Merge tag 'asm-generic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
105         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
106         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128         struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                         mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow huge sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Like add_to_page_cache_locked, but error if expected item has gone.
293  */
294 static int shmem_add_to_page_cache(struct page *page,
295                                    struct address_space *mapping,
296                                    pgoff_t index, void *expected)
297 {
298         int error;
299
300         VM_BUG_ON_PAGE(!PageLocked(page), page);
301         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303         page_cache_get(page);
304         page->mapping = mapping;
305         page->index = index;
306
307         spin_lock_irq(&mapping->tree_lock);
308         if (!expected)
309                 error = radix_tree_insert(&mapping->page_tree, index, page);
310         else
311                 error = shmem_radix_tree_replace(mapping, index, expected,
312                                                                  page);
313         if (!error) {
314                 mapping->nrpages++;
315                 __inc_zone_page_state(page, NR_FILE_PAGES);
316                 __inc_zone_page_state(page, NR_SHMEM);
317                 spin_unlock_irq(&mapping->tree_lock);
318         } else {
319                 page->mapping = NULL;
320                 spin_unlock_irq(&mapping->tree_lock);
321                 page_cache_release(page);
322         }
323         return error;
324 }
325
326 /*
327  * Like delete_from_page_cache, but substitutes swap for page.
328  */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331         struct address_space *mapping = page->mapping;
332         int error;
333
334         spin_lock_irq(&mapping->tree_lock);
335         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336         page->mapping = NULL;
337         mapping->nrpages--;
338         __dec_zone_page_state(page, NR_FILE_PAGES);
339         __dec_zone_page_state(page, NR_SHMEM);
340         spin_unlock_irq(&mapping->tree_lock);
341         page_cache_release(page);
342         BUG_ON(error);
343 }
344
345 /*
346  * Remove swap entry from radix tree, free the swap and its page cache.
347  */
348 static int shmem_free_swap(struct address_space *mapping,
349                            pgoff_t index, void *radswap)
350 {
351         void *old;
352
353         spin_lock_irq(&mapping->tree_lock);
354         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355         spin_unlock_irq(&mapping->tree_lock);
356         if (old != radswap)
357                 return -ENOENT;
358         free_swap_and_cache(radix_to_swp_entry(radswap));
359         return 0;
360 }
361
362 /*
363  * Determine (in bytes) how many of the shmem object's pages mapped by the
364  * given offsets are swapped out.
365  *
366  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367  * as long as the inode doesn't go away and racy results are not a problem.
368  */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370                                                 pgoff_t start, pgoff_t end)
371 {
372         struct radix_tree_iter iter;
373         void **slot;
374         struct page *page;
375         unsigned long swapped = 0;
376
377         rcu_read_lock();
378
379 restart:
380         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381                 if (iter.index >= end)
382                         break;
383
384                 page = radix_tree_deref_slot(slot);
385
386                 /*
387                  * This should only be possible to happen at index 0, so we
388                  * don't need to reset the counter, nor do we risk infinite
389                  * restarts.
390                  */
391                 if (radix_tree_deref_retry(page))
392                         goto restart;
393
394                 if (radix_tree_exceptional_entry(page))
395                         swapped++;
396
397                 if (need_resched()) {
398                         cond_resched_rcu();
399                         start = iter.index + 1;
400                         goto restart;
401                 }
402         }
403
404         rcu_read_unlock();
405
406         return swapped << PAGE_SHIFT;
407 }
408
409 /*
410  * Determine (in bytes) how many of the shmem object's pages mapped by the
411  * given vma is swapped out.
412  *
413  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414  * as long as the inode doesn't go away and racy results are not a problem.
415  */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418         struct inode *inode = file_inode(vma->vm_file);
419         struct shmem_inode_info *info = SHMEM_I(inode);
420         struct address_space *mapping = inode->i_mapping;
421         unsigned long swapped;
422
423         /* Be careful as we don't hold info->lock */
424         swapped = READ_ONCE(info->swapped);
425
426         /*
427          * The easier cases are when the shmem object has nothing in swap, or
428          * the vma maps it whole. Then we can simply use the stats that we
429          * already track.
430          */
431         if (!swapped)
432                 return 0;
433
434         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435                 return swapped << PAGE_SHIFT;
436
437         /* Here comes the more involved part */
438         return shmem_partial_swap_usage(mapping,
439                         linear_page_index(vma, vma->vm_start),
440                         linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445  */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448         struct pagevec pvec;
449         pgoff_t indices[PAGEVEC_SIZE];
450         pgoff_t index = 0;
451
452         pagevec_init(&pvec, 0);
453         /*
454          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455          */
456         while (!mapping_unevictable(mapping)) {
457                 /*
458                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460                  */
461                 pvec.nr = find_get_entries(mapping, index,
462                                            PAGEVEC_SIZE, pvec.pages, indices);
463                 if (!pvec.nr)
464                         break;
465                 index = indices[pvec.nr - 1] + 1;
466                 pagevec_remove_exceptionals(&pvec);
467                 check_move_unevictable_pages(pvec.pages, pvec.nr);
468                 pagevec_release(&pvec);
469                 cond_resched();
470         }
471 }
472
473 /*
474  * Remove range of pages and swap entries from radix tree, and free them.
475  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476  */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478                                                                  bool unfalloc)
479 {
480         struct address_space *mapping = inode->i_mapping;
481         struct shmem_inode_info *info = SHMEM_I(inode);
482         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486         struct pagevec pvec;
487         pgoff_t indices[PAGEVEC_SIZE];
488         long nr_swaps_freed = 0;
489         pgoff_t index;
490         int i;
491
492         if (lend == -1)
493                 end = -1;       /* unsigned, so actually very big */
494
495         pagevec_init(&pvec, 0);
496         index = start;
497         while (index < end) {
498                 pvec.nr = find_get_entries(mapping, index,
499                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
500                         pvec.pages, indices);
501                 if (!pvec.nr)
502                         break;
503                 for (i = 0; i < pagevec_count(&pvec); i++) {
504                         struct page *page = pvec.pages[i];
505
506                         index = indices[i];
507                         if (index >= end)
508                                 break;
509
510                         if (radix_tree_exceptional_entry(page)) {
511                                 if (unfalloc)
512                                         continue;
513                                 nr_swaps_freed += !shmem_free_swap(mapping,
514                                                                 index, page);
515                                 continue;
516                         }
517
518                         if (!trylock_page(page))
519                                 continue;
520                         if (!unfalloc || !PageUptodate(page)) {
521                                 if (page->mapping == mapping) {
522                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
523                                         truncate_inode_page(mapping, page);
524                                 }
525                         }
526                         unlock_page(page);
527                 }
528                 pagevec_remove_exceptionals(&pvec);
529                 pagevec_release(&pvec);
530                 cond_resched();
531                 index++;
532         }
533
534         if (partial_start) {
535                 struct page *page = NULL;
536                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537                 if (page) {
538                         unsigned int top = PAGE_CACHE_SIZE;
539                         if (start > end) {
540                                 top = partial_end;
541                                 partial_end = 0;
542                         }
543                         zero_user_segment(page, partial_start, top);
544                         set_page_dirty(page);
545                         unlock_page(page);
546                         page_cache_release(page);
547                 }
548         }
549         if (partial_end) {
550                 struct page *page = NULL;
551                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552                 if (page) {
553                         zero_user_segment(page, 0, partial_end);
554                         set_page_dirty(page);
555                         unlock_page(page);
556                         page_cache_release(page);
557                 }
558         }
559         if (start >= end)
560                 return;
561
562         index = start;
563         while (index < end) {
564                 cond_resched();
565
566                 pvec.nr = find_get_entries(mapping, index,
567                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568                                 pvec.pages, indices);
569                 if (!pvec.nr) {
570                         /* If all gone or hole-punch or unfalloc, we're done */
571                         if (index == start || end != -1)
572                                 break;
573                         /* But if truncating, restart to make sure all gone */
574                         index = start;
575                         continue;
576                 }
577                 for (i = 0; i < pagevec_count(&pvec); i++) {
578                         struct page *page = pvec.pages[i];
579
580                         index = indices[i];
581                         if (index >= end)
582                                 break;
583
584                         if (radix_tree_exceptional_entry(page)) {
585                                 if (unfalloc)
586                                         continue;
587                                 if (shmem_free_swap(mapping, index, page)) {
588                                         /* Swap was replaced by page: retry */
589                                         index--;
590                                         break;
591                                 }
592                                 nr_swaps_freed++;
593                                 continue;
594                         }
595
596                         lock_page(page);
597                         if (!unfalloc || !PageUptodate(page)) {
598                                 if (page->mapping == mapping) {
599                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
600                                         truncate_inode_page(mapping, page);
601                                 } else {
602                                         /* Page was replaced by swap: retry */
603                                         unlock_page(page);
604                                         index--;
605                                         break;
606                                 }
607                         }
608                         unlock_page(page);
609                 }
610                 pagevec_remove_exceptionals(&pvec);
611                 pagevec_release(&pvec);
612                 index++;
613         }
614
615         spin_lock(&info->lock);
616         info->swapped -= nr_swaps_freed;
617         shmem_recalc_inode(inode);
618         spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623         shmem_undo_range(inode, lstart, lend, false);
624         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629                          struct kstat *stat)
630 {
631         struct inode *inode = dentry->d_inode;
632         struct shmem_inode_info *info = SHMEM_I(inode);
633
634         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635                 spin_lock(&info->lock);
636                 shmem_recalc_inode(inode);
637                 spin_unlock(&info->lock);
638         }
639         generic_fillattr(inode, stat);
640         return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645         struct inode *inode = d_inode(dentry);
646         struct shmem_inode_info *info = SHMEM_I(inode);
647         int error;
648
649         error = inode_change_ok(inode, attr);
650         if (error)
651                 return error;
652
653         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654                 loff_t oldsize = inode->i_size;
655                 loff_t newsize = attr->ia_size;
656
657                 /* protected by i_mutex */
658                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660                         return -EPERM;
661
662                 if (newsize != oldsize) {
663                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
664                                         oldsize, newsize);
665                         if (error)
666                                 return error;
667                         i_size_write(inode, newsize);
668                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669                 }
670                 if (newsize <= oldsize) {
671                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
672                         if (oldsize > holebegin)
673                                 unmap_mapping_range(inode->i_mapping,
674                                                         holebegin, 0, 1);
675                         if (info->alloced)
676                                 shmem_truncate_range(inode,
677                                                         newsize, (loff_t)-1);
678                         /* unmap again to remove racily COWed private pages */
679                         if (oldsize > holebegin)
680                                 unmap_mapping_range(inode->i_mapping,
681                                                         holebegin, 0, 1);
682                 }
683         }
684
685         setattr_copy(inode, attr);
686         if (attr->ia_valid & ATTR_MODE)
687                 error = posix_acl_chmod(inode, inode->i_mode);
688         return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693         struct shmem_inode_info *info = SHMEM_I(inode);
694
695         if (inode->i_mapping->a_ops == &shmem_aops) {
696                 shmem_unacct_size(info->flags, inode->i_size);
697                 inode->i_size = 0;
698                 shmem_truncate_range(inode, 0, (loff_t)-1);
699                 if (!list_empty(&info->swaplist)) {
700                         mutex_lock(&shmem_swaplist_mutex);
701                         list_del_init(&info->swaplist);
702                         mutex_unlock(&shmem_swaplist_mutex);
703                 }
704         } else
705                 kfree(info->symlink);
706
707         simple_xattrs_free(&info->xattrs);
708         WARN_ON(inode->i_blocks);
709         shmem_free_inode(inode->i_sb);
710         clear_inode(inode);
711 }
712
713 /*
714  * If swap found in inode, free it and move page from swapcache to filecache.
715  */
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717                              swp_entry_t swap, struct page **pagep)
718 {
719         struct address_space *mapping = info->vfs_inode.i_mapping;
720         void *radswap;
721         pgoff_t index;
722         gfp_t gfp;
723         int error = 0;
724
725         radswap = swp_to_radix_entry(swap);
726         index = radix_tree_locate_item(&mapping->page_tree, radswap);
727         if (index == -1)
728                 return -EAGAIN; /* tell shmem_unuse we found nothing */
729
730         /*
731          * Move _head_ to start search for next from here.
732          * But be careful: shmem_evict_inode checks list_empty without taking
733          * mutex, and there's an instant in list_move_tail when info->swaplist
734          * would appear empty, if it were the only one on shmem_swaplist.
735          */
736         if (shmem_swaplist.next != &info->swaplist)
737                 list_move_tail(&shmem_swaplist, &info->swaplist);
738
739         gfp = mapping_gfp_mask(mapping);
740         if (shmem_should_replace_page(*pagep, gfp)) {
741                 mutex_unlock(&shmem_swaplist_mutex);
742                 error = shmem_replace_page(pagep, gfp, info, index);
743                 mutex_lock(&shmem_swaplist_mutex);
744                 /*
745                  * We needed to drop mutex to make that restrictive page
746                  * allocation, but the inode might have been freed while we
747                  * dropped it: although a racing shmem_evict_inode() cannot
748                  * complete without emptying the radix_tree, our page lock
749                  * on this swapcache page is not enough to prevent that -
750                  * free_swap_and_cache() of our swap entry will only
751                  * trylock_page(), removing swap from radix_tree whatever.
752                  *
753                  * We must not proceed to shmem_add_to_page_cache() if the
754                  * inode has been freed, but of course we cannot rely on
755                  * inode or mapping or info to check that.  However, we can
756                  * safely check if our swap entry is still in use (and here
757                  * it can't have got reused for another page): if it's still
758                  * in use, then the inode cannot have been freed yet, and we
759                  * can safely proceed (if it's no longer in use, that tells
760                  * nothing about the inode, but we don't need to unuse swap).
761                  */
762                 if (!page_swapcount(*pagep))
763                         error = -ENOENT;
764         }
765
766         /*
767          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768          * but also to hold up shmem_evict_inode(): so inode cannot be freed
769          * beneath us (pagelock doesn't help until the page is in pagecache).
770          */
771         if (!error)
772                 error = shmem_add_to_page_cache(*pagep, mapping, index,
773                                                 radswap);
774         if (error != -ENOMEM) {
775                 /*
776                  * Truncation and eviction use free_swap_and_cache(), which
777                  * only does trylock page: if we raced, best clean up here.
778                  */
779                 delete_from_swap_cache(*pagep);
780                 set_page_dirty(*pagep);
781                 if (!error) {
782                         spin_lock(&info->lock);
783                         info->swapped--;
784                         spin_unlock(&info->lock);
785                         swap_free(swap);
786                 }
787         }
788         return error;
789 }
790
791 /*
792  * Search through swapped inodes to find and replace swap by page.
793  */
794 int shmem_unuse(swp_entry_t swap, struct page *page)
795 {
796         struct list_head *this, *next;
797         struct shmem_inode_info *info;
798         struct mem_cgroup *memcg;
799         int error = 0;
800
801         /*
802          * There's a faint possibility that swap page was replaced before
803          * caller locked it: caller will come back later with the right page.
804          */
805         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
806                 goto out;
807
808         /*
809          * Charge page using GFP_KERNEL while we can wait, before taking
810          * the shmem_swaplist_mutex which might hold up shmem_writepage().
811          * Charged back to the user (not to caller) when swap account is used.
812          */
813         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
814                         false);
815         if (error)
816                 goto out;
817         /* No radix_tree_preload: swap entry keeps a place for page in tree */
818         error = -EAGAIN;
819
820         mutex_lock(&shmem_swaplist_mutex);
821         list_for_each_safe(this, next, &shmem_swaplist) {
822                 info = list_entry(this, struct shmem_inode_info, swaplist);
823                 if (info->swapped)
824                         error = shmem_unuse_inode(info, swap, &page);
825                 else
826                         list_del_init(&info->swaplist);
827                 cond_resched();
828                 if (error != -EAGAIN)
829                         break;
830                 /* found nothing in this: move on to search the next */
831         }
832         mutex_unlock(&shmem_swaplist_mutex);
833
834         if (error) {
835                 if (error != -ENOMEM)
836                         error = 0;
837                 mem_cgroup_cancel_charge(page, memcg, false);
838         } else
839                 mem_cgroup_commit_charge(page, memcg, true, false);
840 out:
841         unlock_page(page);
842         page_cache_release(page);
843         return error;
844 }
845
846 /*
847  * Move the page from the page cache to the swap cache.
848  */
849 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
850 {
851         struct shmem_inode_info *info;
852         struct address_space *mapping;
853         struct inode *inode;
854         swp_entry_t swap;
855         pgoff_t index;
856
857         BUG_ON(!PageLocked(page));
858         mapping = page->mapping;
859         index = page->index;
860         inode = mapping->host;
861         info = SHMEM_I(inode);
862         if (info->flags & VM_LOCKED)
863                 goto redirty;
864         if (!total_swap_pages)
865                 goto redirty;
866
867         /*
868          * Our capabilities prevent regular writeback or sync from ever calling
869          * shmem_writepage; but a stacking filesystem might use ->writepage of
870          * its underlying filesystem, in which case tmpfs should write out to
871          * swap only in response to memory pressure, and not for the writeback
872          * threads or sync.
873          */
874         if (!wbc->for_reclaim) {
875                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
876                 goto redirty;
877         }
878
879         /*
880          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
881          * value into swapfile.c, the only way we can correctly account for a
882          * fallocated page arriving here is now to initialize it and write it.
883          *
884          * That's okay for a page already fallocated earlier, but if we have
885          * not yet completed the fallocation, then (a) we want to keep track
886          * of this page in case we have to undo it, and (b) it may not be a
887          * good idea to continue anyway, once we're pushing into swap.  So
888          * reactivate the page, and let shmem_fallocate() quit when too many.
889          */
890         if (!PageUptodate(page)) {
891                 if (inode->i_private) {
892                         struct shmem_falloc *shmem_falloc;
893                         spin_lock(&inode->i_lock);
894                         shmem_falloc = inode->i_private;
895                         if (shmem_falloc &&
896                             !shmem_falloc->waitq &&
897                             index >= shmem_falloc->start &&
898                             index < shmem_falloc->next)
899                                 shmem_falloc->nr_unswapped++;
900                         else
901                                 shmem_falloc = NULL;
902                         spin_unlock(&inode->i_lock);
903                         if (shmem_falloc)
904                                 goto redirty;
905                 }
906                 clear_highpage(page);
907                 flush_dcache_page(page);
908                 SetPageUptodate(page);
909         }
910
911         swap = get_swap_page();
912         if (!swap.val)
913                 goto redirty;
914
915         /*
916          * Add inode to shmem_unuse()'s list of swapped-out inodes,
917          * if it's not already there.  Do it now before the page is
918          * moved to swap cache, when its pagelock no longer protects
919          * the inode from eviction.  But don't unlock the mutex until
920          * we've incremented swapped, because shmem_unuse_inode() will
921          * prune a !swapped inode from the swaplist under this mutex.
922          */
923         mutex_lock(&shmem_swaplist_mutex);
924         if (list_empty(&info->swaplist))
925                 list_add_tail(&info->swaplist, &shmem_swaplist);
926
927         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
928                 spin_lock(&info->lock);
929                 shmem_recalc_inode(inode);
930                 info->swapped++;
931                 spin_unlock(&info->lock);
932
933                 swap_shmem_alloc(swap);
934                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
935
936                 mutex_unlock(&shmem_swaplist_mutex);
937                 BUG_ON(page_mapped(page));
938                 swap_writepage(page, wbc);
939                 return 0;
940         }
941
942         mutex_unlock(&shmem_swaplist_mutex);
943         swapcache_free(swap);
944 redirty:
945         set_page_dirty(page);
946         if (wbc->for_reclaim)
947                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
948         unlock_page(page);
949         return 0;
950 }
951
952 #ifdef CONFIG_NUMA
953 #ifdef CONFIG_TMPFS
954 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956         char buffer[64];
957
958         if (!mpol || mpol->mode == MPOL_DEFAULT)
959                 return;         /* show nothing */
960
961         mpol_to_str(buffer, sizeof(buffer), mpol);
962
963         seq_printf(seq, ",mpol=%s", buffer);
964 }
965
966 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968         struct mempolicy *mpol = NULL;
969         if (sbinfo->mpol) {
970                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
971                 mpol = sbinfo->mpol;
972                 mpol_get(mpol);
973                 spin_unlock(&sbinfo->stat_lock);
974         }
975         return mpol;
976 }
977 #endif /* CONFIG_TMPFS */
978
979 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
980                         struct shmem_inode_info *info, pgoff_t index)
981 {
982         struct vm_area_struct pvma;
983         struct page *page;
984
985         /* Create a pseudo vma that just contains the policy */
986         pvma.vm_start = 0;
987         /* Bias interleave by inode number to distribute better across nodes */
988         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
989         pvma.vm_ops = NULL;
990         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
991
992         page = swapin_readahead(swap, gfp, &pvma, 0);
993
994         /* Drop reference taken by mpol_shared_policy_lookup() */
995         mpol_cond_put(pvma.vm_policy);
996
997         return page;
998 }
999
1000 static struct page *shmem_alloc_page(gfp_t gfp,
1001                         struct shmem_inode_info *info, pgoff_t index)
1002 {
1003         struct vm_area_struct pvma;
1004         struct page *page;
1005
1006         /* Create a pseudo vma that just contains the policy */
1007         pvma.vm_start = 0;
1008         /* Bias interleave by inode number to distribute better across nodes */
1009         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1010         pvma.vm_ops = NULL;
1011         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1012
1013         page = alloc_page_vma(gfp, &pvma, 0);
1014
1015         /* Drop reference taken by mpol_shared_policy_lookup() */
1016         mpol_cond_put(pvma.vm_policy);
1017
1018         return page;
1019 }
1020 #else /* !CONFIG_NUMA */
1021 #ifdef CONFIG_TMPFS
1022 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1023 {
1024 }
1025 #endif /* CONFIG_TMPFS */
1026
1027 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1028                         struct shmem_inode_info *info, pgoff_t index)
1029 {
1030         return swapin_readahead(swap, gfp, NULL, 0);
1031 }
1032
1033 static inline struct page *shmem_alloc_page(gfp_t gfp,
1034                         struct shmem_inode_info *info, pgoff_t index)
1035 {
1036         return alloc_page(gfp);
1037 }
1038 #endif /* CONFIG_NUMA */
1039
1040 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1041 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1042 {
1043         return NULL;
1044 }
1045 #endif
1046
1047 /*
1048  * When a page is moved from swapcache to shmem filecache (either by the
1049  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1050  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1051  * ignorance of the mapping it belongs to.  If that mapping has special
1052  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1053  * we may need to copy to a suitable page before moving to filecache.
1054  *
1055  * In a future release, this may well be extended to respect cpuset and
1056  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1057  * but for now it is a simple matter of zone.
1058  */
1059 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1060 {
1061         return page_zonenum(page) > gfp_zone(gfp);
1062 }
1063
1064 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1065                                 struct shmem_inode_info *info, pgoff_t index)
1066 {
1067         struct page *oldpage, *newpage;
1068         struct address_space *swap_mapping;
1069         pgoff_t swap_index;
1070         int error;
1071
1072         oldpage = *pagep;
1073         swap_index = page_private(oldpage);
1074         swap_mapping = page_mapping(oldpage);
1075
1076         /*
1077          * We have arrived here because our zones are constrained, so don't
1078          * limit chance of success by further cpuset and node constraints.
1079          */
1080         gfp &= ~GFP_CONSTRAINT_MASK;
1081         newpage = shmem_alloc_page(gfp, info, index);
1082         if (!newpage)
1083                 return -ENOMEM;
1084
1085         page_cache_get(newpage);
1086         copy_highpage(newpage, oldpage);
1087         flush_dcache_page(newpage);
1088
1089         __SetPageLocked(newpage);
1090         SetPageUptodate(newpage);
1091         SetPageSwapBacked(newpage);
1092         set_page_private(newpage, swap_index);
1093         SetPageSwapCache(newpage);
1094
1095         /*
1096          * Our caller will very soon move newpage out of swapcache, but it's
1097          * a nice clean interface for us to replace oldpage by newpage there.
1098          */
1099         spin_lock_irq(&swap_mapping->tree_lock);
1100         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1101                                                                    newpage);
1102         if (!error) {
1103                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1104                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1105         }
1106         spin_unlock_irq(&swap_mapping->tree_lock);
1107
1108         if (unlikely(error)) {
1109                 /*
1110                  * Is this possible?  I think not, now that our callers check
1111                  * both PageSwapCache and page_private after getting page lock;
1112                  * but be defensive.  Reverse old to newpage for clear and free.
1113                  */
1114                 oldpage = newpage;
1115         } else {
1116                 mem_cgroup_replace_page(oldpage, newpage);
1117                 lru_cache_add_anon(newpage);
1118                 *pagep = newpage;
1119         }
1120
1121         ClearPageSwapCache(oldpage);
1122         set_page_private(oldpage, 0);
1123
1124         unlock_page(oldpage);
1125         page_cache_release(oldpage);
1126         page_cache_release(oldpage);
1127         return error;
1128 }
1129
1130 /*
1131  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1132  *
1133  * If we allocate a new one we do not mark it dirty. That's up to the
1134  * vm. If we swap it in we mark it dirty since we also free the swap
1135  * entry since a page cannot live in both the swap and page cache
1136  */
1137 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1138         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1139 {
1140         struct address_space *mapping = inode->i_mapping;
1141         struct shmem_inode_info *info;
1142         struct shmem_sb_info *sbinfo;
1143         struct mem_cgroup *memcg;
1144         struct page *page;
1145         swp_entry_t swap;
1146         int error;
1147         int once = 0;
1148         int alloced = 0;
1149
1150         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1151                 return -EFBIG;
1152 repeat:
1153         swap.val = 0;
1154         page = find_lock_entry(mapping, index);
1155         if (radix_tree_exceptional_entry(page)) {
1156                 swap = radix_to_swp_entry(page);
1157                 page = NULL;
1158         }
1159
1160         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1161             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1162                 error = -EINVAL;
1163                 goto unlock;
1164         }
1165
1166         if (page && sgp == SGP_WRITE)
1167                 mark_page_accessed(page);
1168
1169         /* fallocated page? */
1170         if (page && !PageUptodate(page)) {
1171                 if (sgp != SGP_READ)
1172                         goto clear;
1173                 unlock_page(page);
1174                 page_cache_release(page);
1175                 page = NULL;
1176         }
1177         if (page || (sgp == SGP_READ && !swap.val)) {
1178                 *pagep = page;
1179                 return 0;
1180         }
1181
1182         /*
1183          * Fast cache lookup did not find it:
1184          * bring it back from swap or allocate.
1185          */
1186         info = SHMEM_I(inode);
1187         sbinfo = SHMEM_SB(inode->i_sb);
1188
1189         if (swap.val) {
1190                 /* Look it up and read it in.. */
1191                 page = lookup_swap_cache(swap);
1192                 if (!page) {
1193                         /* here we actually do the io */
1194                         if (fault_type)
1195                                 *fault_type |= VM_FAULT_MAJOR;
1196                         page = shmem_swapin(swap, gfp, info, index);
1197                         if (!page) {
1198                                 error = -ENOMEM;
1199                                 goto failed;
1200                         }
1201                 }
1202
1203                 /* We have to do this with page locked to prevent races */
1204                 lock_page(page);
1205                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1206                     !shmem_confirm_swap(mapping, index, swap)) {
1207                         error = -EEXIST;        /* try again */
1208                         goto unlock;
1209                 }
1210                 if (!PageUptodate(page)) {
1211                         error = -EIO;
1212                         goto failed;
1213                 }
1214                 wait_on_page_writeback(page);
1215
1216                 if (shmem_should_replace_page(page, gfp)) {
1217                         error = shmem_replace_page(&page, gfp, info, index);
1218                         if (error)
1219                                 goto failed;
1220                 }
1221
1222                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1223                                 false);
1224                 if (!error) {
1225                         error = shmem_add_to_page_cache(page, mapping, index,
1226                                                 swp_to_radix_entry(swap));
1227                         /*
1228                          * We already confirmed swap under page lock, and make
1229                          * no memory allocation here, so usually no possibility
1230                          * of error; but free_swap_and_cache() only trylocks a
1231                          * page, so it is just possible that the entry has been
1232                          * truncated or holepunched since swap was confirmed.
1233                          * shmem_undo_range() will have done some of the
1234                          * unaccounting, now delete_from_swap_cache() will do
1235                          * the rest.
1236                          * Reset swap.val? No, leave it so "failed" goes back to
1237                          * "repeat": reading a hole and writing should succeed.
1238                          */
1239                         if (error) {
1240                                 mem_cgroup_cancel_charge(page, memcg, false);
1241                                 delete_from_swap_cache(page);
1242                         }
1243                 }
1244                 if (error)
1245                         goto failed;
1246
1247                 mem_cgroup_commit_charge(page, memcg, true, false);
1248
1249                 spin_lock(&info->lock);
1250                 info->swapped--;
1251                 shmem_recalc_inode(inode);
1252                 spin_unlock(&info->lock);
1253
1254                 if (sgp == SGP_WRITE)
1255                         mark_page_accessed(page);
1256
1257                 delete_from_swap_cache(page);
1258                 set_page_dirty(page);
1259                 swap_free(swap);
1260
1261         } else {
1262                 if (shmem_acct_block(info->flags)) {
1263                         error = -ENOSPC;
1264                         goto failed;
1265                 }
1266                 if (sbinfo->max_blocks) {
1267                         if (percpu_counter_compare(&sbinfo->used_blocks,
1268                                                 sbinfo->max_blocks) >= 0) {
1269                                 error = -ENOSPC;
1270                                 goto unacct;
1271                         }
1272                         percpu_counter_inc(&sbinfo->used_blocks);
1273                 }
1274
1275                 page = shmem_alloc_page(gfp, info, index);
1276                 if (!page) {
1277                         error = -ENOMEM;
1278                         goto decused;
1279                 }
1280
1281                 __SetPageSwapBacked(page);
1282                 __SetPageLocked(page);
1283                 if (sgp == SGP_WRITE)
1284                         __SetPageReferenced(page);
1285
1286                 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1287                                 false);
1288                 if (error)
1289                         goto decused;
1290                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1291                 if (!error) {
1292                         error = shmem_add_to_page_cache(page, mapping, index,
1293                                                         NULL);
1294                         radix_tree_preload_end();
1295                 }
1296                 if (error) {
1297                         mem_cgroup_cancel_charge(page, memcg, false);
1298                         goto decused;
1299                 }
1300                 mem_cgroup_commit_charge(page, memcg, false, false);
1301                 lru_cache_add_anon(page);
1302
1303                 spin_lock(&info->lock);
1304                 info->alloced++;
1305                 inode->i_blocks += BLOCKS_PER_PAGE;
1306                 shmem_recalc_inode(inode);
1307                 spin_unlock(&info->lock);
1308                 alloced = true;
1309
1310                 /*
1311                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1312                  */
1313                 if (sgp == SGP_FALLOC)
1314                         sgp = SGP_WRITE;
1315 clear:
1316                 /*
1317                  * Let SGP_WRITE caller clear ends if write does not fill page;
1318                  * but SGP_FALLOC on a page fallocated earlier must initialize
1319                  * it now, lest undo on failure cancel our earlier guarantee.
1320                  */
1321                 if (sgp != SGP_WRITE) {
1322                         clear_highpage(page);
1323                         flush_dcache_page(page);
1324                         SetPageUptodate(page);
1325                 }
1326                 if (sgp == SGP_DIRTY)
1327                         set_page_dirty(page);
1328         }
1329
1330         /* Perhaps the file has been truncated since we checked */
1331         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1332             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1333                 if (alloced) {
1334                         ClearPageDirty(page);
1335                         delete_from_page_cache(page);
1336                         spin_lock(&info->lock);
1337                         shmem_recalc_inode(inode);
1338                         spin_unlock(&info->lock);
1339                 }
1340                 error = -EINVAL;
1341                 goto unlock;
1342         }
1343         *pagep = page;
1344         return 0;
1345
1346         /*
1347          * Error recovery.
1348          */
1349 decused:
1350         if (sbinfo->max_blocks)
1351                 percpu_counter_add(&sbinfo->used_blocks, -1);
1352 unacct:
1353         shmem_unacct_blocks(info->flags, 1);
1354 failed:
1355         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1356                 error = -EEXIST;
1357 unlock:
1358         if (page) {
1359                 unlock_page(page);
1360                 page_cache_release(page);
1361         }
1362         if (error == -ENOSPC && !once++) {
1363                 info = SHMEM_I(inode);
1364                 spin_lock(&info->lock);
1365                 shmem_recalc_inode(inode);
1366                 spin_unlock(&info->lock);
1367                 goto repeat;
1368         }
1369         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1370                 goto repeat;
1371         return error;
1372 }
1373
1374 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1375 {
1376         struct inode *inode = file_inode(vma->vm_file);
1377         int error;
1378         int ret = VM_FAULT_LOCKED;
1379
1380         /*
1381          * Trinity finds that probing a hole which tmpfs is punching can
1382          * prevent the hole-punch from ever completing: which in turn
1383          * locks writers out with its hold on i_mutex.  So refrain from
1384          * faulting pages into the hole while it's being punched.  Although
1385          * shmem_undo_range() does remove the additions, it may be unable to
1386          * keep up, as each new page needs its own unmap_mapping_range() call,
1387          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1388          *
1389          * It does not matter if we sometimes reach this check just before the
1390          * hole-punch begins, so that one fault then races with the punch:
1391          * we just need to make racing faults a rare case.
1392          *
1393          * The implementation below would be much simpler if we just used a
1394          * standard mutex or completion: but we cannot take i_mutex in fault,
1395          * and bloating every shmem inode for this unlikely case would be sad.
1396          */
1397         if (unlikely(inode->i_private)) {
1398                 struct shmem_falloc *shmem_falloc;
1399
1400                 spin_lock(&inode->i_lock);
1401                 shmem_falloc = inode->i_private;
1402                 if (shmem_falloc &&
1403                     shmem_falloc->waitq &&
1404                     vmf->pgoff >= shmem_falloc->start &&
1405                     vmf->pgoff < shmem_falloc->next) {
1406                         wait_queue_head_t *shmem_falloc_waitq;
1407                         DEFINE_WAIT(shmem_fault_wait);
1408
1409                         ret = VM_FAULT_NOPAGE;
1410                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1411                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1412                                 /* It's polite to up mmap_sem if we can */
1413                                 up_read(&vma->vm_mm->mmap_sem);
1414                                 ret = VM_FAULT_RETRY;
1415                         }
1416
1417                         shmem_falloc_waitq = shmem_falloc->waitq;
1418                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1419                                         TASK_UNINTERRUPTIBLE);
1420                         spin_unlock(&inode->i_lock);
1421                         schedule();
1422
1423                         /*
1424                          * shmem_falloc_waitq points into the shmem_fallocate()
1425                          * stack of the hole-punching task: shmem_falloc_waitq
1426                          * is usually invalid by the time we reach here, but
1427                          * finish_wait() does not dereference it in that case;
1428                          * though i_lock needed lest racing with wake_up_all().
1429                          */
1430                         spin_lock(&inode->i_lock);
1431                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1432                         spin_unlock(&inode->i_lock);
1433                         return ret;
1434                 }
1435                 spin_unlock(&inode->i_lock);
1436         }
1437
1438         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1439         if (error)
1440                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1441
1442         if (ret & VM_FAULT_MAJOR) {
1443                 count_vm_event(PGMAJFAULT);
1444                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1445         }
1446         return ret;
1447 }
1448
1449 #ifdef CONFIG_NUMA
1450 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1451 {
1452         struct inode *inode = file_inode(vma->vm_file);
1453         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1454 }
1455
1456 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1457                                           unsigned long addr)
1458 {
1459         struct inode *inode = file_inode(vma->vm_file);
1460         pgoff_t index;
1461
1462         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1463         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1464 }
1465 #endif
1466
1467 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1468 {
1469         struct inode *inode = file_inode(file);
1470         struct shmem_inode_info *info = SHMEM_I(inode);
1471         int retval = -ENOMEM;
1472
1473         spin_lock(&info->lock);
1474         if (lock && !(info->flags & VM_LOCKED)) {
1475                 if (!user_shm_lock(inode->i_size, user))
1476                         goto out_nomem;
1477                 info->flags |= VM_LOCKED;
1478                 mapping_set_unevictable(file->f_mapping);
1479         }
1480         if (!lock && (info->flags & VM_LOCKED) && user) {
1481                 user_shm_unlock(inode->i_size, user);
1482                 info->flags &= ~VM_LOCKED;
1483                 mapping_clear_unevictable(file->f_mapping);
1484         }
1485         retval = 0;
1486
1487 out_nomem:
1488         spin_unlock(&info->lock);
1489         return retval;
1490 }
1491
1492 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1493 {
1494         file_accessed(file);
1495         vma->vm_ops = &shmem_vm_ops;
1496         return 0;
1497 }
1498
1499 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1500                                      umode_t mode, dev_t dev, unsigned long flags)
1501 {
1502         struct inode *inode;
1503         struct shmem_inode_info *info;
1504         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1505
1506         if (shmem_reserve_inode(sb))
1507                 return NULL;
1508
1509         inode = new_inode(sb);
1510         if (inode) {
1511                 inode->i_ino = get_next_ino();
1512                 inode_init_owner(inode, dir, mode);
1513                 inode->i_blocks = 0;
1514                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1515                 inode->i_generation = get_seconds();
1516                 info = SHMEM_I(inode);
1517                 memset(info, 0, (char *)inode - (char *)info);
1518                 spin_lock_init(&info->lock);
1519                 info->seals = F_SEAL_SEAL;
1520                 info->flags = flags & VM_NORESERVE;
1521                 INIT_LIST_HEAD(&info->swaplist);
1522                 simple_xattrs_init(&info->xattrs);
1523                 cache_no_acl(inode);
1524
1525                 switch (mode & S_IFMT) {
1526                 default:
1527                         inode->i_op = &shmem_special_inode_operations;
1528                         init_special_inode(inode, mode, dev);
1529                         break;
1530                 case S_IFREG:
1531                         inode->i_mapping->a_ops = &shmem_aops;
1532                         inode->i_op = &shmem_inode_operations;
1533                         inode->i_fop = &shmem_file_operations;
1534                         mpol_shared_policy_init(&info->policy,
1535                                                  shmem_get_sbmpol(sbinfo));
1536                         break;
1537                 case S_IFDIR:
1538                         inc_nlink(inode);
1539                         /* Some things misbehave if size == 0 on a directory */
1540                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1541                         inode->i_op = &shmem_dir_inode_operations;
1542                         inode->i_fop = &simple_dir_operations;
1543                         break;
1544                 case S_IFLNK:
1545                         /*
1546                          * Must not load anything in the rbtree,
1547                          * mpol_free_shared_policy will not be called.
1548                          */
1549                         mpol_shared_policy_init(&info->policy, NULL);
1550                         break;
1551                 }
1552         } else
1553                 shmem_free_inode(sb);
1554         return inode;
1555 }
1556
1557 bool shmem_mapping(struct address_space *mapping)
1558 {
1559         if (!mapping->host)
1560                 return false;
1561
1562         return mapping->host->i_sb->s_op == &shmem_ops;
1563 }
1564
1565 #ifdef CONFIG_TMPFS
1566 static const struct inode_operations shmem_symlink_inode_operations;
1567 static const struct inode_operations shmem_short_symlink_operations;
1568
1569 #ifdef CONFIG_TMPFS_XATTR
1570 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1571 #else
1572 #define shmem_initxattrs NULL
1573 #endif
1574
1575 static int
1576 shmem_write_begin(struct file *file, struct address_space *mapping,
1577                         loff_t pos, unsigned len, unsigned flags,
1578                         struct page **pagep, void **fsdata)
1579 {
1580         struct inode *inode = mapping->host;
1581         struct shmem_inode_info *info = SHMEM_I(inode);
1582         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1583
1584         /* i_mutex is held by caller */
1585         if (unlikely(info->seals)) {
1586                 if (info->seals & F_SEAL_WRITE)
1587                         return -EPERM;
1588                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1589                         return -EPERM;
1590         }
1591
1592         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1593 }
1594
1595 static int
1596 shmem_write_end(struct file *file, struct address_space *mapping,
1597                         loff_t pos, unsigned len, unsigned copied,
1598                         struct page *page, void *fsdata)
1599 {
1600         struct inode *inode = mapping->host;
1601
1602         if (pos + copied > inode->i_size)
1603                 i_size_write(inode, pos + copied);
1604
1605         if (!PageUptodate(page)) {
1606                 if (copied < PAGE_CACHE_SIZE) {
1607                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1608                         zero_user_segments(page, 0, from,
1609                                         from + copied, PAGE_CACHE_SIZE);
1610                 }
1611                 SetPageUptodate(page);
1612         }
1613         set_page_dirty(page);
1614         unlock_page(page);
1615         page_cache_release(page);
1616
1617         return copied;
1618 }
1619
1620 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1621 {
1622         struct file *file = iocb->ki_filp;
1623         struct inode *inode = file_inode(file);
1624         struct address_space *mapping = inode->i_mapping;
1625         pgoff_t index;
1626         unsigned long offset;
1627         enum sgp_type sgp = SGP_READ;
1628         int error = 0;
1629         ssize_t retval = 0;
1630         loff_t *ppos = &iocb->ki_pos;
1631
1632         /*
1633          * Might this read be for a stacking filesystem?  Then when reading
1634          * holes of a sparse file, we actually need to allocate those pages,
1635          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1636          */
1637         if (!iter_is_iovec(to))
1638                 sgp = SGP_DIRTY;
1639
1640         index = *ppos >> PAGE_CACHE_SHIFT;
1641         offset = *ppos & ~PAGE_CACHE_MASK;
1642
1643         for (;;) {
1644                 struct page *page = NULL;
1645                 pgoff_t end_index;
1646                 unsigned long nr, ret;
1647                 loff_t i_size = i_size_read(inode);
1648
1649                 end_index = i_size >> PAGE_CACHE_SHIFT;
1650                 if (index > end_index)
1651                         break;
1652                 if (index == end_index) {
1653                         nr = i_size & ~PAGE_CACHE_MASK;
1654                         if (nr <= offset)
1655                                 break;
1656                 }
1657
1658                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1659                 if (error) {
1660                         if (error == -EINVAL)
1661                                 error = 0;
1662                         break;
1663                 }
1664                 if (page)
1665                         unlock_page(page);
1666
1667                 /*
1668                  * We must evaluate after, since reads (unlike writes)
1669                  * are called without i_mutex protection against truncate
1670                  */
1671                 nr = PAGE_CACHE_SIZE;
1672                 i_size = i_size_read(inode);
1673                 end_index = i_size >> PAGE_CACHE_SHIFT;
1674                 if (index == end_index) {
1675                         nr = i_size & ~PAGE_CACHE_MASK;
1676                         if (nr <= offset) {
1677                                 if (page)
1678                                         page_cache_release(page);
1679                                 break;
1680                         }
1681                 }
1682                 nr -= offset;
1683
1684                 if (page) {
1685                         /*
1686                          * If users can be writing to this page using arbitrary
1687                          * virtual addresses, take care about potential aliasing
1688                          * before reading the page on the kernel side.
1689                          */
1690                         if (mapping_writably_mapped(mapping))
1691                                 flush_dcache_page(page);
1692                         /*
1693                          * Mark the page accessed if we read the beginning.
1694                          */
1695                         if (!offset)
1696                                 mark_page_accessed(page);
1697                 } else {
1698                         page = ZERO_PAGE(0);
1699                         page_cache_get(page);
1700                 }
1701
1702                 /*
1703                  * Ok, we have the page, and it's up-to-date, so
1704                  * now we can copy it to user space...
1705                  */
1706                 ret = copy_page_to_iter(page, offset, nr, to);
1707                 retval += ret;
1708                 offset += ret;
1709                 index += offset >> PAGE_CACHE_SHIFT;
1710                 offset &= ~PAGE_CACHE_MASK;
1711
1712                 page_cache_release(page);
1713                 if (!iov_iter_count(to))
1714                         break;
1715                 if (ret < nr) {
1716                         error = -EFAULT;
1717                         break;
1718                 }
1719                 cond_resched();
1720         }
1721
1722         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1723         file_accessed(file);
1724         return retval ? retval : error;
1725 }
1726
1727 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1728                                 struct pipe_inode_info *pipe, size_t len,
1729                                 unsigned int flags)
1730 {
1731         struct address_space *mapping = in->f_mapping;
1732         struct inode *inode = mapping->host;
1733         unsigned int loff, nr_pages, req_pages;
1734         struct page *pages[PIPE_DEF_BUFFERS];
1735         struct partial_page partial[PIPE_DEF_BUFFERS];
1736         struct page *page;
1737         pgoff_t index, end_index;
1738         loff_t isize, left;
1739         int error, page_nr;
1740         struct splice_pipe_desc spd = {
1741                 .pages = pages,
1742                 .partial = partial,
1743                 .nr_pages_max = PIPE_DEF_BUFFERS,
1744                 .flags = flags,
1745                 .ops = &page_cache_pipe_buf_ops,
1746                 .spd_release = spd_release_page,
1747         };
1748
1749         isize = i_size_read(inode);
1750         if (unlikely(*ppos >= isize))
1751                 return 0;
1752
1753         left = isize - *ppos;
1754         if (unlikely(left < len))
1755                 len = left;
1756
1757         if (splice_grow_spd(pipe, &spd))
1758                 return -ENOMEM;
1759
1760         index = *ppos >> PAGE_CACHE_SHIFT;
1761         loff = *ppos & ~PAGE_CACHE_MASK;
1762         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1763         nr_pages = min(req_pages, spd.nr_pages_max);
1764
1765         spd.nr_pages = find_get_pages_contig(mapping, index,
1766                                                 nr_pages, spd.pages);
1767         index += spd.nr_pages;
1768         error = 0;
1769
1770         while (spd.nr_pages < nr_pages) {
1771                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1772                 if (error)
1773                         break;
1774                 unlock_page(page);
1775                 spd.pages[spd.nr_pages++] = page;
1776                 index++;
1777         }
1778
1779         index = *ppos >> PAGE_CACHE_SHIFT;
1780         nr_pages = spd.nr_pages;
1781         spd.nr_pages = 0;
1782
1783         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1784                 unsigned int this_len;
1785
1786                 if (!len)
1787                         break;
1788
1789                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1790                 page = spd.pages[page_nr];
1791
1792                 if (!PageUptodate(page) || page->mapping != mapping) {
1793                         error = shmem_getpage(inode, index, &page,
1794                                                         SGP_CACHE, NULL);
1795                         if (error)
1796                                 break;
1797                         unlock_page(page);
1798                         page_cache_release(spd.pages[page_nr]);
1799                         spd.pages[page_nr] = page;
1800                 }
1801
1802                 isize = i_size_read(inode);
1803                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1804                 if (unlikely(!isize || index > end_index))
1805                         break;
1806
1807                 if (end_index == index) {
1808                         unsigned int plen;
1809
1810                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1811                         if (plen <= loff)
1812                                 break;
1813
1814                         this_len = min(this_len, plen - loff);
1815                         len = this_len;
1816                 }
1817
1818                 spd.partial[page_nr].offset = loff;
1819                 spd.partial[page_nr].len = this_len;
1820                 len -= this_len;
1821                 loff = 0;
1822                 spd.nr_pages++;
1823                 index++;
1824         }
1825
1826         while (page_nr < nr_pages)
1827                 page_cache_release(spd.pages[page_nr++]);
1828
1829         if (spd.nr_pages)
1830                 error = splice_to_pipe(pipe, &spd);
1831
1832         splice_shrink_spd(&spd);
1833
1834         if (error > 0) {
1835                 *ppos += error;
1836                 file_accessed(in);
1837         }
1838         return error;
1839 }
1840
1841 /*
1842  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1843  */
1844 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1845                                     pgoff_t index, pgoff_t end, int whence)
1846 {
1847         struct page *page;
1848         struct pagevec pvec;
1849         pgoff_t indices[PAGEVEC_SIZE];
1850         bool done = false;
1851         int i;
1852
1853         pagevec_init(&pvec, 0);
1854         pvec.nr = 1;            /* start small: we may be there already */
1855         while (!done) {
1856                 pvec.nr = find_get_entries(mapping, index,
1857                                         pvec.nr, pvec.pages, indices);
1858                 if (!pvec.nr) {
1859                         if (whence == SEEK_DATA)
1860                                 index = end;
1861                         break;
1862                 }
1863                 for (i = 0; i < pvec.nr; i++, index++) {
1864                         if (index < indices[i]) {
1865                                 if (whence == SEEK_HOLE) {
1866                                         done = true;
1867                                         break;
1868                                 }
1869                                 index = indices[i];
1870                         }
1871                         page = pvec.pages[i];
1872                         if (page && !radix_tree_exceptional_entry(page)) {
1873                                 if (!PageUptodate(page))
1874                                         page = NULL;
1875                         }
1876                         if (index >= end ||
1877                             (page && whence == SEEK_DATA) ||
1878                             (!page && whence == SEEK_HOLE)) {
1879                                 done = true;
1880                                 break;
1881                         }
1882                 }
1883                 pagevec_remove_exceptionals(&pvec);
1884                 pagevec_release(&pvec);
1885                 pvec.nr = PAGEVEC_SIZE;
1886                 cond_resched();
1887         }
1888         return index;
1889 }
1890
1891 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1892 {
1893         struct address_space *mapping = file->f_mapping;
1894         struct inode *inode = mapping->host;
1895         pgoff_t start, end;
1896         loff_t new_offset;
1897
1898         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1899                 return generic_file_llseek_size(file, offset, whence,
1900                                         MAX_LFS_FILESIZE, i_size_read(inode));
1901         mutex_lock(&inode->i_mutex);
1902         /* We're holding i_mutex so we can access i_size directly */
1903
1904         if (offset < 0)
1905                 offset = -EINVAL;
1906         else if (offset >= inode->i_size)
1907                 offset = -ENXIO;
1908         else {
1909                 start = offset >> PAGE_CACHE_SHIFT;
1910                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1911                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1912                 new_offset <<= PAGE_CACHE_SHIFT;
1913                 if (new_offset > offset) {
1914                         if (new_offset < inode->i_size)
1915                                 offset = new_offset;
1916                         else if (whence == SEEK_DATA)
1917                                 offset = -ENXIO;
1918                         else
1919                                 offset = inode->i_size;
1920                 }
1921         }
1922
1923         if (offset >= 0)
1924                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1925         mutex_unlock(&inode->i_mutex);
1926         return offset;
1927 }
1928
1929 /*
1930  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1931  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1932  */
1933 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1934 #define LAST_SCAN               4       /* about 150ms max */
1935
1936 static void shmem_tag_pins(struct address_space *mapping)
1937 {
1938         struct radix_tree_iter iter;
1939         void **slot;
1940         pgoff_t start;
1941         struct page *page;
1942
1943         lru_add_drain();
1944         start = 0;
1945         rcu_read_lock();
1946
1947 restart:
1948         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1949                 page = radix_tree_deref_slot(slot);
1950                 if (!page || radix_tree_exception(page)) {
1951                         if (radix_tree_deref_retry(page))
1952                                 goto restart;
1953                 } else if (page_count(page) - page_mapcount(page) > 1) {
1954                         spin_lock_irq(&mapping->tree_lock);
1955                         radix_tree_tag_set(&mapping->page_tree, iter.index,
1956                                            SHMEM_TAG_PINNED);
1957                         spin_unlock_irq(&mapping->tree_lock);
1958                 }
1959
1960                 if (need_resched()) {
1961                         cond_resched_rcu();
1962                         start = iter.index + 1;
1963                         goto restart;
1964                 }
1965         }
1966         rcu_read_unlock();
1967 }
1968
1969 /*
1970  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1971  * via get_user_pages(), drivers might have some pending I/O without any active
1972  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1973  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1974  * them to be dropped.
1975  * The caller must guarantee that no new user will acquire writable references
1976  * to those pages to avoid races.
1977  */
1978 static int shmem_wait_for_pins(struct address_space *mapping)
1979 {
1980         struct radix_tree_iter iter;
1981         void **slot;
1982         pgoff_t start;
1983         struct page *page;
1984         int error, scan;
1985
1986         shmem_tag_pins(mapping);
1987
1988         error = 0;
1989         for (scan = 0; scan <= LAST_SCAN; scan++) {
1990                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1991                         break;
1992
1993                 if (!scan)
1994                         lru_add_drain_all();
1995                 else if (schedule_timeout_killable((HZ << scan) / 200))
1996                         scan = LAST_SCAN;
1997
1998                 start = 0;
1999                 rcu_read_lock();
2000 restart:
2001                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2002                                            start, SHMEM_TAG_PINNED) {
2003
2004                         page = radix_tree_deref_slot(slot);
2005                         if (radix_tree_exception(page)) {
2006                                 if (radix_tree_deref_retry(page))
2007                                         goto restart;
2008
2009                                 page = NULL;
2010                         }
2011
2012                         if (page &&
2013                             page_count(page) - page_mapcount(page) != 1) {
2014                                 if (scan < LAST_SCAN)
2015                                         goto continue_resched;
2016
2017                                 /*
2018                                  * On the last scan, we clean up all those tags
2019                                  * we inserted; but make a note that we still
2020                                  * found pages pinned.
2021                                  */
2022                                 error = -EBUSY;
2023                         }
2024
2025                         spin_lock_irq(&mapping->tree_lock);
2026                         radix_tree_tag_clear(&mapping->page_tree,
2027                                              iter.index, SHMEM_TAG_PINNED);
2028                         spin_unlock_irq(&mapping->tree_lock);
2029 continue_resched:
2030                         if (need_resched()) {
2031                                 cond_resched_rcu();
2032                                 start = iter.index + 1;
2033                                 goto restart;
2034                         }
2035                 }
2036                 rcu_read_unlock();
2037         }
2038
2039         return error;
2040 }
2041
2042 #define F_ALL_SEALS (F_SEAL_SEAL | \
2043                      F_SEAL_SHRINK | \
2044                      F_SEAL_GROW | \
2045                      F_SEAL_WRITE)
2046
2047 int shmem_add_seals(struct file *file, unsigned int seals)
2048 {
2049         struct inode *inode = file_inode(file);
2050         struct shmem_inode_info *info = SHMEM_I(inode);
2051         int error;
2052
2053         /*
2054          * SEALING
2055          * Sealing allows multiple parties to share a shmem-file but restrict
2056          * access to a specific subset of file operations. Seals can only be
2057          * added, but never removed. This way, mutually untrusted parties can
2058          * share common memory regions with a well-defined policy. A malicious
2059          * peer can thus never perform unwanted operations on a shared object.
2060          *
2061          * Seals are only supported on special shmem-files and always affect
2062          * the whole underlying inode. Once a seal is set, it may prevent some
2063          * kinds of access to the file. Currently, the following seals are
2064          * defined:
2065          *   SEAL_SEAL: Prevent further seals from being set on this file
2066          *   SEAL_SHRINK: Prevent the file from shrinking
2067          *   SEAL_GROW: Prevent the file from growing
2068          *   SEAL_WRITE: Prevent write access to the file
2069          *
2070          * As we don't require any trust relationship between two parties, we
2071          * must prevent seals from being removed. Therefore, sealing a file
2072          * only adds a given set of seals to the file, it never touches
2073          * existing seals. Furthermore, the "setting seals"-operation can be
2074          * sealed itself, which basically prevents any further seal from being
2075          * added.
2076          *
2077          * Semantics of sealing are only defined on volatile files. Only
2078          * anonymous shmem files support sealing. More importantly, seals are
2079          * never written to disk. Therefore, there's no plan to support it on
2080          * other file types.
2081          */
2082
2083         if (file->f_op != &shmem_file_operations)
2084                 return -EINVAL;
2085         if (!(file->f_mode & FMODE_WRITE))
2086                 return -EPERM;
2087         if (seals & ~(unsigned int)F_ALL_SEALS)
2088                 return -EINVAL;
2089
2090         mutex_lock(&inode->i_mutex);
2091
2092         if (info->seals & F_SEAL_SEAL) {
2093                 error = -EPERM;
2094                 goto unlock;
2095         }
2096
2097         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2098                 error = mapping_deny_writable(file->f_mapping);
2099                 if (error)
2100                         goto unlock;
2101
2102                 error = shmem_wait_for_pins(file->f_mapping);
2103                 if (error) {
2104                         mapping_allow_writable(file->f_mapping);
2105                         goto unlock;
2106                 }
2107         }
2108
2109         info->seals |= seals;
2110         error = 0;
2111
2112 unlock:
2113         mutex_unlock(&inode->i_mutex);
2114         return error;
2115 }
2116 EXPORT_SYMBOL_GPL(shmem_add_seals);
2117
2118 int shmem_get_seals(struct file *file)
2119 {
2120         if (file->f_op != &shmem_file_operations)
2121                 return -EINVAL;
2122
2123         return SHMEM_I(file_inode(file))->seals;
2124 }
2125 EXPORT_SYMBOL_GPL(shmem_get_seals);
2126
2127 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2128 {
2129         long error;
2130
2131         switch (cmd) {
2132         case F_ADD_SEALS:
2133                 /* disallow upper 32bit */
2134                 if (arg > UINT_MAX)
2135                         return -EINVAL;
2136
2137                 error = shmem_add_seals(file, arg);
2138                 break;
2139         case F_GET_SEALS:
2140                 error = shmem_get_seals(file);
2141                 break;
2142         default:
2143                 error = -EINVAL;
2144                 break;
2145         }
2146
2147         return error;
2148 }
2149
2150 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2151                                                          loff_t len)
2152 {
2153         struct inode *inode = file_inode(file);
2154         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2155         struct shmem_inode_info *info = SHMEM_I(inode);
2156         struct shmem_falloc shmem_falloc;
2157         pgoff_t start, index, end;
2158         int error;
2159
2160         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2161                 return -EOPNOTSUPP;
2162
2163         mutex_lock(&inode->i_mutex);
2164
2165         if (mode & FALLOC_FL_PUNCH_HOLE) {
2166                 struct address_space *mapping = file->f_mapping;
2167                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2168                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2169                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2170
2171                 /* protected by i_mutex */
2172                 if (info->seals & F_SEAL_WRITE) {
2173                         error = -EPERM;
2174                         goto out;
2175                 }
2176
2177                 shmem_falloc.waitq = &shmem_falloc_waitq;
2178                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2179                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2180                 spin_lock(&inode->i_lock);
2181                 inode->i_private = &shmem_falloc;
2182                 spin_unlock(&inode->i_lock);
2183
2184                 if ((u64)unmap_end > (u64)unmap_start)
2185                         unmap_mapping_range(mapping, unmap_start,
2186                                             1 + unmap_end - unmap_start, 0);
2187                 shmem_truncate_range(inode, offset, offset + len - 1);
2188                 /* No need to unmap again: hole-punching leaves COWed pages */
2189
2190                 spin_lock(&inode->i_lock);
2191                 inode->i_private = NULL;
2192                 wake_up_all(&shmem_falloc_waitq);
2193                 spin_unlock(&inode->i_lock);
2194                 error = 0;
2195                 goto out;
2196         }
2197
2198         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2199         error = inode_newsize_ok(inode, offset + len);
2200         if (error)
2201                 goto out;
2202
2203         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2204                 error = -EPERM;
2205                 goto out;
2206         }
2207
2208         start = offset >> PAGE_CACHE_SHIFT;
2209         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2210         /* Try to avoid a swapstorm if len is impossible to satisfy */
2211         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2212                 error = -ENOSPC;
2213                 goto out;
2214         }
2215
2216         shmem_falloc.waitq = NULL;
2217         shmem_falloc.start = start;
2218         shmem_falloc.next  = start;
2219         shmem_falloc.nr_falloced = 0;
2220         shmem_falloc.nr_unswapped = 0;
2221         spin_lock(&inode->i_lock);
2222         inode->i_private = &shmem_falloc;
2223         spin_unlock(&inode->i_lock);
2224
2225         for (index = start; index < end; index++) {
2226                 struct page *page;
2227
2228                 /*
2229                  * Good, the fallocate(2) manpage permits EINTR: we may have
2230                  * been interrupted because we are using up too much memory.
2231                  */
2232                 if (signal_pending(current))
2233                         error = -EINTR;
2234                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2235                         error = -ENOMEM;
2236                 else
2237                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2238                                                                         NULL);
2239                 if (error) {
2240                         /* Remove the !PageUptodate pages we added */
2241                         shmem_undo_range(inode,
2242                                 (loff_t)start << PAGE_CACHE_SHIFT,
2243                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
2244                         goto undone;
2245                 }
2246
2247                 /*
2248                  * Inform shmem_writepage() how far we have reached.
2249                  * No need for lock or barrier: we have the page lock.
2250                  */
2251                 shmem_falloc.next++;
2252                 if (!PageUptodate(page))
2253                         shmem_falloc.nr_falloced++;
2254
2255                 /*
2256                  * If !PageUptodate, leave it that way so that freeable pages
2257                  * can be recognized if we need to rollback on error later.
2258                  * But set_page_dirty so that memory pressure will swap rather
2259                  * than free the pages we are allocating (and SGP_CACHE pages
2260                  * might still be clean: we now need to mark those dirty too).
2261                  */
2262                 set_page_dirty(page);
2263                 unlock_page(page);
2264                 page_cache_release(page);
2265                 cond_resched();
2266         }
2267
2268         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2269                 i_size_write(inode, offset + len);
2270         inode->i_ctime = CURRENT_TIME;
2271 undone:
2272         spin_lock(&inode->i_lock);
2273         inode->i_private = NULL;
2274         spin_unlock(&inode->i_lock);
2275 out:
2276         mutex_unlock(&inode->i_mutex);
2277         return error;
2278 }
2279
2280 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2281 {
2282         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2283
2284         buf->f_type = TMPFS_MAGIC;
2285         buf->f_bsize = PAGE_CACHE_SIZE;
2286         buf->f_namelen = NAME_MAX;
2287         if (sbinfo->max_blocks) {
2288                 buf->f_blocks = sbinfo->max_blocks;
2289                 buf->f_bavail =
2290                 buf->f_bfree  = sbinfo->max_blocks -
2291                                 percpu_counter_sum(&sbinfo->used_blocks);
2292         }
2293         if (sbinfo->max_inodes) {
2294                 buf->f_files = sbinfo->max_inodes;
2295                 buf->f_ffree = sbinfo->free_inodes;
2296         }
2297         /* else leave those fields 0 like simple_statfs */
2298         return 0;
2299 }
2300
2301 /*
2302  * File creation. Allocate an inode, and we're done..
2303  */
2304 static int
2305 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2306 {
2307         struct inode *inode;
2308         int error = -ENOSPC;
2309
2310         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2311         if (inode) {
2312                 error = simple_acl_create(dir, inode);
2313                 if (error)
2314                         goto out_iput;
2315                 error = security_inode_init_security(inode, dir,
2316                                                      &dentry->d_name,
2317                                                      shmem_initxattrs, NULL);
2318                 if (error && error != -EOPNOTSUPP)
2319                         goto out_iput;
2320
2321                 error = 0;
2322                 dir->i_size += BOGO_DIRENT_SIZE;
2323                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2324                 d_instantiate(dentry, inode);
2325                 dget(dentry); /* Extra count - pin the dentry in core */
2326         }
2327         return error;
2328 out_iput:
2329         iput(inode);
2330         return error;
2331 }
2332
2333 static int
2334 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2335 {
2336         struct inode *inode;
2337         int error = -ENOSPC;
2338
2339         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2340         if (inode) {
2341                 error = security_inode_init_security(inode, dir,
2342                                                      NULL,
2343                                                      shmem_initxattrs, NULL);
2344                 if (error && error != -EOPNOTSUPP)
2345                         goto out_iput;
2346                 error = simple_acl_create(dir, inode);
2347                 if (error)
2348                         goto out_iput;
2349                 d_tmpfile(dentry, inode);
2350         }
2351         return error;
2352 out_iput:
2353         iput(inode);
2354         return error;
2355 }
2356
2357 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2358 {
2359         int error;
2360
2361         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2362                 return error;
2363         inc_nlink(dir);
2364         return 0;
2365 }
2366
2367 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2368                 bool excl)
2369 {
2370         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2371 }
2372
2373 /*
2374  * Link a file..
2375  */
2376 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2377 {
2378         struct inode *inode = d_inode(old_dentry);
2379         int ret;
2380
2381         /*
2382          * No ordinary (disk based) filesystem counts links as inodes;
2383          * but each new link needs a new dentry, pinning lowmem, and
2384          * tmpfs dentries cannot be pruned until they are unlinked.
2385          */
2386         ret = shmem_reserve_inode(inode->i_sb);
2387         if (ret)
2388                 goto out;
2389
2390         dir->i_size += BOGO_DIRENT_SIZE;
2391         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2392         inc_nlink(inode);
2393         ihold(inode);   /* New dentry reference */
2394         dget(dentry);           /* Extra pinning count for the created dentry */
2395         d_instantiate(dentry, inode);
2396 out:
2397         return ret;
2398 }
2399
2400 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2401 {
2402         struct inode *inode = d_inode(dentry);
2403
2404         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2405                 shmem_free_inode(inode->i_sb);
2406
2407         dir->i_size -= BOGO_DIRENT_SIZE;
2408         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2409         drop_nlink(inode);
2410         dput(dentry);   /* Undo the count from "create" - this does all the work */
2411         return 0;
2412 }
2413
2414 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2415 {
2416         if (!simple_empty(dentry))
2417                 return -ENOTEMPTY;
2418
2419         drop_nlink(d_inode(dentry));
2420         drop_nlink(dir);
2421         return shmem_unlink(dir, dentry);
2422 }
2423
2424 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2425 {
2426         bool old_is_dir = d_is_dir(old_dentry);
2427         bool new_is_dir = d_is_dir(new_dentry);
2428
2429         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2430                 if (old_is_dir) {
2431                         drop_nlink(old_dir);
2432                         inc_nlink(new_dir);
2433                 } else {
2434                         drop_nlink(new_dir);
2435                         inc_nlink(old_dir);
2436                 }
2437         }
2438         old_dir->i_ctime = old_dir->i_mtime =
2439         new_dir->i_ctime = new_dir->i_mtime =
2440         d_inode(old_dentry)->i_ctime =
2441         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2442
2443         return 0;
2444 }
2445
2446 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2447 {
2448         struct dentry *whiteout;
2449         int error;
2450
2451         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2452         if (!whiteout)
2453                 return -ENOMEM;
2454
2455         error = shmem_mknod(old_dir, whiteout,
2456                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2457         dput(whiteout);
2458         if (error)
2459                 return error;
2460
2461         /*
2462          * Cheat and hash the whiteout while the old dentry is still in
2463          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2464          *
2465          * d_lookup() will consistently find one of them at this point,
2466          * not sure which one, but that isn't even important.
2467          */
2468         d_rehash(whiteout);
2469         return 0;
2470 }
2471
2472 /*
2473  * The VFS layer already does all the dentry stuff for rename,
2474  * we just have to decrement the usage count for the target if
2475  * it exists so that the VFS layer correctly free's it when it
2476  * gets overwritten.
2477  */
2478 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2479 {
2480         struct inode *inode = d_inode(old_dentry);
2481         int they_are_dirs = S_ISDIR(inode->i_mode);
2482
2483         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2484                 return -EINVAL;
2485
2486         if (flags & RENAME_EXCHANGE)
2487                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2488
2489         if (!simple_empty(new_dentry))
2490                 return -ENOTEMPTY;
2491
2492         if (flags & RENAME_WHITEOUT) {
2493                 int error;
2494
2495                 error = shmem_whiteout(old_dir, old_dentry);
2496                 if (error)
2497                         return error;
2498         }
2499
2500         if (d_really_is_positive(new_dentry)) {
2501                 (void) shmem_unlink(new_dir, new_dentry);
2502                 if (they_are_dirs) {
2503                         drop_nlink(d_inode(new_dentry));
2504                         drop_nlink(old_dir);
2505                 }
2506         } else if (they_are_dirs) {
2507                 drop_nlink(old_dir);
2508                 inc_nlink(new_dir);
2509         }
2510
2511         old_dir->i_size -= BOGO_DIRENT_SIZE;
2512         new_dir->i_size += BOGO_DIRENT_SIZE;
2513         old_dir->i_ctime = old_dir->i_mtime =
2514         new_dir->i_ctime = new_dir->i_mtime =
2515         inode->i_ctime = CURRENT_TIME;
2516         return 0;
2517 }
2518
2519 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2520 {
2521         int error;
2522         int len;
2523         struct inode *inode;
2524         struct page *page;
2525         struct shmem_inode_info *info;
2526
2527         len = strlen(symname) + 1;
2528         if (len > PAGE_CACHE_SIZE)
2529                 return -ENAMETOOLONG;
2530
2531         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2532         if (!inode)
2533                 return -ENOSPC;
2534
2535         error = security_inode_init_security(inode, dir, &dentry->d_name,
2536                                              shmem_initxattrs, NULL);
2537         if (error) {
2538                 if (error != -EOPNOTSUPP) {
2539                         iput(inode);
2540                         return error;
2541                 }
2542                 error = 0;
2543         }
2544
2545         info = SHMEM_I(inode);
2546         inode->i_size = len-1;
2547         if (len <= SHORT_SYMLINK_LEN) {
2548                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2549                 if (!info->symlink) {
2550                         iput(inode);
2551                         return -ENOMEM;
2552                 }
2553                 inode->i_op = &shmem_short_symlink_operations;
2554                 inode->i_link = info->symlink;
2555         } else {
2556                 inode_nohighmem(inode);
2557                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2558                 if (error) {
2559                         iput(inode);
2560                         return error;
2561                 }
2562                 inode->i_mapping->a_ops = &shmem_aops;
2563                 inode->i_op = &shmem_symlink_inode_operations;
2564                 memcpy(page_address(page), symname, len);
2565                 SetPageUptodate(page);
2566                 set_page_dirty(page);
2567                 unlock_page(page);
2568                 page_cache_release(page);
2569         }
2570         dir->i_size += BOGO_DIRENT_SIZE;
2571         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2572         d_instantiate(dentry, inode);
2573         dget(dentry);
2574         return 0;
2575 }
2576
2577 static void shmem_put_link(void *arg)
2578 {
2579         mark_page_accessed(arg);
2580         put_page(arg);
2581 }
2582
2583 static const char *shmem_get_link(struct dentry *dentry,
2584                                   struct inode *inode,
2585                                   struct delayed_call *done)
2586 {
2587         struct page *page = NULL;
2588         int error;
2589         if (!dentry) {
2590                 page = find_get_page(inode->i_mapping, 0);
2591                 if (!page)
2592                         return ERR_PTR(-ECHILD);
2593                 if (!PageUptodate(page)) {
2594                         put_page(page);
2595                         return ERR_PTR(-ECHILD);
2596                 }
2597         } else {
2598                 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2599                 if (error)
2600                         return ERR_PTR(error);
2601                 unlock_page(page);
2602         }
2603         set_delayed_call(done, shmem_put_link, page);
2604         return page_address(page);
2605 }
2606
2607 #ifdef CONFIG_TMPFS_XATTR
2608 /*
2609  * Superblocks without xattr inode operations may get some security.* xattr
2610  * support from the LSM "for free". As soon as we have any other xattrs
2611  * like ACLs, we also need to implement the security.* handlers at
2612  * filesystem level, though.
2613  */
2614
2615 /*
2616  * Callback for security_inode_init_security() for acquiring xattrs.
2617  */
2618 static int shmem_initxattrs(struct inode *inode,
2619                             const struct xattr *xattr_array,
2620                             void *fs_info)
2621 {
2622         struct shmem_inode_info *info = SHMEM_I(inode);
2623         const struct xattr *xattr;
2624         struct simple_xattr *new_xattr;
2625         size_t len;
2626
2627         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2628                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2629                 if (!new_xattr)
2630                         return -ENOMEM;
2631
2632                 len = strlen(xattr->name) + 1;
2633                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2634                                           GFP_KERNEL);
2635                 if (!new_xattr->name) {
2636                         kfree(new_xattr);
2637                         return -ENOMEM;
2638                 }
2639
2640                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2641                        XATTR_SECURITY_PREFIX_LEN);
2642                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2643                        xattr->name, len);
2644
2645                 simple_xattr_list_add(&info->xattrs, new_xattr);
2646         }
2647
2648         return 0;
2649 }
2650
2651 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2652                                    struct dentry *dentry, const char *name,
2653                                    void *buffer, size_t size)
2654 {
2655         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2656
2657         name = xattr_full_name(handler, name);
2658         return simple_xattr_get(&info->xattrs, name, buffer, size);
2659 }
2660
2661 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2662                                    struct dentry *dentry, const char *name,
2663                                    const void *value, size_t size, int flags)
2664 {
2665         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2666
2667         name = xattr_full_name(handler, name);
2668         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2669 }
2670
2671 static const struct xattr_handler shmem_security_xattr_handler = {
2672         .prefix = XATTR_SECURITY_PREFIX,
2673         .get = shmem_xattr_handler_get,
2674         .set = shmem_xattr_handler_set,
2675 };
2676
2677 static const struct xattr_handler shmem_trusted_xattr_handler = {
2678         .prefix = XATTR_TRUSTED_PREFIX,
2679         .get = shmem_xattr_handler_get,
2680         .set = shmem_xattr_handler_set,
2681 };
2682
2683 static const struct xattr_handler *shmem_xattr_handlers[] = {
2684 #ifdef CONFIG_TMPFS_POSIX_ACL
2685         &posix_acl_access_xattr_handler,
2686         &posix_acl_default_xattr_handler,
2687 #endif
2688         &shmem_security_xattr_handler,
2689         &shmem_trusted_xattr_handler,
2690         NULL
2691 };
2692
2693 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2694 {
2695         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2696         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2697 }
2698 #endif /* CONFIG_TMPFS_XATTR */
2699
2700 static const struct inode_operations shmem_short_symlink_operations = {
2701         .readlink       = generic_readlink,
2702         .get_link       = simple_get_link,
2703 #ifdef CONFIG_TMPFS_XATTR
2704         .setxattr       = generic_setxattr,
2705         .getxattr       = generic_getxattr,
2706         .listxattr      = shmem_listxattr,
2707         .removexattr    = generic_removexattr,
2708 #endif
2709 };
2710
2711 static const struct inode_operations shmem_symlink_inode_operations = {
2712         .readlink       = generic_readlink,
2713         .get_link       = shmem_get_link,
2714 #ifdef CONFIG_TMPFS_XATTR
2715         .setxattr       = generic_setxattr,
2716         .getxattr       = generic_getxattr,
2717         .listxattr      = shmem_listxattr,
2718         .removexattr    = generic_removexattr,
2719 #endif
2720 };
2721
2722 static struct dentry *shmem_get_parent(struct dentry *child)
2723 {
2724         return ERR_PTR(-ESTALE);
2725 }
2726
2727 static int shmem_match(struct inode *ino, void *vfh)
2728 {
2729         __u32 *fh = vfh;
2730         __u64 inum = fh[2];
2731         inum = (inum << 32) | fh[1];
2732         return ino->i_ino == inum && fh[0] == ino->i_generation;
2733 }
2734
2735 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2736                 struct fid *fid, int fh_len, int fh_type)
2737 {
2738         struct inode *inode;
2739         struct dentry *dentry = NULL;
2740         u64 inum;
2741
2742         if (fh_len < 3)
2743                 return NULL;
2744
2745         inum = fid->raw[2];
2746         inum = (inum << 32) | fid->raw[1];
2747
2748         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2749                         shmem_match, fid->raw);
2750         if (inode) {
2751                 dentry = d_find_alias(inode);
2752                 iput(inode);
2753         }
2754
2755         return dentry;
2756 }
2757
2758 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2759                                 struct inode *parent)
2760 {
2761         if (*len < 3) {
2762                 *len = 3;
2763                 return FILEID_INVALID;
2764         }
2765
2766         if (inode_unhashed(inode)) {
2767                 /* Unfortunately insert_inode_hash is not idempotent,
2768                  * so as we hash inodes here rather than at creation
2769                  * time, we need a lock to ensure we only try
2770                  * to do it once
2771                  */
2772                 static DEFINE_SPINLOCK(lock);
2773                 spin_lock(&lock);
2774                 if (inode_unhashed(inode))
2775                         __insert_inode_hash(inode,
2776                                             inode->i_ino + inode->i_generation);
2777                 spin_unlock(&lock);
2778         }
2779
2780         fh[0] = inode->i_generation;
2781         fh[1] = inode->i_ino;
2782         fh[2] = ((__u64)inode->i_ino) >> 32;
2783
2784         *len = 3;
2785         return 1;
2786 }
2787
2788 static const struct export_operations shmem_export_ops = {
2789         .get_parent     = shmem_get_parent,
2790         .encode_fh      = shmem_encode_fh,
2791         .fh_to_dentry   = shmem_fh_to_dentry,
2792 };
2793
2794 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2795                                bool remount)
2796 {
2797         char *this_char, *value, *rest;
2798         struct mempolicy *mpol = NULL;
2799         uid_t uid;
2800         gid_t gid;
2801
2802         while (options != NULL) {
2803                 this_char = options;
2804                 for (;;) {
2805                         /*
2806                          * NUL-terminate this option: unfortunately,
2807                          * mount options form a comma-separated list,
2808                          * but mpol's nodelist may also contain commas.
2809                          */
2810                         options = strchr(options, ',');
2811                         if (options == NULL)
2812                                 break;
2813                         options++;
2814                         if (!isdigit(*options)) {
2815                                 options[-1] = '\0';
2816                                 break;
2817                         }
2818                 }
2819                 if (!*this_char)
2820                         continue;
2821                 if ((value = strchr(this_char,'=')) != NULL) {
2822                         *value++ = 0;
2823                 } else {
2824                         printk(KERN_ERR
2825                             "tmpfs: No value for mount option '%s'\n",
2826                             this_char);
2827                         goto error;
2828                 }
2829
2830                 if (!strcmp(this_char,"size")) {
2831                         unsigned long long size;
2832                         size = memparse(value,&rest);
2833                         if (*rest == '%') {
2834                                 size <<= PAGE_SHIFT;
2835                                 size *= totalram_pages;
2836                                 do_div(size, 100);
2837                                 rest++;
2838                         }
2839                         if (*rest)
2840                                 goto bad_val;
2841                         sbinfo->max_blocks =
2842                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2843                 } else if (!strcmp(this_char,"nr_blocks")) {
2844                         sbinfo->max_blocks = memparse(value, &rest);
2845                         if (*rest)
2846                                 goto bad_val;
2847                 } else if (!strcmp(this_char,"nr_inodes")) {
2848                         sbinfo->max_inodes = memparse(value, &rest);
2849                         if (*rest)
2850                                 goto bad_val;
2851                 } else if (!strcmp(this_char,"mode")) {
2852                         if (remount)
2853                                 continue;
2854                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2855                         if (*rest)
2856                                 goto bad_val;
2857                 } else if (!strcmp(this_char,"uid")) {
2858                         if (remount)
2859                                 continue;
2860                         uid = simple_strtoul(value, &rest, 0);
2861                         if (*rest)
2862                                 goto bad_val;
2863                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2864                         if (!uid_valid(sbinfo->uid))
2865                                 goto bad_val;
2866                 } else if (!strcmp(this_char,"gid")) {
2867                         if (remount)
2868                                 continue;
2869                         gid = simple_strtoul(value, &rest, 0);
2870                         if (*rest)
2871                                 goto bad_val;
2872                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2873                         if (!gid_valid(sbinfo->gid))
2874                                 goto bad_val;
2875                 } else if (!strcmp(this_char,"mpol")) {
2876                         mpol_put(mpol);
2877                         mpol = NULL;
2878                         if (mpol_parse_str(value, &mpol))
2879                                 goto bad_val;
2880                 } else {
2881                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2882                                this_char);
2883                         goto error;
2884                 }
2885         }
2886         sbinfo->mpol = mpol;
2887         return 0;
2888
2889 bad_val:
2890         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2891                value, this_char);
2892 error:
2893         mpol_put(mpol);
2894         return 1;
2895
2896 }
2897
2898 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2899 {
2900         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2901         struct shmem_sb_info config = *sbinfo;
2902         unsigned long inodes;
2903         int error = -EINVAL;
2904
2905         config.mpol = NULL;
2906         if (shmem_parse_options(data, &config, true))
2907                 return error;
2908
2909         spin_lock(&sbinfo->stat_lock);
2910         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2911         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2912                 goto out;
2913         if (config.max_inodes < inodes)
2914                 goto out;
2915         /*
2916          * Those tests disallow limited->unlimited while any are in use;
2917          * but we must separately disallow unlimited->limited, because
2918          * in that case we have no record of how much is already in use.
2919          */
2920         if (config.max_blocks && !sbinfo->max_blocks)
2921                 goto out;
2922         if (config.max_inodes && !sbinfo->max_inodes)
2923                 goto out;
2924
2925         error = 0;
2926         sbinfo->max_blocks  = config.max_blocks;
2927         sbinfo->max_inodes  = config.max_inodes;
2928         sbinfo->free_inodes = config.max_inodes - inodes;
2929
2930         /*
2931          * Preserve previous mempolicy unless mpol remount option was specified.
2932          */
2933         if (config.mpol) {
2934                 mpol_put(sbinfo->mpol);
2935                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2936         }
2937 out:
2938         spin_unlock(&sbinfo->stat_lock);
2939         return error;
2940 }
2941
2942 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2943 {
2944         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2945
2946         if (sbinfo->max_blocks != shmem_default_max_blocks())
2947                 seq_printf(seq, ",size=%luk",
2948                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2949         if (sbinfo->max_inodes != shmem_default_max_inodes())
2950                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2951         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2952                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2953         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2954                 seq_printf(seq, ",uid=%u",
2955                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2956         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2957                 seq_printf(seq, ",gid=%u",
2958                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2959         shmem_show_mpol(seq, sbinfo->mpol);
2960         return 0;
2961 }
2962
2963 #define MFD_NAME_PREFIX "memfd:"
2964 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2965 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2966
2967 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2968
2969 SYSCALL_DEFINE2(memfd_create,
2970                 const char __user *, uname,
2971                 unsigned int, flags)
2972 {
2973         struct shmem_inode_info *info;
2974         struct file *file;
2975         int fd, error;
2976         char *name;
2977         long len;
2978
2979         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2980                 return -EINVAL;
2981
2982         /* length includes terminating zero */
2983         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2984         if (len <= 0)
2985                 return -EFAULT;
2986         if (len > MFD_NAME_MAX_LEN + 1)
2987                 return -EINVAL;
2988
2989         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2990         if (!name)
2991                 return -ENOMEM;
2992
2993         strcpy(name, MFD_NAME_PREFIX);
2994         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2995                 error = -EFAULT;
2996                 goto err_name;
2997         }
2998
2999         /* terminating-zero may have changed after strnlen_user() returned */
3000         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3001                 error = -EFAULT;
3002                 goto err_name;
3003         }
3004
3005         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3006         if (fd < 0) {
3007                 error = fd;
3008                 goto err_name;
3009         }
3010
3011         file = shmem_file_setup(name, 0, VM_NORESERVE);
3012         if (IS_ERR(file)) {
3013                 error = PTR_ERR(file);
3014                 goto err_fd;
3015         }
3016         info = SHMEM_I(file_inode(file));
3017         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3018         file->f_flags |= O_RDWR | O_LARGEFILE;
3019         if (flags & MFD_ALLOW_SEALING)
3020                 info->seals &= ~F_SEAL_SEAL;
3021
3022         fd_install(fd, file);
3023         kfree(name);
3024         return fd;
3025
3026 err_fd:
3027         put_unused_fd(fd);
3028 err_name:
3029         kfree(name);
3030         return error;
3031 }
3032
3033 #endif /* CONFIG_TMPFS */
3034
3035 static void shmem_put_super(struct super_block *sb)
3036 {
3037         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3038
3039         percpu_counter_destroy(&sbinfo->used_blocks);
3040         mpol_put(sbinfo->mpol);
3041         kfree(sbinfo);
3042         sb->s_fs_info = NULL;
3043 }
3044
3045 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3046 {
3047         struct inode *inode;
3048         struct shmem_sb_info *sbinfo;
3049         int err = -ENOMEM;
3050
3051         /* Round up to L1_CACHE_BYTES to resist false sharing */
3052         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3053                                 L1_CACHE_BYTES), GFP_KERNEL);
3054         if (!sbinfo)
3055                 return -ENOMEM;
3056
3057         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3058         sbinfo->uid = current_fsuid();
3059         sbinfo->gid = current_fsgid();
3060         sb->s_fs_info = sbinfo;
3061
3062 #ifdef CONFIG_TMPFS
3063         /*
3064          * Per default we only allow half of the physical ram per
3065          * tmpfs instance, limiting inodes to one per page of lowmem;
3066          * but the internal instance is left unlimited.
3067          */
3068         if (!(sb->s_flags & MS_KERNMOUNT)) {
3069                 sbinfo->max_blocks = shmem_default_max_blocks();
3070                 sbinfo->max_inodes = shmem_default_max_inodes();
3071                 if (shmem_parse_options(data, sbinfo, false)) {
3072                         err = -EINVAL;
3073                         goto failed;
3074                 }
3075         } else {
3076                 sb->s_flags |= MS_NOUSER;
3077         }
3078         sb->s_export_op = &shmem_export_ops;
3079         sb->s_flags |= MS_NOSEC;
3080 #else
3081         sb->s_flags |= MS_NOUSER;
3082 #endif
3083
3084         spin_lock_init(&sbinfo->stat_lock);
3085         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3086                 goto failed;
3087         sbinfo->free_inodes = sbinfo->max_inodes;
3088
3089         sb->s_maxbytes = MAX_LFS_FILESIZE;
3090         sb->s_blocksize = PAGE_CACHE_SIZE;
3091         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3092         sb->s_magic = TMPFS_MAGIC;
3093         sb->s_op = &shmem_ops;
3094         sb->s_time_gran = 1;
3095 #ifdef CONFIG_TMPFS_XATTR
3096         sb->s_xattr = shmem_xattr_handlers;
3097 #endif
3098 #ifdef CONFIG_TMPFS_POSIX_ACL
3099         sb->s_flags |= MS_POSIXACL;
3100 #endif
3101
3102         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3103         if (!inode)
3104                 goto failed;
3105         inode->i_uid = sbinfo->uid;
3106         inode->i_gid = sbinfo->gid;
3107         sb->s_root = d_make_root(inode);
3108         if (!sb->s_root)
3109                 goto failed;
3110         return 0;
3111
3112 failed:
3113         shmem_put_super(sb);
3114         return err;
3115 }
3116
3117 static struct kmem_cache *shmem_inode_cachep;
3118
3119 static struct inode *shmem_alloc_inode(struct super_block *sb)
3120 {
3121         struct shmem_inode_info *info;
3122         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3123         if (!info)
3124                 return NULL;
3125         return &info->vfs_inode;
3126 }
3127
3128 static void shmem_destroy_callback(struct rcu_head *head)
3129 {
3130         struct inode *inode = container_of(head, struct inode, i_rcu);
3131         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3132 }
3133
3134 static void shmem_destroy_inode(struct inode *inode)
3135 {
3136         if (S_ISREG(inode->i_mode))
3137                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3138         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3139 }
3140
3141 static void shmem_init_inode(void *foo)
3142 {
3143         struct shmem_inode_info *info = foo;
3144         inode_init_once(&info->vfs_inode);
3145 }
3146
3147 static int shmem_init_inodecache(void)
3148 {
3149         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3150                                 sizeof(struct shmem_inode_info),
3151                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3152         return 0;
3153 }
3154
3155 static void shmem_destroy_inodecache(void)
3156 {
3157         kmem_cache_destroy(shmem_inode_cachep);
3158 }
3159
3160 static const struct address_space_operations shmem_aops = {
3161         .writepage      = shmem_writepage,
3162         .set_page_dirty = __set_page_dirty_no_writeback,
3163 #ifdef CONFIG_TMPFS
3164         .write_begin    = shmem_write_begin,
3165         .write_end      = shmem_write_end,
3166 #endif
3167 #ifdef CONFIG_MIGRATION
3168         .migratepage    = migrate_page,
3169 #endif
3170         .error_remove_page = generic_error_remove_page,
3171 };
3172
3173 static const struct file_operations shmem_file_operations = {
3174         .mmap           = shmem_mmap,
3175 #ifdef CONFIG_TMPFS
3176         .llseek         = shmem_file_llseek,
3177         .read_iter      = shmem_file_read_iter,
3178         .write_iter     = generic_file_write_iter,
3179         .fsync          = noop_fsync,
3180         .splice_read    = shmem_file_splice_read,
3181         .splice_write   = iter_file_splice_write,
3182         .fallocate      = shmem_fallocate,
3183 #endif
3184 };
3185
3186 static const struct inode_operations shmem_inode_operations = {
3187         .getattr        = shmem_getattr,
3188         .setattr        = shmem_setattr,
3189 #ifdef CONFIG_TMPFS_XATTR
3190         .setxattr       = generic_setxattr,
3191         .getxattr       = generic_getxattr,
3192         .listxattr      = shmem_listxattr,
3193         .removexattr    = generic_removexattr,
3194         .set_acl        = simple_set_acl,
3195 #endif
3196 };
3197
3198 static const struct inode_operations shmem_dir_inode_operations = {
3199 #ifdef CONFIG_TMPFS
3200         .create         = shmem_create,
3201         .lookup         = simple_lookup,
3202         .link           = shmem_link,
3203         .unlink         = shmem_unlink,
3204         .symlink        = shmem_symlink,
3205         .mkdir          = shmem_mkdir,
3206         .rmdir          = shmem_rmdir,
3207         .mknod          = shmem_mknod,
3208         .rename2        = shmem_rename2,
3209         .tmpfile        = shmem_tmpfile,
3210 #endif
3211 #ifdef CONFIG_TMPFS_XATTR
3212         .setxattr       = generic_setxattr,
3213         .getxattr       = generic_getxattr,
3214         .listxattr      = shmem_listxattr,
3215         .removexattr    = generic_removexattr,
3216 #endif
3217 #ifdef CONFIG_TMPFS_POSIX_ACL
3218         .setattr        = shmem_setattr,
3219         .set_acl        = simple_set_acl,
3220 #endif
3221 };
3222
3223 static const struct inode_operations shmem_special_inode_operations = {
3224 #ifdef CONFIG_TMPFS_XATTR
3225         .setxattr       = generic_setxattr,
3226         .getxattr       = generic_getxattr,
3227         .listxattr      = shmem_listxattr,
3228         .removexattr    = generic_removexattr,
3229 #endif
3230 #ifdef CONFIG_TMPFS_POSIX_ACL
3231         .setattr        = shmem_setattr,
3232         .set_acl        = simple_set_acl,
3233 #endif
3234 };
3235
3236 static const struct super_operations shmem_ops = {
3237         .alloc_inode    = shmem_alloc_inode,
3238         .destroy_inode  = shmem_destroy_inode,
3239 #ifdef CONFIG_TMPFS
3240         .statfs         = shmem_statfs,
3241         .remount_fs     = shmem_remount_fs,
3242         .show_options   = shmem_show_options,
3243 #endif
3244         .evict_inode    = shmem_evict_inode,
3245         .drop_inode     = generic_delete_inode,
3246         .put_super      = shmem_put_super,
3247 };
3248
3249 static const struct vm_operations_struct shmem_vm_ops = {
3250         .fault          = shmem_fault,
3251         .map_pages      = filemap_map_pages,
3252 #ifdef CONFIG_NUMA
3253         .set_policy     = shmem_set_policy,
3254         .get_policy     = shmem_get_policy,
3255 #endif
3256 };
3257
3258 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3259         int flags, const char *dev_name, void *data)
3260 {
3261         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3262 }
3263
3264 static struct file_system_type shmem_fs_type = {
3265         .owner          = THIS_MODULE,
3266         .name           = "tmpfs",
3267         .mount          = shmem_mount,
3268         .kill_sb        = kill_litter_super,
3269         .fs_flags       = FS_USERNS_MOUNT,
3270 };
3271
3272 int __init shmem_init(void)
3273 {
3274         int error;
3275
3276         /* If rootfs called this, don't re-init */
3277         if (shmem_inode_cachep)
3278                 return 0;
3279
3280         error = shmem_init_inodecache();
3281         if (error)
3282                 goto out3;
3283
3284         error = register_filesystem(&shmem_fs_type);
3285         if (error) {
3286                 printk(KERN_ERR "Could not register tmpfs\n");
3287                 goto out2;
3288         }
3289
3290         shm_mnt = kern_mount(&shmem_fs_type);
3291         if (IS_ERR(shm_mnt)) {
3292                 error = PTR_ERR(shm_mnt);
3293                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3294                 goto out1;
3295         }
3296         return 0;
3297
3298 out1:
3299         unregister_filesystem(&shmem_fs_type);
3300 out2:
3301         shmem_destroy_inodecache();
3302 out3:
3303         shm_mnt = ERR_PTR(error);
3304         return error;
3305 }
3306
3307 #else /* !CONFIG_SHMEM */
3308
3309 /*
3310  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3311  *
3312  * This is intended for small system where the benefits of the full
3313  * shmem code (swap-backed and resource-limited) are outweighed by
3314  * their complexity. On systems without swap this code should be
3315  * effectively equivalent, but much lighter weight.
3316  */
3317
3318 static struct file_system_type shmem_fs_type = {
3319         .name           = "tmpfs",
3320         .mount          = ramfs_mount,
3321         .kill_sb        = kill_litter_super,
3322         .fs_flags       = FS_USERNS_MOUNT,
3323 };
3324
3325 int __init shmem_init(void)
3326 {
3327         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3328
3329         shm_mnt = kern_mount(&shmem_fs_type);
3330         BUG_ON(IS_ERR(shm_mnt));
3331
3332         return 0;
3333 }
3334
3335 int shmem_unuse(swp_entry_t swap, struct page *page)
3336 {
3337         return 0;
3338 }
3339
3340 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3341 {
3342         return 0;
3343 }
3344
3345 void shmem_unlock_mapping(struct address_space *mapping)
3346 {
3347 }
3348
3349 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3350 {
3351         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3352 }
3353 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3354
3355 #define shmem_vm_ops                            generic_file_vm_ops
3356 #define shmem_file_operations                   ramfs_file_operations
3357 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3358 #define shmem_acct_size(flags, size)            0
3359 #define shmem_unacct_size(flags, size)          do {} while (0)
3360
3361 #endif /* CONFIG_SHMEM */
3362
3363 /* common code */
3364
3365 static struct dentry_operations anon_ops = {
3366         .d_dname = simple_dname
3367 };
3368
3369 static struct file *__shmem_file_setup(const char *name, loff_t size,
3370                                        unsigned long flags, unsigned int i_flags)
3371 {
3372         struct file *res;
3373         struct inode *inode;
3374         struct path path;
3375         struct super_block *sb;
3376         struct qstr this;
3377
3378         if (IS_ERR(shm_mnt))
3379                 return ERR_CAST(shm_mnt);
3380
3381         if (size < 0 || size > MAX_LFS_FILESIZE)
3382                 return ERR_PTR(-EINVAL);
3383
3384         if (shmem_acct_size(flags, size))
3385                 return ERR_PTR(-ENOMEM);
3386
3387         res = ERR_PTR(-ENOMEM);
3388         this.name = name;
3389         this.len = strlen(name);
3390         this.hash = 0; /* will go */
3391         sb = shm_mnt->mnt_sb;
3392         path.mnt = mntget(shm_mnt);
3393         path.dentry = d_alloc_pseudo(sb, &this);
3394         if (!path.dentry)
3395                 goto put_memory;
3396         d_set_d_op(path.dentry, &anon_ops);
3397
3398         res = ERR_PTR(-ENOSPC);
3399         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3400         if (!inode)
3401                 goto put_memory;
3402
3403         inode->i_flags |= i_flags;
3404         d_instantiate(path.dentry, inode);
3405         inode->i_size = size;
3406         clear_nlink(inode);     /* It is unlinked */
3407         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3408         if (IS_ERR(res))
3409                 goto put_path;
3410
3411         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3412                   &shmem_file_operations);
3413         if (IS_ERR(res))
3414                 goto put_path;
3415
3416         return res;
3417
3418 put_memory:
3419         shmem_unacct_size(flags, size);
3420 put_path:
3421         path_put(&path);
3422         return res;
3423 }
3424
3425 /**
3426  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3427  *      kernel internal.  There will be NO LSM permission checks against the
3428  *      underlying inode.  So users of this interface must do LSM checks at a
3429  *      higher layer.  The users are the big_key and shm implementations.  LSM
3430  *      checks are provided at the key or shm level rather than the inode.
3431  * @name: name for dentry (to be seen in /proc/<pid>/maps
3432  * @size: size to be set for the file
3433  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3434  */
3435 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3436 {
3437         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3438 }
3439
3440 /**
3441  * shmem_file_setup - get an unlinked file living in tmpfs
3442  * @name: name for dentry (to be seen in /proc/<pid>/maps
3443  * @size: size to be set for the file
3444  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3445  */
3446 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3447 {
3448         return __shmem_file_setup(name, size, flags, 0);
3449 }
3450 EXPORT_SYMBOL_GPL(shmem_file_setup);
3451
3452 /**
3453  * shmem_zero_setup - setup a shared anonymous mapping
3454  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3455  */
3456 int shmem_zero_setup(struct vm_area_struct *vma)
3457 {
3458         struct file *file;
3459         loff_t size = vma->vm_end - vma->vm_start;
3460
3461         /*
3462          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3463          * between XFS directory reading and selinux: since this file is only
3464          * accessible to the user through its mapping, use S_PRIVATE flag to
3465          * bypass file security, in the same way as shmem_kernel_file_setup().
3466          */
3467         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3468         if (IS_ERR(file))
3469                 return PTR_ERR(file);
3470
3471         if (vma->vm_file)
3472                 fput(vma->vm_file);
3473         vma->vm_file = file;
3474         vma->vm_ops = &shmem_vm_ops;
3475         return 0;
3476 }
3477
3478 /**
3479  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3480  * @mapping:    the page's address_space
3481  * @index:      the page index
3482  * @gfp:        the page allocator flags to use if allocating
3483  *
3484  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3485  * with any new page allocations done using the specified allocation flags.
3486  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3487  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3488  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3489  *
3490  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3491  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3492  */
3493 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3494                                          pgoff_t index, gfp_t gfp)
3495 {
3496 #ifdef CONFIG_SHMEM
3497         struct inode *inode = mapping->host;
3498         struct page *page;
3499         int error;
3500
3501         BUG_ON(mapping->a_ops != &shmem_aops);
3502         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3503         if (error)
3504                 page = ERR_PTR(error);
3505         else
3506                 unlock_page(page);
3507         return page;
3508 #else
3509         /*
3510          * The tiny !SHMEM case uses ramfs without swap
3511          */
3512         return read_cache_page_gfp(mapping, index, gfp);
3513 #endif
3514 }
3515 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);