ACPICA: iasl: Fix IORT SMMU GSI disassembling
[linux-2.6-block.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47                                  unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
101 }
102
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107         swp_entry_t entry = swp_entry(si->type, offset);
108         struct page *page;
109         int ret = 0;
110
111         page = find_get_page(swap_address_space(entry), swp_offset(entry));
112         if (!page)
113                 return 0;
114         /*
115          * This function is called from scan_swap_map() and it's called
116          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117          * We have to use trylock for avoiding deadlock. This is a special
118          * case and you should use try_to_free_swap() with explicit lock_page()
119          * in usual operations.
120          */
121         if (trylock_page(page)) {
122                 ret = try_to_free_swap(page);
123                 unlock_page(page);
124         }
125         put_page(page);
126         return ret;
127 }
128
129 /*
130  * swapon tell device that all the old swap contents can be discarded,
131  * to allow the swap device to optimize its wear-levelling.
132  */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135         struct swap_extent *se;
136         sector_t start_block;
137         sector_t nr_blocks;
138         int err = 0;
139
140         /* Do not discard the swap header page! */
141         se = &si->first_swap_extent;
142         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144         if (nr_blocks) {
145                 err = blkdev_issue_discard(si->bdev, start_block,
146                                 nr_blocks, GFP_KERNEL, 0);
147                 if (err)
148                         return err;
149                 cond_resched();
150         }
151
152         list_for_each_entry(se, &si->first_swap_extent.list, list) {
153                 start_block = se->start_block << (PAGE_SHIFT - 9);
154                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155
156                 err = blkdev_issue_discard(si->bdev, start_block,
157                                 nr_blocks, GFP_KERNEL, 0);
158                 if (err)
159                         break;
160
161                 cond_resched();
162         }
163         return err;             /* That will often be -EOPNOTSUPP */
164 }
165
166 /*
167  * swap allocation tell device that a cluster of swap can now be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171                                  pgoff_t start_page, pgoff_t nr_pages)
172 {
173         struct swap_extent *se = si->curr_swap_extent;
174         int found_extent = 0;
175
176         while (nr_pages) {
177                 if (se->start_page <= start_page &&
178                     start_page < se->start_page + se->nr_pages) {
179                         pgoff_t offset = start_page - se->start_page;
180                         sector_t start_block = se->start_block + offset;
181                         sector_t nr_blocks = se->nr_pages - offset;
182
183                         if (nr_blocks > nr_pages)
184                                 nr_blocks = nr_pages;
185                         start_page += nr_blocks;
186                         nr_pages -= nr_blocks;
187
188                         if (!found_extent++)
189                                 si->curr_swap_extent = se;
190
191                         start_block <<= PAGE_SHIFT - 9;
192                         nr_blocks <<= PAGE_SHIFT - 9;
193                         if (blkdev_issue_discard(si->bdev, start_block,
194                                     nr_blocks, GFP_NOIO, 0))
195                                 break;
196                 }
197
198                 se = list_next_entry(se, list);
199         }
200 }
201
202 #define SWAPFILE_CLUSTER        256
203 #define LATENCY_LIMIT           256
204
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206         unsigned int flag)
207 {
208         info->flags = flag;
209 }
210
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213         return info->data;
214 }
215
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217                                      unsigned int c)
218 {
219         info->data = c;
220 }
221
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223                                          unsigned int c, unsigned int f)
224 {
225         info->flags = f;
226         info->data = c;
227 }
228
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231         return info->data;
232 }
233
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235                                     unsigned int n)
236 {
237         info->data = n;
238 }
239
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241                                          unsigned int n, unsigned int f)
242 {
243         info->flags = f;
244         info->data = n;
245 }
246
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249         return info->flags & CLUSTER_FLAG_FREE;
250 }
251
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259         info->flags = CLUSTER_FLAG_NEXT_NULL;
260         info->data = 0;
261 }
262
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264                                                      unsigned long offset)
265 {
266         struct swap_cluster_info *ci;
267
268         ci = si->cluster_info;
269         if (ci) {
270                 ci += offset / SWAPFILE_CLUSTER;
271                 spin_lock(&ci->lock);
272         }
273         return ci;
274 }
275
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278         if (ci)
279                 spin_unlock(&ci->lock);
280 }
281
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283         struct swap_info_struct *si,
284         unsigned long offset)
285 {
286         struct swap_cluster_info *ci;
287
288         ci = lock_cluster(si, offset);
289         if (!ci)
290                 spin_lock(&si->lock);
291
292         return ci;
293 }
294
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296                                                struct swap_cluster_info *ci)
297 {
298         if (ci)
299                 unlock_cluster(ci);
300         else
301                 spin_unlock(&si->lock);
302 }
303
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306         return cluster_is_null(&list->head);
307 }
308
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311         return cluster_next(&list->head);
312 }
313
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316         cluster_set_null(&list->head);
317         cluster_set_null(&list->tail);
318 }
319
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321                                   struct swap_cluster_info *ci,
322                                   unsigned int idx)
323 {
324         if (cluster_list_empty(list)) {
325                 cluster_set_next_flag(&list->head, idx, 0);
326                 cluster_set_next_flag(&list->tail, idx, 0);
327         } else {
328                 struct swap_cluster_info *ci_tail;
329                 unsigned int tail = cluster_next(&list->tail);
330
331                 /*
332                  * Nested cluster lock, but both cluster locks are
333                  * only acquired when we held swap_info_struct->lock
334                  */
335                 ci_tail = ci + tail;
336                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337                 cluster_set_next(ci_tail, idx);
338                 unlock_cluster(ci_tail);
339                 cluster_set_next_flag(&list->tail, idx, 0);
340         }
341 }
342
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344                                            struct swap_cluster_info *ci)
345 {
346         unsigned int idx;
347
348         idx = cluster_next(&list->head);
349         if (cluster_next(&list->tail) == idx) {
350                 cluster_set_null(&list->head);
351                 cluster_set_null(&list->tail);
352         } else
353                 cluster_set_next_flag(&list->head,
354                                       cluster_next(&ci[idx]), 0);
355
356         return idx;
357 }
358
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361                 unsigned int idx)
362 {
363         /*
364          * If scan_swap_map() can't find a free cluster, it will check
365          * si->swap_map directly. To make sure the discarding cluster isn't
366          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367          * will be cleared after discard
368          */
369         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371
372         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373
374         schedule_work(&si->discard_work);
375 }
376
377 /*
378  * Doing discard actually. After a cluster discard is finished, the cluster
379  * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383         struct swap_cluster_info *info, *ci;
384         unsigned int idx;
385
386         info = si->cluster_info;
387
388         while (!cluster_list_empty(&si->discard_clusters)) {
389                 idx = cluster_list_del_first(&si->discard_clusters, info);
390                 spin_unlock(&si->lock);
391
392                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393                                 SWAPFILE_CLUSTER);
394
395                 spin_lock(&si->lock);
396                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397                 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398                 unlock_cluster(ci);
399                 cluster_list_add_tail(&si->free_clusters, info, idx);
400                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402                                 0, SWAPFILE_CLUSTER);
403                 unlock_cluster(ci);
404         }
405 }
406
407 static void swap_discard_work(struct work_struct *work)
408 {
409         struct swap_info_struct *si;
410
411         si = container_of(work, struct swap_info_struct, discard_work);
412
413         spin_lock(&si->lock);
414         swap_do_scheduled_discard(si);
415         spin_unlock(&si->lock);
416 }
417
418 /*
419  * The cluster corresponding to page_nr will be used. The cluster will be
420  * removed from free cluster list and its usage counter will be increased.
421  */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423         struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426
427         if (!cluster_info)
428                 return;
429         if (cluster_is_free(&cluster_info[idx])) {
430                 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431                 cluster_list_del_first(&p->free_clusters, cluster_info);
432                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
433         }
434
435         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436         cluster_set_count(&cluster_info[idx],
437                 cluster_count(&cluster_info[idx]) + 1);
438 }
439
440 /*
441  * The cluster corresponding to page_nr decreases one usage. If the usage
442  * counter becomes 0, which means no page in the cluster is in using, we can
443  * optionally discard the cluster and add it to free cluster list.
444  */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446         struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449
450         if (!cluster_info)
451                 return;
452
453         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454         cluster_set_count(&cluster_info[idx],
455                 cluster_count(&cluster_info[idx]) - 1);
456
457         if (cluster_count(&cluster_info[idx]) == 0) {
458                 /*
459                  * If the swap is discardable, prepare discard the cluster
460                  * instead of free it immediately. The cluster will be freed
461                  * after discard.
462                  */
463                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465                         swap_cluster_schedule_discard(p, idx);
466                         return;
467                 }
468
469                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470                 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471         }
472 }
473
474 /*
475  * It's possible scan_swap_map() uses a free cluster in the middle of free
476  * cluster list. Avoiding such abuse to avoid list corruption.
477  */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480         unsigned long offset)
481 {
482         struct percpu_cluster *percpu_cluster;
483         bool conflict;
484
485         offset /= SWAPFILE_CLUSTER;
486         conflict = !cluster_list_empty(&si->free_clusters) &&
487                 offset != cluster_list_first(&si->free_clusters) &&
488                 cluster_is_free(&si->cluster_info[offset]);
489
490         if (!conflict)
491                 return false;
492
493         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494         cluster_set_null(&percpu_cluster->index);
495         return true;
496 }
497
498 /*
499  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500  * might involve allocating a new cluster for current CPU too.
501  */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503         unsigned long *offset, unsigned long *scan_base)
504 {
505         struct percpu_cluster *cluster;
506         struct swap_cluster_info *ci;
507         bool found_free;
508         unsigned long tmp, max;
509
510 new_cluster:
511         cluster = this_cpu_ptr(si->percpu_cluster);
512         if (cluster_is_null(&cluster->index)) {
513                 if (!cluster_list_empty(&si->free_clusters)) {
514                         cluster->index = si->free_clusters.head;
515                         cluster->next = cluster_next(&cluster->index) *
516                                         SWAPFILE_CLUSTER;
517                 } else if (!cluster_list_empty(&si->discard_clusters)) {
518                         /*
519                          * we don't have free cluster but have some clusters in
520                          * discarding, do discard now and reclaim them
521                          */
522                         swap_do_scheduled_discard(si);
523                         *scan_base = *offset = si->cluster_next;
524                         goto new_cluster;
525                 } else
526                         return false;
527         }
528
529         found_free = false;
530
531         /*
532          * Other CPUs can use our cluster if they can't find a free cluster,
533          * check if there is still free entry in the cluster
534          */
535         tmp = cluster->next;
536         max = min_t(unsigned long, si->max,
537                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538         if (tmp >= max) {
539                 cluster_set_null(&cluster->index);
540                 goto new_cluster;
541         }
542         ci = lock_cluster(si, tmp);
543         while (tmp < max) {
544                 if (!si->swap_map[tmp]) {
545                         found_free = true;
546                         break;
547                 }
548                 tmp++;
549         }
550         unlock_cluster(ci);
551         if (!found_free) {
552                 cluster_set_null(&cluster->index);
553                 goto new_cluster;
554         }
555         cluster->next = tmp + 1;
556         *offset = tmp;
557         *scan_base = tmp;
558         return found_free;
559 }
560
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562                                unsigned char usage, int nr,
563                                swp_entry_t slots[])
564 {
565         struct swap_cluster_info *ci;
566         unsigned long offset;
567         unsigned long scan_base;
568         unsigned long last_in_cluster = 0;
569         int latency_ration = LATENCY_LIMIT;
570         int n_ret = 0;
571
572         if (nr > SWAP_BATCH)
573                 nr = SWAP_BATCH;
574
575         /*
576          * We try to cluster swap pages by allocating them sequentially
577          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
578          * way, however, we resort to first-free allocation, starting
579          * a new cluster.  This prevents us from scattering swap pages
580          * all over the entire swap partition, so that we reduce
581          * overall disk seek times between swap pages.  -- sct
582          * But we do now try to find an empty cluster.  -Andrea
583          * And we let swap pages go all over an SSD partition.  Hugh
584          */
585
586         si->flags += SWP_SCANNING;
587         scan_base = offset = si->cluster_next;
588
589         /* SSD algorithm */
590         if (si->cluster_info) {
591                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592                         goto checks;
593                 else
594                         goto scan;
595         }
596
597         if (unlikely(!si->cluster_nr--)) {
598                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
600                         goto checks;
601                 }
602
603                 spin_unlock(&si->lock);
604
605                 /*
606                  * If seek is expensive, start searching for new cluster from
607                  * start of partition, to minimize the span of allocated swap.
608                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
610                  */
611                 scan_base = offset = si->lowest_bit;
612                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613
614                 /* Locate the first empty (unaligned) cluster */
615                 for (; last_in_cluster <= si->highest_bit; offset++) {
616                         if (si->swap_map[offset])
617                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
618                         else if (offset == last_in_cluster) {
619                                 spin_lock(&si->lock);
620                                 offset -= SWAPFILE_CLUSTER - 1;
621                                 si->cluster_next = offset;
622                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
623                                 goto checks;
624                         }
625                         if (unlikely(--latency_ration < 0)) {
626                                 cond_resched();
627                                 latency_ration = LATENCY_LIMIT;
628                         }
629                 }
630
631                 offset = scan_base;
632                 spin_lock(&si->lock);
633                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634         }
635
636 checks:
637         if (si->cluster_info) {
638                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639                 /* take a break if we already got some slots */
640                         if (n_ret)
641                                 goto done;
642                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
643                                                         &scan_base))
644                                 goto scan;
645                 }
646         }
647         if (!(si->flags & SWP_WRITEOK))
648                 goto no_page;
649         if (!si->highest_bit)
650                 goto no_page;
651         if (offset > si->highest_bit)
652                 scan_base = offset = si->lowest_bit;
653
654         ci = lock_cluster(si, offset);
655         /* reuse swap entry of cache-only swap if not busy. */
656         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657                 int swap_was_freed;
658                 unlock_cluster(ci);
659                 spin_unlock(&si->lock);
660                 swap_was_freed = __try_to_reclaim_swap(si, offset);
661                 spin_lock(&si->lock);
662                 /* entry was freed successfully, try to use this again */
663                 if (swap_was_freed)
664                         goto checks;
665                 goto scan; /* check next one */
666         }
667
668         if (si->swap_map[offset]) {
669                 unlock_cluster(ci);
670                 if (!n_ret)
671                         goto scan;
672                 else
673                         goto done;
674         }
675
676         if (offset == si->lowest_bit)
677                 si->lowest_bit++;
678         if (offset == si->highest_bit)
679                 si->highest_bit--;
680         si->inuse_pages++;
681         if (si->inuse_pages == si->pages) {
682                 si->lowest_bit = si->max;
683                 si->highest_bit = 0;
684                 spin_lock(&swap_avail_lock);
685                 plist_del(&si->avail_list, &swap_avail_head);
686                 spin_unlock(&swap_avail_lock);
687         }
688         si->swap_map[offset] = usage;
689         inc_cluster_info_page(si, si->cluster_info, offset);
690         unlock_cluster(ci);
691         si->cluster_next = offset + 1;
692         slots[n_ret++] = swp_entry(si->type, offset);
693
694         /* got enough slots or reach max slots? */
695         if ((n_ret == nr) || (offset >= si->highest_bit))
696                 goto done;
697
698         /* search for next available slot */
699
700         /* time to take a break? */
701         if (unlikely(--latency_ration < 0)) {
702                 if (n_ret)
703                         goto done;
704                 spin_unlock(&si->lock);
705                 cond_resched();
706                 spin_lock(&si->lock);
707                 latency_ration = LATENCY_LIMIT;
708         }
709
710         /* try to get more slots in cluster */
711         if (si->cluster_info) {
712                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713                         goto checks;
714                 else
715                         goto done;
716         }
717         /* non-ssd case */
718         ++offset;
719
720         /* non-ssd case, still more slots in cluster? */
721         if (si->cluster_nr && !si->swap_map[offset]) {
722                 --si->cluster_nr;
723                 goto checks;
724         }
725
726 done:
727         si->flags -= SWP_SCANNING;
728         return n_ret;
729
730 scan:
731         spin_unlock(&si->lock);
732         while (++offset <= si->highest_bit) {
733                 if (!si->swap_map[offset]) {
734                         spin_lock(&si->lock);
735                         goto checks;
736                 }
737                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738                         spin_lock(&si->lock);
739                         goto checks;
740                 }
741                 if (unlikely(--latency_ration < 0)) {
742                         cond_resched();
743                         latency_ration = LATENCY_LIMIT;
744                 }
745         }
746         offset = si->lowest_bit;
747         while (offset < scan_base) {
748                 if (!si->swap_map[offset]) {
749                         spin_lock(&si->lock);
750                         goto checks;
751                 }
752                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753                         spin_lock(&si->lock);
754                         goto checks;
755                 }
756                 if (unlikely(--latency_ration < 0)) {
757                         cond_resched();
758                         latency_ration = LATENCY_LIMIT;
759                 }
760                 offset++;
761         }
762         spin_lock(&si->lock);
763
764 no_page:
765         si->flags -= SWP_SCANNING;
766         return n_ret;
767 }
768
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770                                    unsigned char usage)
771 {
772         swp_entry_t entry;
773         int n_ret;
774
775         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776
777         if (n_ret)
778                 return swp_offset(entry);
779         else
780                 return 0;
781
782 }
783
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786         struct swap_info_struct *si, *next;
787         long avail_pgs;
788         int n_ret = 0;
789
790         avail_pgs = atomic_long_read(&nr_swap_pages);
791         if (avail_pgs <= 0)
792                 goto noswap;
793
794         if (n_goal > SWAP_BATCH)
795                 n_goal = SWAP_BATCH;
796
797         if (n_goal > avail_pgs)
798                 n_goal = avail_pgs;
799
800         atomic_long_sub(n_goal, &nr_swap_pages);
801
802         spin_lock(&swap_avail_lock);
803
804 start_over:
805         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806                 /* requeue si to after same-priority siblings */
807                 plist_requeue(&si->avail_list, &swap_avail_head);
808                 spin_unlock(&swap_avail_lock);
809                 spin_lock(&si->lock);
810                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811                         spin_lock(&swap_avail_lock);
812                         if (plist_node_empty(&si->avail_list)) {
813                                 spin_unlock(&si->lock);
814                                 goto nextsi;
815                         }
816                         WARN(!si->highest_bit,
817                              "swap_info %d in list but !highest_bit\n",
818                              si->type);
819                         WARN(!(si->flags & SWP_WRITEOK),
820                              "swap_info %d in list but !SWP_WRITEOK\n",
821                              si->type);
822                         plist_del(&si->avail_list, &swap_avail_head);
823                         spin_unlock(&si->lock);
824                         goto nextsi;
825                 }
826                 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827                                             n_goal, swp_entries);
828                 spin_unlock(&si->lock);
829                 if (n_ret)
830                         goto check_out;
831                 pr_debug("scan_swap_map of si %d failed to find offset\n",
832                         si->type);
833
834                 spin_lock(&swap_avail_lock);
835 nextsi:
836                 /*
837                  * if we got here, it's likely that si was almost full before,
838                  * and since scan_swap_map() can drop the si->lock, multiple
839                  * callers probably all tried to get a page from the same si
840                  * and it filled up before we could get one; or, the si filled
841                  * up between us dropping swap_avail_lock and taking si->lock.
842                  * Since we dropped the swap_avail_lock, the swap_avail_head
843                  * list may have been modified; so if next is still in the
844                  * swap_avail_head list then try it, otherwise start over
845                  * if we have not gotten any slots.
846                  */
847                 if (plist_node_empty(&next->avail_list))
848                         goto start_over;
849         }
850
851         spin_unlock(&swap_avail_lock);
852
853 check_out:
854         if (n_ret < n_goal)
855                 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857         return n_ret;
858 }
859
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863         struct swap_info_struct *si;
864         pgoff_t offset;
865
866         si = swap_info[type];
867         spin_lock(&si->lock);
868         if (si && (si->flags & SWP_WRITEOK)) {
869                 atomic_long_dec(&nr_swap_pages);
870                 /* This is called for allocating swap entry, not cache */
871                 offset = scan_swap_map(si, 1);
872                 if (offset) {
873                         spin_unlock(&si->lock);
874                         return swp_entry(type, offset);
875                 }
876                 atomic_long_inc(&nr_swap_pages);
877         }
878         spin_unlock(&si->lock);
879         return (swp_entry_t) {0};
880 }
881
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884         struct swap_info_struct *p;
885         unsigned long offset, type;
886
887         if (!entry.val)
888                 goto out;
889         type = swp_type(entry);
890         if (type >= nr_swapfiles)
891                 goto bad_nofile;
892         p = swap_info[type];
893         if (!(p->flags & SWP_USED))
894                 goto bad_device;
895         offset = swp_offset(entry);
896         if (offset >= p->max)
897                 goto bad_offset;
898         return p;
899
900 bad_offset:
901         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902         goto out;
903 bad_device:
904         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905         goto out;
906 bad_nofile:
907         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909         return NULL;
910 }
911
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914         struct swap_info_struct *p;
915
916         p = __swap_info_get(entry);
917         if (!p)
918                 goto out;
919         if (!p->swap_map[swp_offset(entry)])
920                 goto bad_free;
921         return p;
922
923 bad_free:
924         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925         goto out;
926 out:
927         return NULL;
928 }
929
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932         struct swap_info_struct *p;
933
934         p = _swap_info_get(entry);
935         if (p)
936                 spin_lock(&p->lock);
937         return p;
938 }
939
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941                                         struct swap_info_struct *q)
942 {
943         struct swap_info_struct *p;
944
945         p = _swap_info_get(entry);
946
947         if (p != q) {
948                 if (q != NULL)
949                         spin_unlock(&q->lock);
950                 if (p != NULL)
951                         spin_lock(&p->lock);
952         }
953         return p;
954 }
955
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957                                        swp_entry_t entry, unsigned char usage)
958 {
959         struct swap_cluster_info *ci;
960         unsigned long offset = swp_offset(entry);
961         unsigned char count;
962         unsigned char has_cache;
963
964         ci = lock_cluster_or_swap_info(p, offset);
965
966         count = p->swap_map[offset];
967
968         has_cache = count & SWAP_HAS_CACHE;
969         count &= ~SWAP_HAS_CACHE;
970
971         if (usage == SWAP_HAS_CACHE) {
972                 VM_BUG_ON(!has_cache);
973                 has_cache = 0;
974         } else if (count == SWAP_MAP_SHMEM) {
975                 /*
976                  * Or we could insist on shmem.c using a special
977                  * swap_shmem_free() and free_shmem_swap_and_cache()...
978                  */
979                 count = 0;
980         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981                 if (count == COUNT_CONTINUED) {
982                         if (swap_count_continued(p, offset, count))
983                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
984                         else
985                                 count = SWAP_MAP_MAX;
986                 } else
987                         count--;
988         }
989
990         usage = count | has_cache;
991         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992
993         unlock_cluster_or_swap_info(p, ci);
994
995         return usage;
996 }
997
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000         struct swap_cluster_info *ci;
1001         unsigned long offset = swp_offset(entry);
1002         unsigned char count;
1003
1004         ci = lock_cluster(p, offset);
1005         count = p->swap_map[offset];
1006         VM_BUG_ON(count != SWAP_HAS_CACHE);
1007         p->swap_map[offset] = 0;
1008         dec_cluster_info_page(p, p->cluster_info, offset);
1009         unlock_cluster(ci);
1010
1011         mem_cgroup_uncharge_swap(entry);
1012         if (offset < p->lowest_bit)
1013                 p->lowest_bit = offset;
1014         if (offset > p->highest_bit) {
1015                 bool was_full = !p->highest_bit;
1016
1017                 p->highest_bit = offset;
1018                 if (was_full && (p->flags & SWP_WRITEOK)) {
1019                         spin_lock(&swap_avail_lock);
1020                         WARN_ON(!plist_node_empty(&p->avail_list));
1021                         if (plist_node_empty(&p->avail_list))
1022                                 plist_add(&p->avail_list,
1023                                           &swap_avail_head);
1024                         spin_unlock(&swap_avail_lock);
1025                 }
1026         }
1027         atomic_long_inc(&nr_swap_pages);
1028         p->inuse_pages--;
1029         frontswap_invalidate_page(p->type, offset);
1030         if (p->flags & SWP_BLKDEV) {
1031                 struct gendisk *disk = p->bdev->bd_disk;
1032
1033                 if (disk->fops->swap_slot_free_notify)
1034                         disk->fops->swap_slot_free_notify(p->bdev,
1035                                                           offset);
1036         }
1037 }
1038
1039 /*
1040  * Caller has made sure that the swap device corresponding to entry
1041  * is still around or has not been recycled.
1042  */
1043 void swap_free(swp_entry_t entry)
1044 {
1045         struct swap_info_struct *p;
1046
1047         p = _swap_info_get(entry);
1048         if (p) {
1049                 if (!__swap_entry_free(p, entry, 1))
1050                         free_swap_slot(entry);
1051         }
1052 }
1053
1054 /*
1055  * Called after dropping swapcache to decrease refcnt to swap entries.
1056  */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059         struct swap_info_struct *p;
1060
1061         p = _swap_info_get(entry);
1062         if (p) {
1063                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064                         free_swap_slot(entry);
1065         }
1066 }
1067
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070         struct swap_info_struct *p, *prev;
1071         int i;
1072
1073         if (n <= 0)
1074                 return;
1075
1076         prev = NULL;
1077         p = NULL;
1078         for (i = 0; i < n; ++i) {
1079                 p = swap_info_get_cont(entries[i], prev);
1080                 if (p)
1081                         swap_entry_free(p, entries[i]);
1082                 else
1083                         break;
1084                 prev = p;
1085         }
1086         if (p)
1087                 spin_unlock(&p->lock);
1088 }
1089
1090 /*
1091  * How many references to page are currently swapped out?
1092  * This does not give an exact answer when swap count is continued,
1093  * but does include the high COUNT_CONTINUED flag to allow for that.
1094  */
1095 int page_swapcount(struct page *page)
1096 {
1097         int count = 0;
1098         struct swap_info_struct *p;
1099         struct swap_cluster_info *ci;
1100         swp_entry_t entry;
1101         unsigned long offset;
1102
1103         entry.val = page_private(page);
1104         p = _swap_info_get(entry);
1105         if (p) {
1106                 offset = swp_offset(entry);
1107                 ci = lock_cluster_or_swap_info(p, offset);
1108                 count = swap_count(p->swap_map[offset]);
1109                 unlock_cluster_or_swap_info(p, ci);
1110         }
1111         return count;
1112 }
1113
1114 /*
1115  * How many references to @entry are currently swapped out?
1116  * This does not give an exact answer when swap count is continued,
1117  * but does include the high COUNT_CONTINUED flag to allow for that.
1118  */
1119 int __swp_swapcount(swp_entry_t entry)
1120 {
1121         int count = 0;
1122         pgoff_t offset;
1123         struct swap_info_struct *si;
1124         struct swap_cluster_info *ci;
1125
1126         si = __swap_info_get(entry);
1127         if (si) {
1128                 offset = swp_offset(entry);
1129                 ci = lock_cluster_or_swap_info(si, offset);
1130                 count = swap_count(si->swap_map[offset]);
1131                 unlock_cluster_or_swap_info(si, ci);
1132         }
1133         return count;
1134 }
1135
1136 /*
1137  * How many references to @entry are currently swapped out?
1138  * This considers COUNT_CONTINUED so it returns exact answer.
1139  */
1140 int swp_swapcount(swp_entry_t entry)
1141 {
1142         int count, tmp_count, n;
1143         struct swap_info_struct *p;
1144         struct swap_cluster_info *ci;
1145         struct page *page;
1146         pgoff_t offset;
1147         unsigned char *map;
1148
1149         p = _swap_info_get(entry);
1150         if (!p)
1151                 return 0;
1152
1153         offset = swp_offset(entry);
1154
1155         ci = lock_cluster_or_swap_info(p, offset);
1156
1157         count = swap_count(p->swap_map[offset]);
1158         if (!(count & COUNT_CONTINUED))
1159                 goto out;
1160
1161         count &= ~COUNT_CONTINUED;
1162         n = SWAP_MAP_MAX + 1;
1163
1164         page = vmalloc_to_page(p->swap_map + offset);
1165         offset &= ~PAGE_MASK;
1166         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1167
1168         do {
1169                 page = list_next_entry(page, lru);
1170                 map = kmap_atomic(page);
1171                 tmp_count = map[offset];
1172                 kunmap_atomic(map);
1173
1174                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1175                 n *= (SWAP_CONT_MAX + 1);
1176         } while (tmp_count & COUNT_CONTINUED);
1177 out:
1178         unlock_cluster_or_swap_info(p, ci);
1179         return count;
1180 }
1181
1182 /*
1183  * We can write to an anon page without COW if there are no other references
1184  * to it.  And as a side-effect, free up its swap: because the old content
1185  * on disk will never be read, and seeking back there to write new content
1186  * later would only waste time away from clustering.
1187  *
1188  * NOTE: total_mapcount should not be relied upon by the caller if
1189  * reuse_swap_page() returns false, but it may be always overwritten
1190  * (see the other implementation for CONFIG_SWAP=n).
1191  */
1192 bool reuse_swap_page(struct page *page, int *total_mapcount)
1193 {
1194         int count;
1195
1196         VM_BUG_ON_PAGE(!PageLocked(page), page);
1197         if (unlikely(PageKsm(page)))
1198                 return false;
1199         count = page_trans_huge_mapcount(page, total_mapcount);
1200         if (count <= 1 && PageSwapCache(page)) {
1201                 count += page_swapcount(page);
1202                 if (count != 1)
1203                         goto out;
1204                 if (!PageWriteback(page)) {
1205                         delete_from_swap_cache(page);
1206                         SetPageDirty(page);
1207                 } else {
1208                         swp_entry_t entry;
1209                         struct swap_info_struct *p;
1210
1211                         entry.val = page_private(page);
1212                         p = swap_info_get(entry);
1213                         if (p->flags & SWP_STABLE_WRITES) {
1214                                 spin_unlock(&p->lock);
1215                                 return false;
1216                         }
1217                         spin_unlock(&p->lock);
1218                 }
1219         }
1220 out:
1221         return count <= 1;
1222 }
1223
1224 /*
1225  * If swap is getting full, or if there are no more mappings of this page,
1226  * then try_to_free_swap is called to free its swap space.
1227  */
1228 int try_to_free_swap(struct page *page)
1229 {
1230         VM_BUG_ON_PAGE(!PageLocked(page), page);
1231
1232         if (!PageSwapCache(page))
1233                 return 0;
1234         if (PageWriteback(page))
1235                 return 0;
1236         if (page_swapcount(page))
1237                 return 0;
1238
1239         /*
1240          * Once hibernation has begun to create its image of memory,
1241          * there's a danger that one of the calls to try_to_free_swap()
1242          * - most probably a call from __try_to_reclaim_swap() while
1243          * hibernation is allocating its own swap pages for the image,
1244          * but conceivably even a call from memory reclaim - will free
1245          * the swap from a page which has already been recorded in the
1246          * image as a clean swapcache page, and then reuse its swap for
1247          * another page of the image.  On waking from hibernation, the
1248          * original page might be freed under memory pressure, then
1249          * later read back in from swap, now with the wrong data.
1250          *
1251          * Hibernation suspends storage while it is writing the image
1252          * to disk so check that here.
1253          */
1254         if (pm_suspended_storage())
1255                 return 0;
1256
1257         delete_from_swap_cache(page);
1258         SetPageDirty(page);
1259         return 1;
1260 }
1261
1262 /*
1263  * Free the swap entry like above, but also try to
1264  * free the page cache entry if it is the last user.
1265  */
1266 int free_swap_and_cache(swp_entry_t entry)
1267 {
1268         struct swap_info_struct *p;
1269         struct page *page = NULL;
1270         unsigned char count;
1271
1272         if (non_swap_entry(entry))
1273                 return 1;
1274
1275         p = _swap_info_get(entry);
1276         if (p) {
1277                 count = __swap_entry_free(p, entry, 1);
1278                 if (count == SWAP_HAS_CACHE) {
1279                         page = find_get_page(swap_address_space(entry),
1280                                              swp_offset(entry));
1281                         if (page && !trylock_page(page)) {
1282                                 put_page(page);
1283                                 page = NULL;
1284                         }
1285                 } else if (!count)
1286                         free_swap_slot(entry);
1287         }
1288         if (page) {
1289                 /*
1290                  * Not mapped elsewhere, or swap space full? Free it!
1291                  * Also recheck PageSwapCache now page is locked (above).
1292                  */
1293                 if (PageSwapCache(page) && !PageWriteback(page) &&
1294                     (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1295                         delete_from_swap_cache(page);
1296                         SetPageDirty(page);
1297                 }
1298                 unlock_page(page);
1299                 put_page(page);
1300         }
1301         return p != NULL;
1302 }
1303
1304 #ifdef CONFIG_HIBERNATION
1305 /*
1306  * Find the swap type that corresponds to given device (if any).
1307  *
1308  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1309  * from 0, in which the swap header is expected to be located.
1310  *
1311  * This is needed for the suspend to disk (aka swsusp).
1312  */
1313 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1314 {
1315         struct block_device *bdev = NULL;
1316         int type;
1317
1318         if (device)
1319                 bdev = bdget(device);
1320
1321         spin_lock(&swap_lock);
1322         for (type = 0; type < nr_swapfiles; type++) {
1323                 struct swap_info_struct *sis = swap_info[type];
1324
1325                 if (!(sis->flags & SWP_WRITEOK))
1326                         continue;
1327
1328                 if (!bdev) {
1329                         if (bdev_p)
1330                                 *bdev_p = bdgrab(sis->bdev);
1331
1332                         spin_unlock(&swap_lock);
1333                         return type;
1334                 }
1335                 if (bdev == sis->bdev) {
1336                         struct swap_extent *se = &sis->first_swap_extent;
1337
1338                         if (se->start_block == offset) {
1339                                 if (bdev_p)
1340                                         *bdev_p = bdgrab(sis->bdev);
1341
1342                                 spin_unlock(&swap_lock);
1343                                 bdput(bdev);
1344                                 return type;
1345                         }
1346                 }
1347         }
1348         spin_unlock(&swap_lock);
1349         if (bdev)
1350                 bdput(bdev);
1351
1352         return -ENODEV;
1353 }
1354
1355 /*
1356  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1357  * corresponding to given index in swap_info (swap type).
1358  */
1359 sector_t swapdev_block(int type, pgoff_t offset)
1360 {
1361         struct block_device *bdev;
1362
1363         if ((unsigned int)type >= nr_swapfiles)
1364                 return 0;
1365         if (!(swap_info[type]->flags & SWP_WRITEOK))
1366                 return 0;
1367         return map_swap_entry(swp_entry(type, offset), &bdev);
1368 }
1369
1370 /*
1371  * Return either the total number of swap pages of given type, or the number
1372  * of free pages of that type (depending on @free)
1373  *
1374  * This is needed for software suspend
1375  */
1376 unsigned int count_swap_pages(int type, int free)
1377 {
1378         unsigned int n = 0;
1379
1380         spin_lock(&swap_lock);
1381         if ((unsigned int)type < nr_swapfiles) {
1382                 struct swap_info_struct *sis = swap_info[type];
1383
1384                 spin_lock(&sis->lock);
1385                 if (sis->flags & SWP_WRITEOK) {
1386                         n = sis->pages;
1387                         if (free)
1388                                 n -= sis->inuse_pages;
1389                 }
1390                 spin_unlock(&sis->lock);
1391         }
1392         spin_unlock(&swap_lock);
1393         return n;
1394 }
1395 #endif /* CONFIG_HIBERNATION */
1396
1397 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1398 {
1399         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1400 }
1401
1402 /*
1403  * No need to decide whether this PTE shares the swap entry with others,
1404  * just let do_wp_page work it out if a write is requested later - to
1405  * force COW, vm_page_prot omits write permission from any private vma.
1406  */
1407 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1408                 unsigned long addr, swp_entry_t entry, struct page *page)
1409 {
1410         struct page *swapcache;
1411         struct mem_cgroup *memcg;
1412         spinlock_t *ptl;
1413         pte_t *pte;
1414         int ret = 1;
1415
1416         swapcache = page;
1417         page = ksm_might_need_to_copy(page, vma, addr);
1418         if (unlikely(!page))
1419                 return -ENOMEM;
1420
1421         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1422                                 &memcg, false)) {
1423                 ret = -ENOMEM;
1424                 goto out_nolock;
1425         }
1426
1427         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1428         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1429                 mem_cgroup_cancel_charge(page, memcg, false);
1430                 ret = 0;
1431                 goto out;
1432         }
1433
1434         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1435         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1436         get_page(page);
1437         set_pte_at(vma->vm_mm, addr, pte,
1438                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1439         if (page == swapcache) {
1440                 page_add_anon_rmap(page, vma, addr, false);
1441                 mem_cgroup_commit_charge(page, memcg, true, false);
1442         } else { /* ksm created a completely new copy */
1443                 page_add_new_anon_rmap(page, vma, addr, false);
1444                 mem_cgroup_commit_charge(page, memcg, false, false);
1445                 lru_cache_add_active_or_unevictable(page, vma);
1446         }
1447         swap_free(entry);
1448         /*
1449          * Move the page to the active list so it is not
1450          * immediately swapped out again after swapon.
1451          */
1452         activate_page(page);
1453 out:
1454         pte_unmap_unlock(pte, ptl);
1455 out_nolock:
1456         if (page != swapcache) {
1457                 unlock_page(page);
1458                 put_page(page);
1459         }
1460         return ret;
1461 }
1462
1463 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1464                                 unsigned long addr, unsigned long end,
1465                                 swp_entry_t entry, struct page *page)
1466 {
1467         pte_t swp_pte = swp_entry_to_pte(entry);
1468         pte_t *pte;
1469         int ret = 0;
1470
1471         /*
1472          * We don't actually need pte lock while scanning for swp_pte: since
1473          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1474          * page table while we're scanning; though it could get zapped, and on
1475          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1476          * of unmatched parts which look like swp_pte, so unuse_pte must
1477          * recheck under pte lock.  Scanning without pte lock lets it be
1478          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1479          */
1480         pte = pte_offset_map(pmd, addr);
1481         do {
1482                 /*
1483                  * swapoff spends a _lot_ of time in this loop!
1484                  * Test inline before going to call unuse_pte.
1485                  */
1486                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1487                         pte_unmap(pte);
1488                         ret = unuse_pte(vma, pmd, addr, entry, page);
1489                         if (ret)
1490                                 goto out;
1491                         pte = pte_offset_map(pmd, addr);
1492                 }
1493         } while (pte++, addr += PAGE_SIZE, addr != end);
1494         pte_unmap(pte - 1);
1495 out:
1496         return ret;
1497 }
1498
1499 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1500                                 unsigned long addr, unsigned long end,
1501                                 swp_entry_t entry, struct page *page)
1502 {
1503         pmd_t *pmd;
1504         unsigned long next;
1505         int ret;
1506
1507         pmd = pmd_offset(pud, addr);
1508         do {
1509                 cond_resched();
1510                 next = pmd_addr_end(addr, end);
1511                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1512                         continue;
1513                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1514                 if (ret)
1515                         return ret;
1516         } while (pmd++, addr = next, addr != end);
1517         return 0;
1518 }
1519
1520 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1521                                 unsigned long addr, unsigned long end,
1522                                 swp_entry_t entry, struct page *page)
1523 {
1524         pud_t *pud;
1525         unsigned long next;
1526         int ret;
1527
1528         pud = pud_offset(p4d, addr);
1529         do {
1530                 next = pud_addr_end(addr, end);
1531                 if (pud_none_or_clear_bad(pud))
1532                         continue;
1533                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1534                 if (ret)
1535                         return ret;
1536         } while (pud++, addr = next, addr != end);
1537         return 0;
1538 }
1539
1540 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1541                                 unsigned long addr, unsigned long end,
1542                                 swp_entry_t entry, struct page *page)
1543 {
1544         p4d_t *p4d;
1545         unsigned long next;
1546         int ret;
1547
1548         p4d = p4d_offset(pgd, addr);
1549         do {
1550                 next = p4d_addr_end(addr, end);
1551                 if (p4d_none_or_clear_bad(p4d))
1552                         continue;
1553                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1554                 if (ret)
1555                         return ret;
1556         } while (p4d++, addr = next, addr != end);
1557         return 0;
1558 }
1559
1560 static int unuse_vma(struct vm_area_struct *vma,
1561                                 swp_entry_t entry, struct page *page)
1562 {
1563         pgd_t *pgd;
1564         unsigned long addr, end, next;
1565         int ret;
1566
1567         if (page_anon_vma(page)) {
1568                 addr = page_address_in_vma(page, vma);
1569                 if (addr == -EFAULT)
1570                         return 0;
1571                 else
1572                         end = addr + PAGE_SIZE;
1573         } else {
1574                 addr = vma->vm_start;
1575                 end = vma->vm_end;
1576         }
1577
1578         pgd = pgd_offset(vma->vm_mm, addr);
1579         do {
1580                 next = pgd_addr_end(addr, end);
1581                 if (pgd_none_or_clear_bad(pgd))
1582                         continue;
1583                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1584                 if (ret)
1585                         return ret;
1586         } while (pgd++, addr = next, addr != end);
1587         return 0;
1588 }
1589
1590 static int unuse_mm(struct mm_struct *mm,
1591                                 swp_entry_t entry, struct page *page)
1592 {
1593         struct vm_area_struct *vma;
1594         int ret = 0;
1595
1596         if (!down_read_trylock(&mm->mmap_sem)) {
1597                 /*
1598                  * Activate page so shrink_inactive_list is unlikely to unmap
1599                  * its ptes while lock is dropped, so swapoff can make progress.
1600                  */
1601                 activate_page(page);
1602                 unlock_page(page);
1603                 down_read(&mm->mmap_sem);
1604                 lock_page(page);
1605         }
1606         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1607                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1608                         break;
1609                 cond_resched();
1610         }
1611         up_read(&mm->mmap_sem);
1612         return (ret < 0)? ret: 0;
1613 }
1614
1615 /*
1616  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1617  * from current position to next entry still in use.
1618  * Recycle to start on reaching the end, returning 0 when empty.
1619  */
1620 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1621                                         unsigned int prev, bool frontswap)
1622 {
1623         unsigned int max = si->max;
1624         unsigned int i = prev;
1625         unsigned char count;
1626
1627         /*
1628          * No need for swap_lock here: we're just looking
1629          * for whether an entry is in use, not modifying it; false
1630          * hits are okay, and sys_swapoff() has already prevented new
1631          * allocations from this area (while holding swap_lock).
1632          */
1633         for (;;) {
1634                 if (++i >= max) {
1635                         if (!prev) {
1636                                 i = 0;
1637                                 break;
1638                         }
1639                         /*
1640                          * No entries in use at top of swap_map,
1641                          * loop back to start and recheck there.
1642                          */
1643                         max = prev + 1;
1644                         prev = 0;
1645                         i = 1;
1646                 }
1647                 count = READ_ONCE(si->swap_map[i]);
1648                 if (count && swap_count(count) != SWAP_MAP_BAD)
1649                         if (!frontswap || frontswap_test(si, i))
1650                                 break;
1651                 if ((i % LATENCY_LIMIT) == 0)
1652                         cond_resched();
1653         }
1654         return i;
1655 }
1656
1657 /*
1658  * We completely avoid races by reading each swap page in advance,
1659  * and then search for the process using it.  All the necessary
1660  * page table adjustments can then be made atomically.
1661  *
1662  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1663  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1664  */
1665 int try_to_unuse(unsigned int type, bool frontswap,
1666                  unsigned long pages_to_unuse)
1667 {
1668         struct swap_info_struct *si = swap_info[type];
1669         struct mm_struct *start_mm;
1670         volatile unsigned char *swap_map; /* swap_map is accessed without
1671                                            * locking. Mark it as volatile
1672                                            * to prevent compiler doing
1673                                            * something odd.
1674                                            */
1675         unsigned char swcount;
1676         struct page *page;
1677         swp_entry_t entry;
1678         unsigned int i = 0;
1679         int retval = 0;
1680
1681         /*
1682          * When searching mms for an entry, a good strategy is to
1683          * start at the first mm we freed the previous entry from
1684          * (though actually we don't notice whether we or coincidence
1685          * freed the entry).  Initialize this start_mm with a hold.
1686          *
1687          * A simpler strategy would be to start at the last mm we
1688          * freed the previous entry from; but that would take less
1689          * advantage of mmlist ordering, which clusters forked mms
1690          * together, child after parent.  If we race with dup_mmap(), we
1691          * prefer to resolve parent before child, lest we miss entries
1692          * duplicated after we scanned child: using last mm would invert
1693          * that.
1694          */
1695         start_mm = &init_mm;
1696         mmget(&init_mm);
1697
1698         /*
1699          * Keep on scanning until all entries have gone.  Usually,
1700          * one pass through swap_map is enough, but not necessarily:
1701          * there are races when an instance of an entry might be missed.
1702          */
1703         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1704                 if (signal_pending(current)) {
1705                         retval = -EINTR;
1706                         break;
1707                 }
1708
1709                 /*
1710                  * Get a page for the entry, using the existing swap
1711                  * cache page if there is one.  Otherwise, get a clean
1712                  * page and read the swap into it.
1713                  */
1714                 swap_map = &si->swap_map[i];
1715                 entry = swp_entry(type, i);
1716                 page = read_swap_cache_async(entry,
1717                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1718                 if (!page) {
1719                         /*
1720                          * Either swap_duplicate() failed because entry
1721                          * has been freed independently, and will not be
1722                          * reused since sys_swapoff() already disabled
1723                          * allocation from here, or alloc_page() failed.
1724                          */
1725                         swcount = *swap_map;
1726                         /*
1727                          * We don't hold lock here, so the swap entry could be
1728                          * SWAP_MAP_BAD (when the cluster is discarding).
1729                          * Instead of fail out, We can just skip the swap
1730                          * entry because swapoff will wait for discarding
1731                          * finish anyway.
1732                          */
1733                         if (!swcount || swcount == SWAP_MAP_BAD)
1734                                 continue;
1735                         retval = -ENOMEM;
1736                         break;
1737                 }
1738
1739                 /*
1740                  * Don't hold on to start_mm if it looks like exiting.
1741                  */
1742                 if (atomic_read(&start_mm->mm_users) == 1) {
1743                         mmput(start_mm);
1744                         start_mm = &init_mm;
1745                         mmget(&init_mm);
1746                 }
1747
1748                 /*
1749                  * Wait for and lock page.  When do_swap_page races with
1750                  * try_to_unuse, do_swap_page can handle the fault much
1751                  * faster than try_to_unuse can locate the entry.  This
1752                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1753                  * defer to do_swap_page in such a case - in some tests,
1754                  * do_swap_page and try_to_unuse repeatedly compete.
1755                  */
1756                 wait_on_page_locked(page);
1757                 wait_on_page_writeback(page);
1758                 lock_page(page);
1759                 wait_on_page_writeback(page);
1760
1761                 /*
1762                  * Remove all references to entry.
1763                  */
1764                 swcount = *swap_map;
1765                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1766                         retval = shmem_unuse(entry, page);
1767                         /* page has already been unlocked and released */
1768                         if (retval < 0)
1769                                 break;
1770                         continue;
1771                 }
1772                 if (swap_count(swcount) && start_mm != &init_mm)
1773                         retval = unuse_mm(start_mm, entry, page);
1774
1775                 if (swap_count(*swap_map)) {
1776                         int set_start_mm = (*swap_map >= swcount);
1777                         struct list_head *p = &start_mm->mmlist;
1778                         struct mm_struct *new_start_mm = start_mm;
1779                         struct mm_struct *prev_mm = start_mm;
1780                         struct mm_struct *mm;
1781
1782                         mmget(new_start_mm);
1783                         mmget(prev_mm);
1784                         spin_lock(&mmlist_lock);
1785                         while (swap_count(*swap_map) && !retval &&
1786                                         (p = p->next) != &start_mm->mmlist) {
1787                                 mm = list_entry(p, struct mm_struct, mmlist);
1788                                 if (!mmget_not_zero(mm))
1789                                         continue;
1790                                 spin_unlock(&mmlist_lock);
1791                                 mmput(prev_mm);
1792                                 prev_mm = mm;
1793
1794                                 cond_resched();
1795
1796                                 swcount = *swap_map;
1797                                 if (!swap_count(swcount)) /* any usage ? */
1798                                         ;
1799                                 else if (mm == &init_mm)
1800                                         set_start_mm = 1;
1801                                 else
1802                                         retval = unuse_mm(mm, entry, page);
1803
1804                                 if (set_start_mm && *swap_map < swcount) {
1805                                         mmput(new_start_mm);
1806                                         mmget(mm);
1807                                         new_start_mm = mm;
1808                                         set_start_mm = 0;
1809                                 }
1810                                 spin_lock(&mmlist_lock);
1811                         }
1812                         spin_unlock(&mmlist_lock);
1813                         mmput(prev_mm);
1814                         mmput(start_mm);
1815                         start_mm = new_start_mm;
1816                 }
1817                 if (retval) {
1818                         unlock_page(page);
1819                         put_page(page);
1820                         break;
1821                 }
1822
1823                 /*
1824                  * If a reference remains (rare), we would like to leave
1825                  * the page in the swap cache; but try_to_unmap could
1826                  * then re-duplicate the entry once we drop page lock,
1827                  * so we might loop indefinitely; also, that page could
1828                  * not be swapped out to other storage meanwhile.  So:
1829                  * delete from cache even if there's another reference,
1830                  * after ensuring that the data has been saved to disk -
1831                  * since if the reference remains (rarer), it will be
1832                  * read from disk into another page.  Splitting into two
1833                  * pages would be incorrect if swap supported "shared
1834                  * private" pages, but they are handled by tmpfs files.
1835                  *
1836                  * Given how unuse_vma() targets one particular offset
1837                  * in an anon_vma, once the anon_vma has been determined,
1838                  * this splitting happens to be just what is needed to
1839                  * handle where KSM pages have been swapped out: re-reading
1840                  * is unnecessarily slow, but we can fix that later on.
1841                  */
1842                 if (swap_count(*swap_map) &&
1843                      PageDirty(page) && PageSwapCache(page)) {
1844                         struct writeback_control wbc = {
1845                                 .sync_mode = WB_SYNC_NONE,
1846                         };
1847
1848                         swap_writepage(page, &wbc);
1849                         lock_page(page);
1850                         wait_on_page_writeback(page);
1851                 }
1852
1853                 /*
1854                  * It is conceivable that a racing task removed this page from
1855                  * swap cache just before we acquired the page lock at the top,
1856                  * or while we dropped it in unuse_mm().  The page might even
1857                  * be back in swap cache on another swap area: that we must not
1858                  * delete, since it may not have been written out to swap yet.
1859                  */
1860                 if (PageSwapCache(page) &&
1861                     likely(page_private(page) == entry.val))
1862                         delete_from_swap_cache(page);
1863
1864                 /*
1865                  * So we could skip searching mms once swap count went
1866                  * to 1, we did not mark any present ptes as dirty: must
1867                  * mark page dirty so shrink_page_list will preserve it.
1868                  */
1869                 SetPageDirty(page);
1870                 unlock_page(page);
1871                 put_page(page);
1872
1873                 /*
1874                  * Make sure that we aren't completely killing
1875                  * interactive performance.
1876                  */
1877                 cond_resched();
1878                 if (frontswap && pages_to_unuse > 0) {
1879                         if (!--pages_to_unuse)
1880                                 break;
1881                 }
1882         }
1883
1884         mmput(start_mm);
1885         return retval;
1886 }
1887
1888 /*
1889  * After a successful try_to_unuse, if no swap is now in use, we know
1890  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1891  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1892  * added to the mmlist just after page_duplicate - before would be racy.
1893  */
1894 static void drain_mmlist(void)
1895 {
1896         struct list_head *p, *next;
1897         unsigned int type;
1898
1899         for (type = 0; type < nr_swapfiles; type++)
1900                 if (swap_info[type]->inuse_pages)
1901                         return;
1902         spin_lock(&mmlist_lock);
1903         list_for_each_safe(p, next, &init_mm.mmlist)
1904                 list_del_init(p);
1905         spin_unlock(&mmlist_lock);
1906 }
1907
1908 /*
1909  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1910  * corresponds to page offset for the specified swap entry.
1911  * Note that the type of this function is sector_t, but it returns page offset
1912  * into the bdev, not sector offset.
1913  */
1914 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1915 {
1916         struct swap_info_struct *sis;
1917         struct swap_extent *start_se;
1918         struct swap_extent *se;
1919         pgoff_t offset;
1920
1921         sis = swap_info[swp_type(entry)];
1922         *bdev = sis->bdev;
1923
1924         offset = swp_offset(entry);
1925         start_se = sis->curr_swap_extent;
1926         se = start_se;
1927
1928         for ( ; ; ) {
1929                 if (se->start_page <= offset &&
1930                                 offset < (se->start_page + se->nr_pages)) {
1931                         return se->start_block + (offset - se->start_page);
1932                 }
1933                 se = list_next_entry(se, list);
1934                 sis->curr_swap_extent = se;
1935                 BUG_ON(se == start_se);         /* It *must* be present */
1936         }
1937 }
1938
1939 /*
1940  * Returns the page offset into bdev for the specified page's swap entry.
1941  */
1942 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1943 {
1944         swp_entry_t entry;
1945         entry.val = page_private(page);
1946         return map_swap_entry(entry, bdev);
1947 }
1948
1949 /*
1950  * Free all of a swapdev's extent information
1951  */
1952 static void destroy_swap_extents(struct swap_info_struct *sis)
1953 {
1954         while (!list_empty(&sis->first_swap_extent.list)) {
1955                 struct swap_extent *se;
1956
1957                 se = list_first_entry(&sis->first_swap_extent.list,
1958                                 struct swap_extent, list);
1959                 list_del(&se->list);
1960                 kfree(se);
1961         }
1962
1963         if (sis->flags & SWP_FILE) {
1964                 struct file *swap_file = sis->swap_file;
1965                 struct address_space *mapping = swap_file->f_mapping;
1966
1967                 sis->flags &= ~SWP_FILE;
1968                 mapping->a_ops->swap_deactivate(swap_file);
1969         }
1970 }
1971
1972 /*
1973  * Add a block range (and the corresponding page range) into this swapdev's
1974  * extent list.  The extent list is kept sorted in page order.
1975  *
1976  * This function rather assumes that it is called in ascending page order.
1977  */
1978 int
1979 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1980                 unsigned long nr_pages, sector_t start_block)
1981 {
1982         struct swap_extent *se;
1983         struct swap_extent *new_se;
1984         struct list_head *lh;
1985
1986         if (start_page == 0) {
1987                 se = &sis->first_swap_extent;
1988                 sis->curr_swap_extent = se;
1989                 se->start_page = 0;
1990                 se->nr_pages = nr_pages;
1991                 se->start_block = start_block;
1992                 return 1;
1993         } else {
1994                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1995                 se = list_entry(lh, struct swap_extent, list);
1996                 BUG_ON(se->start_page + se->nr_pages != start_page);
1997                 if (se->start_block + se->nr_pages == start_block) {
1998                         /* Merge it */
1999                         se->nr_pages += nr_pages;
2000                         return 0;
2001                 }
2002         }
2003
2004         /*
2005          * No merge.  Insert a new extent, preserving ordering.
2006          */
2007         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2008         if (new_se == NULL)
2009                 return -ENOMEM;
2010         new_se->start_page = start_page;
2011         new_se->nr_pages = nr_pages;
2012         new_se->start_block = start_block;
2013
2014         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2015         return 1;
2016 }
2017
2018 /*
2019  * A `swap extent' is a simple thing which maps a contiguous range of pages
2020  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2021  * is built at swapon time and is then used at swap_writepage/swap_readpage
2022  * time for locating where on disk a page belongs.
2023  *
2024  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2025  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2026  * swap files identically.
2027  *
2028  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2029  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2030  * swapfiles are handled *identically* after swapon time.
2031  *
2032  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2033  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2034  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2035  * requirements, they are simply tossed out - we will never use those blocks
2036  * for swapping.
2037  *
2038  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2039  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2040  * which will scribble on the fs.
2041  *
2042  * The amount of disk space which a single swap extent represents varies.
2043  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2044  * extents in the list.  To avoid much list walking, we cache the previous
2045  * search location in `curr_swap_extent', and start new searches from there.
2046  * This is extremely effective.  The average number of iterations in
2047  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2048  */
2049 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2050 {
2051         struct file *swap_file = sis->swap_file;
2052         struct address_space *mapping = swap_file->f_mapping;
2053         struct inode *inode = mapping->host;
2054         int ret;
2055
2056         if (S_ISBLK(inode->i_mode)) {
2057                 ret = add_swap_extent(sis, 0, sis->max, 0);
2058                 *span = sis->pages;
2059                 return ret;
2060         }
2061
2062         if (mapping->a_ops->swap_activate) {
2063                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2064                 if (!ret) {
2065                         sis->flags |= SWP_FILE;
2066                         ret = add_swap_extent(sis, 0, sis->max, 0);
2067                         *span = sis->pages;
2068                 }
2069                 return ret;
2070         }
2071
2072         return generic_swapfile_activate(sis, swap_file, span);
2073 }
2074
2075 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2076                                 unsigned char *swap_map,
2077                                 struct swap_cluster_info *cluster_info)
2078 {
2079         if (prio >= 0)
2080                 p->prio = prio;
2081         else
2082                 p->prio = --least_priority;
2083         /*
2084          * the plist prio is negated because plist ordering is
2085          * low-to-high, while swap ordering is high-to-low
2086          */
2087         p->list.prio = -p->prio;
2088         p->avail_list.prio = -p->prio;
2089         p->swap_map = swap_map;
2090         p->cluster_info = cluster_info;
2091         p->flags |= SWP_WRITEOK;
2092         atomic_long_add(p->pages, &nr_swap_pages);
2093         total_swap_pages += p->pages;
2094
2095         assert_spin_locked(&swap_lock);
2096         /*
2097          * both lists are plists, and thus priority ordered.
2098          * swap_active_head needs to be priority ordered for swapoff(),
2099          * which on removal of any swap_info_struct with an auto-assigned
2100          * (i.e. negative) priority increments the auto-assigned priority
2101          * of any lower-priority swap_info_structs.
2102          * swap_avail_head needs to be priority ordered for get_swap_page(),
2103          * which allocates swap pages from the highest available priority
2104          * swap_info_struct.
2105          */
2106         plist_add(&p->list, &swap_active_head);
2107         spin_lock(&swap_avail_lock);
2108         plist_add(&p->avail_list, &swap_avail_head);
2109         spin_unlock(&swap_avail_lock);
2110 }
2111
2112 static void enable_swap_info(struct swap_info_struct *p, int prio,
2113                                 unsigned char *swap_map,
2114                                 struct swap_cluster_info *cluster_info,
2115                                 unsigned long *frontswap_map)
2116 {
2117         frontswap_init(p->type, frontswap_map);
2118         spin_lock(&swap_lock);
2119         spin_lock(&p->lock);
2120          _enable_swap_info(p, prio, swap_map, cluster_info);
2121         spin_unlock(&p->lock);
2122         spin_unlock(&swap_lock);
2123 }
2124
2125 static void reinsert_swap_info(struct swap_info_struct *p)
2126 {
2127         spin_lock(&swap_lock);
2128         spin_lock(&p->lock);
2129         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2130         spin_unlock(&p->lock);
2131         spin_unlock(&swap_lock);
2132 }
2133
2134 bool has_usable_swap(void)
2135 {
2136         bool ret = true;
2137
2138         spin_lock(&swap_lock);
2139         if (plist_head_empty(&swap_active_head))
2140                 ret = false;
2141         spin_unlock(&swap_lock);
2142         return ret;
2143 }
2144
2145 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2146 {
2147         struct swap_info_struct *p = NULL;
2148         unsigned char *swap_map;
2149         struct swap_cluster_info *cluster_info;
2150         unsigned long *frontswap_map;
2151         struct file *swap_file, *victim;
2152         struct address_space *mapping;
2153         struct inode *inode;
2154         struct filename *pathname;
2155         int err, found = 0;
2156         unsigned int old_block_size;
2157
2158         if (!capable(CAP_SYS_ADMIN))
2159                 return -EPERM;
2160
2161         BUG_ON(!current->mm);
2162
2163         pathname = getname(specialfile);
2164         if (IS_ERR(pathname))
2165                 return PTR_ERR(pathname);
2166
2167         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2168         err = PTR_ERR(victim);
2169         if (IS_ERR(victim))
2170                 goto out;
2171
2172         mapping = victim->f_mapping;
2173         spin_lock(&swap_lock);
2174         plist_for_each_entry(p, &swap_active_head, list) {
2175                 if (p->flags & SWP_WRITEOK) {
2176                         if (p->swap_file->f_mapping == mapping) {
2177                                 found = 1;
2178                                 break;
2179                         }
2180                 }
2181         }
2182         if (!found) {
2183                 err = -EINVAL;
2184                 spin_unlock(&swap_lock);
2185                 goto out_dput;
2186         }
2187         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2188                 vm_unacct_memory(p->pages);
2189         else {
2190                 err = -ENOMEM;
2191                 spin_unlock(&swap_lock);
2192                 goto out_dput;
2193         }
2194         spin_lock(&swap_avail_lock);
2195         plist_del(&p->avail_list, &swap_avail_head);
2196         spin_unlock(&swap_avail_lock);
2197         spin_lock(&p->lock);
2198         if (p->prio < 0) {
2199                 struct swap_info_struct *si = p;
2200
2201                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2202                         si->prio++;
2203                         si->list.prio--;
2204                         si->avail_list.prio--;
2205                 }
2206                 least_priority++;
2207         }
2208         plist_del(&p->list, &swap_active_head);
2209         atomic_long_sub(p->pages, &nr_swap_pages);
2210         total_swap_pages -= p->pages;
2211         p->flags &= ~SWP_WRITEOK;
2212         spin_unlock(&p->lock);
2213         spin_unlock(&swap_lock);
2214
2215         disable_swap_slots_cache_lock();
2216
2217         set_current_oom_origin();
2218         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2219         clear_current_oom_origin();
2220
2221         if (err) {
2222                 /* re-insert swap space back into swap_list */
2223                 reinsert_swap_info(p);
2224                 reenable_swap_slots_cache_unlock();
2225                 goto out_dput;
2226         }
2227
2228         reenable_swap_slots_cache_unlock();
2229
2230         flush_work(&p->discard_work);
2231
2232         destroy_swap_extents(p);
2233         if (p->flags & SWP_CONTINUED)
2234                 free_swap_count_continuations(p);
2235
2236         mutex_lock(&swapon_mutex);
2237         spin_lock(&swap_lock);
2238         spin_lock(&p->lock);
2239         drain_mmlist();
2240
2241         /* wait for anyone still in scan_swap_map */
2242         p->highest_bit = 0;             /* cuts scans short */
2243         while (p->flags >= SWP_SCANNING) {
2244                 spin_unlock(&p->lock);
2245                 spin_unlock(&swap_lock);
2246                 schedule_timeout_uninterruptible(1);
2247                 spin_lock(&swap_lock);
2248                 spin_lock(&p->lock);
2249         }
2250
2251         swap_file = p->swap_file;
2252         old_block_size = p->old_block_size;
2253         p->swap_file = NULL;
2254         p->max = 0;
2255         swap_map = p->swap_map;
2256         p->swap_map = NULL;
2257         cluster_info = p->cluster_info;
2258         p->cluster_info = NULL;
2259         frontswap_map = frontswap_map_get(p);
2260         spin_unlock(&p->lock);
2261         spin_unlock(&swap_lock);
2262         frontswap_invalidate_area(p->type);
2263         frontswap_map_set(p, NULL);
2264         mutex_unlock(&swapon_mutex);
2265         free_percpu(p->percpu_cluster);
2266         p->percpu_cluster = NULL;
2267         vfree(swap_map);
2268         vfree(cluster_info);
2269         vfree(frontswap_map);
2270         /* Destroy swap account information */
2271         swap_cgroup_swapoff(p->type);
2272         exit_swap_address_space(p->type);
2273
2274         inode = mapping->host;
2275         if (S_ISBLK(inode->i_mode)) {
2276                 struct block_device *bdev = I_BDEV(inode);
2277                 set_blocksize(bdev, old_block_size);
2278                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2279         } else {
2280                 inode_lock(inode);
2281                 inode->i_flags &= ~S_SWAPFILE;
2282                 inode_unlock(inode);
2283         }
2284         filp_close(swap_file, NULL);
2285
2286         /*
2287          * Clear the SWP_USED flag after all resources are freed so that swapon
2288          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2289          * not hold p->lock after we cleared its SWP_WRITEOK.
2290          */
2291         spin_lock(&swap_lock);
2292         p->flags = 0;
2293         spin_unlock(&swap_lock);
2294
2295         err = 0;
2296         atomic_inc(&proc_poll_event);
2297         wake_up_interruptible(&proc_poll_wait);
2298
2299 out_dput:
2300         filp_close(victim, NULL);
2301 out:
2302         putname(pathname);
2303         return err;
2304 }
2305
2306 #ifdef CONFIG_PROC_FS
2307 static unsigned swaps_poll(struct file *file, poll_table *wait)
2308 {
2309         struct seq_file *seq = file->private_data;
2310
2311         poll_wait(file, &proc_poll_wait, wait);
2312
2313         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2314                 seq->poll_event = atomic_read(&proc_poll_event);
2315                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2316         }
2317
2318         return POLLIN | POLLRDNORM;
2319 }
2320
2321 /* iterator */
2322 static void *swap_start(struct seq_file *swap, loff_t *pos)
2323 {
2324         struct swap_info_struct *si;
2325         int type;
2326         loff_t l = *pos;
2327
2328         mutex_lock(&swapon_mutex);
2329
2330         if (!l)
2331                 return SEQ_START_TOKEN;
2332
2333         for (type = 0; type < nr_swapfiles; type++) {
2334                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2335                 si = swap_info[type];
2336                 if (!(si->flags & SWP_USED) || !si->swap_map)
2337                         continue;
2338                 if (!--l)
2339                         return si;
2340         }
2341
2342         return NULL;
2343 }
2344
2345 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2346 {
2347         struct swap_info_struct *si = v;
2348         int type;
2349
2350         if (v == SEQ_START_TOKEN)
2351                 type = 0;
2352         else
2353                 type = si->type + 1;
2354
2355         for (; type < nr_swapfiles; type++) {
2356                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2357                 si = swap_info[type];
2358                 if (!(si->flags & SWP_USED) || !si->swap_map)
2359                         continue;
2360                 ++*pos;
2361                 return si;
2362         }
2363
2364         return NULL;
2365 }
2366
2367 static void swap_stop(struct seq_file *swap, void *v)
2368 {
2369         mutex_unlock(&swapon_mutex);
2370 }
2371
2372 static int swap_show(struct seq_file *swap, void *v)
2373 {
2374         struct swap_info_struct *si = v;
2375         struct file *file;
2376         int len;
2377
2378         if (si == SEQ_START_TOKEN) {
2379                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2380                 return 0;
2381         }
2382
2383         file = si->swap_file;
2384         len = seq_file_path(swap, file, " \t\n\\");
2385         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2386                         len < 40 ? 40 - len : 1, " ",
2387                         S_ISBLK(file_inode(file)->i_mode) ?
2388                                 "partition" : "file\t",
2389                         si->pages << (PAGE_SHIFT - 10),
2390                         si->inuse_pages << (PAGE_SHIFT - 10),
2391                         si->prio);
2392         return 0;
2393 }
2394
2395 static const struct seq_operations swaps_op = {
2396         .start =        swap_start,
2397         .next =         swap_next,
2398         .stop =         swap_stop,
2399         .show =         swap_show
2400 };
2401
2402 static int swaps_open(struct inode *inode, struct file *file)
2403 {
2404         struct seq_file *seq;
2405         int ret;
2406
2407         ret = seq_open(file, &swaps_op);
2408         if (ret)
2409                 return ret;
2410
2411         seq = file->private_data;
2412         seq->poll_event = atomic_read(&proc_poll_event);
2413         return 0;
2414 }
2415
2416 static const struct file_operations proc_swaps_operations = {
2417         .open           = swaps_open,
2418         .read           = seq_read,
2419         .llseek         = seq_lseek,
2420         .release        = seq_release,
2421         .poll           = swaps_poll,
2422 };
2423
2424 static int __init procswaps_init(void)
2425 {
2426         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2427         return 0;
2428 }
2429 __initcall(procswaps_init);
2430 #endif /* CONFIG_PROC_FS */
2431
2432 #ifdef MAX_SWAPFILES_CHECK
2433 static int __init max_swapfiles_check(void)
2434 {
2435         MAX_SWAPFILES_CHECK();
2436         return 0;
2437 }
2438 late_initcall(max_swapfiles_check);
2439 #endif
2440
2441 static struct swap_info_struct *alloc_swap_info(void)
2442 {
2443         struct swap_info_struct *p;
2444         unsigned int type;
2445
2446         p = kzalloc(sizeof(*p), GFP_KERNEL);
2447         if (!p)
2448                 return ERR_PTR(-ENOMEM);
2449
2450         spin_lock(&swap_lock);
2451         for (type = 0; type < nr_swapfiles; type++) {
2452                 if (!(swap_info[type]->flags & SWP_USED))
2453                         break;
2454         }
2455         if (type >= MAX_SWAPFILES) {
2456                 spin_unlock(&swap_lock);
2457                 kfree(p);
2458                 return ERR_PTR(-EPERM);
2459         }
2460         if (type >= nr_swapfiles) {
2461                 p->type = type;
2462                 swap_info[type] = p;
2463                 /*
2464                  * Write swap_info[type] before nr_swapfiles, in case a
2465                  * racing procfs swap_start() or swap_next() is reading them.
2466                  * (We never shrink nr_swapfiles, we never free this entry.)
2467                  */
2468                 smp_wmb();
2469                 nr_swapfiles++;
2470         } else {
2471                 kfree(p);
2472                 p = swap_info[type];
2473                 /*
2474                  * Do not memset this entry: a racing procfs swap_next()
2475                  * would be relying on p->type to remain valid.
2476                  */
2477         }
2478         INIT_LIST_HEAD(&p->first_swap_extent.list);
2479         plist_node_init(&p->list, 0);
2480         plist_node_init(&p->avail_list, 0);
2481         p->flags = SWP_USED;
2482         spin_unlock(&swap_lock);
2483         spin_lock_init(&p->lock);
2484
2485         return p;
2486 }
2487
2488 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2489 {
2490         int error;
2491
2492         if (S_ISBLK(inode->i_mode)) {
2493                 p->bdev = bdgrab(I_BDEV(inode));
2494                 error = blkdev_get(p->bdev,
2495                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2496                 if (error < 0) {
2497                         p->bdev = NULL;
2498                         return error;
2499                 }
2500                 p->old_block_size = block_size(p->bdev);
2501                 error = set_blocksize(p->bdev, PAGE_SIZE);
2502                 if (error < 0)
2503                         return error;
2504                 p->flags |= SWP_BLKDEV;
2505         } else if (S_ISREG(inode->i_mode)) {
2506                 p->bdev = inode->i_sb->s_bdev;
2507                 inode_lock(inode);
2508                 if (IS_SWAPFILE(inode))
2509                         return -EBUSY;
2510         } else
2511                 return -EINVAL;
2512
2513         return 0;
2514 }
2515
2516 static unsigned long read_swap_header(struct swap_info_struct *p,
2517                                         union swap_header *swap_header,
2518                                         struct inode *inode)
2519 {
2520         int i;
2521         unsigned long maxpages;
2522         unsigned long swapfilepages;
2523         unsigned long last_page;
2524
2525         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2526                 pr_err("Unable to find swap-space signature\n");
2527                 return 0;
2528         }
2529
2530         /* swap partition endianess hack... */
2531         if (swab32(swap_header->info.version) == 1) {
2532                 swab32s(&swap_header->info.version);
2533                 swab32s(&swap_header->info.last_page);
2534                 swab32s(&swap_header->info.nr_badpages);
2535                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2536                         return 0;
2537                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2538                         swab32s(&swap_header->info.badpages[i]);
2539         }
2540         /* Check the swap header's sub-version */
2541         if (swap_header->info.version != 1) {
2542                 pr_warn("Unable to handle swap header version %d\n",
2543                         swap_header->info.version);
2544                 return 0;
2545         }
2546
2547         p->lowest_bit  = 1;
2548         p->cluster_next = 1;
2549         p->cluster_nr = 0;
2550
2551         /*
2552          * Find out how many pages are allowed for a single swap
2553          * device. There are two limiting factors: 1) the number
2554          * of bits for the swap offset in the swp_entry_t type, and
2555          * 2) the number of bits in the swap pte as defined by the
2556          * different architectures. In order to find the
2557          * largest possible bit mask, a swap entry with swap type 0
2558          * and swap offset ~0UL is created, encoded to a swap pte,
2559          * decoded to a swp_entry_t again, and finally the swap
2560          * offset is extracted. This will mask all the bits from
2561          * the initial ~0UL mask that can't be encoded in either
2562          * the swp_entry_t or the architecture definition of a
2563          * swap pte.
2564          */
2565         maxpages = swp_offset(pte_to_swp_entry(
2566                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2567         last_page = swap_header->info.last_page;
2568         if (last_page > maxpages) {
2569                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2570                         maxpages << (PAGE_SHIFT - 10),
2571                         last_page << (PAGE_SHIFT - 10));
2572         }
2573         if (maxpages > last_page) {
2574                 maxpages = last_page + 1;
2575                 /* p->max is an unsigned int: don't overflow it */
2576                 if ((unsigned int)maxpages == 0)
2577                         maxpages = UINT_MAX;
2578         }
2579         p->highest_bit = maxpages - 1;
2580
2581         if (!maxpages)
2582                 return 0;
2583         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2584         if (swapfilepages && maxpages > swapfilepages) {
2585                 pr_warn("Swap area shorter than signature indicates\n");
2586                 return 0;
2587         }
2588         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2589                 return 0;
2590         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2591                 return 0;
2592
2593         return maxpages;
2594 }
2595
2596 #define SWAP_CLUSTER_INFO_COLS                                          \
2597         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2598 #define SWAP_CLUSTER_SPACE_COLS                                         \
2599         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2600 #define SWAP_CLUSTER_COLS                                               \
2601         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2602
2603 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2604                                         union swap_header *swap_header,
2605                                         unsigned char *swap_map,
2606                                         struct swap_cluster_info *cluster_info,
2607                                         unsigned long maxpages,
2608                                         sector_t *span)
2609 {
2610         unsigned int j, k;
2611         unsigned int nr_good_pages;
2612         int nr_extents;
2613         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2614         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2615         unsigned long i, idx;
2616
2617         nr_good_pages = maxpages - 1;   /* omit header page */
2618
2619         cluster_list_init(&p->free_clusters);
2620         cluster_list_init(&p->discard_clusters);
2621
2622         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2623                 unsigned int page_nr = swap_header->info.badpages[i];
2624                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2625                         return -EINVAL;
2626                 if (page_nr < maxpages) {
2627                         swap_map[page_nr] = SWAP_MAP_BAD;
2628                         nr_good_pages--;
2629                         /*
2630                          * Haven't marked the cluster free yet, no list
2631                          * operation involved
2632                          */
2633                         inc_cluster_info_page(p, cluster_info, page_nr);
2634                 }
2635         }
2636
2637         /* Haven't marked the cluster free yet, no list operation involved */
2638         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2639                 inc_cluster_info_page(p, cluster_info, i);
2640
2641         if (nr_good_pages) {
2642                 swap_map[0] = SWAP_MAP_BAD;
2643                 /*
2644                  * Not mark the cluster free yet, no list
2645                  * operation involved
2646                  */
2647                 inc_cluster_info_page(p, cluster_info, 0);
2648                 p->max = maxpages;
2649                 p->pages = nr_good_pages;
2650                 nr_extents = setup_swap_extents(p, span);
2651                 if (nr_extents < 0)
2652                         return nr_extents;
2653                 nr_good_pages = p->pages;
2654         }
2655         if (!nr_good_pages) {
2656                 pr_warn("Empty swap-file\n");
2657                 return -EINVAL;
2658         }
2659
2660         if (!cluster_info)
2661                 return nr_extents;
2662
2663
2664         /*
2665          * Reduce false cache line sharing between cluster_info and
2666          * sharing same address space.
2667          */
2668         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2669                 j = (k + col) % SWAP_CLUSTER_COLS;
2670                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2671                         idx = i * SWAP_CLUSTER_COLS + j;
2672                         if (idx >= nr_clusters)
2673                                 continue;
2674                         if (cluster_count(&cluster_info[idx]))
2675                                 continue;
2676                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2677                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2678                                               idx);
2679                 }
2680         }
2681         return nr_extents;
2682 }
2683
2684 /*
2685  * Helper to sys_swapon determining if a given swap
2686  * backing device queue supports DISCARD operations.
2687  */
2688 static bool swap_discardable(struct swap_info_struct *si)
2689 {
2690         struct request_queue *q = bdev_get_queue(si->bdev);
2691
2692         if (!q || !blk_queue_discard(q))
2693                 return false;
2694
2695         return true;
2696 }
2697
2698 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2699 {
2700         struct swap_info_struct *p;
2701         struct filename *name;
2702         struct file *swap_file = NULL;
2703         struct address_space *mapping;
2704         int prio;
2705         int error;
2706         union swap_header *swap_header;
2707         int nr_extents;
2708         sector_t span;
2709         unsigned long maxpages;
2710         unsigned char *swap_map = NULL;
2711         struct swap_cluster_info *cluster_info = NULL;
2712         unsigned long *frontswap_map = NULL;
2713         struct page *page = NULL;
2714         struct inode *inode = NULL;
2715
2716         if (swap_flags & ~SWAP_FLAGS_VALID)
2717                 return -EINVAL;
2718
2719         if (!capable(CAP_SYS_ADMIN))
2720                 return -EPERM;
2721
2722         p = alloc_swap_info();
2723         if (IS_ERR(p))
2724                 return PTR_ERR(p);
2725
2726         INIT_WORK(&p->discard_work, swap_discard_work);
2727
2728         name = getname(specialfile);
2729         if (IS_ERR(name)) {
2730                 error = PTR_ERR(name);
2731                 name = NULL;
2732                 goto bad_swap;
2733         }
2734         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2735         if (IS_ERR(swap_file)) {
2736                 error = PTR_ERR(swap_file);
2737                 swap_file = NULL;
2738                 goto bad_swap;
2739         }
2740
2741         p->swap_file = swap_file;
2742         mapping = swap_file->f_mapping;
2743         inode = mapping->host;
2744
2745         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2746         error = claim_swapfile(p, inode);
2747         if (unlikely(error))
2748                 goto bad_swap;
2749
2750         /*
2751          * Read the swap header.
2752          */
2753         if (!mapping->a_ops->readpage) {
2754                 error = -EINVAL;
2755                 goto bad_swap;
2756         }
2757         page = read_mapping_page(mapping, 0, swap_file);
2758         if (IS_ERR(page)) {
2759                 error = PTR_ERR(page);
2760                 goto bad_swap;
2761         }
2762         swap_header = kmap(page);
2763
2764         maxpages = read_swap_header(p, swap_header, inode);
2765         if (unlikely(!maxpages)) {
2766                 error = -EINVAL;
2767                 goto bad_swap;
2768         }
2769
2770         /* OK, set up the swap map and apply the bad block list */
2771         swap_map = vzalloc(maxpages);
2772         if (!swap_map) {
2773                 error = -ENOMEM;
2774                 goto bad_swap;
2775         }
2776
2777         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2778                 p->flags |= SWP_STABLE_WRITES;
2779
2780         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2781                 int cpu;
2782                 unsigned long ci, nr_cluster;
2783
2784                 p->flags |= SWP_SOLIDSTATE;
2785                 /*
2786                  * select a random position to start with to help wear leveling
2787                  * SSD
2788                  */
2789                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2790                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2791
2792                 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2793                 if (!cluster_info) {
2794                         error = -ENOMEM;
2795                         goto bad_swap;
2796                 }
2797
2798                 for (ci = 0; ci < nr_cluster; ci++)
2799                         spin_lock_init(&((cluster_info + ci)->lock));
2800
2801                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2802                 if (!p->percpu_cluster) {
2803                         error = -ENOMEM;
2804                         goto bad_swap;
2805                 }
2806                 for_each_possible_cpu(cpu) {
2807                         struct percpu_cluster *cluster;
2808                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2809                         cluster_set_null(&cluster->index);
2810                 }
2811         }
2812
2813         error = swap_cgroup_swapon(p->type, maxpages);
2814         if (error)
2815                 goto bad_swap;
2816
2817         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2818                 cluster_info, maxpages, &span);
2819         if (unlikely(nr_extents < 0)) {
2820                 error = nr_extents;
2821                 goto bad_swap;
2822         }
2823         /* frontswap enabled? set up bit-per-page map for frontswap */
2824         if (IS_ENABLED(CONFIG_FRONTSWAP))
2825                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2826
2827         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2828                 /*
2829                  * When discard is enabled for swap with no particular
2830                  * policy flagged, we set all swap discard flags here in
2831                  * order to sustain backward compatibility with older
2832                  * swapon(8) releases.
2833                  */
2834                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2835                              SWP_PAGE_DISCARD);
2836
2837                 /*
2838                  * By flagging sys_swapon, a sysadmin can tell us to
2839                  * either do single-time area discards only, or to just
2840                  * perform discards for released swap page-clusters.
2841                  * Now it's time to adjust the p->flags accordingly.
2842                  */
2843                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2844                         p->flags &= ~SWP_PAGE_DISCARD;
2845                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2846                         p->flags &= ~SWP_AREA_DISCARD;
2847
2848                 /* issue a swapon-time discard if it's still required */
2849                 if (p->flags & SWP_AREA_DISCARD) {
2850                         int err = discard_swap(p);
2851                         if (unlikely(err))
2852                                 pr_err("swapon: discard_swap(%p): %d\n",
2853                                         p, err);
2854                 }
2855         }
2856
2857         error = init_swap_address_space(p->type, maxpages);
2858         if (error)
2859                 goto bad_swap;
2860
2861         mutex_lock(&swapon_mutex);
2862         prio = -1;
2863         if (swap_flags & SWAP_FLAG_PREFER)
2864                 prio =
2865                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2866         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2867
2868         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2869                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2870                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2871                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2872                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2873                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2874                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2875                 (frontswap_map) ? "FS" : "");
2876
2877         mutex_unlock(&swapon_mutex);
2878         atomic_inc(&proc_poll_event);
2879         wake_up_interruptible(&proc_poll_wait);
2880
2881         if (S_ISREG(inode->i_mode))
2882                 inode->i_flags |= S_SWAPFILE;
2883         error = 0;
2884         goto out;
2885 bad_swap:
2886         free_percpu(p->percpu_cluster);
2887         p->percpu_cluster = NULL;
2888         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2889                 set_blocksize(p->bdev, p->old_block_size);
2890                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2891         }
2892         destroy_swap_extents(p);
2893         swap_cgroup_swapoff(p->type);
2894         spin_lock(&swap_lock);
2895         p->swap_file = NULL;
2896         p->flags = 0;
2897         spin_unlock(&swap_lock);
2898         vfree(swap_map);
2899         vfree(cluster_info);
2900         if (swap_file) {
2901                 if (inode && S_ISREG(inode->i_mode)) {
2902                         inode_unlock(inode);
2903                         inode = NULL;
2904                 }
2905                 filp_close(swap_file, NULL);
2906         }
2907 out:
2908         if (page && !IS_ERR(page)) {
2909                 kunmap(page);
2910                 put_page(page);
2911         }
2912         if (name)
2913                 putname(name);
2914         if (inode && S_ISREG(inode->i_mode))
2915                 inode_unlock(inode);
2916         if (!error)
2917                 enable_swap_slots_cache();
2918         return error;
2919 }
2920
2921 void si_swapinfo(struct sysinfo *val)
2922 {
2923         unsigned int type;
2924         unsigned long nr_to_be_unused = 0;
2925
2926         spin_lock(&swap_lock);
2927         for (type = 0; type < nr_swapfiles; type++) {
2928                 struct swap_info_struct *si = swap_info[type];
2929
2930                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2931                         nr_to_be_unused += si->inuse_pages;
2932         }
2933         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2934         val->totalswap = total_swap_pages + nr_to_be_unused;
2935         spin_unlock(&swap_lock);
2936 }
2937
2938 /*
2939  * Verify that a swap entry is valid and increment its swap map count.
2940  *
2941  * Returns error code in following case.
2942  * - success -> 0
2943  * - swp_entry is invalid -> EINVAL
2944  * - swp_entry is migration entry -> EINVAL
2945  * - swap-cache reference is requested but there is already one. -> EEXIST
2946  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2947  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2948  */
2949 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2950 {
2951         struct swap_info_struct *p;
2952         struct swap_cluster_info *ci;
2953         unsigned long offset, type;
2954         unsigned char count;
2955         unsigned char has_cache;
2956         int err = -EINVAL;
2957
2958         if (non_swap_entry(entry))
2959                 goto out;
2960
2961         type = swp_type(entry);
2962         if (type >= nr_swapfiles)
2963                 goto bad_file;
2964         p = swap_info[type];
2965         offset = swp_offset(entry);
2966         if (unlikely(offset >= p->max))
2967                 goto out;
2968
2969         ci = lock_cluster_or_swap_info(p, offset);
2970
2971         count = p->swap_map[offset];
2972
2973         /*
2974          * swapin_readahead() doesn't check if a swap entry is valid, so the
2975          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2976          */
2977         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2978                 err = -ENOENT;
2979                 goto unlock_out;
2980         }
2981
2982         has_cache = count & SWAP_HAS_CACHE;
2983         count &= ~SWAP_HAS_CACHE;
2984         err = 0;
2985
2986         if (usage == SWAP_HAS_CACHE) {
2987
2988                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2989                 if (!has_cache && count)
2990                         has_cache = SWAP_HAS_CACHE;
2991                 else if (has_cache)             /* someone else added cache */
2992                         err = -EEXIST;
2993                 else                            /* no users remaining */
2994                         err = -ENOENT;
2995
2996         } else if (count || has_cache) {
2997
2998                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2999                         count += usage;
3000                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3001                         err = -EINVAL;
3002                 else if (swap_count_continued(p, offset, count))
3003                         count = COUNT_CONTINUED;
3004                 else
3005                         err = -ENOMEM;
3006         } else
3007                 err = -ENOENT;                  /* unused swap entry */
3008
3009         p->swap_map[offset] = count | has_cache;
3010
3011 unlock_out:
3012         unlock_cluster_or_swap_info(p, ci);
3013 out:
3014         return err;
3015
3016 bad_file:
3017         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3018         goto out;
3019 }
3020
3021 /*
3022  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3023  * (in which case its reference count is never incremented).
3024  */
3025 void swap_shmem_alloc(swp_entry_t entry)
3026 {
3027         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3028 }
3029
3030 /*
3031  * Increase reference count of swap entry by 1.
3032  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3033  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3034  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3035  * might occur if a page table entry has got corrupted.
3036  */
3037 int swap_duplicate(swp_entry_t entry)
3038 {
3039         int err = 0;
3040
3041         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3042                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3043         return err;
3044 }
3045
3046 /*
3047  * @entry: swap entry for which we allocate swap cache.
3048  *
3049  * Called when allocating swap cache for existing swap entry,
3050  * This can return error codes. Returns 0 at success.
3051  * -EBUSY means there is a swap cache.
3052  * Note: return code is different from swap_duplicate().
3053  */
3054 int swapcache_prepare(swp_entry_t entry)
3055 {
3056         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3057 }
3058
3059 struct swap_info_struct *page_swap_info(struct page *page)
3060 {
3061         swp_entry_t swap = { .val = page_private(page) };
3062         return swap_info[swp_type(swap)];
3063 }
3064
3065 /*
3066  * out-of-line __page_file_ methods to avoid include hell.
3067  */
3068 struct address_space *__page_file_mapping(struct page *page)
3069 {
3070         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3071         return page_swap_info(page)->swap_file->f_mapping;
3072 }
3073 EXPORT_SYMBOL_GPL(__page_file_mapping);
3074
3075 pgoff_t __page_file_index(struct page *page)
3076 {
3077         swp_entry_t swap = { .val = page_private(page) };
3078         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3079         return swp_offset(swap);
3080 }
3081 EXPORT_SYMBOL_GPL(__page_file_index);
3082
3083 /*
3084  * add_swap_count_continuation - called when a swap count is duplicated
3085  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3086  * page of the original vmalloc'ed swap_map, to hold the continuation count
3087  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3088  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3089  *
3090  * These continuation pages are seldom referenced: the common paths all work
3091  * on the original swap_map, only referring to a continuation page when the
3092  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3093  *
3094  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3095  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3096  * can be called after dropping locks.
3097  */
3098 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3099 {
3100         struct swap_info_struct *si;
3101         struct swap_cluster_info *ci;
3102         struct page *head;
3103         struct page *page;
3104         struct page *list_page;
3105         pgoff_t offset;
3106         unsigned char count;
3107
3108         /*
3109          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3110          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3111          */
3112         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3113
3114         si = swap_info_get(entry);
3115         if (!si) {
3116                 /*
3117                  * An acceptable race has occurred since the failing
3118                  * __swap_duplicate(): the swap entry has been freed,
3119                  * perhaps even the whole swap_map cleared for swapoff.
3120                  */
3121                 goto outer;
3122         }
3123
3124         offset = swp_offset(entry);
3125
3126         ci = lock_cluster(si, offset);
3127
3128         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3129
3130         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3131                 /*
3132                  * The higher the swap count, the more likely it is that tasks
3133                  * will race to add swap count continuation: we need to avoid
3134                  * over-provisioning.
3135                  */
3136                 goto out;
3137         }
3138
3139         if (!page) {
3140                 unlock_cluster(ci);
3141                 spin_unlock(&si->lock);
3142                 return -ENOMEM;
3143         }
3144
3145         /*
3146          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3147          * no architecture is using highmem pages for kernel page tables: so it
3148          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3149          */
3150         head = vmalloc_to_page(si->swap_map + offset);
3151         offset &= ~PAGE_MASK;
3152
3153         /*
3154          * Page allocation does not initialize the page's lru field,
3155          * but it does always reset its private field.
3156          */
3157         if (!page_private(head)) {
3158                 BUG_ON(count & COUNT_CONTINUED);
3159                 INIT_LIST_HEAD(&head->lru);
3160                 set_page_private(head, SWP_CONTINUED);
3161                 si->flags |= SWP_CONTINUED;
3162         }
3163
3164         list_for_each_entry(list_page, &head->lru, lru) {
3165                 unsigned char *map;
3166
3167                 /*
3168                  * If the previous map said no continuation, but we've found
3169                  * a continuation page, free our allocation and use this one.
3170                  */
3171                 if (!(count & COUNT_CONTINUED))
3172                         goto out;
3173
3174                 map = kmap_atomic(list_page) + offset;
3175                 count = *map;
3176                 kunmap_atomic(map);
3177
3178                 /*
3179                  * If this continuation count now has some space in it,
3180                  * free our allocation and use this one.
3181                  */
3182                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3183                         goto out;
3184         }
3185
3186         list_add_tail(&page->lru, &head->lru);
3187         page = NULL;                    /* now it's attached, don't free it */
3188 out:
3189         unlock_cluster(ci);
3190         spin_unlock(&si->lock);
3191 outer:
3192         if (page)
3193                 __free_page(page);
3194         return 0;
3195 }
3196
3197 /*
3198  * swap_count_continued - when the original swap_map count is incremented
3199  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3200  * into, carry if so, or else fail until a new continuation page is allocated;
3201  * when the original swap_map count is decremented from 0 with continuation,
3202  * borrow from the continuation and report whether it still holds more.
3203  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3204  * lock.
3205  */
3206 static bool swap_count_continued(struct swap_info_struct *si,
3207                                  pgoff_t offset, unsigned char count)
3208 {
3209         struct page *head;
3210         struct page *page;
3211         unsigned char *map;
3212
3213         head = vmalloc_to_page(si->swap_map + offset);
3214         if (page_private(head) != SWP_CONTINUED) {
3215                 BUG_ON(count & COUNT_CONTINUED);
3216                 return false;           /* need to add count continuation */
3217         }
3218
3219         offset &= ~PAGE_MASK;
3220         page = list_entry(head->lru.next, struct page, lru);
3221         map = kmap_atomic(page) + offset;
3222
3223         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3224                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3225
3226         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3227                 /*
3228                  * Think of how you add 1 to 999
3229                  */
3230                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3231                         kunmap_atomic(map);
3232                         page = list_entry(page->lru.next, struct page, lru);
3233                         BUG_ON(page == head);
3234                         map = kmap_atomic(page) + offset;
3235                 }
3236                 if (*map == SWAP_CONT_MAX) {
3237                         kunmap_atomic(map);
3238                         page = list_entry(page->lru.next, struct page, lru);
3239                         if (page == head)
3240                                 return false;   /* add count continuation */
3241                         map = kmap_atomic(page) + offset;
3242 init_map:               *map = 0;               /* we didn't zero the page */
3243                 }
3244                 *map += 1;
3245                 kunmap_atomic(map);
3246                 page = list_entry(page->lru.prev, struct page, lru);
3247                 while (page != head) {
3248                         map = kmap_atomic(page) + offset;
3249                         *map = COUNT_CONTINUED;
3250                         kunmap_atomic(map);
3251                         page = list_entry(page->lru.prev, struct page, lru);
3252                 }
3253                 return true;                    /* incremented */
3254
3255         } else {                                /* decrementing */
3256                 /*
3257                  * Think of how you subtract 1 from 1000
3258                  */
3259                 BUG_ON(count != COUNT_CONTINUED);
3260                 while (*map == COUNT_CONTINUED) {
3261                         kunmap_atomic(map);
3262                         page = list_entry(page->lru.next, struct page, lru);
3263                         BUG_ON(page == head);
3264                         map = kmap_atomic(page) + offset;
3265                 }
3266                 BUG_ON(*map == 0);
3267                 *map -= 1;
3268                 if (*map == 0)
3269                         count = 0;
3270                 kunmap_atomic(map);
3271                 page = list_entry(page->lru.prev, struct page, lru);
3272                 while (page != head) {
3273                         map = kmap_atomic(page) + offset;
3274                         *map = SWAP_CONT_MAX | count;
3275                         count = COUNT_CONTINUED;
3276                         kunmap_atomic(map);
3277                         page = list_entry(page->lru.prev, struct page, lru);
3278                 }
3279                 return count == COUNT_CONTINUED;
3280         }
3281 }
3282
3283 /*
3284  * free_swap_count_continuations - swapoff free all the continuation pages
3285  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3286  */
3287 static void free_swap_count_continuations(struct swap_info_struct *si)
3288 {
3289         pgoff_t offset;
3290
3291         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3292                 struct page *head;
3293                 head = vmalloc_to_page(si->swap_map + offset);
3294                 if (page_private(head)) {
3295                         struct page *page, *next;
3296
3297                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3298                                 list_del(&page->lru);
3299                                 __free_page(page);
3300                         }
3301                 }
3302         }
3303 }