4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
47 long total_swap_pages;
48 static int least_priority;
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
55 static struct swap_list_t swap_list = {-1, -1};
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 static DEFINE_MUTEX(swapon_mutex);
61 static inline unsigned char swap_count(unsigned char ent)
63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
66 /* returns 1 if swap entry is freed */
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
70 swp_entry_t entry = swp_entry(si->type, offset);
74 page = find_get_page(&swapper_space, entry.val);
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
88 page_cache_release(page);
93 * We need this because the bdev->unplug_fn can sleep and we cannot
94 * hold swap_lock while calling the unplug_fn. And swap_lock
95 * cannot be turned into a mutex.
97 static DECLARE_RWSEM(swap_unplug_sem);
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
103 down_read(&swap_unplug_sem);
104 entry.val = page_private(page);
105 if (PageSwapCache(page)) {
106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 struct backing_dev_info *bdi;
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
117 WARN_ON(page_count(page) <= 1);
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 blk_run_backing_dev(bdi, page);
122 up_read(&swap_unplug_sem);
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
129 static int discard_swap(struct swap_info_struct *si)
131 struct swap_extent *se;
132 sector_t start_block;
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 err = blkdev_issue_discard(si->bdev, start_block,
142 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
148 list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 start_block = se->start_block << (PAGE_SHIFT - 9);
150 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 err = blkdev_issue_discard(si->bdev, start_block,
153 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
159 return err; /* That will often be -EOPNOTSUPP */
163 * swap allocation tell device that a cluster of swap can now be discarded,
164 * to allow the swap device to optimize its wear-levelling.
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 pgoff_t start_page, pgoff_t nr_pages)
169 struct swap_extent *se = si->curr_swap_extent;
170 int found_extent = 0;
173 struct list_head *lh;
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
179 sector_t nr_blocks = se->nr_pages - offset;
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
187 si->curr_swap_extent = se;
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
192 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
197 se = list_entry(lh, struct swap_extent, list);
201 static int wait_for_discard(void *word)
207 #define SWAPFILE_CLUSTER 256
208 #define LATENCY_LIMIT 256
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
213 unsigned long offset;
214 unsigned long scan_base;
215 unsigned long last_in_cluster = 0;
216 int latency_ration = LATENCY_LIMIT;
217 int found_free_cluster = 0;
220 * We try to cluster swap pages by allocating them sequentially
221 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
222 * way, however, we resort to first-free allocation, starting
223 * a new cluster. This prevents us from scattering swap pages
224 * all over the entire swap partition, so that we reduce
225 * overall disk seek times between swap pages. -- sct
226 * But we do now try to find an empty cluster. -Andrea
227 * And we let swap pages go all over an SSD partition. Hugh
230 si->flags += SWP_SCANNING;
231 scan_base = offset = si->cluster_next;
233 if (unlikely(!si->cluster_nr--)) {
234 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 si->cluster_nr = SWAPFILE_CLUSTER - 1;
238 if (si->flags & SWP_DISCARDABLE) {
240 * Start range check on racing allocations, in case
241 * they overlap the cluster we eventually decide on
242 * (we scan without swap_lock to allow preemption).
243 * It's hardly conceivable that cluster_nr could be
244 * wrapped during our scan, but don't depend on it.
246 if (si->lowest_alloc)
248 si->lowest_alloc = si->max;
249 si->highest_alloc = 0;
251 spin_unlock(&swap_lock);
254 * If seek is expensive, start searching for new cluster from
255 * start of partition, to minimize the span of allocated swap.
256 * But if seek is cheap, search from our current position, so
257 * that swap is allocated from all over the partition: if the
258 * Flash Translation Layer only remaps within limited zones,
259 * we don't want to wear out the first zone too quickly.
261 if (!(si->flags & SWP_SOLIDSTATE))
262 scan_base = offset = si->lowest_bit;
263 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
265 /* Locate the first empty (unaligned) cluster */
266 for (; last_in_cluster <= si->highest_bit; offset++) {
267 if (si->swap_map[offset])
268 last_in_cluster = offset + SWAPFILE_CLUSTER;
269 else if (offset == last_in_cluster) {
270 spin_lock(&swap_lock);
271 offset -= SWAPFILE_CLUSTER - 1;
272 si->cluster_next = offset;
273 si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 found_free_cluster = 1;
277 if (unlikely(--latency_ration < 0)) {
279 latency_ration = LATENCY_LIMIT;
283 offset = si->lowest_bit;
284 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
286 /* Locate the first empty (unaligned) cluster */
287 for (; last_in_cluster < scan_base; offset++) {
288 if (si->swap_map[offset])
289 last_in_cluster = offset + SWAPFILE_CLUSTER;
290 else if (offset == last_in_cluster) {
291 spin_lock(&swap_lock);
292 offset -= SWAPFILE_CLUSTER - 1;
293 si->cluster_next = offset;
294 si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 found_free_cluster = 1;
298 if (unlikely(--latency_ration < 0)) {
300 latency_ration = LATENCY_LIMIT;
305 spin_lock(&swap_lock);
306 si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 si->lowest_alloc = 0;
311 if (!(si->flags & SWP_WRITEOK))
313 if (!si->highest_bit)
315 if (offset > si->highest_bit)
316 scan_base = offset = si->lowest_bit;
318 /* reuse swap entry of cache-only swap if not busy. */
319 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
321 spin_unlock(&swap_lock);
322 swap_was_freed = __try_to_reclaim_swap(si, offset);
323 spin_lock(&swap_lock);
324 /* entry was freed successfully, try to use this again */
327 goto scan; /* check next one */
330 if (si->swap_map[offset])
333 if (offset == si->lowest_bit)
335 if (offset == si->highest_bit)
338 if (si->inuse_pages == si->pages) {
339 si->lowest_bit = si->max;
342 si->swap_map[offset] = usage;
343 si->cluster_next = offset + 1;
344 si->flags -= SWP_SCANNING;
346 if (si->lowest_alloc) {
348 * Only set when SWP_DISCARDABLE, and there's a scan
349 * for a free cluster in progress or just completed.
351 if (found_free_cluster) {
353 * To optimize wear-levelling, discard the
354 * old data of the cluster, taking care not to
355 * discard any of its pages that have already
356 * been allocated by racing tasks (offset has
357 * already stepped over any at the beginning).
359 if (offset < si->highest_alloc &&
360 si->lowest_alloc <= last_in_cluster)
361 last_in_cluster = si->lowest_alloc - 1;
362 si->flags |= SWP_DISCARDING;
363 spin_unlock(&swap_lock);
365 if (offset < last_in_cluster)
366 discard_swap_cluster(si, offset,
367 last_in_cluster - offset + 1);
369 spin_lock(&swap_lock);
370 si->lowest_alloc = 0;
371 si->flags &= ~SWP_DISCARDING;
373 smp_mb(); /* wake_up_bit advises this */
374 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
376 } else if (si->flags & SWP_DISCARDING) {
378 * Delay using pages allocated by racing tasks
379 * until the whole discard has been issued. We
380 * could defer that delay until swap_writepage,
381 * but it's easier to keep this self-contained.
383 spin_unlock(&swap_lock);
384 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 wait_for_discard, TASK_UNINTERRUPTIBLE);
386 spin_lock(&swap_lock);
389 * Note pages allocated by racing tasks while
390 * scan for a free cluster is in progress, so
391 * that its final discard can exclude them.
393 if (offset < si->lowest_alloc)
394 si->lowest_alloc = offset;
395 if (offset > si->highest_alloc)
396 si->highest_alloc = offset;
402 spin_unlock(&swap_lock);
403 while (++offset <= si->highest_bit) {
404 if (!si->swap_map[offset]) {
405 spin_lock(&swap_lock);
408 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 spin_lock(&swap_lock);
412 if (unlikely(--latency_ration < 0)) {
414 latency_ration = LATENCY_LIMIT;
417 offset = si->lowest_bit;
418 while (++offset < scan_base) {
419 if (!si->swap_map[offset]) {
420 spin_lock(&swap_lock);
423 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 spin_lock(&swap_lock);
427 if (unlikely(--latency_ration < 0)) {
429 latency_ration = LATENCY_LIMIT;
432 spin_lock(&swap_lock);
435 si->flags -= SWP_SCANNING;
439 swp_entry_t get_swap_page(void)
441 struct swap_info_struct *si;
446 spin_lock(&swap_lock);
447 if (nr_swap_pages <= 0)
451 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452 si = swap_info[type];
455 (!wrapped && si->prio != swap_info[next]->prio)) {
456 next = swap_list.head;
460 if (!si->highest_bit)
462 if (!(si->flags & SWP_WRITEOK))
465 swap_list.next = next;
466 /* This is called for allocating swap entry for cache */
467 offset = scan_swap_map(si, SWAP_HAS_CACHE);
469 spin_unlock(&swap_lock);
470 return swp_entry(type, offset);
472 next = swap_list.next;
477 spin_unlock(&swap_lock);
478 return (swp_entry_t) {0};
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
484 struct swap_info_struct *si;
487 spin_lock(&swap_lock);
488 si = swap_info[type];
489 if (si && (si->flags & SWP_WRITEOK)) {
491 /* This is called for allocating swap entry, not cache */
492 offset = scan_swap_map(si, 1);
494 spin_unlock(&swap_lock);
495 return swp_entry(type, offset);
499 spin_unlock(&swap_lock);
500 return (swp_entry_t) {0};
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
505 struct swap_info_struct *p;
506 unsigned long offset, type;
510 type = swp_type(entry);
511 if (type >= nr_swapfiles)
514 if (!(p->flags & SWP_USED))
516 offset = swp_offset(entry);
517 if (offset >= p->max)
519 if (!p->swap_map[offset])
521 spin_lock(&swap_lock);
525 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
528 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
531 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
534 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540 swp_entry_t entry, unsigned char usage)
542 unsigned long offset = swp_offset(entry);
544 unsigned char has_cache;
546 count = p->swap_map[offset];
547 has_cache = count & SWAP_HAS_CACHE;
548 count &= ~SWAP_HAS_CACHE;
550 if (usage == SWAP_HAS_CACHE) {
551 VM_BUG_ON(!has_cache);
553 } else if (count == SWAP_MAP_SHMEM) {
555 * Or we could insist on shmem.c using a special
556 * swap_shmem_free() and free_shmem_swap_and_cache()...
559 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 if (count == COUNT_CONTINUED) {
561 if (swap_count_continued(p, offset, count))
562 count = SWAP_MAP_MAX | COUNT_CONTINUED;
564 count = SWAP_MAP_MAX;
570 mem_cgroup_uncharge_swap(entry);
572 usage = count | has_cache;
573 p->swap_map[offset] = usage;
575 /* free if no reference */
577 if (offset < p->lowest_bit)
578 p->lowest_bit = offset;
579 if (offset > p->highest_bit)
580 p->highest_bit = offset;
581 if (swap_list.next >= 0 &&
582 p->prio > swap_info[swap_list.next]->prio)
583 swap_list.next = p->type;
592 * Caller has made sure that the swapdevice corresponding to entry
593 * is still around or has not been recycled.
595 void swap_free(swp_entry_t entry)
597 struct swap_info_struct *p;
599 p = swap_info_get(entry);
601 swap_entry_free(p, entry, 1);
602 spin_unlock(&swap_lock);
607 * Called after dropping swapcache to decrease refcnt to swap entries.
609 void swapcache_free(swp_entry_t entry, struct page *page)
611 struct swap_info_struct *p;
614 p = swap_info_get(entry);
616 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
618 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
619 spin_unlock(&swap_lock);
624 * How many references to page are currently swapped out?
625 * This does not give an exact answer when swap count is continued,
626 * but does include the high COUNT_CONTINUED flag to allow for that.
628 static inline int page_swapcount(struct page *page)
631 struct swap_info_struct *p;
634 entry.val = page_private(page);
635 p = swap_info_get(entry);
637 count = swap_count(p->swap_map[swp_offset(entry)]);
638 spin_unlock(&swap_lock);
644 * We can write to an anon page without COW if there are no other references
645 * to it. And as a side-effect, free up its swap: because the old content
646 * on disk will never be read, and seeking back there to write new content
647 * later would only waste time away from clustering.
649 int reuse_swap_page(struct page *page)
653 VM_BUG_ON(!PageLocked(page));
654 if (unlikely(PageKsm(page)))
656 count = page_mapcount(page);
657 if (count <= 1 && PageSwapCache(page)) {
658 count += page_swapcount(page);
659 if (count == 1 && !PageWriteback(page)) {
660 delete_from_swap_cache(page);
668 * If swap is getting full, or if there are no more mappings of this page,
669 * then try_to_free_swap is called to free its swap space.
671 int try_to_free_swap(struct page *page)
673 VM_BUG_ON(!PageLocked(page));
675 if (!PageSwapCache(page))
677 if (PageWriteback(page))
679 if (page_swapcount(page))
682 delete_from_swap_cache(page);
688 * Free the swap entry like above, but also try to
689 * free the page cache entry if it is the last user.
691 int free_swap_and_cache(swp_entry_t entry)
693 struct swap_info_struct *p;
694 struct page *page = NULL;
696 if (non_swap_entry(entry))
699 p = swap_info_get(entry);
701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 page = find_get_page(&swapper_space, entry.val);
703 if (page && !trylock_page(page)) {
704 page_cache_release(page);
708 spin_unlock(&swap_lock);
712 * Not mapped elsewhere, or swap space full? Free it!
713 * Also recheck PageSwapCache now page is locked (above).
715 if (PageSwapCache(page) && !PageWriteback(page) &&
716 (!page_mapped(page) || vm_swap_full())) {
717 delete_from_swap_cache(page);
721 page_cache_release(page);
726 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
728 * mem_cgroup_count_swap_user - count the user of a swap entry
729 * @ent: the swap entry to be checked
730 * @pagep: the pointer for the swap cache page of the entry to be stored
732 * Returns the number of the user of the swap entry. The number is valid only
733 * for swaps of anonymous pages.
734 * If the entry is found on swap cache, the page is stored to pagep with
735 * refcount of it being incremented.
737 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
740 struct swap_info_struct *p;
743 page = find_get_page(&swapper_space, ent.val);
745 count += page_mapcount(page);
746 p = swap_info_get(ent);
748 count += swap_count(p->swap_map[swp_offset(ent)]);
749 spin_unlock(&swap_lock);
757 #ifdef CONFIG_HIBERNATION
759 * Find the swap type that corresponds to given device (if any).
761 * @offset - number of the PAGE_SIZE-sized block of the device, starting
762 * from 0, in which the swap header is expected to be located.
764 * This is needed for the suspend to disk (aka swsusp).
766 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
768 struct block_device *bdev = NULL;
772 bdev = bdget(device);
774 spin_lock(&swap_lock);
775 for (type = 0; type < nr_swapfiles; type++) {
776 struct swap_info_struct *sis = swap_info[type];
778 if (!(sis->flags & SWP_WRITEOK))
783 *bdev_p = bdgrab(sis->bdev);
785 spin_unlock(&swap_lock);
788 if (bdev == sis->bdev) {
789 struct swap_extent *se = &sis->first_swap_extent;
791 if (se->start_block == offset) {
793 *bdev_p = bdgrab(sis->bdev);
795 spin_unlock(&swap_lock);
801 spin_unlock(&swap_lock);
809 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
810 * corresponding to given index in swap_info (swap type).
812 sector_t swapdev_block(int type, pgoff_t offset)
814 struct block_device *bdev;
816 if ((unsigned int)type >= nr_swapfiles)
818 if (!(swap_info[type]->flags & SWP_WRITEOK))
820 return map_swap_entry(swp_entry(type, offset), &bdev);
824 * Return either the total number of swap pages of given type, or the number
825 * of free pages of that type (depending on @free)
827 * This is needed for software suspend
829 unsigned int count_swap_pages(int type, int free)
833 spin_lock(&swap_lock);
834 if ((unsigned int)type < nr_swapfiles) {
835 struct swap_info_struct *sis = swap_info[type];
837 if (sis->flags & SWP_WRITEOK) {
840 n -= sis->inuse_pages;
843 spin_unlock(&swap_lock);
846 #endif /* CONFIG_HIBERNATION */
849 * No need to decide whether this PTE shares the swap entry with others,
850 * just let do_wp_page work it out if a write is requested later - to
851 * force COW, vm_page_prot omits write permission from any private vma.
853 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
854 unsigned long addr, swp_entry_t entry, struct page *page)
856 struct mem_cgroup *ptr = NULL;
861 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
867 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
869 mem_cgroup_cancel_charge_swapin(ptr);
874 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
875 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
877 set_pte_at(vma->vm_mm, addr, pte,
878 pte_mkold(mk_pte(page, vma->vm_page_prot)));
879 page_add_anon_rmap(page, vma, addr);
880 mem_cgroup_commit_charge_swapin(page, ptr);
883 * Move the page to the active list so it is not
884 * immediately swapped out again after swapon.
888 pte_unmap_unlock(pte, ptl);
893 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
894 unsigned long addr, unsigned long end,
895 swp_entry_t entry, struct page *page)
897 pte_t swp_pte = swp_entry_to_pte(entry);
902 * We don't actually need pte lock while scanning for swp_pte: since
903 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
904 * page table while we're scanning; though it could get zapped, and on
905 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
906 * of unmatched parts which look like swp_pte, so unuse_pte must
907 * recheck under pte lock. Scanning without pte lock lets it be
908 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
910 pte = pte_offset_map(pmd, addr);
913 * swapoff spends a _lot_ of time in this loop!
914 * Test inline before going to call unuse_pte.
916 if (unlikely(pte_same(*pte, swp_pte))) {
918 ret = unuse_pte(vma, pmd, addr, entry, page);
921 pte = pte_offset_map(pmd, addr);
923 } while (pte++, addr += PAGE_SIZE, addr != end);
929 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
930 unsigned long addr, unsigned long end,
931 swp_entry_t entry, struct page *page)
937 pmd = pmd_offset(pud, addr);
939 next = pmd_addr_end(addr, end);
940 if (pmd_none_or_clear_bad(pmd))
942 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
945 } while (pmd++, addr = next, addr != end);
949 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
950 unsigned long addr, unsigned long end,
951 swp_entry_t entry, struct page *page)
957 pud = pud_offset(pgd, addr);
959 next = pud_addr_end(addr, end);
960 if (pud_none_or_clear_bad(pud))
962 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
965 } while (pud++, addr = next, addr != end);
969 static int unuse_vma(struct vm_area_struct *vma,
970 swp_entry_t entry, struct page *page)
973 unsigned long addr, end, next;
976 if (page_anon_vma(page)) {
977 addr = page_address_in_vma(page, vma);
981 end = addr + PAGE_SIZE;
983 addr = vma->vm_start;
987 pgd = pgd_offset(vma->vm_mm, addr);
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(pgd))
992 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
995 } while (pgd++, addr = next, addr != end);
999 static int unuse_mm(struct mm_struct *mm,
1000 swp_entry_t entry, struct page *page)
1002 struct vm_area_struct *vma;
1005 if (!down_read_trylock(&mm->mmap_sem)) {
1007 * Activate page so shrink_inactive_list is unlikely to unmap
1008 * its ptes while lock is dropped, so swapoff can make progress.
1010 activate_page(page);
1012 down_read(&mm->mmap_sem);
1015 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1016 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1019 up_read(&mm->mmap_sem);
1020 return (ret < 0)? ret: 0;
1024 * Scan swap_map from current position to next entry still in use.
1025 * Recycle to start on reaching the end, returning 0 when empty.
1027 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1030 unsigned int max = si->max;
1031 unsigned int i = prev;
1032 unsigned char count;
1035 * No need for swap_lock here: we're just looking
1036 * for whether an entry is in use, not modifying it; false
1037 * hits are okay, and sys_swapoff() has already prevented new
1038 * allocations from this area (while holding swap_lock).
1047 * No entries in use at top of swap_map,
1048 * loop back to start and recheck there.
1054 count = si->swap_map[i];
1055 if (count && swap_count(count) != SWAP_MAP_BAD)
1062 * We completely avoid races by reading each swap page in advance,
1063 * and then search for the process using it. All the necessary
1064 * page table adjustments can then be made atomically.
1066 static int try_to_unuse(unsigned int type)
1068 struct swap_info_struct *si = swap_info[type];
1069 struct mm_struct *start_mm;
1070 unsigned char *swap_map;
1071 unsigned char swcount;
1078 * When searching mms for an entry, a good strategy is to
1079 * start at the first mm we freed the previous entry from
1080 * (though actually we don't notice whether we or coincidence
1081 * freed the entry). Initialize this start_mm with a hold.
1083 * A simpler strategy would be to start at the last mm we
1084 * freed the previous entry from; but that would take less
1085 * advantage of mmlist ordering, which clusters forked mms
1086 * together, child after parent. If we race with dup_mmap(), we
1087 * prefer to resolve parent before child, lest we miss entries
1088 * duplicated after we scanned child: using last mm would invert
1091 start_mm = &init_mm;
1092 atomic_inc(&init_mm.mm_users);
1095 * Keep on scanning until all entries have gone. Usually,
1096 * one pass through swap_map is enough, but not necessarily:
1097 * there are races when an instance of an entry might be missed.
1099 while ((i = find_next_to_unuse(si, i)) != 0) {
1100 if (signal_pending(current)) {
1106 * Get a page for the entry, using the existing swap
1107 * cache page if there is one. Otherwise, get a clean
1108 * page and read the swap into it.
1110 swap_map = &si->swap_map[i];
1111 entry = swp_entry(type, i);
1112 page = read_swap_cache_async(entry,
1113 GFP_HIGHUSER_MOVABLE, NULL, 0);
1116 * Either swap_duplicate() failed because entry
1117 * has been freed independently, and will not be
1118 * reused since sys_swapoff() already disabled
1119 * allocation from here, or alloc_page() failed.
1128 * Don't hold on to start_mm if it looks like exiting.
1130 if (atomic_read(&start_mm->mm_users) == 1) {
1132 start_mm = &init_mm;
1133 atomic_inc(&init_mm.mm_users);
1137 * Wait for and lock page. When do_swap_page races with
1138 * try_to_unuse, do_swap_page can handle the fault much
1139 * faster than try_to_unuse can locate the entry. This
1140 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1141 * defer to do_swap_page in such a case - in some tests,
1142 * do_swap_page and try_to_unuse repeatedly compete.
1144 wait_on_page_locked(page);
1145 wait_on_page_writeback(page);
1147 wait_on_page_writeback(page);
1150 * Remove all references to entry.
1152 swcount = *swap_map;
1153 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1154 retval = shmem_unuse(entry, page);
1155 /* page has already been unlocked and released */
1160 if (swap_count(swcount) && start_mm != &init_mm)
1161 retval = unuse_mm(start_mm, entry, page);
1163 if (swap_count(*swap_map)) {
1164 int set_start_mm = (*swap_map >= swcount);
1165 struct list_head *p = &start_mm->mmlist;
1166 struct mm_struct *new_start_mm = start_mm;
1167 struct mm_struct *prev_mm = start_mm;
1168 struct mm_struct *mm;
1170 atomic_inc(&new_start_mm->mm_users);
1171 atomic_inc(&prev_mm->mm_users);
1172 spin_lock(&mmlist_lock);
1173 while (swap_count(*swap_map) && !retval &&
1174 (p = p->next) != &start_mm->mmlist) {
1175 mm = list_entry(p, struct mm_struct, mmlist);
1176 if (!atomic_inc_not_zero(&mm->mm_users))
1178 spin_unlock(&mmlist_lock);
1184 swcount = *swap_map;
1185 if (!swap_count(swcount)) /* any usage ? */
1187 else if (mm == &init_mm)
1190 retval = unuse_mm(mm, entry, page);
1192 if (set_start_mm && *swap_map < swcount) {
1193 mmput(new_start_mm);
1194 atomic_inc(&mm->mm_users);
1198 spin_lock(&mmlist_lock);
1200 spin_unlock(&mmlist_lock);
1203 start_mm = new_start_mm;
1207 page_cache_release(page);
1212 * If a reference remains (rare), we would like to leave
1213 * the page in the swap cache; but try_to_unmap could
1214 * then re-duplicate the entry once we drop page lock,
1215 * so we might loop indefinitely; also, that page could
1216 * not be swapped out to other storage meanwhile. So:
1217 * delete from cache even if there's another reference,
1218 * after ensuring that the data has been saved to disk -
1219 * since if the reference remains (rarer), it will be
1220 * read from disk into another page. Splitting into two
1221 * pages would be incorrect if swap supported "shared
1222 * private" pages, but they are handled by tmpfs files.
1224 * Given how unuse_vma() targets one particular offset
1225 * in an anon_vma, once the anon_vma has been determined,
1226 * this splitting happens to be just what is needed to
1227 * handle where KSM pages have been swapped out: re-reading
1228 * is unnecessarily slow, but we can fix that later on.
1230 if (swap_count(*swap_map) &&
1231 PageDirty(page) && PageSwapCache(page)) {
1232 struct writeback_control wbc = {
1233 .sync_mode = WB_SYNC_NONE,
1236 swap_writepage(page, &wbc);
1238 wait_on_page_writeback(page);
1242 * It is conceivable that a racing task removed this page from
1243 * swap cache just before we acquired the page lock at the top,
1244 * or while we dropped it in unuse_mm(). The page might even
1245 * be back in swap cache on another swap area: that we must not
1246 * delete, since it may not have been written out to swap yet.
1248 if (PageSwapCache(page) &&
1249 likely(page_private(page) == entry.val))
1250 delete_from_swap_cache(page);
1253 * So we could skip searching mms once swap count went
1254 * to 1, we did not mark any present ptes as dirty: must
1255 * mark page dirty so shrink_page_list will preserve it.
1259 page_cache_release(page);
1262 * Make sure that we aren't completely killing
1263 * interactive performance.
1273 * After a successful try_to_unuse, if no swap is now in use, we know
1274 * we can empty the mmlist. swap_lock must be held on entry and exit.
1275 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1276 * added to the mmlist just after page_duplicate - before would be racy.
1278 static void drain_mmlist(void)
1280 struct list_head *p, *next;
1283 for (type = 0; type < nr_swapfiles; type++)
1284 if (swap_info[type]->inuse_pages)
1286 spin_lock(&mmlist_lock);
1287 list_for_each_safe(p, next, &init_mm.mmlist)
1289 spin_unlock(&mmlist_lock);
1293 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1294 * corresponds to page offset for the specified swap entry.
1295 * Note that the type of this function is sector_t, but it returns page offset
1296 * into the bdev, not sector offset.
1298 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1300 struct swap_info_struct *sis;
1301 struct swap_extent *start_se;
1302 struct swap_extent *se;
1305 sis = swap_info[swp_type(entry)];
1308 offset = swp_offset(entry);
1309 start_se = sis->curr_swap_extent;
1313 struct list_head *lh;
1315 if (se->start_page <= offset &&
1316 offset < (se->start_page + se->nr_pages)) {
1317 return se->start_block + (offset - se->start_page);
1320 se = list_entry(lh, struct swap_extent, list);
1321 sis->curr_swap_extent = se;
1322 BUG_ON(se == start_se); /* It *must* be present */
1327 * Returns the page offset into bdev for the specified page's swap entry.
1329 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1332 entry.val = page_private(page);
1333 return map_swap_entry(entry, bdev);
1337 * Free all of a swapdev's extent information
1339 static void destroy_swap_extents(struct swap_info_struct *sis)
1341 while (!list_empty(&sis->first_swap_extent.list)) {
1342 struct swap_extent *se;
1344 se = list_entry(sis->first_swap_extent.list.next,
1345 struct swap_extent, list);
1346 list_del(&se->list);
1352 * Add a block range (and the corresponding page range) into this swapdev's
1353 * extent list. The extent list is kept sorted in page order.
1355 * This function rather assumes that it is called in ascending page order.
1358 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1359 unsigned long nr_pages, sector_t start_block)
1361 struct swap_extent *se;
1362 struct swap_extent *new_se;
1363 struct list_head *lh;
1365 if (start_page == 0) {
1366 se = &sis->first_swap_extent;
1367 sis->curr_swap_extent = se;
1369 se->nr_pages = nr_pages;
1370 se->start_block = start_block;
1373 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1374 se = list_entry(lh, struct swap_extent, list);
1375 BUG_ON(se->start_page + se->nr_pages != start_page);
1376 if (se->start_block + se->nr_pages == start_block) {
1378 se->nr_pages += nr_pages;
1384 * No merge. Insert a new extent, preserving ordering.
1386 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1389 new_se->start_page = start_page;
1390 new_se->nr_pages = nr_pages;
1391 new_se->start_block = start_block;
1393 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1398 * A `swap extent' is a simple thing which maps a contiguous range of pages
1399 * onto a contiguous range of disk blocks. An ordered list of swap extents
1400 * is built at swapon time and is then used at swap_writepage/swap_readpage
1401 * time for locating where on disk a page belongs.
1403 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1404 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1405 * swap files identically.
1407 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1408 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1409 * swapfiles are handled *identically* after swapon time.
1411 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1412 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1413 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1414 * requirements, they are simply tossed out - we will never use those blocks
1417 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1418 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1419 * which will scribble on the fs.
1421 * The amount of disk space which a single swap extent represents varies.
1422 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1423 * extents in the list. To avoid much list walking, we cache the previous
1424 * search location in `curr_swap_extent', and start new searches from there.
1425 * This is extremely effective. The average number of iterations in
1426 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1428 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1430 struct inode *inode;
1431 unsigned blocks_per_page;
1432 unsigned long page_no;
1434 sector_t probe_block;
1435 sector_t last_block;
1436 sector_t lowest_block = -1;
1437 sector_t highest_block = 0;
1441 inode = sis->swap_file->f_mapping->host;
1442 if (S_ISBLK(inode->i_mode)) {
1443 ret = add_swap_extent(sis, 0, sis->max, 0);
1448 blkbits = inode->i_blkbits;
1449 blocks_per_page = PAGE_SIZE >> blkbits;
1452 * Map all the blocks into the extent list. This code doesn't try
1457 last_block = i_size_read(inode) >> blkbits;
1458 while ((probe_block + blocks_per_page) <= last_block &&
1459 page_no < sis->max) {
1460 unsigned block_in_page;
1461 sector_t first_block;
1463 first_block = bmap(inode, probe_block);
1464 if (first_block == 0)
1468 * It must be PAGE_SIZE aligned on-disk
1470 if (first_block & (blocks_per_page - 1)) {
1475 for (block_in_page = 1; block_in_page < blocks_per_page;
1479 block = bmap(inode, probe_block + block_in_page);
1482 if (block != first_block + block_in_page) {
1489 first_block >>= (PAGE_SHIFT - blkbits);
1490 if (page_no) { /* exclude the header page */
1491 if (first_block < lowest_block)
1492 lowest_block = first_block;
1493 if (first_block > highest_block)
1494 highest_block = first_block;
1498 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1500 ret = add_swap_extent(sis, page_no, 1, first_block);
1505 probe_block += blocks_per_page;
1510 *span = 1 + highest_block - lowest_block;
1512 page_no = 1; /* force Empty message */
1514 sis->pages = page_no - 1;
1515 sis->highest_bit = page_no - 1;
1519 printk(KERN_ERR "swapon: swapfile has holes\n");
1524 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1526 struct swap_info_struct *p = NULL;
1527 unsigned char *swap_map;
1528 struct file *swap_file, *victim;
1529 struct address_space *mapping;
1530 struct inode *inode;
1535 if (!capable(CAP_SYS_ADMIN))
1538 pathname = getname(specialfile);
1539 err = PTR_ERR(pathname);
1540 if (IS_ERR(pathname))
1543 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1545 err = PTR_ERR(victim);
1549 mapping = victim->f_mapping;
1551 spin_lock(&swap_lock);
1552 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1553 p = swap_info[type];
1554 if (p->flags & SWP_WRITEOK) {
1555 if (p->swap_file->f_mapping == mapping)
1562 spin_unlock(&swap_lock);
1565 if (!security_vm_enough_memory(p->pages))
1566 vm_unacct_memory(p->pages);
1569 spin_unlock(&swap_lock);
1573 swap_list.head = p->next;
1575 swap_info[prev]->next = p->next;
1576 if (type == swap_list.next) {
1577 /* just pick something that's safe... */
1578 swap_list.next = swap_list.head;
1581 for (i = p->next; i >= 0; i = swap_info[i]->next)
1582 swap_info[i]->prio = p->prio--;
1585 nr_swap_pages -= p->pages;
1586 total_swap_pages -= p->pages;
1587 p->flags &= ~SWP_WRITEOK;
1588 spin_unlock(&swap_lock);
1590 current->flags |= PF_OOM_ORIGIN;
1591 err = try_to_unuse(type);
1592 current->flags &= ~PF_OOM_ORIGIN;
1595 /* re-insert swap space back into swap_list */
1596 spin_lock(&swap_lock);
1598 p->prio = --least_priority;
1600 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1601 if (p->prio >= swap_info[i]->prio)
1607 swap_list.head = swap_list.next = type;
1609 swap_info[prev]->next = type;
1610 nr_swap_pages += p->pages;
1611 total_swap_pages += p->pages;
1612 p->flags |= SWP_WRITEOK;
1613 spin_unlock(&swap_lock);
1617 /* wait for any unplug function to finish */
1618 down_write(&swap_unplug_sem);
1619 up_write(&swap_unplug_sem);
1621 destroy_swap_extents(p);
1622 if (p->flags & SWP_CONTINUED)
1623 free_swap_count_continuations(p);
1625 mutex_lock(&swapon_mutex);
1626 spin_lock(&swap_lock);
1629 /* wait for anyone still in scan_swap_map */
1630 p->highest_bit = 0; /* cuts scans short */
1631 while (p->flags >= SWP_SCANNING) {
1632 spin_unlock(&swap_lock);
1633 schedule_timeout_uninterruptible(1);
1634 spin_lock(&swap_lock);
1637 swap_file = p->swap_file;
1638 p->swap_file = NULL;
1640 swap_map = p->swap_map;
1643 spin_unlock(&swap_lock);
1644 mutex_unlock(&swapon_mutex);
1646 /* Destroy swap account informatin */
1647 swap_cgroup_swapoff(type);
1649 inode = mapping->host;
1650 if (S_ISBLK(inode->i_mode)) {
1651 struct block_device *bdev = I_BDEV(inode);
1652 set_blocksize(bdev, p->old_block_size);
1655 mutex_lock(&inode->i_mutex);
1656 inode->i_flags &= ~S_SWAPFILE;
1657 mutex_unlock(&inode->i_mutex);
1659 filp_close(swap_file, NULL);
1663 filp_close(victim, NULL);
1668 #ifdef CONFIG_PROC_FS
1670 static void *swap_start(struct seq_file *swap, loff_t *pos)
1672 struct swap_info_struct *si;
1676 mutex_lock(&swapon_mutex);
1679 return SEQ_START_TOKEN;
1681 for (type = 0; type < nr_swapfiles; type++) {
1682 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1683 si = swap_info[type];
1684 if (!(si->flags & SWP_USED) || !si->swap_map)
1693 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1695 struct swap_info_struct *si = v;
1698 if (v == SEQ_START_TOKEN)
1701 type = si->type + 1;
1703 for (; type < nr_swapfiles; type++) {
1704 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1705 si = swap_info[type];
1706 if (!(si->flags & SWP_USED) || !si->swap_map)
1715 static void swap_stop(struct seq_file *swap, void *v)
1717 mutex_unlock(&swapon_mutex);
1720 static int swap_show(struct seq_file *swap, void *v)
1722 struct swap_info_struct *si = v;
1726 if (si == SEQ_START_TOKEN) {
1727 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1731 file = si->swap_file;
1732 len = seq_path(swap, &file->f_path, " \t\n\\");
1733 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1734 len < 40 ? 40 - len : 1, " ",
1735 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1736 "partition" : "file\t",
1737 si->pages << (PAGE_SHIFT - 10),
1738 si->inuse_pages << (PAGE_SHIFT - 10),
1743 static const struct seq_operations swaps_op = {
1744 .start = swap_start,
1750 static int swaps_open(struct inode *inode, struct file *file)
1752 return seq_open(file, &swaps_op);
1755 static const struct file_operations proc_swaps_operations = {
1758 .llseek = seq_lseek,
1759 .release = seq_release,
1762 static int __init procswaps_init(void)
1764 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1767 __initcall(procswaps_init);
1768 #endif /* CONFIG_PROC_FS */
1770 #ifdef MAX_SWAPFILES_CHECK
1771 static int __init max_swapfiles_check(void)
1773 MAX_SWAPFILES_CHECK();
1776 late_initcall(max_swapfiles_check);
1780 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1782 * The swapon system call
1784 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1786 struct swap_info_struct *p;
1788 struct block_device *bdev = NULL;
1789 struct file *swap_file = NULL;
1790 struct address_space *mapping;
1794 union swap_header *swap_header;
1795 unsigned int nr_good_pages;
1798 unsigned long maxpages;
1799 unsigned long swapfilepages;
1800 unsigned char *swap_map = NULL;
1801 struct page *page = NULL;
1802 struct inode *inode = NULL;
1805 if (!capable(CAP_SYS_ADMIN))
1808 p = kzalloc(sizeof(*p), GFP_KERNEL);
1812 spin_lock(&swap_lock);
1813 for (type = 0; type < nr_swapfiles; type++) {
1814 if (!(swap_info[type]->flags & SWP_USED))
1818 if (type >= MAX_SWAPFILES) {
1819 spin_unlock(&swap_lock);
1823 if (type >= nr_swapfiles) {
1825 swap_info[type] = p;
1827 * Write swap_info[type] before nr_swapfiles, in case a
1828 * racing procfs swap_start() or swap_next() is reading them.
1829 * (We never shrink nr_swapfiles, we never free this entry.)
1835 p = swap_info[type];
1837 * Do not memset this entry: a racing procfs swap_next()
1838 * would be relying on p->type to remain valid.
1841 INIT_LIST_HEAD(&p->first_swap_extent.list);
1842 p->flags = SWP_USED;
1844 spin_unlock(&swap_lock);
1846 name = getname(specialfile);
1847 error = PTR_ERR(name);
1852 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1853 error = PTR_ERR(swap_file);
1854 if (IS_ERR(swap_file)) {
1859 p->swap_file = swap_file;
1860 mapping = swap_file->f_mapping;
1861 inode = mapping->host;
1864 for (i = 0; i < nr_swapfiles; i++) {
1865 struct swap_info_struct *q = swap_info[i];
1867 if (i == type || !q->swap_file)
1869 if (mapping == q->swap_file->f_mapping)
1874 if (S_ISBLK(inode->i_mode)) {
1875 bdev = I_BDEV(inode);
1876 error = bd_claim(bdev, sys_swapon);
1882 p->old_block_size = block_size(bdev);
1883 error = set_blocksize(bdev, PAGE_SIZE);
1887 } else if (S_ISREG(inode->i_mode)) {
1888 p->bdev = inode->i_sb->s_bdev;
1889 mutex_lock(&inode->i_mutex);
1891 if (IS_SWAPFILE(inode)) {
1899 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1902 * Read the swap header.
1904 if (!mapping->a_ops->readpage) {
1908 page = read_mapping_page(mapping, 0, swap_file);
1910 error = PTR_ERR(page);
1913 swap_header = kmap(page);
1915 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1916 printk(KERN_ERR "Unable to find swap-space signature\n");
1921 /* swap partition endianess hack... */
1922 if (swab32(swap_header->info.version) == 1) {
1923 swab32s(&swap_header->info.version);
1924 swab32s(&swap_header->info.last_page);
1925 swab32s(&swap_header->info.nr_badpages);
1926 for (i = 0; i < swap_header->info.nr_badpages; i++)
1927 swab32s(&swap_header->info.badpages[i]);
1929 /* Check the swap header's sub-version */
1930 if (swap_header->info.version != 1) {
1932 "Unable to handle swap header version %d\n",
1933 swap_header->info.version);
1939 p->cluster_next = 1;
1943 * Find out how many pages are allowed for a single swap
1944 * device. There are two limiting factors: 1) the number of
1945 * bits for the swap offset in the swp_entry_t type and
1946 * 2) the number of bits in the a swap pte as defined by
1947 * the different architectures. In order to find the
1948 * largest possible bit mask a swap entry with swap type 0
1949 * and swap offset ~0UL is created, encoded to a swap pte,
1950 * decoded to a swp_entry_t again and finally the swap
1951 * offset is extracted. This will mask all the bits from
1952 * the initial ~0UL mask that can't be encoded in either
1953 * the swp_entry_t or the architecture definition of a
1956 maxpages = swp_offset(pte_to_swp_entry(
1957 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1958 if (maxpages > swap_header->info.last_page) {
1959 maxpages = swap_header->info.last_page + 1;
1960 /* p->max is an unsigned int: don't overflow it */
1961 if ((unsigned int)maxpages == 0)
1962 maxpages = UINT_MAX;
1964 p->highest_bit = maxpages - 1;
1969 if (swapfilepages && maxpages > swapfilepages) {
1971 "Swap area shorter than signature indicates\n");
1974 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1976 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1979 /* OK, set up the swap map and apply the bad block list */
1980 swap_map = vmalloc(maxpages);
1986 memset(swap_map, 0, maxpages);
1987 nr_good_pages = maxpages - 1; /* omit header page */
1989 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1990 unsigned int page_nr = swap_header->info.badpages[i];
1991 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
1995 if (page_nr < maxpages) {
1996 swap_map[page_nr] = SWAP_MAP_BAD;
2001 error = swap_cgroup_swapon(type, maxpages);
2005 if (nr_good_pages) {
2006 swap_map[0] = SWAP_MAP_BAD;
2008 p->pages = nr_good_pages;
2009 nr_extents = setup_swap_extents(p, &span);
2010 if (nr_extents < 0) {
2014 nr_good_pages = p->pages;
2016 if (!nr_good_pages) {
2017 printk(KERN_WARNING "Empty swap-file\n");
2023 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2024 p->flags |= SWP_SOLIDSTATE;
2025 p->cluster_next = 1 + (random32() % p->highest_bit);
2027 if (discard_swap(p) == 0)
2028 p->flags |= SWP_DISCARDABLE;
2031 mutex_lock(&swapon_mutex);
2032 spin_lock(&swap_lock);
2033 if (swap_flags & SWAP_FLAG_PREFER)
2035 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2037 p->prio = --least_priority;
2038 p->swap_map = swap_map;
2039 p->flags |= SWP_WRITEOK;
2040 nr_swap_pages += nr_good_pages;
2041 total_swap_pages += nr_good_pages;
2043 printk(KERN_INFO "Adding %uk swap on %s. "
2044 "Priority:%d extents:%d across:%lluk %s%s\n",
2045 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2046 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2047 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2048 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2050 /* insert swap space into swap_list: */
2052 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2053 if (p->prio >= swap_info[i]->prio)
2059 swap_list.head = swap_list.next = type;
2061 swap_info[prev]->next = type;
2062 spin_unlock(&swap_lock);
2063 mutex_unlock(&swapon_mutex);
2068 set_blocksize(bdev, p->old_block_size);
2071 destroy_swap_extents(p);
2072 swap_cgroup_swapoff(type);
2074 spin_lock(&swap_lock);
2075 p->swap_file = NULL;
2077 spin_unlock(&swap_lock);
2080 filp_close(swap_file, NULL);
2082 if (page && !IS_ERR(page)) {
2084 page_cache_release(page);
2090 inode->i_flags |= S_SWAPFILE;
2091 mutex_unlock(&inode->i_mutex);
2096 void si_swapinfo(struct sysinfo *val)
2099 unsigned long nr_to_be_unused = 0;
2101 spin_lock(&swap_lock);
2102 for (type = 0; type < nr_swapfiles; type++) {
2103 struct swap_info_struct *si = swap_info[type];
2105 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2106 nr_to_be_unused += si->inuse_pages;
2108 val->freeswap = nr_swap_pages + nr_to_be_unused;
2109 val->totalswap = total_swap_pages + nr_to_be_unused;
2110 spin_unlock(&swap_lock);
2114 * Verify that a swap entry is valid and increment its swap map count.
2116 * Returns error code in following case.
2118 * - swp_entry is invalid -> EINVAL
2119 * - swp_entry is migration entry -> EINVAL
2120 * - swap-cache reference is requested but there is already one. -> EEXIST
2121 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2122 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2124 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2126 struct swap_info_struct *p;
2127 unsigned long offset, type;
2128 unsigned char count;
2129 unsigned char has_cache;
2132 if (non_swap_entry(entry))
2135 type = swp_type(entry);
2136 if (type >= nr_swapfiles)
2138 p = swap_info[type];
2139 offset = swp_offset(entry);
2141 spin_lock(&swap_lock);
2142 if (unlikely(offset >= p->max))
2145 count = p->swap_map[offset];
2146 has_cache = count & SWAP_HAS_CACHE;
2147 count &= ~SWAP_HAS_CACHE;
2150 if (usage == SWAP_HAS_CACHE) {
2152 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2153 if (!has_cache && count)
2154 has_cache = SWAP_HAS_CACHE;
2155 else if (has_cache) /* someone else added cache */
2157 else /* no users remaining */
2160 } else if (count || has_cache) {
2162 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2164 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2166 else if (swap_count_continued(p, offset, count))
2167 count = COUNT_CONTINUED;
2171 err = -ENOENT; /* unused swap entry */
2173 p->swap_map[offset] = count | has_cache;
2176 spin_unlock(&swap_lock);
2181 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2186 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2187 * (in which case its reference count is never incremented).
2189 void swap_shmem_alloc(swp_entry_t entry)
2191 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2195 * Increase reference count of swap entry by 1.
2196 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2197 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2198 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2199 * might occur if a page table entry has got corrupted.
2201 int swap_duplicate(swp_entry_t entry)
2205 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2206 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2211 * @entry: swap entry for which we allocate swap cache.
2213 * Called when allocating swap cache for existing swap entry,
2214 * This can return error codes. Returns 0 at success.
2215 * -EBUSY means there is a swap cache.
2216 * Note: return code is different from swap_duplicate().
2218 int swapcache_prepare(swp_entry_t entry)
2220 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2224 * swap_lock prevents swap_map being freed. Don't grab an extra
2225 * reference on the swaphandle, it doesn't matter if it becomes unused.
2227 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2229 struct swap_info_struct *si;
2230 int our_page_cluster = page_cluster;
2231 pgoff_t target, toff;
2235 if (!our_page_cluster) /* no readahead */
2238 si = swap_info[swp_type(entry)];
2239 target = swp_offset(entry);
2240 base = (target >> our_page_cluster) << our_page_cluster;
2241 end = base + (1 << our_page_cluster);
2242 if (!base) /* first page is swap header */
2245 spin_lock(&swap_lock);
2246 if (end > si->max) /* don't go beyond end of map */
2249 /* Count contiguous allocated slots above our target */
2250 for (toff = target; ++toff < end; nr_pages++) {
2251 /* Don't read in free or bad pages */
2252 if (!si->swap_map[toff])
2254 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2257 /* Count contiguous allocated slots below our target */
2258 for (toff = target; --toff >= base; nr_pages++) {
2259 /* Don't read in free or bad pages */
2260 if (!si->swap_map[toff])
2262 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2265 spin_unlock(&swap_lock);
2268 * Indicate starting offset, and return number of pages to get:
2269 * if only 1, say 0, since there's then no readahead to be done.
2272 return nr_pages? ++nr_pages: 0;
2276 * add_swap_count_continuation - called when a swap count is duplicated
2277 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2278 * page of the original vmalloc'ed swap_map, to hold the continuation count
2279 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2280 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2282 * These continuation pages are seldom referenced: the common paths all work
2283 * on the original swap_map, only referring to a continuation page when the
2284 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2286 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2287 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2288 * can be called after dropping locks.
2290 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2292 struct swap_info_struct *si;
2295 struct page *list_page;
2297 unsigned char count;
2300 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2301 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2303 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2305 si = swap_info_get(entry);
2308 * An acceptable race has occurred since the failing
2309 * __swap_duplicate(): the swap entry has been freed,
2310 * perhaps even the whole swap_map cleared for swapoff.
2315 offset = swp_offset(entry);
2316 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2318 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2320 * The higher the swap count, the more likely it is that tasks
2321 * will race to add swap count continuation: we need to avoid
2322 * over-provisioning.
2328 spin_unlock(&swap_lock);
2333 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2334 * no architecture is using highmem pages for kernel pagetables: so it
2335 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2337 head = vmalloc_to_page(si->swap_map + offset);
2338 offset &= ~PAGE_MASK;
2341 * Page allocation does not initialize the page's lru field,
2342 * but it does always reset its private field.
2344 if (!page_private(head)) {
2345 BUG_ON(count & COUNT_CONTINUED);
2346 INIT_LIST_HEAD(&head->lru);
2347 set_page_private(head, SWP_CONTINUED);
2348 si->flags |= SWP_CONTINUED;
2351 list_for_each_entry(list_page, &head->lru, lru) {
2355 * If the previous map said no continuation, but we've found
2356 * a continuation page, free our allocation and use this one.
2358 if (!(count & COUNT_CONTINUED))
2361 map = kmap_atomic(list_page, KM_USER0) + offset;
2363 kunmap_atomic(map, KM_USER0);
2366 * If this continuation count now has some space in it,
2367 * free our allocation and use this one.
2369 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2373 list_add_tail(&page->lru, &head->lru);
2374 page = NULL; /* now it's attached, don't free it */
2376 spin_unlock(&swap_lock);
2384 * swap_count_continued - when the original swap_map count is incremented
2385 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2386 * into, carry if so, or else fail until a new continuation page is allocated;
2387 * when the original swap_map count is decremented from 0 with continuation,
2388 * borrow from the continuation and report whether it still holds more.
2389 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2391 static bool swap_count_continued(struct swap_info_struct *si,
2392 pgoff_t offset, unsigned char count)
2398 head = vmalloc_to_page(si->swap_map + offset);
2399 if (page_private(head) != SWP_CONTINUED) {
2400 BUG_ON(count & COUNT_CONTINUED);
2401 return false; /* need to add count continuation */
2404 offset &= ~PAGE_MASK;
2405 page = list_entry(head->lru.next, struct page, lru);
2406 map = kmap_atomic(page, KM_USER0) + offset;
2408 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2409 goto init_map; /* jump over SWAP_CONT_MAX checks */
2411 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2413 * Think of how you add 1 to 999
2415 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2416 kunmap_atomic(map, KM_USER0);
2417 page = list_entry(page->lru.next, struct page, lru);
2418 BUG_ON(page == head);
2419 map = kmap_atomic(page, KM_USER0) + offset;
2421 if (*map == SWAP_CONT_MAX) {
2422 kunmap_atomic(map, KM_USER0);
2423 page = list_entry(page->lru.next, struct page, lru);
2425 return false; /* add count continuation */
2426 map = kmap_atomic(page, KM_USER0) + offset;
2427 init_map: *map = 0; /* we didn't zero the page */
2430 kunmap_atomic(map, KM_USER0);
2431 page = list_entry(page->lru.prev, struct page, lru);
2432 while (page != head) {
2433 map = kmap_atomic(page, KM_USER0) + offset;
2434 *map = COUNT_CONTINUED;
2435 kunmap_atomic(map, KM_USER0);
2436 page = list_entry(page->lru.prev, struct page, lru);
2438 return true; /* incremented */
2440 } else { /* decrementing */
2442 * Think of how you subtract 1 from 1000
2444 BUG_ON(count != COUNT_CONTINUED);
2445 while (*map == COUNT_CONTINUED) {
2446 kunmap_atomic(map, KM_USER0);
2447 page = list_entry(page->lru.next, struct page, lru);
2448 BUG_ON(page == head);
2449 map = kmap_atomic(page, KM_USER0) + offset;
2455 kunmap_atomic(map, KM_USER0);
2456 page = list_entry(page->lru.prev, struct page, lru);
2457 while (page != head) {
2458 map = kmap_atomic(page, KM_USER0) + offset;
2459 *map = SWAP_CONT_MAX | count;
2460 count = COUNT_CONTINUED;
2461 kunmap_atomic(map, KM_USER0);
2462 page = list_entry(page->lru.prev, struct page, lru);
2464 return count == COUNT_CONTINUED;
2469 * free_swap_count_continuations - swapoff free all the continuation pages
2470 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2472 static void free_swap_count_continuations(struct swap_info_struct *si)
2476 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2478 head = vmalloc_to_page(si->swap_map + offset);
2479 if (page_private(head)) {
2480 struct list_head *this, *next;
2481 list_for_each_safe(this, next, &head->lru) {
2483 page = list_entry(this, struct page, lru);