_page work it out if a write is requested later - to
1804  * force COW, vm_page_prot omits write permission from any private vma.
1805  */
1806 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1807                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1808 {
1809         struct page *page;
1810         struct folio *swapcache;
1811         spinlock_t *ptl;
1812         pte_t *pte, new_pte, old_pte;
1813         bool hwpoisoned = false;
1814         int ret = 1;
1815
1816         swapcache = folio;
1817         folio = ksm_might_need_to_copy(folio, vma, addr);
1818         if (unlikely(!folio))
1819                 return -ENOMEM;
1820         else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1821                 hwpoisoned = true;
1822                 folio = swapcache;
1823         }
1824
1825         page = folio_file_page(folio, swp_offset(entry));
1826         if (PageHWPoison(page))
1827                 hwpoisoned = true;
1828
1829         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1830         if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1831                                                 swp_entry_to_pte(entry)))) {
1832                 ret = 0;
1833                 goto out;
1834         }
1835
1836         old_pte = ptep_get(pte);
1837
1838         if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1839                 swp_entry_t swp_entry;
1840
1841                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1842                 if (hwpoisoned) {
1843                         swp_entry = make_hwpoison_entry(page);
1844                 } else {
1845                         swp_entry = make_poisoned_swp_entry();
1846                 }
1847                 new_pte = swp_entry_to_pte(swp_entry);
1848                 ret = 0;
1849                 goto setpte;
1850         }
1851
1852         /*
1853          * Some architectures may have to restore extra metadata to the page
1854          * when reading from swap. This metadata may be indexed by swap entry
1855          * so this must be called before swap_free().
1856          */
1857         arch_swap_restore(folio_swap(entry, folio), folio);
1858
1859         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1860         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1861         folio_get(folio);
1862         if (folio == swapcache) {
1863                 rmap_t rmap_flags = RMAP_NONE;
1864
1865                 /*
1866                  * See do_swap_page(): writeback would be problematic.
1867                  * However, we do a folio_wait_writeback() just before this
1868                  * call and have the folio locked.
1869                  */
1870                 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1871                 if (pte_swp_exclusive(old_pte))
1872                         rmap_flags |= RMAP_EXCLUSIVE;
1873
1874                 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1875         } else { /* ksm created a completely new copy */
1876                 folio_add_new_anon_rmap(folio, vma, addr);
1877                 folio_add_lru_vma(folio, vma);
1878         }
1879         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1880         if (pte_swp_soft_dirty(old_pte))
1881                 new_pte = pte_mksoft_dirty(new_pte);
1882         if (pte_swp_uffd_wp(old_pte))
1883                 new_pte = pte_mkuffd_wp(new_pte);
1884 setpte:
1885         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1886         swap_free(entry);
1887 out:
1888         if (pte)
1889                 pte_unmap_unlock(pte, ptl);
1890         if (folio != swapcache) {
1891                 folio_unlock(folio);
1892                 folio_put(folio);
1893         }
1894         return ret;
1895 }
1896
1897 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1898                         unsigned long addr, unsigned long end,
1899                         unsigned int type)
1900 {
1901         pte_t *pte = NULL;
1902         struct swap_info_struct *si;
1903
1904         si = swap_info[type];
1905         do {
1906                 struct folio *folio;
1907                 unsigned long offset;
1908                 unsigned char swp_count;
1909                 swp_entry_t entry;
1910                 int ret;
1911                 pte_t ptent;
1912
1913                 if (!pte++) {
1914                         pte = pte_offset_map(pmd, addr);
1915                         if (!pte)
1916                                 break;
1917                 }
1918
1919                 ptent = ptep_get_lockless(pte);
1920
1921                 if (!is_swap_pte(ptent))
1922                         continue;
1923
1924                 entry = pte_to_swp_entry(ptent);
1925                 if (swp_type(entry) != type)
1926                         continue;
1927
1928                 offset = swp_offset(entry);
1929                 pte_unmap(pte);
1930                 pte = NULL;
1931
1932                 folio = swap_cache_get_folio(entry, vma, addr);
1933                 if (!folio) {
1934                         struct page *page;
1935                         struct vm_fault vmf = {
1936                                 .vma = vma,
1937                                 .address = addr,
1938                                 .real_address = addr,
1939                                 .pmd = pmd,
1940                         };
1941
1942                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1943                                                 &vmf);
1944                         if (page)
1945                                 folio = page_folio(page);
1946                 }
1947                 if (!folio) {
1948                         swp_count = READ_ONCE(si->swap_map[offset]);
1949                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1950                                 continue;
1951                         return -ENOMEM;
1952                 }
1953
1954                 folio_lock(folio);
1955                 folio_wait_writeback(folio);
1956                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1957                 if (ret < 0) {
1958                         folio_unlock(folio);
1959                         folio_put(folio);
1960                         return ret;
1961                 }
1962
1963                 folio_free_swap(folio);
1964                 folio_unlock(folio);
1965                 folio_put(folio);
1966         } while (addr += PAGE_SIZE, addr != end);
1967
1968         if (pte)
1969                 pte_unmap(pte);
1970         return 0;
1971 }
1972
1973 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1974                                 unsigned long addr, unsigned long end,
1975                                 unsigned int type)
1976 {
1977         pmd_t *pmd;
1978         unsigned long next;
1979         int ret;
1980
1981         pmd = pmd_offset(pud, addr);
1982         do {
1983                 cond_resched();
1984                 next = pmd_addr_end(addr, end);
1985                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1986                 if (ret)
1987                         return ret;
1988         } while (pmd++, addr = next, addr != end);
1989         return 0;
1990 }
1991
1992 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1993                                 unsigned long addr, unsigned long end,
1994                                 unsigned int type)
1995 {
1996         pud_t *pud;
1997         unsigned long next;
1998         int ret;
1999
2000         pud = pud_offset(p4d, addr);
2001         do {
2002                 next = pud_addr_end(addr, end);
2003                 if (pud_none_or_clear_bad(pud))
2004                         continue;
2005                 ret = unuse_pmd_range(vma, pud, addr, next, type);
2006                 if (ret)
2007                         return ret;
2008         } while (pud++, addr = next, addr != end);
2009         return 0;
2010 }
2011
2012 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2013                                 unsigned long addr, unsigned long end,
2014                                 unsigned int type)
2015 {
2016         p4d_t *p4d;
2017         unsigned long next;
2018         int ret;
2019
2020         p4d = p4d_offset(pgd, addr);
2021         do {
2022                 next = p4d_addr_end(addr, end);
2023                 if (p4d_none_or_clear_bad(p4d))
2024                         continue;
2025                 ret = unuse_pud_range(vma, p4d, addr, next, type);
2026                 if (ret)
2027                         return ret;
2028         } while (p4d++, addr = next, addr != end);
2029         return 0;
2030 }
2031
2032 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2033 {
2034         pgd_t *pgd;
2035         unsigned long addr, end, next;
2036         int ret;
2037
2038         addr = vma->vm_start;
2039         end = vma->vm_end;
2040
2041         pgd = pgd_offset(vma->vm_mm, addr);
2042         do {
2043                 next = pgd_addr_end(addr, end);
2044                 if (pgd_none_or_clear_bad(pgd))
2045                         continue;
2046                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2047                 if (ret)
2048                         return ret;
2049         } while (pgd++, addr = next, addr != end);
2050         return 0;
2051 }
2052
2053 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2054 {
2055         struct vm_area_struct *vma;
2056         int ret = 0;
2057         VMA_ITERATOR(vmi, mm, 0);
2058
2059         mmap_read_lock(mm);
2060         for_each_vma(vmi, vma) {
2061                 if (vma->anon_vma) {
2062                         ret = unuse_vma(vma, type);
2063                         if (ret)
2064                                 break;
2065                 }
2066
2067                 cond_resched();
2068         }
2069         mmap_read_unlock(mm);
2070         return ret;
2071 }
2072
2073 /*
2074  * Scan swap_map from current position to next entry still in use.
2075  * Return 0 if there are no inuse entries after prev till end of
2076  * the map.
2077  */
2078 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2079                                         unsigned int prev)
2080 {
2081         unsigned int i;
2082         unsigned char count;
2083
2084         /*
2085          * No need for swap_lock here: we're just looking
2086          * for whether an entry is in use, not modifying it; false
2087          * hits are okay, and sys_swapoff() has already prevented new
2088          * allocations from this area (while holding swap_lock).
2089          */
2090         for (i = prev + 1; i < si->max; i++) {
2091                 count = READ_ONCE(si->swap_map[i]);
2092                 if (count && swap_count(count) != SWAP_MAP_BAD)
2093                         break;
2094                 if ((i % LATENCY_LIMIT) == 0)
2095                         cond_resched();
2096         }
2097
2098         if (i == si->max)
2099                 i = 0;
2100
2101         return i;
2102 }
2103
2104 static int try_to_unuse(unsigned int type)
2105 {
2106         struct mm_struct *prev_mm;
2107         struct mm_struct *mm;
2108         struct list_head *p;
2109         int retval = 0;
2110         struct swap_info_struct *si = swap_info[type];
2111         struct folio *folio;
2112         swp_entry_t entry;
2113         unsigned int i;
2114
2115         if (!READ_ONCE(si->inuse_pages))
2116                 goto success;
2117
2118 retry:
2119         retval = shmem_unuse(type);
2120         if (retval)
2121                 return retval;
2122
2123         prev_mm = &init_mm;
2124         mmget(prev_mm);
2125
2126         spin_lock(&mmlist_lock);
2127         p = &init_mm.mmlist;
2128         while (READ_ONCE(si->inuse_pages) &&
2129                !signal_pending(current) &&
2130                (p = p->next) != &init_mm.mmlist) {
2131
2132                 mm = list_entry(p, struct mm_struct, mmlist);
2133                 if (!mmget_not_zero(mm))
2134                         continue;
2135                 spin_unlock(&mmlist_lock);
2136                 mmput(prev_mm);
2137                 prev_mm = mm;
2138                 retval = unuse_mm(mm, type);
2139                 if (retval) {
2140                         mmput(prev_mm);
2141                         return retval;
2142                 }
2143
2144                 /*
2145                  * Make sure that we aren't completely killing
2146                  * interactive performance.
2147                  */
2148                 cond_resched();
2149                 spin_lock(&mmlist_lock);
2150         }
2151         spin_unlock(&mmlist_lock);
2152
2153         mmput(prev_mm);
2154
2155         i = 0;
2156         while (READ_ONCE(si->inuse_pages) &&
2157                !signal_pending(current) &&
2158                (i = find_next_to_unuse(si, i)) != 0) {
2159
2160                 entry = swp_entry(type, i);
2161                 folio = filemap_get_folio(swap_address_space(entry), i);
2162                 if (IS_ERR(folio))
2163                         continue;
2164
2165                 /*
2166                  * It is conceivable that a racing task removed this folio from
2167                  * swap cache just before we acquired the page lock. The folio
2168                  * might even be back in swap cache on another swap area. But
2169                  * that is okay, folio_free_swap() only removes stale folios.
2170                  */
2171                 folio_lock(folio);
2172                 folio_wait_writeback(folio);
2173                 folio_free_swap(folio);
2174                 folio_unlock(folio);
2175                 folio_put(folio);
2176         }
2177
2178         /*
2179          * Lets check again to see if there are still swap entries in the map.
2180          * If yes, we would need to do retry the unuse logic again.
2181          * Under global memory pressure, swap entries can be reinserted back
2182          * into process space after the mmlist loop above passes over them.
2183          *
2184          * Limit the number of retries? No: when mmget_not_zero()
2185          * above fails, that mm is likely to be freeing swap from
2186          * exit_mmap(), which proceeds at its own independent pace;
2187          * and even shmem_writepage() could have been preempted after
2188          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2189          * and robust (though cpu-intensive) just to keep retrying.
2190          */
2191         if (READ_ONCE(si->inuse_pages)) {
2192                 if (!signal_pending(current))
2193                         goto retry;
2194                 return -EINTR;
2195         }
2196
2197 success:
2198         /*
2199          * Make sure that further cleanups after try_to_unuse() returns happen
2200          * after swap_range_free() reduces si->inuse_pages to 0.
2201          */
2202         smp_mb();
2203         return 0;
2204 }
2205
2206 /*
2207  * After a successful try_to_unuse, if no swap is now in use, we know
2208  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2209  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2210  * added to the mmlist just after page_duplicate - before would be racy.
2211  */
2212 static void drain_mmlist(void)
2213 {
2214         struct list_head *p, *next;
2215         unsigned int type;
2216
2217         for (type = 0; type < nr_swapfiles; type++)
2218                 if (swap_info[type]->inuse_pages)
2219                         return;
2220         spin_lock(&mmlist_lock);
2221         list_for_each_safe(p, next, &init_mm.mmlist)
2222                 list_del_init(p);
2223         spin_unlock(&mmlist_lock);
2224 }
2225
2226 /*
2227  * Free all of a swapdev's extent information
2228  */
2229 static void destroy_swap_extents(struct swap_info_struct *sis)
2230 {
2231         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2232                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2233                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2234
2235                 rb_erase(rb, &sis->swap_extent_root);
2236                 kfree(se);
2237         }
2238
2239         if (sis->flags & SWP_ACTIVATED) {
2240                 struct file *swap_file = sis->swap_file;
2241                 struct address_space *mapping = swap_file->f_mapping;
2242
2243                 sis->flags &= ~SWP_ACTIVATED;
2244                 if (mapping->a_ops->swap_deactivate)
2245                         mapping->a_ops->swap_deactivate(swap_file);
2246         }
2247 }
2248
2249 /*
2250  * Add a block range (and the corresponding page range) into this swapdev's
2251  * extent tree.
2252  *
2253  * This function rather assumes that it is called in ascending page order.
2254  */
2255 int
2256 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2257                 unsigned long nr_pages, sector_t start_block)
2258 {
2259         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2260         struct swap_extent *se;
2261         struct swap_extent *new_se;
2262
2263         /*
2264          * place the new node at the right most since the
2265          * function is called in ascending page order.
2266          */
2267         while (*link) {
2268                 parent = *link;
2269                 link = &parent->rb_right;
2270         }
2271
2272         if (parent) {
2273                 se = rb_entry(parent, struct swap_extent, rb_node);
2274                 BUG_ON(se->start_page + se->nr_pages != start_page);
2275                 if (se->start_block + se->nr_pages == start_block) {
2276                         /* Merge it */
2277                         se->nr_pages += nr_pages;
2278                         return 0;
2279                 }
2280         }
2281
2282         /* No merge, insert a new extent. */
2283         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2284         if (new_se == NULL)
2285                 return -ENOMEM;
2286         new_se->start_page = start_page;
2287         new_se->nr_pages = nr_pages;
2288         new_se->start_block = start_block;
2289
2290         rb_link_node(&new_se->rb_node, parent, link);
2291         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2292         return 1;
2293 }
2294 EXPORT_SYMBOL_GPL(add_swap_extent);
2295
2296 /*
2297  * A `swap extent' is a simple thing which maps a contiguous range of pages
2298  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2299  * built at swapon time and is then used at swap_writepage/swap_read_folio
2300  * time for locating where on disk a page belongs.
2301  *
2302  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2303  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2304  * swap files identically.
2305  *
2306  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2307  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2308  * swapfiles are handled *identically* after swapon time.
2309  *
2310  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2311  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2312  * blocks are found which do not fall within the PAGE_SIZE alignment
2313  * requirements, they are simply tossed out - we will never use those blocks
2314  * for swapping.
2315  *
2316  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2317  * prevents users from writing to the swap device, which will corrupt memory.
2318  *
2319  * The amount of disk space which a single swap extent represents varies.
2320  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2321  * extents in the rbtree. - akpm.
2322  */
2323 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2324 {
2325         struct file *swap_file = sis->swap_file;
2326         struct address_space *mapping = swap_file->f_mapping;
2327         struct inode *inode = mapping->host;
2328         int ret;
2329
2330         if (S_ISBLK(inode->i_mode)) {
2331                 ret = add_swap_extent(sis, 0, sis->max, 0);
2332                 *span = sis->pages;
2333                 return ret;
2334         }
2335
2336         if (mapping->a_ops->swap_activate) {
2337                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2338                 if (ret < 0)
2339                         return ret;
2340                 sis->flags |= SWP_ACTIVATED;
2341                 if ((sis->flags & SWP_FS_OPS) &&
2342                     sio_pool_init() != 0) {
2343                         destroy_swap_extents(sis);
2344                         return -ENOMEM;
2345                 }
2346                 return ret;
2347         }
2348
2349         return generic_swapfile_activate(sis, swap_file, span);
2350 }
2351
2352 static int swap_node(struct swap_info_struct *p)
2353 {
2354         struct block_device *bdev;
2355
2356         if (p->bdev)
2357                 bdev = p->bdev;
2358         else
2359                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2360
2361         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2362 }
2363
2364 static void setup_swap_info(struct swap_info_struct *p, int prio,
2365                             unsigned char *swap_map,
2366                             struct swap_cluster_info *cluster_info)
2367 {
2368         int i;
2369
2370         if (prio >= 0)
2371                 p->prio = prio;
2372         else
2373                 p->prio = --least_priority;
2374         /*
2375          * the plist prio is negated because plist ordering is
2376          * low-to-high, while swap ordering is high-to-low
2377          */
2378         p->list.prio = -p->prio;
2379         for_each_node(i) {
2380                 if (p->prio >= 0)
2381                         p->avail_lists[i].prio = -p->prio;
2382                 else {
2383                         if (swap_node(p) == i)
2384                                 p->avail_lists[i].prio = 1;
2385                         else
2386                                 p->avail_lists[i].prio = -p->prio;
2387                 }
2388         }
2389         p->swap_map = swap_map;
2390         p->cluster_info = cluster_info;
2391 }
2392
2393 static void _enable_swap_info(struct swap_info_struct *p)
2394 {
2395         p->flags |= SWP_WRITEOK;
2396         atomic_long_add(p->pages, &nr_swap_pages);
2397         total_swap_pages += p->pages;
2398
2399         assert_spin_locked(&swap_lock);
2400         /*
2401          * both lists are plists, and thus priority ordered.
2402          * swap_active_head needs to be priority ordered for swapoff(),
2403          * which on removal of any swap_info_struct with an auto-assigned
2404          * (i.e. negative) priority increments the auto-assigned priority
2405          * of any lower-priority swap_info_structs.
2406          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2407          * which allocates swap pages from the highest available priority
2408          * swap_info_struct.
2409          */
2410         plist_add(&p->list, &swap_active_head);
2411
2412         /* add to available list iff swap device is not full */
2413         if (p->highest_bit)
2414                 add_to_avail_list(p);
2415 }
2416
2417 static void enable_swap_info(struct swap_info_struct *p, int prio,
2418                                 unsigned char *swap_map,
2419                                 struct swap_cluster_info *cluster_info)
2420 {
2421         spin_lock(&swap_lock);
2422         spin_lock(&p->lock);
2423         setup_swap_info(p, prio, swap_map, cluster_info);
2424         spin_unlock(&p->lock);
2425         spin_unlock(&swap_lock);
2426         /*
2427          * Finished initializing swap device, now it's safe to reference it.
2428          */
2429         percpu_ref_resurrect(&p->users);
2430         spin_lock(&swap_lock);
2431         spin_lock(&p->lock);
2432         _enable_swap_info(p);
2433         spin_unlock(&p->lock);
2434         spin_unlock(&swap_lock);
2435 }
2436
2437 static void reinsert_swap_info(struct swap_info_struct *p)
2438 {
2439         spin_lock(&swap_lock);
2440         spin_lock(&p->lock);
2441         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2442         _enable_swap_info(p);
2443         spin_unlock(&p->lock);
2444         spin_unlock(&swap_lock);
2445 }
2446
2447 static bool __has_usable_swap(void)
2448 {
2449         return !plist_head_empty(&swap_active_head);
2450 }
2451
2452 bool has_usable_swap(void)
2453 {
2454         bool ret;
2455
2456         spin_lock(&swap_lock);
2457         ret = __has_usable_swap();
2458         spin_unlock(&swap_lock);
2459         return ret;
2460 }
2461
2462 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2463 {
2464         struct swap_info_struct *p = NULL;
2465         unsigned char *swap_map;
2466         struct swap_cluster_info *cluster_info;
2467         struct file *swap_file, *victim;
2468         struct address_space *mapping;
2469         struct inode *inode;
2470         struct filename *pathname;
2471         int err, found = 0;
2472
2473         if (!capable(CAP_SYS_ADMIN))
2474                 return -EPERM;
2475
2476         BUG_ON(!current->mm);
2477
2478         pathname = getname(specialfile);
2479         if (IS_ERR(pathname))
2480                 return PTR_ERR(pathname);
2481
2482         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2483         err = PTR_ERR(victim);
2484         if (IS_ERR(victim))
2485                 goto out;
2486
2487         mapping = victim->f_mapping;
2488         spin_lock(&swap_lock);
2489         plist_for_each_entry(p, &swap_active_head, list) {
2490                 if (p->flags & SWP_WRITEOK) {
2491                         if (p->swap_file->f_mapping == mapping) {
2492                                 found = 1;
2493                                 break;
2494                         }
2495                 }
2496         }
2497         if (!found) {
2498                 err = -EINVAL;
2499                 spin_unlock(&swap_lock);
2500                 goto out_dput;
2501         }
2502         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2503                 vm_unacct_memory(p->pages);
2504         else {
2505                 err = -ENOMEM;
2506                 spin_unlock(&swap_lock);
2507                 goto out_dput;
2508         }
2509         spin_lock(&p->lock);
2510         del_from_avail_list(p);
2511         if (p->prio < 0) {
2512                 struct swap_info_struct *si = p;
2513                 int nid;
2514
2515                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2516                         si->prio++;
2517                         si->list.prio--;
2518                         for_each_node(nid) {
2519                                 if (si->avail_lists[nid].prio != 1)
2520                                         si->avail_lists[nid].prio--;
2521                         }
2522                 }
2523                 least_priority++;
2524         }
2525         plist_del(&p->list, &swap_active_head);
2526         atomic_long_sub(p->pages, &nr_swap_pages);
2527         total_swap_pages -= p->pages;
2528         p->flags &= ~SWP_WRITEOK;
2529         spin_unlock(&p->lock);
2530         spin_unlock(&swap_lock);
2531
2532         disable_swap_slots_cache_lock();
2533
2534         set_current_oom_origin();
2535         err = try_to_unuse(p->type);
2536         clear_current_oom_origin();
2537
2538         if (err) {
2539                 /* re-insert swap space back into swap_list */
2540                 reinsert_swap_info(p);
2541                 reenable_swap_slots_cache_unlock();
2542                 goto out_dput;
2543         }
2544
2545         reenable_swap_slots_cache_unlock();
2546
2547         /*
2548          * Wait for swap operations protected by get/put_swap_device()
2549          * to complete.  Because of synchronize_rcu() here, all swap
2550          * operations protected by RCU reader side lock (including any
2551          * spinlock) will be waited too.  This makes it easy to
2552          * prevent folio_test_swapcache() and the following swap cache
2553          * operations from racing with swapoff.
2554          */
2555         percpu_ref_kill(&p->users);
2556         synchronize_rcu();
2557         wait_for_completion(&p->comp);
2558
2559         flush_work(&p->discard_work);
2560
2561         destroy_swap_extents(p);
2562         if (p->flags & SWP_CONTINUED)
2563                 free_swap_count_continuations(p);
2564
2565         if (!p->bdev || !bdev_nonrot(p->bdev))
2566                 atomic_dec(&nr_rotate_swap);
2567
2568         mutex_lock(&swapon_mutex);
2569         spin_lock(&swap_lock);
2570         spin_lock(&p->lock);
2571         drain_mmlist();
2572
2573         /* wait for anyone still in scan_swap_map_slots */
2574         p->highest_bit = 0;             /* cuts scans short */
2575         while (p->flags >= SWP_SCANNING) {
2576                 spin_unlock(&p->lock);
2577                 spin_unlock(&swap_lock);
2578                 schedule_timeout_uninterruptible(1);
2579                 spin_lock(&swap_lock);
2580                 spin_lock(&p->lock);
2581         }
2582
2583         swap_file = p->swap_file;
2584         p->swap_file = NULL;
2585         p->max = 0;
2586         swap_map = p->swap_map;
2587         p->swap_map = NULL;
2588         cluster_info = p->cluster_info;
2589         p->cluster_info = NULL;
2590         spin_unlock(&p->lock);
2591         spin_unlock(&swap_lock);
2592         arch_swap_invalidate_area(p->type);
2593         zswap_swapoff(p->type);
2594         mutex_unlock(&swapon_mutex);
2595         free_percpu(p->percpu_cluster);
2596         p->percpu_cluster = NULL;
2597         free_percpu(p->cluster_next_cpu);
2598         p->cluster_next_cpu = NULL;
2599         vfree(swap_map);
2600         kvfree(cluster_info);
2601         /* Destroy swap account information */
2602         swap_cgroup_swapoff(p->type);
2603         exit_swap_address_space(p->type);
2604
2605         inode = mapping->host;
2606
2607         inode_lock(inode);
2608         inode->i_flags &= ~S_SWAPFILE;
2609         inode_unlock(inode);
2610         filp_close(swap_file, NULL);
2611
2612         /*
2613          * Clear the SWP_USED flag after all resources are freed so that swapon
2614          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2615          * not hold p->lock after we cleared its SWP_WRITEOK.
2616          */
2617         spin_lock(&swap_lock);
2618         p->flags = 0;
2619         spin_unlock(&swap_lock);
2620
2621         err = 0;
2622         atomic_inc(&proc_poll_event);
2623         wake_up_interruptible(&proc_poll_wait);
2624
2625 out_dput:
2626         filp_close(victim, NULL);
2627 out:
2628         putname(pathname);
2629         return err;
2630 }
2631
2632 #ifdef CONFIG_PROC_FS
2633 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2634 {
2635         struct seq_file *seq = file->private_data;
2636
2637         poll_wait(file, &proc_poll_wait, wait);
2638
2639         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2640                 seq->poll_event = atomic_read(&proc_poll_event);
2641                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2642         }
2643
2644         return EPOLLIN | EPOLLRDNORM;
2645 }
2646
2647 /* iterator */
2648 static void *swap_start(struct seq_file *swap, loff_t *pos)
2649 {
2650         struct swap_info_struct *si;
2651         int type;
2652         loff_t l = *pos;
2653
2654         mutex_lock(&swapon_mutex);
2655
2656         if (!l)
2657                 return SEQ_START_TOKEN;
2658
2659         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2660                 if (!(si->flags & SWP_USED) || !si->swap_map)
2661                         continue;
2662                 if (!--l)
2663                         return si;
2664         }
2665
2666         return NULL;
2667 }
2668
2669 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2670 {
2671         struct swap_info_struct *si = v;
2672         int type;
2673
2674         if (v == SEQ_START_TOKEN)
2675                 type = 0;
2676         else
2677                 type = si->type + 1;
2678
2679         ++(*pos);
2680         for (; (si = swap_type_to_swap_info(type)); type++) {
2681                 if (!(si->flags & SWP_USED) || !si->swap_map)
2682                         continue;
2683                 return si;
2684         }
2685
2686         return NULL;
2687 }
2688
2689 static void swap_stop(struct seq_file *swap, void *v)
2690 {
2691         mutex_unlock(&swapon_mutex);
2692 }
2693
2694 static int swap_show(struct seq_file *swap, void *v)
2695 {
2696         struct swap_info_struct *si = v;
2697         struct file *file;
2698         int len;
2699         unsigned long bytes, inuse;
2700
2701         if (si == SEQ_START_TOKEN) {
2702                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2703                 return 0;
2704         }
2705
2706         bytes = K(si->pages);
2707         inuse = K(READ_ONCE(si->inuse_pages));
2708
2709         file = si->swap_file;
2710         len = seq_file_path(swap, file, " \t\n\\");
2711         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2712                         len < 40 ? 40 - len : 1, " ",
2713                         S_ISBLK(file_inode(file)->i_mode) ?
2714                                 "partition" : "file\t",
2715                         bytes, bytes < 10000000 ? "\t" : "",
2716                         inuse, inuse < 10000000 ? "\t" : "",
2717                         si->prio);
2718         return 0;
2719 }
2720
2721 static const struct seq_operations swaps_op = {
2722         .start =        swap_start,
2723         .next =         swap_next,
2724         .stop =         swap_stop,
2725         .show =         swap_show
2726 };
2727
2728 static int swaps_open(struct inode *inode, struct file *file)
2729 {
2730         struct seq_file *seq;
2731         int ret;
2732
2733         ret = seq_open(file, &swaps_op);
2734         if (ret)
2735                 return ret;
2736
2737         seq = file->private_data;
2738         seq->poll_event = atomic_read(&proc_poll_event);
2739         return 0;
2740 }
2741
2742 static const struct proc_ops swaps_proc_ops = {
2743         .proc_flags     = PROC_ENTRY_PERMANENT,
2744         .proc_open      = swaps_open,
2745         .proc_read      = seq_read,
2746         .proc_lseek     = seq_lseek,
2747         .proc_release   = seq_release,
2748         .proc_poll      = swaps_poll,
2749 };
2750
2751 static int __init procswaps_init(void)
2752 {
2753         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2754         return 0;
2755 }
2756 __initcall(procswaps_init);
2757 #endif /* CONFIG_PROC_FS */
2758
2759 #ifdef MAX_SWAPFILES_CHECK
2760 static int __init max_swapfiles_check(void)
2761 {
2762         MAX_SWAPFILES_CHECK();
2763         return 0;
2764 }
2765 late_initcall(max_swapfiles_check);
2766 #endif
2767
2768 static struct swap_info_struct *alloc_swap_info(void)
2769 {
2770         struct swap_info_struct *p;
2771         struct swap_info_struct *defer = NULL;
2772         unsigned int type;
2773         int i;
2774
2775         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2776         if (!p)
2777                 return ERR_PTR(-ENOMEM);
2778
2779         if (percpu_ref_init(&p->users, swap_users_ref_free,
2780                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2781                 kvfree(p);
2782                 return ERR_PTR(-ENOMEM);
2783         }
2784
2785         spin_lock(&swap_lock);
2786         for (type = 0; type < nr_swapfiles; type++) {
2787                 if (!(swap_info[type]->flags & SWP_USED))
2788                         break;
2789         }
2790         if (type >= MAX_SWAPFILES) {
2791                 spin_unlock(&swap_lock);
2792                 percpu_ref_exit(&p->users);
2793                 kvfree(p);
2794                 return ERR_PTR(-EPERM);
2795         }
2796         if (type >= nr_swapfiles) {
2797                 p->type = type;
2798                 /*
2799                  * Publish the swap_info_struct after initializing it.
2800                  * Note that kvzalloc() above zeroes all its fields.
2801                  */
2802                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2803                 nr_swapfiles++;
2804         } else {
2805                 defer = p;
2806                 p = swap_info[type];
2807                 /*
2808                  * Do not memset this entry: a racing procfs swap_next()
2809                  * would be relying on p->type to remain valid.
2810                  */
2811         }
2812         p->swap_extent_root = RB_ROOT;
2813         plist_node_init(&p->list, 0);
2814         for_each_node(i)
2815                 plist_node_init(&p->avail_lists[i], 0);
2816         p->flags = SWP_USED;
2817         spin_unlock(&swap_lock);
2818         if (defer) {
2819                 percpu_ref_exit(&defer->users);
2820                 kvfree(defer);
2821         }
2822         spin_lock_init(&p->lock);
2823         spin_lock_init(&p->cont_lock);
2824         init_completion(&p->comp);
2825
2826         return p;
2827 }
2828
2829 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2830 {
2831         if (S_ISBLK(inode->i_mode)) {
2832                 p->bdev = I_BDEV(inode);
2833                 /*
2834                  * Zoned block devices contain zones that have a sequential
2835                  * write only restriction.  Hence zoned block devices are not
2836                  * suitable for swapping.  Disallow them here.
2837                  */
2838                 if (bdev_is_zoned(p->bdev))
2839                         return -EINVAL;
2840                 p->flags |= SWP_BLKDEV;
2841         } else if (S_ISREG(inode->i_mode)) {
2842                 p->bdev = inode->i_sb->s_bdev;
2843         }
2844
2845         return 0;
2846 }
2847
2848
2849 /*
2850  * Find out how many pages are allowed for a single swap device. There
2851  * are two limiting factors:
2852  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2853  * 2) the number of bits in the swap pte, as defined by the different
2854  * architectures.
2855  *
2856  * In order to find the largest possible bit mask, a swap entry with
2857  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2858  * decoded to a swp_entry_t again, and finally the swap offset is
2859  * extracted.
2860  *
2861  * This will mask all the bits from the initial ~0UL mask that can't
2862  * be encoded in either the swp_entry_t or the architecture definition
2863  * of a swap pte.
2864  */
2865 unsigned long generic_max_swapfile_size(void)
2866 {
2867         return swp_offset(pte_to_swp_entry(
2868                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2869 }
2870
2871 /* Can be overridden by an architecture for additional checks. */
2872 __weak unsigned long arch_max_swapfile_size(void)
2873 {
2874         return generic_max_swapfile_size();
2875 }
2876
2877 static unsigned long read_swap_header(struct swap_info_struct *p,
2878                                         union swap_header *swap_header,
2879                                         struct inode *inode)
2880 {
2881         int i;
2882         unsigned long maxpages;
2883         unsigned long swapfilepages;
2884         unsigned long last_page;
2885
2886         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2887                 pr_err("Unable to find swap-space signature\n");
2888                 return 0;
2889         }
2890
2891         /* swap partition endianness hack... */
2892         if (swab32(swap_header->info.version) == 1) {
2893                 swab32s(&swap_header->info.version);
2894                 swab32s(&swap_header->info.last_page);
2895                 swab32s(&swap_header->info.nr_badpages);
2896                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2897                         return 0;
2898                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2899                         swab32s(&swap_header->info.badpages[i]);
2900         }
2901         /* Check the swap header's sub-version */
2902         if (swap_header->info.version != 1) {
2903                 pr_warn("Unable to handle swap header version %d\n",
2904                         swap_header->info.version);
2905                 return 0;
2906         }
2907
2908         p->lowest_bit  = 1;
2909         p->cluster_next = 1;
2910         p->cluster_nr = 0;
2911
2912         maxpages = swapfile_maximum_size;
2913         last_page = swap_header->info.last_page;
2914         if (!last_page) {
2915                 pr_warn("Empty swap-file\n");
2916                 return 0;
2917         }
2918         if (last_page > maxpages) {
2919                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2920                         K(maxpages), K(last_page));
2921         }
2922         if (maxpages > last_page) {
2923                 maxpages = last_page + 1;
2924                 /* p->max is an unsigned int: don't overflow it */
2925                 if ((unsigned int)maxpages == 0)
2926                         maxpages = UINT_MAX;
2927         }
2928         p->highest_bit = maxpages - 1;
2929
2930         if (!maxpages)
2931                 return 0;
2932         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2933         if (swapfilepages && maxpages > swapfilepages) {
2934                 pr_warn("Swap area shorter than signature indicates\n");
2935                 return 0;
2936         }
2937         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2938                 return 0;
2939         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2940                 return 0;
2941
2942         return maxpages;
2943 }
2944
2945 #define SWAP_CLUSTER_INFO_COLS                                          \
2946         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2947 #define SWAP_CLUSTER_SPACE_COLS                                         \
2948         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2949 #define SWAP_CLUSTER_COLS                                               \
2950         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2951
2952 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2953                                         union swap_header *swap_header,
2954                                         unsigned char *swap_map,
2955                                         struct swap_cluster_info *cluster_info,
2956                                         unsigned long maxpages,
2957                                         sector_t *span)
2958 {
2959         unsigned int j, k;
2960         unsigned int nr_good_pages;
2961         int nr_extents;
2962         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2963         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2964         unsigned long i, idx;
2965
2966         nr_good_pages = maxpages - 1;   /* omit header page */
2967
2968         cluster_list_init(&p->free_clusters);
2969         cluster_list_init(&p->discard_clusters);
2970
2971         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2972                 unsigned int page_nr = swap_header->info.badpages[i];
2973                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2974                         return -EINVAL;
2975                 if (page_nr < maxpages) {
2976                         swap_map[page_nr] = SWAP_MAP_BAD;
2977                         nr_good_pages--;
2978                         /*
2979                          * Haven't marked the cluster free yet, no list
2980                          * operation involved
2981                          */
2982                         inc_cluster_info_page(p, cluster_info, page_nr);
2983                 }
2984         }
2985
2986         /* Haven't marked the cluster free yet, no list operation involved */
2987         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2988                 inc_cluster_info_page(p, cluster_info, i);
2989
2990         if (nr_good_pages) {
2991                 swap_map[0] = SWAP_MAP_BAD;
2992                 /*
2993                  * Not mark the cluster free yet, no list
2994                  * operation involved
2995                  */
2996                 inc_cluster_info_page(p, cluster_info, 0);
2997                 p->max = maxpages;
2998                 p->pages = nr_good_pages;
2999                 nr_extents = setup_swap_extents(p, span);
3000                 if (nr_extents < 0)
3001                         return nr_extents;
3002                 nr_good_pages = p->pages;
3003         }
3004         if (!nr_good_pages) {
3005                 pr_warn("Empty swap-file\n");
3006                 return -EINVAL;
3007         }
3008
3009         if (!cluster_info)
3010                 return nr_extents;
3011
3012
3013         /*
3014          * Reduce false cache line sharing between cluster_info and
3015          * sharing same address space.
3016          */
3017         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3018                 j = (k + col) % SWAP_CLUSTER_COLS;
3019                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3020                         idx = i * SWAP_CLUSTER_COLS + j;
3021                         if (idx >= nr_clusters)
3022                                 continue;
3023                         if (cluster_count(&cluster_info[idx]))
3024                                 continue;
3025                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3026                         cluster_list_add_tail(&p->free_clusters, cluster_info,
3027                                               idx);
3028                 }
3029         }
3030         return nr_extents;
3031 }
3032
3033 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3034 {
3035         struct swap_info_struct *p;
3036         struct filename *name;
3037         struct file *swap_file = NULL;
3038         struct address_space *mapping;
3039         struct dentry *dentry;
3040         int prio;
3041         int error;
3042         union swap_header *swap_header;
3043         int nr_extents;
3044         sector_t span;
3045         unsigned long maxpages;
3046         unsigned char *swap_map = NULL;
3047         struct swap_cluster_info *cluster_info = NULL;
3048         struct page *page = NULL;
3049         struct inode *inode = NULL;
3050         bool inced_nr_rotate_swap = false;
3051
3052         if (swap_flags & ~SWAP_FLAGS_VALID)
3053                 return -EINVAL;
3054
3055         if (!capable(CAP_SYS_ADMIN))
3056                 return -EPERM;
3057
3058         if (!swap_avail_heads)
3059                 return -ENOMEM;
3060
3061         p = alloc_swap_info();
3062         if (IS_ERR(p))
3063                 return PTR_ERR(p);
3064
3065         INIT_WORK(&p->discard_work, swap_discard_work);
3066
3067         name = getname(specialfile);
3068         if (IS_ERR(name)) {
3069                 error = PTR_ERR(name);
3070                 name = NULL;
3071                 goto bad_swap;
3072         }
3073         swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3074         if (IS_ERR(swap_file)) {
3075                 error = PTR_ERR(swap_file);
3076                 swap_file = NULL;
3077                 goto bad_swap;
3078         }
3079
3080         p->swap_file = swap_file;
3081         mapping = swap_file->f_mapping;
3082         dentry = swap_file->f_path.dentry;
3083         inode = mapping->host;
3084
3085         error = claim_swapfile(p, inode);
3086         if (unlikely(error))
3087                 goto bad_swap;
3088
3089         inode_lock(inode);
3090         if (d_unlinked(dentry) || cant_mount(dentry)) {
3091                 error = -ENOENT;
3092                 goto bad_swap_unlock_inode;
3093         }
3094         if (IS_SWAPFILE(inode)) {
3095                 error = -EBUSY;
3096                 goto bad_swap_unlock_inode;
3097         }
3098
3099         /*
3100          * Read the swap header.
3101          */
3102         if (!mapping->a_ops->read_folio) {
3103                 error = -EINVAL;
3104                 goto bad_swap_unlock_inode;
3105         }
3106         page = read_mapping_page(mapping, 0, swap_file);
3107         if (IS_ERR(page)) {
3108                 error = PTR_ERR(page);
3109                 goto bad_swap_unlock_inode;
3110         }
3111         swap_header = kmap(page);
3112
3113         maxpages = read_swap_header(p, swap_header, inode);
3114         if (unlikely(!maxpages)) {
3115                 error = -EINVAL;
3116                 goto bad_swap_unlock_inode;
3117         }
3118
3119         /* OK, set up the swap map and apply the bad block list */
3120         swap_map = vzalloc(maxpages);
3121         if (!swap_map) {
3122                 error = -ENOMEM;
3123                 goto bad_swap_unlock_inode;
3124         }
3125
3126         if (p->bdev && bdev_stable_writes(p->bdev))
3127                 p->flags |= SWP_STABLE_WRITES;
3128
3129         if (p->bdev && bdev_synchronous(p->bdev))
3130                 p->flags |= SWP_SYNCHRONOUS_IO;
3131
3132         if (p->bdev && bdev_nonrot(p->bdev)) {
3133                 int cpu, i;
3134                 unsigned long ci, nr_cluster;
3135
3136                 p->flags |= SWP_SOLIDSTATE;
3137                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3138                 if (!p->cluster_next_cpu) {
3139                         error = -ENOMEM;
3140                         goto bad_swap_unlock_inode;
3141                 }
3142                 /*
3143                  * select a random position to start with to help wear leveling
3144                  * SSD
3145                  */
3146                 for_each_possible_cpu(cpu) {
3147                         per_cpu(*p->cluster_next_cpu, cpu) =
3148                                 get_random_u32_inclusive(1, p->highest_bit);
3149                 }
3150                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3151
3152                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3153                                         GFP_KERNEL);
3154                 if (!cluster_info) {
3155                         error = -ENOMEM;
3156                         goto bad_swap_unlock_inode;
3157                 }
3158
3159                 for (ci = 0; ci < nr_cluster; ci++)
3160                         spin_lock_init(&((cluster_info + ci)->lock));
3161
3162                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3163                 if (!p->percpu_cluster) {
3164                         error = -ENOMEM;
3165                         goto bad_swap_unlock_inode;
3166                 }
3167                 for_each_possible_cpu(cpu) {
3168                         struct percpu_cluster *cluster;
3169
3170                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3171                         for (i = 0; i < SWAP_NR_ORDERS; i++)
3172                                 cluster->next[i] = SWAP_NEXT_INVALID;
3173                 }
3174         } else {
3175                 atomic_inc(&nr_rotate_swap);
3176                 inced_nr_rotate_swap = true;
3177         }
3178
3179         error = swap_cgroup_swapon(p->type, maxpages);
3180         if (error)
3181                 goto bad_swap_unlock_inode;
3182
3183         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3184                 cluster_info, maxpages, &span);
3185         if (unlikely(nr_extents < 0)) {
3186                 error = nr_extents;
3187                 goto bad_swap_unlock_inode;
3188         }
3189
3190         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3191             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3192                 /*
3193                  * When discard is enabled for swap with no particular
3194                  * policy flagged, we set all swap discard flags here in
3195                  * order to sustain backward compatibility with older
3196                  * swapon(8) releases.
3197                  */
3198                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3199                              SWP_PAGE_DISCARD);
3200
3201                 /*
3202                  * By flagging sys_swapon, a sysadmin can tell us to
3203                  * either do single-time area discards only, or to just
3204                  * perform discards for released swap page-clusters.
3205                  * Now it's time to adjust the p->flags accordingly.
3206                  */
3207                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3208                         p->flags &= ~SWP_PAGE_DISCARD;
3209                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3210                         p->flags &= ~SWP_AREA_DISCARD;
3211
3212                 /* issue a swapon-time discard if it's still required */
3213                 if (p->flags & SWP_AREA_DISCARD) {
3214                         int err = discard_swap(p);
3215                         if (unlikely(err))
3216                                 pr_err("swapon: discard_swap(%p): %d\n",
3217                                         p, err);
3218                 }
3219         }
3220
3221         error = init_swap_address_space(p->type, maxpages);
3222         if (error)
3223                 goto bad_swap_unlock_inode;
3224
3225         error = zswap_swapon(p->type, maxpages);
3226         if (error)
3227                 goto free_swap_address_space;
3228
3229         /*
3230          * Flush any pending IO and dirty mappings before we start using this
3231          * swap device.
3232          */
3233         inode->i_flags |= S_SWAPFILE;
3234         error = inode_drain_writes(inode);
3235         if (error) {
3236                 inode->i_flags &= ~S_SWAPFILE;
3237                 goto free_swap_zswap;
3238         }
3239
3240         mutex_lock(&swapon_mutex);
3241         prio = -1;
3242         if (swap_flags & SWAP_FLAG_PREFER)
3243                 prio =
3244                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3245         enable_swap_info(p, prio, swap_map, cluster_info);
3246
3247         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3248                 K(p->pages), name->name, p->prio, nr_extents,
3249                 K((unsigned long long)span),
3250                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3251                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3252                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3253                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3254
3255         mutex_unlock(&swapon_mutex);
3256         atomic_inc(&proc_poll_event);
3257         wake_up_interruptible(&proc_poll_wait);
3258
3259         error = 0;
3260         goto out;
3261 free_swap_zswap:
3262         zswap_swapoff(p->type);
3263 free_swap_address_space:
3264         exit_swap_address_space(p->type);
3265 bad_swap_unlock_inode:
3266         inode_unlock(inode);
3267 bad_swap:
3268         free_percpu(p->percpu_cluster);
3269         p->percpu_cluster = NULL;
3270         free_percpu(p->cluster_next_cpu);
3271         p->cluster_next_cpu = NULL;
3272         inode = NULL;
3273         destroy_swap_extents(p);
3274         swap_cgroup_swapoff(p->type);
3275         spin_lock(&swap_lock);
3276         p->swap_file = NULL;
3277         p->flags = 0;
3278         spin_unlock(&swap_lock);
3279         vfree(swap_map);
3280         kvfree(cluster_info);
3281         if (inced_nr_rotate_swap)
3282                 atomic_dec(&nr_rotate_swap);
3283         if (swap_file)
3284                 filp_close(swap_file, NULL);
3285 out:
3286         if (page && !IS_ERR(page)) {
3287                 kunmap(page);
3288                 put_page(page);
3289         }
3290         if (name)
3291                 putname(name);
3292         if (inode)
3293                 inode_unlock(inode);
3294         if (!error)
3295                 enable_swap_slots_cache();
3296         return error;
3297 }
3298
3299 void si_swapinfo(struct sysinfo *val)
3300 {
3301         unsigned int type;
3302         unsigned long nr_to_be_unused = 0;
3303
3304         spin_lock(&swap_lock);
3305         for (type = 0; type < nr_swapfiles; type++) {
3306                 struct swap_info_struct *si = swap_info[type];
3307
3308                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3309                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3310         }
3311         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3312         val->totalswap = total_swap_pages + nr_to_be_unused;
3313         spin_unlock(&swap_lock);
3314 }
3315
3316 /*
3317  * Verify that a swap entry is valid and increment its swap map count.
3318  *
3319  * Returns error code in following case.
3320  * - success -> 0
3321  * - swp_entry is invalid -> EINVAL
3322  * - swp_entry is migration entry -> EINVAL
3323  * - swap-cache reference is requested but there is already one. -> EEXIST
3324  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3325  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3326  */
3327 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3328 {
3329         struct swap_info_struct *p;
3330         struct swap_cluster_info *ci;
3331         unsigned long offset;
3332         unsigned char count;
3333         unsigned char has_cache;
3334         int err;
3335
3336         p = swp_swap_info(entry);
3337
3338         offset = swp_offset(entry);
3339         ci = lock_cluster_or_swap_info(p, offset);
3340
3341         count = p->swap_map[offset];
3342
3343         /*
3344          * swapin_readahead() doesn't check if a swap entry is valid, so the
3345          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3346          */
3347         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3348                 err = -ENOENT;
3349                 goto unlock_out;
3350         }
3351
3352         has_cache = count & SWAP_HAS_CACHE;
3353         count &= ~SWAP_HAS_CACHE;
3354         err = 0;
3355
3356         if (usage == SWAP_HAS_CACHE) {
3357
3358                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3359                 if (!has_cache && count)
3360                         has_cache = SWAP_HAS_CACHE;
3361                 else if (has_cache)             /* someone else added cache */
3362                         err = -EEXIST;
3363                 else                            /* no users remaining */
3364                         err = -ENOENT;
3365
3366         } else if (count || has_cache) {
3367
3368                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3369                         count += usage;
3370                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3371                         err = -EINVAL;
3372                 else if (swap_count_continued(p, offset, count))
3373                         count = COUNT_CONTINUED;
3374                 else
3375                         err = -ENOMEM;
3376         } else
3377                 err = -ENOENT;                  /* unused swap entry */
3378
3379         if (!err)
3380                 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3381
3382 unlock_out:
3383         unlock_cluster_or_swap_info(p, ci);
3384         return err;
3385 }
3386
3387 /*
3388  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3389  * (in which case its reference count is never incremented).
3390  */
3391 void swap_shmem_alloc(swp_entry_t entry)
3392 {
3393         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3394 }
3395
3396 /*
3397  * Increase reference count of swap entry by 1.
3398  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3399  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3400  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3401  * might occur if a page table entry has got corrupted.
3402  */
3403 int swap_duplicate(swp_entry_t entry)
3404 {
3405         int err = 0;
3406
3407         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3408                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3409         return err;
3410 }
3411
3412 /*
3413  * @entry: swap entry for which we allocate swap cache.
3414  *
3415  * Called when allocating swap cache for existing swap entry,
3416  * This can return error codes. Returns 0 at success.
3417  * -EEXIST means there is a swap cache.
3418  * Note: return code is different from swap_duplicate().
3419  */
3420 int swapcache_prepare(swp_entry_t entry)
3421 {
3422         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3423 }
3424
3425 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3426 {
3427         struct swap_cluster_info *ci;
3428         unsigned long offset = swp_offset(entry);
3429         unsigned char usage;
3430
3431         ci = lock_cluster_or_swap_info(si, offset);
3432         usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3433         unlock_cluster_or_swap_info(si, ci);
3434         if (!usage)
3435                 free_swap_slot(entry);
3436 }
3437
3438 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3439 {
3440         return swap_type_to_swap_info(swp_type(entry));
3441 }
3442
3443 /*
3444  * out-of-line methods to avoid include hell.
3445  */
3446 struct address_space *swapcache_mapping(struct folio *folio)
3447 {
3448         return swp_swap_info(folio->swap)->swap_file->f_mapping;
3449 }
3450 EXPORT_SYMBOL_GPL(swapcache_mapping);
3451
3452 pgoff_t __page_file_index(struct page *page)
3453 {
3454         swp_entry_t swap = page_swap_entry(page);
3455         return swp_offset(swap);
3456 }
3457 EXPORT_SYMBOL_GPL(__page_file_index);
3458
3459 /*
3460  * add_swap_count_continuation - called when a swap count is duplicated
3461  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3462  * page of the original vmalloc'ed swap_map, to hold the continuation count
3463  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3464  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3465  *
3466  * These continuation pages are seldom referenced: the common paths all work
3467  * on the original swap_map, only referring to a continuation page when the
3468  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3469  *
3470  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3471  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3472  * can be called after dropping locks.
3473  */
3474 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3475 {
3476         struct swap_info_struct *si;
3477         struct swap_cluster_info *ci;
3478         struct page *head;
3479         struct page *page;
3480         struct page *list_page;
3481         pgoff_t offset;
3482         unsigned char count;
3483         int ret = 0;
3484
3485         /*
3486          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3487          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3488          */
3489         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3490
3491         si = get_swap_device(entry);
3492         if (!si) {
3493                 /*
3494                  * An acceptable race has occurred since the failing
3495                  * __swap_duplicate(): the swap device may be swapoff
3496                  */
3497                 goto outer;
3498         }
3499         spin_lock(&si->lock);
3500
3501         offset = swp_offset(entry);
3502
3503         ci = lock_cluster(si, offset);
3504
3505         count = swap_count(si->swap_map[offset]);
3506
3507         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3508                 /*
3509                  * The higher the swap count, the more likely it is that tasks
3510                  * will race to add swap count continuation: we need to avoid
3511                  * over-provisioning.
3512                  */
3513                 goto out;
3514         }
3515
3516         if (!page) {
3517                 ret = -ENOMEM;
3518                 goto out;
3519         }
3520
3521         head = vmalloc_to_page(si->swap_map + offset);
3522         offset &= ~PAGE_MASK;
3523
3524         spin_lock(&si->cont_lock);
3525         /*
3526          * Page allocation does not initialize the page's lru field,
3527          * but it does always reset its private field.
3528          */
3529         if (!page_private(head)) {
3530                 BUG_ON(count & COUNT_CONTINUED);
3531                 INIT_LIST_HEAD(&head->lru);
3532                 set_page_private(head, SWP_CONTINUED);
3533                 si->flags |= SWP_CONTINUED;
3534         }
3535
3536         list_for_each_entry(list_page, &head->lru, lru) {
3537                 unsigned char *map;
3538
3539                 /*
3540                  * If the previous map said no continuation, but we've found
3541                  * a continuation page, free our allocation and use this one.
3542                  */
3543                 if (!(count & COUNT_CONTINUED))
3544                         goto out_unlock_cont;
3545
3546                 map = kmap_local_page(list_page) + offset;
3547                 count = *map;
3548                 kunmap_local(map);
3549
3550                 /*
3551                  * If this continuation count now has some space in it,
3552                  * free our allocation and use this one.
3553                  */
3554                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3555                         goto out_unlock_cont;
3556         }
3557
3558         list_add_tail(&page->lru, &head->lru);
3559         page = NULL;                    /* now it's attached, don't free it */
3560 out_unlock_cont:
3561         spin_unlock(&si->cont_lock);
3562 out:
3563         unlock_cluster(ci);
3564         spin_unlock(&si->lock);
3565         put_swap_device(si);
3566 outer:
3567         if (page)
3568                 __free_page(page);
3569         return ret;
3570 }
3571
3572 /*
3573  * swap_count_continued - when the original swap_map count is incremented
3574  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3575  * into, carry if so, or else fail until a new continuation page is allocated;
3576  * when the original swap_map count is decremented from 0 with continuation,
3577  * borrow from the continuation and report whether it still holds more.
3578  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3579  * lock.
3580  */
3581 static bool swap_count_continued(struct swap_info_struct *si,
3582                                  pgoff_t offset, unsigned char count)
3583 {
3584         struct page *head;
3585         struct page *page;
3586         unsigned char *map;
3587         bool ret;
3588
3589         head = vmalloc_to_page(si->swap_map + offset);
3590         if (page_private(head) != SWP_CONTINUED) {
3591                 BUG_ON(count & COUNT_CONTINUED);
3592                 return false;           /* need to add count continuation */
3593         }
3594
3595         spin_lock(&si->cont_lock);
3596         offset &= ~PAGE_MASK;
3597         page = list_next_entry(head, lru);
3598         map = kmap_local_page(page) + offset;
3599
3600         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3601                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3602
3603         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3604                 /*
3605                  * Think of how you add 1 to 999
3606                  */
3607                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3608                         kunmap_local(map);
3609                         page = list_next_entry(page, lru);
3610                         BUG_ON(page == head);
3611                         map = kmap_local_page(page) + offset;
3612                 }
3613                 if (*map == SWAP_CONT_MAX) {
3614                         kunmap_local(map);
3615                         page = list_next_entry(page, lru);
3616                         if (page == head) {
3617                                 ret = false;    /* add count continuation */
3618                                 goto out;
3619                         }
3620                         map = kmap_local_page(page) + offset;
3621 init_map:               *map = 0;               /* we didn't zero the page */
3622                 }
3623                 *map += 1;
3624                 kunmap_local(map);
3625                 while ((page = list_prev_entry(page, lru)) != head) {
3626                         map = kmap_local_page(page) + offset;
3627                         *map = COUNT_CONTINUED;
3628                         kunmap_local(map);
3629                 }
3630                 ret = true;                     /* incremented */
3631
3632         } else {                                /* decrementing */
3633                 /*
3634                  * Think of how you subtract 1 from 1000
3635                  */
3636                 BUG_ON(count != COUNT_CONTINUED);
3637                 while (*map == COUNT_CONTINUED) {
3638                         kunmap_local(map);
3639                         page = list_next_entry(page, lru);
3640                         BUG_ON(page == head);
3641                         map = kmap_local_page(page) + offset;
3642                 }
3643                 BUG_ON(*map == 0);
3644                 *map -= 1;
3645                 if (*map == 0)
3646                         count = 0;
3647                 kunmap_local(map);
3648                 while ((page = list_prev_entry(page, lru)) != head) {
3649                         map = kmap_local_page(page) + offset;
3650                         *map = SWAP_CONT_MAX | count;
3651                         count = COUNT_CONTINUED;
3652                         kunmap_local(map);
3653                 }
3654                 ret = count == COUNT_CONTINUED;
3655         }
3656 out:
3657         spin_unlock(&si->cont_lock);
3658         return ret;
3659 }
3660
3661 /*
3662  * free_swap_count_continuations - swapoff free all the continuation pages
3663  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3664  */
3665 static void free_swap_count_continuations(struct swap_info_struct *si)
3666 {
3667         pgoff_t offset;
3668
3669         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3670                 struct page *head;
3671                 head = vmalloc_to_page(si->swap_map + offset);
3672                 if (page_private(head)) {
3673                         struct page *page, *next;
3674
3675                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3676                                 list_del(&page->lru);
3677                                 __free_page(page);
3678                         }
3679                 }
3680         }
3681 }
3682
3683 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3684 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3685 {
3686         struct swap_info_struct *si, *next;
3687         int nid = folio_nid(folio);
3688
3689         if (!(gfp & __GFP_IO))
3690                 return;
3691
3692         if (!__has_usable_swap())
3693                 return;
3694
3695         if (!blk_cgroup_congested())
3696                 return;
3697
3698         /*
3699          * We've already scheduled a throttle, avoid taking the global swap
3700          * lock.
3701          */
3702         if (current->throttle_disk)
3703                 return;
3704
3705         spin_lock(&swap_avail_lock);
3706         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3707                                   avail_lists[nid]) {
3708                 if (si->bdev) {
3709                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3710                         break;
3711                 }
3712         }
3713         spin_unlock(&swap_avail_lock);
3714 }
3715 #endif
3716
3717 static int __init swapfile_init(void)
3718 {
3719         int nid;
3720
3721         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3722                                          GFP_KERNEL);
3723         if (!swap_avail_heads) {
3724                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3725                 return -ENOMEM;
3726         }
3727
3728         for_each_node(nid)
3729                 plist_head_init(&swap_avail_heads[nid]);
3730
3731         swapfile_maximum_size = arch_max_swapfile_size();
3732
3733 #ifdef CONFIG_MIGRATION
3734         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3735                 swap_migration_ad_supported = true;
3736 #endif  /* CONFIG_MIGRATION */
3737
3738         return 0;
3739 }
3740 subsys_initcall(swapfile_init);