XArray: Add xa_cmpxchg_irq and xa_cmpxchg_bh
[linux-2.6-block.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41
42 static struct vfsmount *shm_mnt;
43
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103         pgoff_t start;          /* start of range currently being fallocated */
104         pgoff_t next;           /* the next page offset to be fallocated */
105         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
106         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112         return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123                                 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125                 struct page **pagep, enum sgp_type sgp,
126                 gfp_t gfp, struct vm_area_struct *vma,
127                 struct vm_fault *vmf, vm_fault_t *fault_type);
128
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130                 struct page **pagep, enum sgp_type sgp)
131 {
132         return shmem_getpage_gfp(inode, index, pagep, sgp,
133                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138         return sb->s_fs_info;
139 }
140
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149         return (flags & VM_NORESERVE) ?
150                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155         if (!(flags & VM_NORESERVE))
156                 vm_unacct_memory(VM_ACCT(size));
157 }
158
159 static inline int shmem_reacct_size(unsigned long flags,
160                 loff_t oldsize, loff_t newsize)
161 {
162         if (!(flags & VM_NORESERVE)) {
163                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164                         return security_vm_enough_memory_mm(current->mm,
165                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
166                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168         }
169         return 0;
170 }
171
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180         if (!(flags & VM_NORESERVE))
181                 return 0;
182
183         return security_vm_enough_memory_mm(current->mm,
184                         pages * VM_ACCT(PAGE_SIZE));
185 }
186
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189         if (flags & VM_NORESERVE)
190                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195         struct shmem_inode_info *info = SHMEM_I(inode);
196         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197
198         if (shmem_acct_block(info->flags, pages))
199                 return false;
200
201         if (sbinfo->max_blocks) {
202                 if (percpu_counter_compare(&sbinfo->used_blocks,
203                                            sbinfo->max_blocks - pages) > 0)
204                         goto unacct;
205                 percpu_counter_add(&sbinfo->used_blocks, pages);
206         }
207
208         return true;
209
210 unacct:
211         shmem_unacct_blocks(info->flags, pages);
212         return false;
213 }
214
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217         struct shmem_inode_info *info = SHMEM_I(inode);
218         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220         if (sbinfo->max_blocks)
221                 percpu_counter_sub(&sbinfo->used_blocks, pages);
222         shmem_unacct_blocks(info->flags, pages);
223 }
224
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236         return vma->vm_ops == &shmem_vm_ops;
237 }
238
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245         if (sbinfo->max_inodes) {
246                 spin_lock(&sbinfo->stat_lock);
247                 if (!sbinfo->free_inodes) {
248                         spin_unlock(&sbinfo->stat_lock);
249                         return -ENOSPC;
250                 }
251                 sbinfo->free_inodes--;
252                 spin_unlock(&sbinfo->stat_lock);
253         }
254         return 0;
255 }
256
257 static void shmem_free_inode(struct super_block *sb)
258 {
259         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260         if (sbinfo->max_inodes) {
261                 spin_lock(&sbinfo->stat_lock);
262                 sbinfo->free_inodes++;
263                 spin_unlock(&sbinfo->stat_lock);
264         }
265 }
266
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281         struct shmem_inode_info *info = SHMEM_I(inode);
282         long freed;
283
284         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285         if (freed > 0) {
286                 info->alloced -= freed;
287                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288                 shmem_inode_unacct_blocks(inode, freed);
289         }
290 }
291
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         unsigned long flags;
296
297         if (!shmem_inode_acct_block(inode, pages))
298                 return false;
299
300         /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
301         inode->i_mapping->nrpages += pages;
302
303         spin_lock_irqsave(&info->lock, flags);
304         info->alloced += pages;
305         inode->i_blocks += pages * BLOCKS_PER_PAGE;
306         shmem_recalc_inode(inode);
307         spin_unlock_irqrestore(&info->lock, flags);
308
309         return true;
310 }
311
312 void shmem_uncharge(struct inode *inode, long pages)
313 {
314         struct shmem_inode_info *info = SHMEM_I(inode);
315         unsigned long flags;
316
317         /* nrpages adjustment done by __delete_from_page_cache() or caller */
318
319         spin_lock_irqsave(&info->lock, flags);
320         info->alloced -= pages;
321         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
322         shmem_recalc_inode(inode);
323         spin_unlock_irqrestore(&info->lock, flags);
324
325         shmem_inode_unacct_blocks(inode, pages);
326 }
327
328 /*
329  * Replace item expected in xarray by a new item, while holding xa_lock.
330  */
331 static int shmem_replace_entry(struct address_space *mapping,
332                         pgoff_t index, void *expected, void *replacement)
333 {
334         XA_STATE(xas, &mapping->i_pages, index);
335         void *item;
336
337         VM_BUG_ON(!expected);
338         VM_BUG_ON(!replacement);
339         item = xas_load(&xas);
340         if (item != expected)
341                 return -ENOENT;
342         xas_store(&xas, replacement);
343         return 0;
344 }
345
346 /*
347  * Sometimes, before we decide whether to proceed or to fail, we must check
348  * that an entry was not already brought back from swap by a racing thread.
349  *
350  * Checking page is not enough: by the time a SwapCache page is locked, it
351  * might be reused, and again be SwapCache, using the same swap as before.
352  */
353 static bool shmem_confirm_swap(struct address_space *mapping,
354                                pgoff_t index, swp_entry_t swap)
355 {
356         return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
357 }
358
359 /*
360  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
361  *
362  * SHMEM_HUGE_NEVER:
363  *      disables huge pages for the mount;
364  * SHMEM_HUGE_ALWAYS:
365  *      enables huge pages for the mount;
366  * SHMEM_HUGE_WITHIN_SIZE:
367  *      only allocate huge pages if the page will be fully within i_size,
368  *      also respect fadvise()/madvise() hints;
369  * SHMEM_HUGE_ADVISE:
370  *      only allocate huge pages if requested with fadvise()/madvise();
371  */
372
373 #define SHMEM_HUGE_NEVER        0
374 #define SHMEM_HUGE_ALWAYS       1
375 #define SHMEM_HUGE_WITHIN_SIZE  2
376 #define SHMEM_HUGE_ADVISE       3
377
378 /*
379  * Special values.
380  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
381  *
382  * SHMEM_HUGE_DENY:
383  *      disables huge on shm_mnt and all mounts, for emergency use;
384  * SHMEM_HUGE_FORCE:
385  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
386  *
387  */
388 #define SHMEM_HUGE_DENY         (-1)
389 #define SHMEM_HUGE_FORCE        (-2)
390
391 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
392 /* ifdef here to avoid bloating shmem.o when not necessary */
393
394 static int shmem_huge __read_mostly;
395
396 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
397 static int shmem_parse_huge(const char *str)
398 {
399         if (!strcmp(str, "never"))
400                 return SHMEM_HUGE_NEVER;
401         if (!strcmp(str, "always"))
402                 return SHMEM_HUGE_ALWAYS;
403         if (!strcmp(str, "within_size"))
404                 return SHMEM_HUGE_WITHIN_SIZE;
405         if (!strcmp(str, "advise"))
406                 return SHMEM_HUGE_ADVISE;
407         if (!strcmp(str, "deny"))
408                 return SHMEM_HUGE_DENY;
409         if (!strcmp(str, "force"))
410                 return SHMEM_HUGE_FORCE;
411         return -EINVAL;
412 }
413
414 static const char *shmem_format_huge(int huge)
415 {
416         switch (huge) {
417         case SHMEM_HUGE_NEVER:
418                 return "never";
419         case SHMEM_HUGE_ALWAYS:
420                 return "always";
421         case SHMEM_HUGE_WITHIN_SIZE:
422                 return "within_size";
423         case SHMEM_HUGE_ADVISE:
424                 return "advise";
425         case SHMEM_HUGE_DENY:
426                 return "deny";
427         case SHMEM_HUGE_FORCE:
428                 return "force";
429         default:
430                 VM_BUG_ON(1);
431                 return "bad_val";
432         }
433 }
434 #endif
435
436 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
437                 struct shrink_control *sc, unsigned long nr_to_split)
438 {
439         LIST_HEAD(list), *pos, *next;
440         LIST_HEAD(to_remove);
441         struct inode *inode;
442         struct shmem_inode_info *info;
443         struct page *page;
444         unsigned long batch = sc ? sc->nr_to_scan : 128;
445         int removed = 0, split = 0;
446
447         if (list_empty(&sbinfo->shrinklist))
448                 return SHRINK_STOP;
449
450         spin_lock(&sbinfo->shrinklist_lock);
451         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
452                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
453
454                 /* pin the inode */
455                 inode = igrab(&info->vfs_inode);
456
457                 /* inode is about to be evicted */
458                 if (!inode) {
459                         list_del_init(&info->shrinklist);
460                         removed++;
461                         goto next;
462                 }
463
464                 /* Check if there's anything to gain */
465                 if (round_up(inode->i_size, PAGE_SIZE) ==
466                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
467                         list_move(&info->shrinklist, &to_remove);
468                         removed++;
469                         goto next;
470                 }
471
472                 list_move(&info->shrinklist, &list);
473 next:
474                 if (!--batch)
475                         break;
476         }
477         spin_unlock(&sbinfo->shrinklist_lock);
478
479         list_for_each_safe(pos, next, &to_remove) {
480                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
481                 inode = &info->vfs_inode;
482                 list_del_init(&info->shrinklist);
483                 iput(inode);
484         }
485
486         list_for_each_safe(pos, next, &list) {
487                 int ret;
488
489                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490                 inode = &info->vfs_inode;
491
492                 if (nr_to_split && split >= nr_to_split)
493                         goto leave;
494
495                 page = find_get_page(inode->i_mapping,
496                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
497                 if (!page)
498                         goto drop;
499
500                 /* No huge page at the end of the file: nothing to split */
501                 if (!PageTransHuge(page)) {
502                         put_page(page);
503                         goto drop;
504                 }
505
506                 /*
507                  * Leave the inode on the list if we failed to lock
508                  * the page at this time.
509                  *
510                  * Waiting for the lock may lead to deadlock in the
511                  * reclaim path.
512                  */
513                 if (!trylock_page(page)) {
514                         put_page(page);
515                         goto leave;
516                 }
517
518                 ret = split_huge_page(page);
519                 unlock_page(page);
520                 put_page(page);
521
522                 /* If split failed leave the inode on the list */
523                 if (ret)
524                         goto leave;
525
526                 split++;
527 drop:
528                 list_del_init(&info->shrinklist);
529                 removed++;
530 leave:
531                 iput(inode);
532         }
533
534         spin_lock(&sbinfo->shrinklist_lock);
535         list_splice_tail(&list, &sbinfo->shrinklist);
536         sbinfo->shrinklist_len -= removed;
537         spin_unlock(&sbinfo->shrinklist_lock);
538
539         return split;
540 }
541
542 static long shmem_unused_huge_scan(struct super_block *sb,
543                 struct shrink_control *sc)
544 {
545         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
546
547         if (!READ_ONCE(sbinfo->shrinklist_len))
548                 return SHRINK_STOP;
549
550         return shmem_unused_huge_shrink(sbinfo, sc, 0);
551 }
552
553 static long shmem_unused_huge_count(struct super_block *sb,
554                 struct shrink_control *sc)
555 {
556         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
557         return READ_ONCE(sbinfo->shrinklist_len);
558 }
559 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
560
561 #define shmem_huge SHMEM_HUGE_DENY
562
563 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
564                 struct shrink_control *sc, unsigned long nr_to_split)
565 {
566         return 0;
567 }
568 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569
570 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
571 {
572         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
573             (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
574             shmem_huge != SHMEM_HUGE_DENY)
575                 return true;
576         return false;
577 }
578
579 /*
580  * Like add_to_page_cache_locked, but error if expected item has gone.
581  */
582 static int shmem_add_to_page_cache(struct page *page,
583                                    struct address_space *mapping,
584                                    pgoff_t index, void *expected, gfp_t gfp)
585 {
586         XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
587         unsigned long i = 0;
588         unsigned long nr = 1UL << compound_order(page);
589
590         VM_BUG_ON_PAGE(PageTail(page), page);
591         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
592         VM_BUG_ON_PAGE(!PageLocked(page), page);
593         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
594         VM_BUG_ON(expected && PageTransHuge(page));
595
596         page_ref_add(page, nr);
597         page->mapping = mapping;
598         page->index = index;
599
600         do {
601                 void *entry;
602                 xas_lock_irq(&xas);
603                 entry = xas_find_conflict(&xas);
604                 if (entry != expected)
605                         xas_set_err(&xas, -EEXIST);
606                 xas_create_range(&xas);
607                 if (xas_error(&xas))
608                         goto unlock;
609 next:
610                 xas_store(&xas, page + i);
611                 if (++i < nr) {
612                         xas_next(&xas);
613                         goto next;
614                 }
615                 if (PageTransHuge(page)) {
616                         count_vm_event(THP_FILE_ALLOC);
617                         __inc_node_page_state(page, NR_SHMEM_THPS);
618                 }
619                 mapping->nrpages += nr;
620                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
621                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
622 unlock:
623                 xas_unlock_irq(&xas);
624         } while (xas_nomem(&xas, gfp));
625
626         if (xas_error(&xas)) {
627                 page->mapping = NULL;
628                 page_ref_sub(page, nr);
629                 return xas_error(&xas);
630         }
631
632         return 0;
633 }
634
635 /*
636  * Like delete_from_page_cache, but substitutes swap for page.
637  */
638 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
639 {
640         struct address_space *mapping = page->mapping;
641         int error;
642
643         VM_BUG_ON_PAGE(PageCompound(page), page);
644
645         xa_lock_irq(&mapping->i_pages);
646         error = shmem_replace_entry(mapping, page->index, page, radswap);
647         page->mapping = NULL;
648         mapping->nrpages--;
649         __dec_node_page_state(page, NR_FILE_PAGES);
650         __dec_node_page_state(page, NR_SHMEM);
651         xa_unlock_irq(&mapping->i_pages);
652         put_page(page);
653         BUG_ON(error);
654 }
655
656 /*
657  * Remove swap entry from page cache, free the swap and its page cache.
658  */
659 static int shmem_free_swap(struct address_space *mapping,
660                            pgoff_t index, void *radswap)
661 {
662         void *old;
663
664         old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
665         if (old != radswap)
666                 return -ENOENT;
667         free_swap_and_cache(radix_to_swp_entry(radswap));
668         return 0;
669 }
670
671 /*
672  * Determine (in bytes) how many of the shmem object's pages mapped by the
673  * given offsets are swapped out.
674  *
675  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
676  * as long as the inode doesn't go away and racy results are not a problem.
677  */
678 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
679                                                 pgoff_t start, pgoff_t end)
680 {
681         XA_STATE(xas, &mapping->i_pages, start);
682         struct page *page;
683         unsigned long swapped = 0;
684
685         rcu_read_lock();
686         xas_for_each(&xas, page, end - 1) {
687                 if (xas_retry(&xas, page))
688                         continue;
689                 if (xa_is_value(page))
690                         swapped++;
691
692                 if (need_resched()) {
693                         xas_pause(&xas);
694                         cond_resched_rcu();
695                 }
696         }
697
698         rcu_read_unlock();
699
700         return swapped << PAGE_SHIFT;
701 }
702
703 /*
704  * Determine (in bytes) how many of the shmem object's pages mapped by the
705  * given vma is swapped out.
706  *
707  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
708  * as long as the inode doesn't go away and racy results are not a problem.
709  */
710 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
711 {
712         struct inode *inode = file_inode(vma->vm_file);
713         struct shmem_inode_info *info = SHMEM_I(inode);
714         struct address_space *mapping = inode->i_mapping;
715         unsigned long swapped;
716
717         /* Be careful as we don't hold info->lock */
718         swapped = READ_ONCE(info->swapped);
719
720         /*
721          * The easier cases are when the shmem object has nothing in swap, or
722          * the vma maps it whole. Then we can simply use the stats that we
723          * already track.
724          */
725         if (!swapped)
726                 return 0;
727
728         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
729                 return swapped << PAGE_SHIFT;
730
731         /* Here comes the more involved part */
732         return shmem_partial_swap_usage(mapping,
733                         linear_page_index(vma, vma->vm_start),
734                         linear_page_index(vma, vma->vm_end));
735 }
736
737 /*
738  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
739  */
740 void shmem_unlock_mapping(struct address_space *mapping)
741 {
742         struct pagevec pvec;
743         pgoff_t indices[PAGEVEC_SIZE];
744         pgoff_t index = 0;
745
746         pagevec_init(&pvec);
747         /*
748          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
749          */
750         while (!mapping_unevictable(mapping)) {
751                 /*
752                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
753                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
754                  */
755                 pvec.nr = find_get_entries(mapping, index,
756                                            PAGEVEC_SIZE, pvec.pages, indices);
757                 if (!pvec.nr)
758                         break;
759                 index = indices[pvec.nr - 1] + 1;
760                 pagevec_remove_exceptionals(&pvec);
761                 check_move_unevictable_pages(pvec.pages, pvec.nr);
762                 pagevec_release(&pvec);
763                 cond_resched();
764         }
765 }
766
767 /*
768  * Remove range of pages and swap entries from page cache, and free them.
769  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
770  */
771 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
772                                                                  bool unfalloc)
773 {
774         struct address_space *mapping = inode->i_mapping;
775         struct shmem_inode_info *info = SHMEM_I(inode);
776         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
777         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
778         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
779         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
780         struct pagevec pvec;
781         pgoff_t indices[PAGEVEC_SIZE];
782         long nr_swaps_freed = 0;
783         pgoff_t index;
784         int i;
785
786         if (lend == -1)
787                 end = -1;       /* unsigned, so actually very big */
788
789         pagevec_init(&pvec);
790         index = start;
791         while (index < end) {
792                 pvec.nr = find_get_entries(mapping, index,
793                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
794                         pvec.pages, indices);
795                 if (!pvec.nr)
796                         break;
797                 for (i = 0; i < pagevec_count(&pvec); i++) {
798                         struct page *page = pvec.pages[i];
799
800                         index = indices[i];
801                         if (index >= end)
802                                 break;
803
804                         if (xa_is_value(page)) {
805                                 if (unfalloc)
806                                         continue;
807                                 nr_swaps_freed += !shmem_free_swap(mapping,
808                                                                 index, page);
809                                 continue;
810                         }
811
812                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
813
814                         if (!trylock_page(page))
815                                 continue;
816
817                         if (PageTransTail(page)) {
818                                 /* Middle of THP: zero out the page */
819                                 clear_highpage(page);
820                                 unlock_page(page);
821                                 continue;
822                         } else if (PageTransHuge(page)) {
823                                 if (index == round_down(end, HPAGE_PMD_NR)) {
824                                         /*
825                                          * Range ends in the middle of THP:
826                                          * zero out the page
827                                          */
828                                         clear_highpage(page);
829                                         unlock_page(page);
830                                         continue;
831                                 }
832                                 index += HPAGE_PMD_NR - 1;
833                                 i += HPAGE_PMD_NR - 1;
834                         }
835
836                         if (!unfalloc || !PageUptodate(page)) {
837                                 VM_BUG_ON_PAGE(PageTail(page), page);
838                                 if (page_mapping(page) == mapping) {
839                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
840                                         truncate_inode_page(mapping, page);
841                                 }
842                         }
843                         unlock_page(page);
844                 }
845                 pagevec_remove_exceptionals(&pvec);
846                 pagevec_release(&pvec);
847                 cond_resched();
848                 index++;
849         }
850
851         if (partial_start) {
852                 struct page *page = NULL;
853                 shmem_getpage(inode, start - 1, &page, SGP_READ);
854                 if (page) {
855                         unsigned int top = PAGE_SIZE;
856                         if (start > end) {
857                                 top = partial_end;
858                                 partial_end = 0;
859                         }
860                         zero_user_segment(page, partial_start, top);
861                         set_page_dirty(page);
862                         unlock_page(page);
863                         put_page(page);
864                 }
865         }
866         if (partial_end) {
867                 struct page *page = NULL;
868                 shmem_getpage(inode, end, &page, SGP_READ);
869                 if (page) {
870                         zero_user_segment(page, 0, partial_end);
871                         set_page_dirty(page);
872                         unlock_page(page);
873                         put_page(page);
874                 }
875         }
876         if (start >= end)
877                 return;
878
879         index = start;
880         while (index < end) {
881                 cond_resched();
882
883                 pvec.nr = find_get_entries(mapping, index,
884                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
885                                 pvec.pages, indices);
886                 if (!pvec.nr) {
887                         /* If all gone or hole-punch or unfalloc, we're done */
888                         if (index == start || end != -1)
889                                 break;
890                         /* But if truncating, restart to make sure all gone */
891                         index = start;
892                         continue;
893                 }
894                 for (i = 0; i < pagevec_count(&pvec); i++) {
895                         struct page *page = pvec.pages[i];
896
897                         index = indices[i];
898                         if (index >= end)
899                                 break;
900
901                         if (xa_is_value(page)) {
902                                 if (unfalloc)
903                                         continue;
904                                 if (shmem_free_swap(mapping, index, page)) {
905                                         /* Swap was replaced by page: retry */
906                                         index--;
907                                         break;
908                                 }
909                                 nr_swaps_freed++;
910                                 continue;
911                         }
912
913                         lock_page(page);
914
915                         if (PageTransTail(page)) {
916                                 /* Middle of THP: zero out the page */
917                                 clear_highpage(page);
918                                 unlock_page(page);
919                                 /*
920                                  * Partial thp truncate due 'start' in middle
921                                  * of THP: don't need to look on these pages
922                                  * again on !pvec.nr restart.
923                                  */
924                                 if (index != round_down(end, HPAGE_PMD_NR))
925                                         start++;
926                                 continue;
927                         } else if (PageTransHuge(page)) {
928                                 if (index == round_down(end, HPAGE_PMD_NR)) {
929                                         /*
930                                          * Range ends in the middle of THP:
931                                          * zero out the page
932                                          */
933                                         clear_highpage(page);
934                                         unlock_page(page);
935                                         continue;
936                                 }
937                                 index += HPAGE_PMD_NR - 1;
938                                 i += HPAGE_PMD_NR - 1;
939                         }
940
941                         if (!unfalloc || !PageUptodate(page)) {
942                                 VM_BUG_ON_PAGE(PageTail(page), page);
943                                 if (page_mapping(page) == mapping) {
944                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
945                                         truncate_inode_page(mapping, page);
946                                 } else {
947                                         /* Page was replaced by swap: retry */
948                                         unlock_page(page);
949                                         index--;
950                                         break;
951                                 }
952                         }
953                         unlock_page(page);
954                 }
955                 pagevec_remove_exceptionals(&pvec);
956                 pagevec_release(&pvec);
957                 index++;
958         }
959
960         spin_lock_irq(&info->lock);
961         info->swapped -= nr_swaps_freed;
962         shmem_recalc_inode(inode);
963         spin_unlock_irq(&info->lock);
964 }
965
966 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
967 {
968         shmem_undo_range(inode, lstart, lend, false);
969         inode->i_ctime = inode->i_mtime = current_time(inode);
970 }
971 EXPORT_SYMBOL_GPL(shmem_truncate_range);
972
973 static int shmem_getattr(const struct path *path, struct kstat *stat,
974                          u32 request_mask, unsigned int query_flags)
975 {
976         struct inode *inode = path->dentry->d_inode;
977         struct shmem_inode_info *info = SHMEM_I(inode);
978         struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
979
980         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
981                 spin_lock_irq(&info->lock);
982                 shmem_recalc_inode(inode);
983                 spin_unlock_irq(&info->lock);
984         }
985         generic_fillattr(inode, stat);
986
987         if (is_huge_enabled(sb_info))
988                 stat->blksize = HPAGE_PMD_SIZE;
989
990         return 0;
991 }
992
993 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
994 {
995         struct inode *inode = d_inode(dentry);
996         struct shmem_inode_info *info = SHMEM_I(inode);
997         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
998         int error;
999
1000         error = setattr_prepare(dentry, attr);
1001         if (error)
1002                 return error;
1003
1004         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1005                 loff_t oldsize = inode->i_size;
1006                 loff_t newsize = attr->ia_size;
1007
1008                 /* protected by i_mutex */
1009                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1010                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1011                         return -EPERM;
1012
1013                 if (newsize != oldsize) {
1014                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1015                                         oldsize, newsize);
1016                         if (error)
1017                                 return error;
1018                         i_size_write(inode, newsize);
1019                         inode->i_ctime = inode->i_mtime = current_time(inode);
1020                 }
1021                 if (newsize <= oldsize) {
1022                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1023                         if (oldsize > holebegin)
1024                                 unmap_mapping_range(inode->i_mapping,
1025                                                         holebegin, 0, 1);
1026                         if (info->alloced)
1027                                 shmem_truncate_range(inode,
1028                                                         newsize, (loff_t)-1);
1029                         /* unmap again to remove racily COWed private pages */
1030                         if (oldsize > holebegin)
1031                                 unmap_mapping_range(inode->i_mapping,
1032                                                         holebegin, 0, 1);
1033
1034                         /*
1035                          * Part of the huge page can be beyond i_size: subject
1036                          * to shrink under memory pressure.
1037                          */
1038                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1039                                 spin_lock(&sbinfo->shrinklist_lock);
1040                                 /*
1041                                  * _careful to defend against unlocked access to
1042                                  * ->shrink_list in shmem_unused_huge_shrink()
1043                                  */
1044                                 if (list_empty_careful(&info->shrinklist)) {
1045                                         list_add_tail(&info->shrinklist,
1046                                                         &sbinfo->shrinklist);
1047                                         sbinfo->shrinklist_len++;
1048                                 }
1049                                 spin_unlock(&sbinfo->shrinklist_lock);
1050                         }
1051                 }
1052         }
1053
1054         setattr_copy(inode, attr);
1055         if (attr->ia_valid & ATTR_MODE)
1056                 error = posix_acl_chmod(inode, inode->i_mode);
1057         return error;
1058 }
1059
1060 static void shmem_evict_inode(struct inode *inode)
1061 {
1062         struct shmem_inode_info *info = SHMEM_I(inode);
1063         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1064
1065         if (inode->i_mapping->a_ops == &shmem_aops) {
1066                 shmem_unacct_size(info->flags, inode->i_size);
1067                 inode->i_size = 0;
1068                 shmem_truncate_range(inode, 0, (loff_t)-1);
1069                 if (!list_empty(&info->shrinklist)) {
1070                         spin_lock(&sbinfo->shrinklist_lock);
1071                         if (!list_empty(&info->shrinklist)) {
1072                                 list_del_init(&info->shrinklist);
1073                                 sbinfo->shrinklist_len--;
1074                         }
1075                         spin_unlock(&sbinfo->shrinklist_lock);
1076                 }
1077                 if (!list_empty(&info->swaplist)) {
1078                         mutex_lock(&shmem_swaplist_mutex);
1079                         list_del_init(&info->swaplist);
1080                         mutex_unlock(&shmem_swaplist_mutex);
1081                 }
1082         }
1083
1084         simple_xattrs_free(&info->xattrs);
1085         WARN_ON(inode->i_blocks);
1086         shmem_free_inode(inode->i_sb);
1087         clear_inode(inode);
1088 }
1089
1090 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1091 {
1092         XA_STATE(xas, xa, 0);
1093         unsigned int checked = 0;
1094         void *entry;
1095
1096         rcu_read_lock();
1097         xas_for_each(&xas, entry, ULONG_MAX) {
1098                 if (xas_retry(&xas, entry))
1099                         continue;
1100                 if (entry == item)
1101                         break;
1102                 checked++;
1103                 if ((checked % XA_CHECK_SCHED) != 0)
1104                         continue;
1105                 xas_pause(&xas);
1106                 cond_resched_rcu();
1107         }
1108         rcu_read_unlock();
1109
1110         return entry ? xas.xa_index : -1;
1111 }
1112
1113 /*
1114  * If swap found in inode, free it and move page from swapcache to filecache.
1115  */
1116 static int shmem_unuse_inode(struct shmem_inode_info *info,
1117                              swp_entry_t swap, struct page **pagep)
1118 {
1119         struct address_space *mapping = info->vfs_inode.i_mapping;
1120         void *radswap;
1121         pgoff_t index;
1122         gfp_t gfp;
1123         int error = 0;
1124
1125         radswap = swp_to_radix_entry(swap);
1126         index = find_swap_entry(&mapping->i_pages, radswap);
1127         if (index == -1)
1128                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1129
1130         /*
1131          * Move _head_ to start search for next from here.
1132          * But be careful: shmem_evict_inode checks list_empty without taking
1133          * mutex, and there's an instant in list_move_tail when info->swaplist
1134          * would appear empty, if it were the only one on shmem_swaplist.
1135          */
1136         if (shmem_swaplist.next != &info->swaplist)
1137                 list_move_tail(&shmem_swaplist, &info->swaplist);
1138
1139         gfp = mapping_gfp_mask(mapping);
1140         if (shmem_should_replace_page(*pagep, gfp)) {
1141                 mutex_unlock(&shmem_swaplist_mutex);
1142                 error = shmem_replace_page(pagep, gfp, info, index);
1143                 mutex_lock(&shmem_swaplist_mutex);
1144                 /*
1145                  * We needed to drop mutex to make that restrictive page
1146                  * allocation, but the inode might have been freed while we
1147                  * dropped it: although a racing shmem_evict_inode() cannot
1148                  * complete without emptying the page cache, our page lock
1149                  * on this swapcache page is not enough to prevent that -
1150                  * free_swap_and_cache() of our swap entry will only
1151                  * trylock_page(), removing swap from page cache whatever.
1152                  *
1153                  * We must not proceed to shmem_add_to_page_cache() if the
1154                  * inode has been freed, but of course we cannot rely on
1155                  * inode or mapping or info to check that.  However, we can
1156                  * safely check if our swap entry is still in use (and here
1157                  * it can't have got reused for another page): if it's still
1158                  * in use, then the inode cannot have been freed yet, and we
1159                  * can safely proceed (if it's no longer in use, that tells
1160                  * nothing about the inode, but we don't need to unuse swap).
1161                  */
1162                 if (!page_swapcount(*pagep))
1163                         error = -ENOENT;
1164         }
1165
1166         /*
1167          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169          * beneath us (pagelock doesn't help until the page is in pagecache).
1170          */
1171         if (!error)
1172                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1173                                                 radswap, gfp);
1174         if (error != -ENOMEM) {
1175                 /*
1176                  * Truncation and eviction use free_swap_and_cache(), which
1177                  * only does trylock page: if we raced, best clean up here.
1178                  */
1179                 delete_from_swap_cache(*pagep);
1180                 set_page_dirty(*pagep);
1181                 if (!error) {
1182                         spin_lock_irq(&info->lock);
1183                         info->swapped--;
1184                         spin_unlock_irq(&info->lock);
1185                         swap_free(swap);
1186                 }
1187         }
1188         return error;
1189 }
1190
1191 /*
1192  * Search through swapped inodes to find and replace swap by page.
1193  */
1194 int shmem_unuse(swp_entry_t swap, struct page *page)
1195 {
1196         struct list_head *this, *next;
1197         struct shmem_inode_info *info;
1198         struct mem_cgroup *memcg;
1199         int error = 0;
1200
1201         /*
1202          * There's a faint possibility that swap page was replaced before
1203          * caller locked it: caller will come back later with the right page.
1204          */
1205         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1206                 goto out;
1207
1208         /*
1209          * Charge page using GFP_KERNEL while we can wait, before taking
1210          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211          * Charged back to the user (not to caller) when swap account is used.
1212          */
1213         error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1214                                             &memcg, false);
1215         if (error)
1216                 goto out;
1217         /* No memory allocation: swap entry occupies the slot for the page */
1218         error = -EAGAIN;
1219
1220         mutex_lock(&shmem_swaplist_mutex);
1221         list_for_each_safe(this, next, &shmem_swaplist) {
1222                 info = list_entry(this, struct shmem_inode_info, swaplist);
1223                 if (info->swapped)
1224                         error = shmem_unuse_inode(info, swap, &page);
1225                 else
1226                         list_del_init(&info->swaplist);
1227                 cond_resched();
1228                 if (error != -EAGAIN)
1229                         break;
1230                 /* found nothing in this: move on to search the next */
1231         }
1232         mutex_unlock(&shmem_swaplist_mutex);
1233
1234         if (error) {
1235                 if (error != -ENOMEM)
1236                         error = 0;
1237                 mem_cgroup_cancel_charge(page, memcg, false);
1238         } else
1239                 mem_cgroup_commit_charge(page, memcg, true, false);
1240 out:
1241         unlock_page(page);
1242         put_page(page);
1243         return error;
1244 }
1245
1246 /*
1247  * Move the page from the page cache to the swap cache.
1248  */
1249 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1250 {
1251         struct shmem_inode_info *info;
1252         struct address_space *mapping;
1253         struct inode *inode;
1254         swp_entry_t swap;
1255         pgoff_t index;
1256
1257         VM_BUG_ON_PAGE(PageCompound(page), page);
1258         BUG_ON(!PageLocked(page));
1259         mapping = page->mapping;
1260         index = page->index;
1261         inode = mapping->host;
1262         info = SHMEM_I(inode);
1263         if (info->flags & VM_LOCKED)
1264                 goto redirty;
1265         if (!total_swap_pages)
1266                 goto redirty;
1267
1268         /*
1269          * Our capabilities prevent regular writeback or sync from ever calling
1270          * shmem_writepage; but a stacking filesystem might use ->writepage of
1271          * its underlying filesystem, in which case tmpfs should write out to
1272          * swap only in response to memory pressure, and not for the writeback
1273          * threads or sync.
1274          */
1275         if (!wbc->for_reclaim) {
1276                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1277                 goto redirty;
1278         }
1279
1280         /*
1281          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282          * value into swapfile.c, the only way we can correctly account for a
1283          * fallocated page arriving here is now to initialize it and write it.
1284          *
1285          * That's okay for a page already fallocated earlier, but if we have
1286          * not yet completed the fallocation, then (a) we want to keep track
1287          * of this page in case we have to undo it, and (b) it may not be a
1288          * good idea to continue anyway, once we're pushing into swap.  So
1289          * reactivate the page, and let shmem_fallocate() quit when too many.
1290          */
1291         if (!PageUptodate(page)) {
1292                 if (inode->i_private) {
1293                         struct shmem_falloc *shmem_falloc;
1294                         spin_lock(&inode->i_lock);
1295                         shmem_falloc = inode->i_private;
1296                         if (shmem_falloc &&
1297                             !shmem_falloc->waitq &&
1298                             index >= shmem_falloc->start &&
1299                             index < shmem_falloc->next)
1300                                 shmem_falloc->nr_unswapped++;
1301                         else
1302                                 shmem_falloc = NULL;
1303                         spin_unlock(&inode->i_lock);
1304                         if (shmem_falloc)
1305                                 goto redirty;
1306                 }
1307                 clear_highpage(page);
1308                 flush_dcache_page(page);
1309                 SetPageUptodate(page);
1310         }
1311
1312         swap = get_swap_page(page);
1313         if (!swap.val)
1314                 goto redirty;
1315
1316         /*
1317          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1318          * if it's not already there.  Do it now before the page is
1319          * moved to swap cache, when its pagelock no longer protects
1320          * the inode from eviction.  But don't unlock the mutex until
1321          * we've incremented swapped, because shmem_unuse_inode() will
1322          * prune a !swapped inode from the swaplist under this mutex.
1323          */
1324         mutex_lock(&shmem_swaplist_mutex);
1325         if (list_empty(&info->swaplist))
1326                 list_add_tail(&info->swaplist, &shmem_swaplist);
1327
1328         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1329                 spin_lock_irq(&info->lock);
1330                 shmem_recalc_inode(inode);
1331                 info->swapped++;
1332                 spin_unlock_irq(&info->lock);
1333
1334                 swap_shmem_alloc(swap);
1335                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1336
1337                 mutex_unlock(&shmem_swaplist_mutex);
1338                 BUG_ON(page_mapped(page));
1339                 swap_writepage(page, wbc);
1340                 return 0;
1341         }
1342
1343         mutex_unlock(&shmem_swaplist_mutex);
1344         put_swap_page(page, swap);
1345 redirty:
1346         set_page_dirty(page);
1347         if (wbc->for_reclaim)
1348                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1349         unlock_page(page);
1350         return 0;
1351 }
1352
1353 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1354 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1355 {
1356         char buffer[64];
1357
1358         if (!mpol || mpol->mode == MPOL_DEFAULT)
1359                 return;         /* show nothing */
1360
1361         mpol_to_str(buffer, sizeof(buffer), mpol);
1362
1363         seq_printf(seq, ",mpol=%s", buffer);
1364 }
1365
1366 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1367 {
1368         struct mempolicy *mpol = NULL;
1369         if (sbinfo->mpol) {
1370                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1371                 mpol = sbinfo->mpol;
1372                 mpol_get(mpol);
1373                 spin_unlock(&sbinfo->stat_lock);
1374         }
1375         return mpol;
1376 }
1377 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1378 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1379 {
1380 }
1381 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1382 {
1383         return NULL;
1384 }
1385 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1386 #ifndef CONFIG_NUMA
1387 #define vm_policy vm_private_data
1388 #endif
1389
1390 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1391                 struct shmem_inode_info *info, pgoff_t index)
1392 {
1393         /* Create a pseudo vma that just contains the policy */
1394         vma_init(vma, NULL);
1395         /* Bias interleave by inode number to distribute better across nodes */
1396         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1397         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1398 }
1399
1400 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1401 {
1402         /* Drop reference taken by mpol_shared_policy_lookup() */
1403         mpol_cond_put(vma->vm_policy);
1404 }
1405
1406 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1407                         struct shmem_inode_info *info, pgoff_t index)
1408 {
1409         struct vm_area_struct pvma;
1410         struct page *page;
1411         struct vm_fault vmf;
1412
1413         shmem_pseudo_vma_init(&pvma, info, index);
1414         vmf.vma = &pvma;
1415         vmf.address = 0;
1416         page = swap_cluster_readahead(swap, gfp, &vmf);
1417         shmem_pseudo_vma_destroy(&pvma);
1418
1419         return page;
1420 }
1421
1422 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1423                 struct shmem_inode_info *info, pgoff_t index)
1424 {
1425         struct vm_area_struct pvma;
1426         struct address_space *mapping = info->vfs_inode.i_mapping;
1427         pgoff_t hindex;
1428         struct page *page;
1429
1430         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1431                 return NULL;
1432
1433         hindex = round_down(index, HPAGE_PMD_NR);
1434         if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1435                                                                 XA_PRESENT))
1436                 return NULL;
1437
1438         shmem_pseudo_vma_init(&pvma, info, hindex);
1439         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1440                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
1441         shmem_pseudo_vma_destroy(&pvma);
1442         if (page)
1443                 prep_transhuge_page(page);
1444         return page;
1445 }
1446
1447 static struct page *shmem_alloc_page(gfp_t gfp,
1448                         struct shmem_inode_info *info, pgoff_t index)
1449 {
1450         struct vm_area_struct pvma;
1451         struct page *page;
1452
1453         shmem_pseudo_vma_init(&pvma, info, index);
1454         page = alloc_page_vma(gfp, &pvma, 0);
1455         shmem_pseudo_vma_destroy(&pvma);
1456
1457         return page;
1458 }
1459
1460 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1461                 struct inode *inode,
1462                 pgoff_t index, bool huge)
1463 {
1464         struct shmem_inode_info *info = SHMEM_I(inode);
1465         struct page *page;
1466         int nr;
1467         int err = -ENOSPC;
1468
1469         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1470                 huge = false;
1471         nr = huge ? HPAGE_PMD_NR : 1;
1472
1473         if (!shmem_inode_acct_block(inode, nr))
1474                 goto failed;
1475
1476         if (huge)
1477                 page = shmem_alloc_hugepage(gfp, info, index);
1478         else
1479                 page = shmem_alloc_page(gfp, info, index);
1480         if (page) {
1481                 __SetPageLocked(page);
1482                 __SetPageSwapBacked(page);
1483                 return page;
1484         }
1485
1486         err = -ENOMEM;
1487         shmem_inode_unacct_blocks(inode, nr);
1488 failed:
1489         return ERR_PTR(err);
1490 }
1491
1492 /*
1493  * When a page is moved from swapcache to shmem filecache (either by the
1494  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1495  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1496  * ignorance of the mapping it belongs to.  If that mapping has special
1497  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1498  * we may need to copy to a suitable page before moving to filecache.
1499  *
1500  * In a future release, this may well be extended to respect cpuset and
1501  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1502  * but for now it is a simple matter of zone.
1503  */
1504 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1505 {
1506         return page_zonenum(page) > gfp_zone(gfp);
1507 }
1508
1509 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1510                                 struct shmem_inode_info *info, pgoff_t index)
1511 {
1512         struct page *oldpage, *newpage;
1513         struct address_space *swap_mapping;
1514         swp_entry_t entry;
1515         pgoff_t swap_index;
1516         int error;
1517
1518         oldpage = *pagep;
1519         entry.val = page_private(oldpage);
1520         swap_index = swp_offset(entry);
1521         swap_mapping = page_mapping(oldpage);
1522
1523         /*
1524          * We have arrived here because our zones are constrained, so don't
1525          * limit chance of success by further cpuset and node constraints.
1526          */
1527         gfp &= ~GFP_CONSTRAINT_MASK;
1528         newpage = shmem_alloc_page(gfp, info, index);
1529         if (!newpage)
1530                 return -ENOMEM;
1531
1532         get_page(newpage);
1533         copy_highpage(newpage, oldpage);
1534         flush_dcache_page(newpage);
1535
1536         __SetPageLocked(newpage);
1537         __SetPageSwapBacked(newpage);
1538         SetPageUptodate(newpage);
1539         set_page_private(newpage, entry.val);
1540         SetPageSwapCache(newpage);
1541
1542         /*
1543          * Our caller will very soon move newpage out of swapcache, but it's
1544          * a nice clean interface for us to replace oldpage by newpage there.
1545          */
1546         xa_lock_irq(&swap_mapping->i_pages);
1547         error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1548         if (!error) {
1549                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1550                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1551         }
1552         xa_unlock_irq(&swap_mapping->i_pages);
1553
1554         if (unlikely(error)) {
1555                 /*
1556                  * Is this possible?  I think not, now that our callers check
1557                  * both PageSwapCache and page_private after getting page lock;
1558                  * but be defensive.  Reverse old to newpage for clear and free.
1559                  */
1560                 oldpage = newpage;
1561         } else {
1562                 mem_cgroup_migrate(oldpage, newpage);
1563                 lru_cache_add_anon(newpage);
1564                 *pagep = newpage;
1565         }
1566
1567         ClearPageSwapCache(oldpage);
1568         set_page_private(oldpage, 0);
1569
1570         unlock_page(oldpage);
1571         put_page(oldpage);
1572         put_page(oldpage);
1573         return error;
1574 }
1575
1576 /*
1577  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1578  *
1579  * If we allocate a new one we do not mark it dirty. That's up to the
1580  * vm. If we swap it in we mark it dirty since we also free the swap
1581  * entry since a page cannot live in both the swap and page cache.
1582  *
1583  * fault_mm and fault_type are only supplied by shmem_fault:
1584  * otherwise they are NULL.
1585  */
1586 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1587         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1588         struct vm_area_struct *vma, struct vm_fault *vmf,
1589                         vm_fault_t *fault_type)
1590 {
1591         struct address_space *mapping = inode->i_mapping;
1592         struct shmem_inode_info *info = SHMEM_I(inode);
1593         struct shmem_sb_info *sbinfo;
1594         struct mm_struct *charge_mm;
1595         struct mem_cgroup *memcg;
1596         struct page *page;
1597         swp_entry_t swap;
1598         enum sgp_type sgp_huge = sgp;
1599         pgoff_t hindex = index;
1600         int error;
1601         int once = 0;
1602         int alloced = 0;
1603
1604         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1605                 return -EFBIG;
1606         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1607                 sgp = SGP_CACHE;
1608 repeat:
1609         swap.val = 0;
1610         page = find_lock_entry(mapping, index);
1611         if (xa_is_value(page)) {
1612                 swap = radix_to_swp_entry(page);
1613                 page = NULL;
1614         }
1615
1616         if (sgp <= SGP_CACHE &&
1617             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1618                 error = -EINVAL;
1619                 goto unlock;
1620         }
1621
1622         if (page && sgp == SGP_WRITE)
1623                 mark_page_accessed(page);
1624
1625         /* fallocated page? */
1626         if (page && !PageUptodate(page)) {
1627                 if (sgp != SGP_READ)
1628                         goto clear;
1629                 unlock_page(page);
1630                 put_page(page);
1631                 page = NULL;
1632         }
1633         if (page || (sgp == SGP_READ && !swap.val)) {
1634                 *pagep = page;
1635                 return 0;
1636         }
1637
1638         /*
1639          * Fast cache lookup did not find it:
1640          * bring it back from swap or allocate.
1641          */
1642         sbinfo = SHMEM_SB(inode->i_sb);
1643         charge_mm = vma ? vma->vm_mm : current->mm;
1644
1645         if (swap.val) {
1646                 /* Look it up and read it in.. */
1647                 page = lookup_swap_cache(swap, NULL, 0);
1648                 if (!page) {
1649                         /* Or update major stats only when swapin succeeds?? */
1650                         if (fault_type) {
1651                                 *fault_type |= VM_FAULT_MAJOR;
1652                                 count_vm_event(PGMAJFAULT);
1653                                 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1654                         }
1655                         /* Here we actually start the io */
1656                         page = shmem_swapin(swap, gfp, info, index);
1657                         if (!page) {
1658                                 error = -ENOMEM;
1659                                 goto failed;
1660                         }
1661                 }
1662
1663                 /* We have to do this with page locked to prevent races */
1664                 lock_page(page);
1665                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1666                     !shmem_confirm_swap(mapping, index, swap)) {
1667                         error = -EEXIST;        /* try again */
1668                         goto unlock;
1669                 }
1670                 if (!PageUptodate(page)) {
1671                         error = -EIO;
1672                         goto failed;
1673                 }
1674                 wait_on_page_writeback(page);
1675
1676                 if (shmem_should_replace_page(page, gfp)) {
1677                         error = shmem_replace_page(&page, gfp, info, index);
1678                         if (error)
1679                                 goto failed;
1680                 }
1681
1682                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1683                                 false);
1684                 if (!error) {
1685                         error = shmem_add_to_page_cache(page, mapping, index,
1686                                                 swp_to_radix_entry(swap), gfp);
1687                         /*
1688                          * We already confirmed swap under page lock, and make
1689                          * no memory allocation here, so usually no possibility
1690                          * of error; but free_swap_and_cache() only trylocks a
1691                          * page, so it is just possible that the entry has been
1692                          * truncated or holepunched since swap was confirmed.
1693                          * shmem_undo_range() will have done some of the
1694                          * unaccounting, now delete_from_swap_cache() will do
1695                          * the rest.
1696                          * Reset swap.val? No, leave it so "failed" goes back to
1697                          * "repeat": reading a hole and writing should succeed.
1698                          */
1699                         if (error) {
1700                                 mem_cgroup_cancel_charge(page, memcg, false);
1701                                 delete_from_swap_cache(page);
1702                         }
1703                 }
1704                 if (error)
1705                         goto failed;
1706
1707                 mem_cgroup_commit_charge(page, memcg, true, false);
1708
1709                 spin_lock_irq(&info->lock);
1710                 info->swapped--;
1711                 shmem_recalc_inode(inode);
1712                 spin_unlock_irq(&info->lock);
1713
1714                 if (sgp == SGP_WRITE)
1715                         mark_page_accessed(page);
1716
1717                 delete_from_swap_cache(page);
1718                 set_page_dirty(page);
1719                 swap_free(swap);
1720
1721         } else {
1722                 if (vma && userfaultfd_missing(vma)) {
1723                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1724                         return 0;
1725                 }
1726
1727                 /* shmem_symlink() */
1728                 if (mapping->a_ops != &shmem_aops)
1729                         goto alloc_nohuge;
1730                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1731                         goto alloc_nohuge;
1732                 if (shmem_huge == SHMEM_HUGE_FORCE)
1733                         goto alloc_huge;
1734                 switch (sbinfo->huge) {
1735                         loff_t i_size;
1736                         pgoff_t off;
1737                 case SHMEM_HUGE_NEVER:
1738                         goto alloc_nohuge;
1739                 case SHMEM_HUGE_WITHIN_SIZE:
1740                         off = round_up(index, HPAGE_PMD_NR);
1741                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1742                         if (i_size >= HPAGE_PMD_SIZE &&
1743                                         i_size >> PAGE_SHIFT >= off)
1744                                 goto alloc_huge;
1745                         /* fallthrough */
1746                 case SHMEM_HUGE_ADVISE:
1747                         if (sgp_huge == SGP_HUGE)
1748                                 goto alloc_huge;
1749                         /* TODO: implement fadvise() hints */
1750                         goto alloc_nohuge;
1751                 }
1752
1753 alloc_huge:
1754                 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1755                 if (IS_ERR(page)) {
1756 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1757                                         index, false);
1758                 }
1759                 if (IS_ERR(page)) {
1760                         int retry = 5;
1761                         error = PTR_ERR(page);
1762                         page = NULL;
1763                         if (error != -ENOSPC)
1764                                 goto failed;
1765                         /*
1766                          * Try to reclaim some spece by splitting a huge page
1767                          * beyond i_size on the filesystem.
1768                          */
1769                         while (retry--) {
1770                                 int ret;
1771                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1772                                 if (ret == SHRINK_STOP)
1773                                         break;
1774                                 if (ret)
1775                                         goto alloc_nohuge;
1776                         }
1777                         goto failed;
1778                 }
1779
1780                 if (PageTransHuge(page))
1781                         hindex = round_down(index, HPAGE_PMD_NR);
1782                 else
1783                         hindex = index;
1784
1785                 if (sgp == SGP_WRITE)
1786                         __SetPageReferenced(page);
1787
1788                 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1789                                 PageTransHuge(page));
1790                 if (error)
1791                         goto unacct;
1792                 error = shmem_add_to_page_cache(page, mapping, hindex,
1793                                                 NULL, gfp & GFP_RECLAIM_MASK);
1794                 if (error) {
1795                         mem_cgroup_cancel_charge(page, memcg,
1796                                         PageTransHuge(page));
1797                         goto unacct;
1798                 }
1799                 mem_cgroup_commit_charge(page, memcg, false,
1800                                 PageTransHuge(page));
1801                 lru_cache_add_anon(page);
1802
1803                 spin_lock_irq(&info->lock);
1804                 info->alloced += 1 << compound_order(page);
1805                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1806                 shmem_recalc_inode(inode);
1807                 spin_unlock_irq(&info->lock);
1808                 alloced = true;
1809
1810                 if (PageTransHuge(page) &&
1811                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1812                                 hindex + HPAGE_PMD_NR - 1) {
1813                         /*
1814                          * Part of the huge page is beyond i_size: subject
1815                          * to shrink under memory pressure.
1816                          */
1817                         spin_lock(&sbinfo->shrinklist_lock);
1818                         /*
1819                          * _careful to defend against unlocked access to
1820                          * ->shrink_list in shmem_unused_huge_shrink()
1821                          */
1822                         if (list_empty_careful(&info->shrinklist)) {
1823                                 list_add_tail(&info->shrinklist,
1824                                                 &sbinfo->shrinklist);
1825                                 sbinfo->shrinklist_len++;
1826                         }
1827                         spin_unlock(&sbinfo->shrinklist_lock);
1828                 }
1829
1830                 /*
1831                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1832                  */
1833                 if (sgp == SGP_FALLOC)
1834                         sgp = SGP_WRITE;
1835 clear:
1836                 /*
1837                  * Let SGP_WRITE caller clear ends if write does not fill page;
1838                  * but SGP_FALLOC on a page fallocated earlier must initialize
1839                  * it now, lest undo on failure cancel our earlier guarantee.
1840                  */
1841                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1842                         struct page *head = compound_head(page);
1843                         int i;
1844
1845                         for (i = 0; i < (1 << compound_order(head)); i++) {
1846                                 clear_highpage(head + i);
1847                                 flush_dcache_page(head + i);
1848                         }
1849                         SetPageUptodate(head);
1850                 }
1851         }
1852
1853         /* Perhaps the file has been truncated since we checked */
1854         if (sgp <= SGP_CACHE &&
1855             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1856                 if (alloced) {
1857                         ClearPageDirty(page);
1858                         delete_from_page_cache(page);
1859                         spin_lock_irq(&info->lock);
1860                         shmem_recalc_inode(inode);
1861                         spin_unlock_irq(&info->lock);
1862                 }
1863                 error = -EINVAL;
1864                 goto unlock;
1865         }
1866         *pagep = page + index - hindex;
1867         return 0;
1868
1869         /*
1870          * Error recovery.
1871          */
1872 unacct:
1873         shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1874
1875         if (PageTransHuge(page)) {
1876                 unlock_page(page);
1877                 put_page(page);
1878                 goto alloc_nohuge;
1879         }
1880 failed:
1881         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1882                 error = -EEXIST;
1883 unlock:
1884         if (page) {
1885                 unlock_page(page);
1886                 put_page(page);
1887         }
1888         if (error == -ENOSPC && !once++) {
1889                 spin_lock_irq(&info->lock);
1890                 shmem_recalc_inode(inode);
1891                 spin_unlock_irq(&info->lock);
1892                 goto repeat;
1893         }
1894         if (error == -EEXIST)
1895                 goto repeat;
1896         return error;
1897 }
1898
1899 /*
1900  * This is like autoremove_wake_function, but it removes the wait queue
1901  * entry unconditionally - even if something else had already woken the
1902  * target.
1903  */
1904 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1905 {
1906         int ret = default_wake_function(wait, mode, sync, key);
1907         list_del_init(&wait->entry);
1908         return ret;
1909 }
1910
1911 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1912 {
1913         struct vm_area_struct *vma = vmf->vma;
1914         struct inode *inode = file_inode(vma->vm_file);
1915         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1916         enum sgp_type sgp;
1917         int err;
1918         vm_fault_t ret = VM_FAULT_LOCKED;
1919
1920         /*
1921          * Trinity finds that probing a hole which tmpfs is punching can
1922          * prevent the hole-punch from ever completing: which in turn
1923          * locks writers out with its hold on i_mutex.  So refrain from
1924          * faulting pages into the hole while it's being punched.  Although
1925          * shmem_undo_range() does remove the additions, it may be unable to
1926          * keep up, as each new page needs its own unmap_mapping_range() call,
1927          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1928          *
1929          * It does not matter if we sometimes reach this check just before the
1930          * hole-punch begins, so that one fault then races with the punch:
1931          * we just need to make racing faults a rare case.
1932          *
1933          * The implementation below would be much simpler if we just used a
1934          * standard mutex or completion: but we cannot take i_mutex in fault,
1935          * and bloating every shmem inode for this unlikely case would be sad.
1936          */
1937         if (unlikely(inode->i_private)) {
1938                 struct shmem_falloc *shmem_falloc;
1939
1940                 spin_lock(&inode->i_lock);
1941                 shmem_falloc = inode->i_private;
1942                 if (shmem_falloc &&
1943                     shmem_falloc->waitq &&
1944                     vmf->pgoff >= shmem_falloc->start &&
1945                     vmf->pgoff < shmem_falloc->next) {
1946                         wait_queue_head_t *shmem_falloc_waitq;
1947                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1948
1949                         ret = VM_FAULT_NOPAGE;
1950                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1951                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1952                                 /* It's polite to up mmap_sem if we can */
1953                                 up_read(&vma->vm_mm->mmap_sem);
1954                                 ret = VM_FAULT_RETRY;
1955                         }
1956
1957                         shmem_falloc_waitq = shmem_falloc->waitq;
1958                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1959                                         TASK_UNINTERRUPTIBLE);
1960                         spin_unlock(&inode->i_lock);
1961                         schedule();
1962
1963                         /*
1964                          * shmem_falloc_waitq points into the shmem_fallocate()
1965                          * stack of the hole-punching task: shmem_falloc_waitq
1966                          * is usually invalid by the time we reach here, but
1967                          * finish_wait() does not dereference it in that case;
1968                          * though i_lock needed lest racing with wake_up_all().
1969                          */
1970                         spin_lock(&inode->i_lock);
1971                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1972                         spin_unlock(&inode->i_lock);
1973                         return ret;
1974                 }
1975                 spin_unlock(&inode->i_lock);
1976         }
1977
1978         sgp = SGP_CACHE;
1979
1980         if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1981             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1982                 sgp = SGP_NOHUGE;
1983         else if (vma->vm_flags & VM_HUGEPAGE)
1984                 sgp = SGP_HUGE;
1985
1986         err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1987                                   gfp, vma, vmf, &ret);
1988         if (err)
1989                 return vmf_error(err);
1990         return ret;
1991 }
1992
1993 unsigned long shmem_get_unmapped_area(struct file *file,
1994                                       unsigned long uaddr, unsigned long len,
1995                                       unsigned long pgoff, unsigned long flags)
1996 {
1997         unsigned long (*get_area)(struct file *,
1998                 unsigned long, unsigned long, unsigned long, unsigned long);
1999         unsigned long addr;
2000         unsigned long offset;
2001         unsigned long inflated_len;
2002         unsigned long inflated_addr;
2003         unsigned long inflated_offset;
2004
2005         if (len > TASK_SIZE)
2006                 return -ENOMEM;
2007
2008         get_area = current->mm->get_unmapped_area;
2009         addr = get_area(file, uaddr, len, pgoff, flags);
2010
2011         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2012                 return addr;
2013         if (IS_ERR_VALUE(addr))
2014                 return addr;
2015         if (addr & ~PAGE_MASK)
2016                 return addr;
2017         if (addr > TASK_SIZE - len)
2018                 return addr;
2019
2020         if (shmem_huge == SHMEM_HUGE_DENY)
2021                 return addr;
2022         if (len < HPAGE_PMD_SIZE)
2023                 return addr;
2024         if (flags & MAP_FIXED)
2025                 return addr;
2026         /*
2027          * Our priority is to support MAP_SHARED mapped hugely;
2028          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2029          * But if caller specified an address hint, respect that as before.
2030          */
2031         if (uaddr)
2032                 return addr;
2033
2034         if (shmem_huge != SHMEM_HUGE_FORCE) {
2035                 struct super_block *sb;
2036
2037                 if (file) {
2038                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2039                         sb = file_inode(file)->i_sb;
2040                 } else {
2041                         /*
2042                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2043                          * for "/dev/zero", to create a shared anonymous object.
2044                          */
2045                         if (IS_ERR(shm_mnt))
2046                                 return addr;
2047                         sb = shm_mnt->mnt_sb;
2048                 }
2049                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2050                         return addr;
2051         }
2052
2053         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2054         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2055                 return addr;
2056         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2057                 return addr;
2058
2059         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2060         if (inflated_len > TASK_SIZE)
2061                 return addr;
2062         if (inflated_len < len)
2063                 return addr;
2064
2065         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2066         if (IS_ERR_VALUE(inflated_addr))
2067                 return addr;
2068         if (inflated_addr & ~PAGE_MASK)
2069                 return addr;
2070
2071         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2072         inflated_addr += offset - inflated_offset;
2073         if (inflated_offset > offset)
2074                 inflated_addr += HPAGE_PMD_SIZE;
2075
2076         if (inflated_addr > TASK_SIZE - len)
2077                 return addr;
2078         return inflated_addr;
2079 }
2080
2081 #ifdef CONFIG_NUMA
2082 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2083 {
2084         struct inode *inode = file_inode(vma->vm_file);
2085         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2086 }
2087
2088 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2089                                           unsigned long addr)
2090 {
2091         struct inode *inode = file_inode(vma->vm_file);
2092         pgoff_t index;
2093
2094         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2095         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2096 }
2097 #endif
2098
2099 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2100 {
2101         struct inode *inode = file_inode(file);
2102         struct shmem_inode_info *info = SHMEM_I(inode);
2103         int retval = -ENOMEM;
2104
2105         spin_lock_irq(&info->lock);
2106         if (lock && !(info->flags & VM_LOCKED)) {
2107                 if (!user_shm_lock(inode->i_size, user))
2108                         goto out_nomem;
2109                 info->flags |= VM_LOCKED;
2110                 mapping_set_unevictable(file->f_mapping);
2111         }
2112         if (!lock && (info->flags & VM_LOCKED) && user) {
2113                 user_shm_unlock(inode->i_size, user);
2114                 info->flags &= ~VM_LOCKED;
2115                 mapping_clear_unevictable(file->f_mapping);
2116         }
2117         retval = 0;
2118
2119 out_nomem:
2120         spin_unlock_irq(&info->lock);
2121         return retval;
2122 }
2123
2124 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2125 {
2126         file_accessed(file);
2127         vma->vm_ops = &shmem_vm_ops;
2128         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2129                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2130                         (vma->vm_end & HPAGE_PMD_MASK)) {
2131                 khugepaged_enter(vma, vma->vm_flags);
2132         }
2133         return 0;
2134 }
2135
2136 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2137                                      umode_t mode, dev_t dev, unsigned long flags)
2138 {
2139         struct inode *inode;
2140         struct shmem_inode_info *info;
2141         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2142
2143         if (shmem_reserve_inode(sb))
2144                 return NULL;
2145
2146         inode = new_inode(sb);
2147         if (inode) {
2148                 inode->i_ino = get_next_ino();
2149                 inode_init_owner(inode, dir, mode);
2150                 inode->i_blocks = 0;
2151                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2152                 inode->i_generation = prandom_u32();
2153                 info = SHMEM_I(inode);
2154                 memset(info, 0, (char *)inode - (char *)info);
2155                 spin_lock_init(&info->lock);
2156                 info->seals = F_SEAL_SEAL;
2157                 info->flags = flags & VM_NORESERVE;
2158                 INIT_LIST_HEAD(&info->shrinklist);
2159                 INIT_LIST_HEAD(&info->swaplist);
2160                 simple_xattrs_init(&info->xattrs);
2161                 cache_no_acl(inode);
2162
2163                 switch (mode & S_IFMT) {
2164                 default:
2165                         inode->i_op = &shmem_special_inode_operations;
2166                         init_special_inode(inode, mode, dev);
2167                         break;
2168                 case S_IFREG:
2169                         inode->i_mapping->a_ops = &shmem_aops;
2170                         inode->i_op = &shmem_inode_operations;
2171                         inode->i_fop = &shmem_file_operations;
2172                         mpol_shared_policy_init(&info->policy,
2173                                                  shmem_get_sbmpol(sbinfo));
2174                         break;
2175                 case S_IFDIR:
2176                         inc_nlink(inode);
2177                         /* Some things misbehave if size == 0 on a directory */
2178                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2179                         inode->i_op = &shmem_dir_inode_operations;
2180                         inode->i_fop = &simple_dir_operations;
2181                         break;
2182                 case S_IFLNK:
2183                         /*
2184                          * Must not load anything in the rbtree,
2185                          * mpol_free_shared_policy will not be called.
2186                          */
2187                         mpol_shared_policy_init(&info->policy, NULL);
2188                         break;
2189                 }
2190
2191                 lockdep_annotate_inode_mutex_key(inode);
2192         } else
2193                 shmem_free_inode(sb);
2194         return inode;
2195 }
2196
2197 bool shmem_mapping(struct address_space *mapping)
2198 {
2199         return mapping->a_ops == &shmem_aops;
2200 }
2201
2202 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2203                                   pmd_t *dst_pmd,
2204                                   struct vm_area_struct *dst_vma,
2205                                   unsigned long dst_addr,
2206                                   unsigned long src_addr,
2207                                   bool zeropage,
2208                                   struct page **pagep)
2209 {
2210         struct inode *inode = file_inode(dst_vma->vm_file);
2211         struct shmem_inode_info *info = SHMEM_I(inode);
2212         struct address_space *mapping = inode->i_mapping;
2213         gfp_t gfp = mapping_gfp_mask(mapping);
2214         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2215         struct mem_cgroup *memcg;
2216         spinlock_t *ptl;
2217         void *page_kaddr;
2218         struct page *page;
2219         pte_t _dst_pte, *dst_pte;
2220         int ret;
2221         pgoff_t offset, max_off;
2222
2223         ret = -ENOMEM;
2224         if (!shmem_inode_acct_block(inode, 1))
2225                 goto out;
2226
2227         if (!*pagep) {
2228                 page = shmem_alloc_page(gfp, info, pgoff);
2229                 if (!page)
2230                         goto out_unacct_blocks;
2231
2232                 if (!zeropage) {        /* mcopy_atomic */
2233                         page_kaddr = kmap_atomic(page);
2234                         ret = copy_from_user(page_kaddr,
2235                                              (const void __user *)src_addr,
2236                                              PAGE_SIZE);
2237                         kunmap_atomic(page_kaddr);
2238
2239                         /* fallback to copy_from_user outside mmap_sem */
2240                         if (unlikely(ret)) {
2241                                 *pagep = page;
2242                                 shmem_inode_unacct_blocks(inode, 1);
2243                                 /* don't free the page */
2244                                 return -ENOENT;
2245                         }
2246                 } else {                /* mfill_zeropage_atomic */
2247                         clear_highpage(page);
2248                 }
2249         } else {
2250                 page = *pagep;
2251                 *pagep = NULL;
2252         }
2253
2254         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2255         __SetPageLocked(page);
2256         __SetPageSwapBacked(page);
2257         __SetPageUptodate(page);
2258
2259         ret = -EFAULT;
2260         offset = linear_page_index(dst_vma, dst_addr);
2261         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2262         if (unlikely(offset >= max_off))
2263                 goto out_release;
2264
2265         ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2266         if (ret)
2267                 goto out_release;
2268
2269         ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2270                                                 gfp & GFP_RECLAIM_MASK);
2271         if (ret)
2272                 goto out_release_uncharge;
2273
2274         mem_cgroup_commit_charge(page, memcg, false, false);
2275
2276         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2277         if (dst_vma->vm_flags & VM_WRITE)
2278                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2279         else {
2280                 /*
2281                  * We don't set the pte dirty if the vma has no
2282                  * VM_WRITE permission, so mark the page dirty or it
2283                  * could be freed from under us. We could do it
2284                  * unconditionally before unlock_page(), but doing it
2285                  * only if VM_WRITE is not set is faster.
2286                  */
2287                 set_page_dirty(page);
2288         }
2289
2290         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2291
2292         ret = -EFAULT;
2293         max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2294         if (unlikely(offset >= max_off))
2295                 goto out_release_uncharge_unlock;
2296
2297         ret = -EEXIST;
2298         if (!pte_none(*dst_pte))
2299                 goto out_release_uncharge_unlock;
2300
2301         lru_cache_add_anon(page);
2302
2303         spin_lock(&info->lock);
2304         info->alloced++;
2305         inode->i_blocks += BLOCKS_PER_PAGE;
2306         shmem_recalc_inode(inode);
2307         spin_unlock(&info->lock);
2308
2309         inc_mm_counter(dst_mm, mm_counter_file(page));
2310         page_add_file_rmap(page, false);
2311         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2312
2313         /* No need to invalidate - it was non-present before */
2314         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2315         pte_unmap_unlock(dst_pte, ptl);
2316         unlock_page(page);
2317         ret = 0;
2318 out:
2319         return ret;
2320 out_release_uncharge_unlock:
2321         pte_unmap_unlock(dst_pte, ptl);
2322         ClearPageDirty(page);
2323         delete_from_page_cache(page);
2324 out_release_uncharge:
2325         mem_cgroup_cancel_charge(page, memcg, false);
2326 out_release:
2327         unlock_page(page);
2328         put_page(page);
2329 out_unacct_blocks:
2330         shmem_inode_unacct_blocks(inode, 1);
2331         goto out;
2332 }
2333
2334 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2335                            pmd_t *dst_pmd,
2336                            struct vm_area_struct *dst_vma,
2337                            unsigned long dst_addr,
2338                            unsigned long src_addr,
2339                            struct page **pagep)
2340 {
2341         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2342                                       dst_addr, src_addr, false, pagep);
2343 }
2344
2345 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2346                              pmd_t *dst_pmd,
2347                              struct vm_area_struct *dst_vma,
2348                              unsigned long dst_addr)
2349 {
2350         struct page *page = NULL;
2351
2352         return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2353                                       dst_addr, 0, true, &page);
2354 }
2355
2356 #ifdef CONFIG_TMPFS
2357 static const struct inode_operations shmem_symlink_inode_operations;
2358 static const struct inode_operations shmem_short_symlink_operations;
2359
2360 #ifdef CONFIG_TMPFS_XATTR
2361 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2362 #else
2363 #define shmem_initxattrs NULL
2364 #endif
2365
2366 static int
2367 shmem_write_begin(struct file *file, struct address_space *mapping,
2368                         loff_t pos, unsigned len, unsigned flags,
2369                         struct page **pagep, void **fsdata)
2370 {
2371         struct inode *inode = mapping->host;
2372         struct shmem_inode_info *info = SHMEM_I(inode);
2373         pgoff_t index = pos >> PAGE_SHIFT;
2374
2375         /* i_mutex is held by caller */
2376         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2377                 if (info->seals & F_SEAL_WRITE)
2378                         return -EPERM;
2379                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2380                         return -EPERM;
2381         }
2382
2383         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2384 }
2385
2386 static int
2387 shmem_write_end(struct file *file, struct address_space *mapping,
2388                         loff_t pos, unsigned len, unsigned copied,
2389                         struct page *page, void *fsdata)
2390 {
2391         struct inode *inode = mapping->host;
2392
2393         if (pos + copied > inode->i_size)
2394                 i_size_write(inode, pos + copied);
2395
2396         if (!PageUptodate(page)) {
2397                 struct page *head = compound_head(page);
2398                 if (PageTransCompound(page)) {
2399                         int i;
2400
2401                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2402                                 if (head + i == page)
2403                                         continue;
2404                                 clear_highpage(head + i);
2405                                 flush_dcache_page(head + i);
2406                         }
2407                 }
2408                 if (copied < PAGE_SIZE) {
2409                         unsigned from = pos & (PAGE_SIZE - 1);
2410                         zero_user_segments(page, 0, from,
2411                                         from + copied, PAGE_SIZE);
2412                 }
2413                 SetPageUptodate(head);
2414         }
2415         set_page_dirty(page);
2416         unlock_page(page);
2417         put_page(page);
2418
2419         return copied;
2420 }
2421
2422 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2423 {
2424         struct file *file = iocb->ki_filp;
2425         struct inode *inode = file_inode(file);
2426         struct address_space *mapping = inode->i_mapping;
2427         pgoff_t index;
2428         unsigned long offset;
2429         enum sgp_type sgp = SGP_READ;
2430         int error = 0;
2431         ssize_t retval = 0;
2432         loff_t *ppos = &iocb->ki_pos;
2433
2434         /*
2435          * Might this read be for a stacking filesystem?  Then when reading
2436          * holes of a sparse file, we actually need to allocate those pages,
2437          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2438          */
2439         if (!iter_is_iovec(to))
2440                 sgp = SGP_CACHE;
2441
2442         index = *ppos >> PAGE_SHIFT;
2443         offset = *ppos & ~PAGE_MASK;
2444
2445         for (;;) {
2446                 struct page *page = NULL;
2447                 pgoff_t end_index;
2448                 unsigned long nr, ret;
2449                 loff_t i_size = i_size_read(inode);
2450
2451                 end_index = i_size >> PAGE_SHIFT;
2452                 if (index > end_index)
2453                         break;
2454                 if (index == end_index) {
2455                         nr = i_size & ~PAGE_MASK;
2456                         if (nr <= offset)
2457                                 break;
2458                 }
2459
2460                 error = shmem_getpage(inode, index, &page, sgp);
2461                 if (error) {
2462                         if (error == -EINVAL)
2463                                 error = 0;
2464                         break;
2465                 }
2466                 if (page) {
2467                         if (sgp == SGP_CACHE)
2468                                 set_page_dirty(page);
2469                         unlock_page(page);
2470                 }
2471
2472                 /*
2473                  * We must evaluate after, since reads (unlike writes)
2474                  * are called without i_mutex protection against truncate
2475                  */
2476                 nr = PAGE_SIZE;
2477                 i_size = i_size_read(inode);
2478                 end_index = i_size >> PAGE_SHIFT;
2479                 if (index == end_index) {
2480                         nr = i_size & ~PAGE_MASK;
2481                         if (nr <= offset) {
2482                                 if (page)
2483                                         put_page(page);
2484                                 break;
2485                         }
2486                 }
2487                 nr -= offset;
2488
2489                 if (page) {
2490                         /*
2491                          * If users can be writing to this page using arbitrary
2492                          * virtual addresses, take care about potential aliasing
2493                          * before reading the page on the kernel side.
2494                          */
2495                         if (mapping_writably_mapped(mapping))
2496                                 flush_dcache_page(page);
2497                         /*
2498                          * Mark the page accessed if we read the beginning.
2499                          */
2500                         if (!offset)
2501                                 mark_page_accessed(page);
2502                 } else {
2503                         page = ZERO_PAGE(0);
2504                         get_page(page);
2505                 }
2506
2507                 /*
2508                  * Ok, we have the page, and it's up-to-date, so
2509                  * now we can copy it to user space...
2510                  */
2511                 ret = copy_page_to_iter(page, offset, nr, to);
2512                 retval += ret;
2513                 offset += ret;
2514                 index += offset >> PAGE_SHIFT;
2515                 offset &= ~PAGE_MASK;
2516
2517                 put_page(page);
2518                 if (!iov_iter_count(to))
2519                         break;
2520                 if (ret < nr) {
2521                         error = -EFAULT;
2522                         break;
2523                 }
2524                 cond_resched();
2525         }
2526
2527         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2528         file_accessed(file);
2529         return retval ? retval : error;
2530 }
2531
2532 /*
2533  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2534  */
2535 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2536                                     pgoff_t index, pgoff_t end, int whence)
2537 {
2538         struct page *page;
2539         struct pagevec pvec;
2540         pgoff_t indices[PAGEVEC_SIZE];
2541         bool done = false;
2542         int i;
2543
2544         pagevec_init(&pvec);
2545         pvec.nr = 1;            /* start small: we may be there already */
2546         while (!done) {
2547                 pvec.nr = find_get_entries(mapping, index,
2548                                         pvec.nr, pvec.pages, indices);
2549                 if (!pvec.nr) {
2550                         if (whence == SEEK_DATA)
2551                                 index = end;
2552                         break;
2553                 }
2554                 for (i = 0; i < pvec.nr; i++, index++) {
2555                         if (index < indices[i]) {
2556                                 if (whence == SEEK_HOLE) {
2557                                         done = true;
2558                                         break;
2559                                 }
2560                                 index = indices[i];
2561                         }
2562                         page = pvec.pages[i];
2563                         if (page && !xa_is_value(page)) {
2564                                 if (!PageUptodate(page))
2565                                         page = NULL;
2566                         }
2567                         if (index >= end ||
2568                             (page && whence == SEEK_DATA) ||
2569                             (!page && whence == SEEK_HOLE)) {
2570                                 done = true;
2571                                 break;
2572                         }
2573                 }
2574                 pagevec_remove_exceptionals(&pvec);
2575                 pagevec_release(&pvec);
2576                 pvec.nr = PAGEVEC_SIZE;
2577                 cond_resched();
2578         }
2579         return index;
2580 }
2581
2582 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2583 {
2584         struct address_space *mapping = file->f_mapping;
2585         struct inode *inode = mapping->host;
2586         pgoff_t start, end;
2587         loff_t new_offset;
2588
2589         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2590                 return generic_file_llseek_size(file, offset, whence,
2591                                         MAX_LFS_FILESIZE, i_size_read(inode));
2592         inode_lock(inode);
2593         /* We're holding i_mutex so we can access i_size directly */
2594
2595         if (offset < 0 || offset >= inode->i_size)
2596                 offset = -ENXIO;
2597         else {
2598                 start = offset >> PAGE_SHIFT;
2599                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2600                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2601                 new_offset <<= PAGE_SHIFT;
2602                 if (new_offset > offset) {
2603                         if (new_offset < inode->i_size)
2604                                 offset = new_offset;
2605                         else if (whence == SEEK_DATA)
2606                                 offset = -ENXIO;
2607                         else
2608                                 offset = inode->i_size;
2609                 }
2610         }
2611
2612         if (offset >= 0)
2613                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2614         inode_unlock(inode);
2615         return offset;
2616 }
2617
2618 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2619                                                          loff_t len)
2620 {
2621         struct inode *inode = file_inode(file);
2622         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2623         struct shmem_inode_info *info = SHMEM_I(inode);
2624         struct shmem_falloc shmem_falloc;
2625         pgoff_t start, index, end;
2626         int error;
2627
2628         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2629                 return -EOPNOTSUPP;
2630
2631         inode_lock(inode);
2632
2633         if (mode & FALLOC_FL_PUNCH_HOLE) {
2634                 struct address_space *mapping = file->f_mapping;
2635                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2636                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2637                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2638
2639                 /* protected by i_mutex */
2640                 if (info->seals & F_SEAL_WRITE) {
2641                         error = -EPERM;
2642                         goto out;
2643                 }
2644
2645                 shmem_falloc.waitq = &shmem_falloc_waitq;
2646                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2647                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2648                 spin_lock(&inode->i_lock);
2649                 inode->i_private = &shmem_falloc;
2650                 spin_unlock(&inode->i_lock);
2651
2652                 if ((u64)unmap_end > (u64)unmap_start)
2653                         unmap_mapping_range(mapping, unmap_start,
2654                                             1 + unmap_end - unmap_start, 0);
2655                 shmem_truncate_range(inode, offset, offset + len - 1);
2656                 /* No need to unmap again: hole-punching leaves COWed pages */
2657
2658                 spin_lock(&inode->i_lock);
2659                 inode->i_private = NULL;
2660                 wake_up_all(&shmem_falloc_waitq);
2661                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2662                 spin_unlock(&inode->i_lock);
2663                 error = 0;
2664                 goto out;
2665         }
2666
2667         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2668         error = inode_newsize_ok(inode, offset + len);
2669         if (error)
2670                 goto out;
2671
2672         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2673                 error = -EPERM;
2674                 goto out;
2675         }
2676
2677         start = offset >> PAGE_SHIFT;
2678         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679         /* Try to avoid a swapstorm if len is impossible to satisfy */
2680         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2681                 error = -ENOSPC;
2682                 goto out;
2683         }
2684
2685         shmem_falloc.waitq = NULL;
2686         shmem_falloc.start = start;
2687         shmem_falloc.next  = start;
2688         shmem_falloc.nr_falloced = 0;
2689         shmem_falloc.nr_unswapped = 0;
2690         spin_lock(&inode->i_lock);
2691         inode->i_private = &shmem_falloc;
2692         spin_unlock(&inode->i_lock);
2693
2694         for (index = start; index < end; index++) {
2695                 struct page *page;
2696
2697                 /*
2698                  * Good, the fallocate(2) manpage permits EINTR: we may have
2699                  * been interrupted because we are using up too much memory.
2700                  */
2701                 if (signal_pending(current))
2702                         error = -EINTR;
2703                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2704                         error = -ENOMEM;
2705                 else
2706                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2707                 if (error) {
2708                         /* Remove the !PageUptodate pages we added */
2709                         if (index > start) {
2710                                 shmem_undo_range(inode,
2711                                     (loff_t)start << PAGE_SHIFT,
2712                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2713                         }
2714                         goto undone;
2715                 }
2716
2717                 /*
2718                  * Inform shmem_writepage() how far we have reached.
2719                  * No need for lock or barrier: we have the page lock.
2720                  */
2721                 shmem_falloc.next++;
2722                 if (!PageUptodate(page))
2723                         shmem_falloc.nr_falloced++;
2724
2725                 /*
2726                  * If !PageUptodate, leave it that way so that freeable pages
2727                  * can be recognized if we need to rollback on error later.
2728                  * But set_page_dirty so that memory pressure will swap rather
2729                  * than free the pages we are allocating (and SGP_CACHE pages
2730                  * might still be clean: we now need to mark those dirty too).
2731                  */
2732                 set_page_dirty(page);
2733                 unlock_page(page);
2734                 put_page(page);
2735                 cond_resched();
2736         }
2737
2738         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2739                 i_size_write(inode, offset + len);
2740         inode->i_ctime = current_time(inode);
2741 undone:
2742         spin_lock(&inode->i_lock);
2743         inode->i_private = NULL;
2744         spin_unlock(&inode->i_lock);
2745 out:
2746         inode_unlock(inode);
2747         return error;
2748 }
2749
2750 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2751 {
2752         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2753
2754         buf->f_type = TMPFS_MAGIC;
2755         buf->f_bsize = PAGE_SIZE;
2756         buf->f_namelen = NAME_MAX;
2757         if (sbinfo->max_blocks) {
2758                 buf->f_blocks = sbinfo->max_blocks;
2759                 buf->f_bavail =
2760                 buf->f_bfree  = sbinfo->max_blocks -
2761                                 percpu_counter_sum(&sbinfo->used_blocks);
2762         }
2763         if (sbinfo->max_inodes) {
2764                 buf->f_files = sbinfo->max_inodes;
2765                 buf->f_ffree = sbinfo->free_inodes;
2766         }
2767         /* else leave those fields 0 like simple_statfs */
2768         return 0;
2769 }
2770
2771 /*
2772  * File creation. Allocate an inode, and we're done..
2773  */
2774 static int
2775 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2776 {
2777         struct inode *inode;
2778         int error = -ENOSPC;
2779
2780         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2781         if (inode) {
2782                 error = simple_acl_create(dir, inode);
2783                 if (error)
2784                         goto out_iput;
2785                 error = security_inode_init_security(inode, dir,
2786                                                      &dentry->d_name,
2787                                                      shmem_initxattrs, NULL);
2788                 if (error && error != -EOPNOTSUPP)
2789                         goto out_iput;
2790
2791                 error = 0;
2792                 dir->i_size += BOGO_DIRENT_SIZE;
2793                 dir->i_ctime = dir->i_mtime = current_time(dir);
2794                 d_instantiate(dentry, inode);
2795                 dget(dentry); /* Extra count - pin the dentry in core */
2796         }
2797         return error;
2798 out_iput:
2799         iput(inode);
2800         return error;
2801 }
2802
2803 static int
2804 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2805 {
2806         struct inode *inode;
2807         int error = -ENOSPC;
2808
2809         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2810         if (inode) {
2811                 error = security_inode_init_security(inode, dir,
2812                                                      NULL,
2813                                                      shmem_initxattrs, NULL);
2814                 if (error && error != -EOPNOTSUPP)
2815                         goto out_iput;
2816                 error = simple_acl_create(dir, inode);
2817                 if (error)
2818                         goto out_iput;
2819                 d_tmpfile(dentry, inode);
2820         }
2821         return error;
2822 out_iput:
2823         iput(inode);
2824         return error;
2825 }
2826
2827 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2828 {
2829         int error;
2830
2831         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2832                 return error;
2833         inc_nlink(dir);
2834         return 0;
2835 }
2836
2837 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2838                 bool excl)
2839 {
2840         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2841 }
2842
2843 /*
2844  * Link a file..
2845  */
2846 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2847 {
2848         struct inode *inode = d_inode(old_dentry);
2849         int ret;
2850
2851         /*
2852          * No ordinary (disk based) filesystem counts links as inodes;
2853          * but each new link needs a new dentry, pinning lowmem, and
2854          * tmpfs dentries cannot be pruned until they are unlinked.
2855          */
2856         ret = shmem_reserve_inode(inode->i_sb);
2857         if (ret)
2858                 goto out;
2859
2860         dir->i_size += BOGO_DIRENT_SIZE;
2861         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2862         inc_nlink(inode);
2863         ihold(inode);   /* New dentry reference */
2864         dget(dentry);           /* Extra pinning count for the created dentry */
2865         d_instantiate(dentry, inode);
2866 out:
2867         return ret;
2868 }
2869
2870 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2871 {
2872         struct inode *inode = d_inode(dentry);
2873
2874         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2875                 shmem_free_inode(inode->i_sb);
2876
2877         dir->i_size -= BOGO_DIRENT_SIZE;
2878         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2879         drop_nlink(inode);
2880         dput(dentry);   /* Undo the count from "create" - this does all the work */
2881         return 0;
2882 }
2883
2884 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2885 {
2886         if (!simple_empty(dentry))
2887                 return -ENOTEMPTY;
2888
2889         drop_nlink(d_inode(dentry));
2890         drop_nlink(dir);
2891         return shmem_unlink(dir, dentry);
2892 }
2893
2894 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2895 {
2896         bool old_is_dir = d_is_dir(old_dentry);
2897         bool new_is_dir = d_is_dir(new_dentry);
2898
2899         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2900                 if (old_is_dir) {
2901                         drop_nlink(old_dir);
2902                         inc_nlink(new_dir);
2903                 } else {
2904                         drop_nlink(new_dir);
2905                         inc_nlink(old_dir);
2906                 }
2907         }
2908         old_dir->i_ctime = old_dir->i_mtime =
2909         new_dir->i_ctime = new_dir->i_mtime =
2910         d_inode(old_dentry)->i_ctime =
2911         d_inode(new_dentry)->i_ctime = current_time(old_dir);
2912
2913         return 0;
2914 }
2915
2916 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2917 {
2918         struct dentry *whiteout;
2919         int error;
2920
2921         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2922         if (!whiteout)
2923                 return -ENOMEM;
2924
2925         error = shmem_mknod(old_dir, whiteout,
2926                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2927         dput(whiteout);
2928         if (error)
2929                 return error;
2930
2931         /*
2932          * Cheat and hash the whiteout while the old dentry is still in
2933          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2934          *
2935          * d_lookup() will consistently find one of them at this point,
2936          * not sure which one, but that isn't even important.
2937          */
2938         d_rehash(whiteout);
2939         return 0;
2940 }
2941
2942 /*
2943  * The VFS layer already does all the dentry stuff for rename,
2944  * we just have to decrement the usage count for the target if
2945  * it exists so that the VFS layer correctly free's it when it
2946  * gets overwritten.
2947  */
2948 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2949 {
2950         struct inode *inode = d_inode(old_dentry);
2951         int they_are_dirs = S_ISDIR(inode->i_mode);
2952
2953         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2954                 return -EINVAL;
2955
2956         if (flags & RENAME_EXCHANGE)
2957                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2958
2959         if (!simple_empty(new_dentry))
2960                 return -ENOTEMPTY;
2961
2962         if (flags & RENAME_WHITEOUT) {
2963                 int error;
2964
2965                 error = shmem_whiteout(old_dir, old_dentry);
2966                 if (error)
2967                         return error;
2968         }
2969
2970         if (d_really_is_positive(new_dentry)) {
2971                 (void) shmem_unlink(new_dir, new_dentry);
2972                 if (they_are_dirs) {
2973                         drop_nlink(d_inode(new_dentry));
2974                         drop_nlink(old_dir);
2975                 }
2976         } else if (they_are_dirs) {
2977                 drop_nlink(old_dir);
2978                 inc_nlink(new_dir);
2979         }
2980
2981         old_dir->i_size -= BOGO_DIRENT_SIZE;
2982         new_dir->i_size += BOGO_DIRENT_SIZE;
2983         old_dir->i_ctime = old_dir->i_mtime =
2984         new_dir->i_ctime = new_dir->i_mtime =
2985         inode->i_ctime = current_time(old_dir);
2986         return 0;
2987 }
2988
2989 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2990 {
2991         int error;
2992         int len;
2993         struct inode *inode;
2994         struct page *page;
2995
2996         len = strlen(symname) + 1;
2997         if (len > PAGE_SIZE)
2998                 return -ENAMETOOLONG;
2999
3000         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3001                                 VM_NORESERVE);
3002         if (!inode)
3003                 return -ENOSPC;
3004
3005         error = security_inode_init_security(inode, dir, &dentry->d_name,
3006                                              shmem_initxattrs, NULL);
3007         if (error) {
3008                 if (error != -EOPNOTSUPP) {
3009                         iput(inode);
3010                         return error;
3011                 }
3012                 error = 0;
3013         }
3014
3015         inode->i_size = len-1;
3016         if (len <= SHORT_SYMLINK_LEN) {
3017                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3018                 if (!inode->i_link) {
3019                         iput(inode);
3020                         return -ENOMEM;
3021                 }
3022                 inode->i_op = &shmem_short_symlink_operations;
3023         } else {
3024                 inode_nohighmem(inode);
3025                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3026                 if (error) {
3027                         iput(inode);
3028                         return error;
3029                 }
3030                 inode->i_mapping->a_ops = &shmem_aops;
3031                 inode->i_op = &shmem_symlink_inode_operations;
3032                 memcpy(page_address(page), symname, len);
3033                 SetPageUptodate(page);
3034                 set_page_dirty(page);
3035                 unlock_page(page);
3036                 put_page(page);
3037         }
3038         dir->i_size += BOGO_DIRENT_SIZE;
3039         dir->i_ctime = dir->i_mtime = current_time(dir);
3040         d_instantiate(dentry, inode);
3041         dget(dentry);
3042         return 0;
3043 }
3044
3045 static void shmem_put_link(void *arg)
3046 {
3047         mark_page_accessed(arg);
3048         put_page(arg);
3049 }
3050
3051 static const char *shmem_get_link(struct dentry *dentry,
3052                                   struct inode *inode,
3053                                   struct delayed_call *done)
3054 {
3055         struct page *page = NULL;
3056         int error;
3057         if (!dentry) {
3058                 page = find_get_page(inode->i_mapping, 0);
3059                 if (!page)
3060                         return ERR_PTR(-ECHILD);
3061                 if (!PageUptodate(page)) {
3062                         put_page(page);
3063                         return ERR_PTR(-ECHILD);
3064                 }
3065         } else {
3066                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3067                 if (error)
3068                         return ERR_PTR(error);
3069                 unlock_page(page);
3070         }
3071         set_delayed_call(done, shmem_put_link, page);
3072         return page_address(page);
3073 }
3074
3075 #ifdef CONFIG_TMPFS_XATTR
3076 /*
3077  * Superblocks without xattr inode operations may get some security.* xattr
3078  * support from the LSM "for free". As soon as we have any other xattrs
3079  * like ACLs, we also need to implement the security.* handlers at
3080  * filesystem level, though.
3081  */
3082
3083 /*
3084  * Callback for security_inode_init_security() for acquiring xattrs.
3085  */
3086 static int shmem_initxattrs(struct inode *inode,
3087                             const struct xattr *xattr_array,
3088                             void *fs_info)
3089 {
3090         struct shmem_inode_info *info = SHMEM_I(inode);
3091         const struct xattr *xattr;
3092         struct simple_xattr *new_xattr;
3093         size_t len;
3094
3095         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3096                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3097                 if (!new_xattr)
3098                         return -ENOMEM;
3099
3100                 len = strlen(xattr->name) + 1;
3101                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3102                                           GFP_KERNEL);
3103                 if (!new_xattr->name) {
3104                         kfree(new_xattr);
3105                         return -ENOMEM;
3106                 }
3107
3108                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3109                        XATTR_SECURITY_PREFIX_LEN);
3110                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3111                        xattr->name, len);
3112
3113                 simple_xattr_list_add(&info->xattrs, new_xattr);
3114         }
3115
3116         return 0;
3117 }
3118
3119 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3120                                    struct dentry *unused, struct inode *inode,
3121                                    const char *name, void *buffer, size_t size)
3122 {
3123         struct shmem_inode_info *info = SHMEM_I(inode);
3124
3125         name = xattr_full_name(handler, name);
3126         return simple_xattr_get(&info->xattrs, name, buffer, size);
3127 }
3128
3129 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3130                                    struct dentry *unused, struct inode *inode,
3131                                    const char *name, const void *value,
3132                                    size_t size, int flags)
3133 {
3134         struct shmem_inode_info *info = SHMEM_I(inode);
3135
3136         name = xattr_full_name(handler, name);
3137         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3138 }
3139
3140 static const struct xattr_handler shmem_security_xattr_handler = {
3141         .prefix = XATTR_SECURITY_PREFIX,
3142         .get = shmem_xattr_handler_get,
3143         .set = shmem_xattr_handler_set,
3144 };
3145
3146 static const struct xattr_handler shmem_trusted_xattr_handler = {
3147         .prefix = XATTR_TRUSTED_PREFIX,
3148         .get = shmem_xattr_handler_get,
3149         .set = shmem_xattr_handler_set,
3150 };
3151
3152 static const struct xattr_handler *shmem_xattr_handlers[] = {
3153 #ifdef CONFIG_TMPFS_POSIX_ACL
3154         &posix_acl_access_xattr_handler,
3155         &posix_acl_default_xattr_handler,
3156 #endif
3157         &shmem_security_xattr_handler,
3158         &shmem_trusted_xattr_handler,
3159         NULL
3160 };
3161
3162 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3163 {
3164         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3165         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3166 }
3167 #endif /* CONFIG_TMPFS_XATTR */
3168
3169 static const struct inode_operations shmem_short_symlink_operations = {
3170         .get_link       = simple_get_link,
3171 #ifdef CONFIG_TMPFS_XATTR
3172         .listxattr      = shmem_listxattr,
3173 #endif
3174 };
3175
3176 static const struct inode_operations shmem_symlink_inode_operations = {
3177         .get_link       = shmem_get_link,
3178 #ifdef CONFIG_TMPFS_XATTR
3179         .listxattr      = shmem_listxattr,
3180 #endif
3181 };
3182
3183 static struct dentry *shmem_get_parent(struct dentry *child)
3184 {
3185         return ERR_PTR(-ESTALE);
3186 }
3187
3188 static int shmem_match(struct inode *ino, void *vfh)
3189 {
3190         __u32 *fh = vfh;
3191         __u64 inum = fh[2];
3192         inum = (inum << 32) | fh[1];
3193         return ino->i_ino == inum && fh[0] == ino->i_generation;
3194 }
3195
3196 /* Find any alias of inode, but prefer a hashed alias */
3197 static struct dentry *shmem_find_alias(struct inode *inode)
3198 {
3199         struct dentry *alias = d_find_alias(inode);
3200
3201         return alias ?: d_find_any_alias(inode);
3202 }
3203
3204
3205 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3206                 struct fid *fid, int fh_len, int fh_type)
3207 {
3208         struct inode *inode;
3209         struct dentry *dentry = NULL;
3210         u64 inum;
3211
3212         if (fh_len < 3)
3213                 return NULL;
3214
3215         inum = fid->raw[2];
3216         inum = (inum << 32) | fid->raw[1];
3217
3218         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3219                         shmem_match, fid->raw);
3220         if (inode) {
3221                 dentry = shmem_find_alias(inode);
3222                 iput(inode);
3223         }
3224
3225         return dentry;
3226 }
3227
3228 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3229                                 struct inode *parent)
3230 {
3231         if (*len < 3) {
3232                 *len = 3;
3233                 return FILEID_INVALID;
3234         }
3235
3236         if (inode_unhashed(inode)) {
3237                 /* Unfortunately insert_inode_hash is not idempotent,
3238                  * so as we hash inodes here rather than at creation
3239                  * time, we need a lock to ensure we only try
3240                  * to do it once
3241                  */
3242                 static DEFINE_SPINLOCK(lock);
3243                 spin_lock(&lock);
3244                 if (inode_unhashed(inode))
3245                         __insert_inode_hash(inode,
3246                                             inode->i_ino + inode->i_generation);
3247                 spin_unlock(&lock);
3248         }
3249
3250         fh[0] = inode->i_generation;
3251         fh[1] = inode->i_ino;
3252         fh[2] = ((__u64)inode->i_ino) >> 32;
3253
3254         *len = 3;
3255         return 1;
3256 }
3257
3258 static const struct export_operations shmem_export_ops = {
3259         .get_parent     = shmem_get_parent,
3260         .encode_fh      = shmem_encode_fh,
3261         .fh_to_dentry   = shmem_fh_to_dentry,
3262 };
3263
3264 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3265                                bool remount)
3266 {
3267         char *this_char, *value, *rest;
3268         struct mempolicy *mpol = NULL;
3269         uid_t uid;
3270         gid_t gid;
3271
3272         while (options != NULL) {
3273                 this_char = options;
3274                 for (;;) {
3275                         /*
3276                          * NUL-terminate this option: unfortunately,
3277                          * mount options form a comma-separated list,
3278                          * but mpol's nodelist may also contain commas.
3279                          */
3280                         options = strchr(options, ',');
3281                         if (options == NULL)
3282                                 break;
3283                         options++;
3284                         if (!isdigit(*options)) {
3285                                 options[-1] = '\0';
3286                                 break;
3287                         }
3288                 }
3289                 if (!*this_char)
3290                         continue;
3291                 if ((value = strchr(this_char,'=')) != NULL) {
3292                         *value++ = 0;
3293                 } else {
3294                         pr_err("tmpfs: No value for mount option '%s'\n",
3295                                this_char);
3296                         goto error;
3297                 }
3298
3299                 if (!strcmp(this_char,"size")) {
3300                         unsigned long long size;
3301                         size = memparse(value,&rest);
3302                         if (*rest == '%') {
3303                                 size <<= PAGE_SHIFT;
3304                                 size *= totalram_pages;
3305                                 do_div(size, 100);
3306                                 rest++;
3307                         }
3308                         if (*rest)
3309                                 goto bad_val;
3310                         sbinfo->max_blocks =
3311                                 DIV_ROUND_UP(size, PAGE_SIZE);
3312                 } else if (!strcmp(this_char,"nr_blocks")) {
3313                         sbinfo->max_blocks = memparse(value, &rest);
3314                         if (*rest)
3315                                 goto bad_val;
3316                 } else if (!strcmp(this_char,"nr_inodes")) {
3317                         sbinfo->max_inodes = memparse(value, &rest);
3318                         if (*rest)
3319                                 goto bad_val;
3320                 } else if (!strcmp(this_char,"mode")) {
3321                         if (remount)
3322                                 continue;
3323                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3324                         if (*rest)
3325                                 goto bad_val;
3326                 } else if (!strcmp(this_char,"uid")) {
3327                         if (remount)
3328                                 continue;
3329                         uid = simple_strtoul(value, &rest, 0);
3330                         if (*rest)
3331                                 goto bad_val;
3332                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3333                         if (!uid_valid(sbinfo->uid))
3334                                 goto bad_val;
3335                 } else if (!strcmp(this_char,"gid")) {
3336                         if (remount)
3337                                 continue;
3338                         gid = simple_strtoul(value, &rest, 0);
3339                         if (*rest)
3340                                 goto bad_val;
3341                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3342                         if (!gid_valid(sbinfo->gid))
3343                                 goto bad_val;
3344 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3345                 } else if (!strcmp(this_char, "huge")) {
3346                         int huge;
3347                         huge = shmem_parse_huge(value);
3348                         if (huge < 0)
3349                                 goto bad_val;
3350                         if (!has_transparent_hugepage() &&
3351                                         huge != SHMEM_HUGE_NEVER)
3352                                 goto bad_val;
3353                         sbinfo->huge = huge;
3354 #endif
3355 #ifdef CONFIG_NUMA
3356                 } else if (!strcmp(this_char,"mpol")) {
3357                         mpol_put(mpol);
3358                         mpol = NULL;
3359                         if (mpol_parse_str(value, &mpol))
3360                                 goto bad_val;
3361 #endif
3362                 } else {
3363                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3364                         goto error;
3365                 }
3366         }
3367         sbinfo->mpol = mpol;
3368         return 0;
3369
3370 bad_val:
3371         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3372                value, this_char);
3373 error:
3374         mpol_put(mpol);
3375         return 1;
3376
3377 }
3378
3379 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3380 {
3381         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3382         struct shmem_sb_info config = *sbinfo;
3383         unsigned long inodes;
3384         int error = -EINVAL;
3385
3386         config.mpol = NULL;
3387         if (shmem_parse_options(data, &config, true))
3388                 return error;
3389
3390         spin_lock(&sbinfo->stat_lock);
3391         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3392         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3393                 goto out;
3394         if (config.max_inodes < inodes)
3395                 goto out;
3396         /*
3397          * Those tests disallow limited->unlimited while any are in use;
3398          * but we must separately disallow unlimited->limited, because
3399          * in that case we have no record of how much is already in use.
3400          */
3401         if (config.max_blocks && !sbinfo->max_blocks)
3402                 goto out;
3403         if (config.max_inodes && !sbinfo->max_inodes)
3404                 goto out;
3405
3406         error = 0;
3407         sbinfo->huge = config.huge;
3408         sbinfo->max_blocks  = config.max_blocks;
3409         sbinfo->max_inodes  = config.max_inodes;
3410         sbinfo->free_inodes = config.max_inodes - inodes;
3411
3412         /*
3413          * Preserve previous mempolicy unless mpol remount option was specified.
3414          */
3415         if (config.mpol) {
3416                 mpol_put(sbinfo->mpol);
3417                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3418         }
3419 out:
3420         spin_unlock(&sbinfo->stat_lock);
3421         return error;
3422 }
3423
3424 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3425 {
3426         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3427
3428         if (sbinfo->max_blocks != shmem_default_max_blocks())
3429                 seq_printf(seq, ",size=%luk",
3430                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3431         if (sbinfo->max_inodes != shmem_default_max_inodes())
3432                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3433         if (sbinfo->mode != (0777 | S_ISVTX))
3434                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3435         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3436                 seq_printf(seq, ",uid=%u",
3437                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3438         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3439                 seq_printf(seq, ",gid=%u",
3440                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3441 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3442         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3443         if (sbinfo->huge)
3444                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3445 #endif
3446         shmem_show_mpol(seq, sbinfo->mpol);
3447         return 0;
3448 }
3449
3450 #endif /* CONFIG_TMPFS */
3451
3452 static void shmem_put_super(struct super_block *sb)
3453 {
3454         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3455
3456         percpu_counter_destroy(&sbinfo->used_blocks);
3457         mpol_put(sbinfo->mpol);
3458         kfree(sbinfo);
3459         sb->s_fs_info = NULL;
3460 }
3461
3462 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3463 {
3464         struct inode *inode;
3465         struct shmem_sb_info *sbinfo;
3466         int err = -ENOMEM;
3467
3468         /* Round up to L1_CACHE_BYTES to resist false sharing */
3469         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3470                                 L1_CACHE_BYTES), GFP_KERNEL);
3471         if (!sbinfo)
3472                 return -ENOMEM;
3473
3474         sbinfo->mode = 0777 | S_ISVTX;
3475         sbinfo->uid = current_fsuid();
3476         sbinfo->gid = current_fsgid();
3477         sb->s_fs_info = sbinfo;
3478
3479 #ifdef CONFIG_TMPFS
3480         /*
3481          * Per default we only allow half of the physical ram per
3482          * tmpfs instance, limiting inodes to one per page of lowmem;
3483          * but the internal instance is left unlimited.
3484          */
3485         if (!(sb->s_flags & SB_KERNMOUNT)) {
3486                 sbinfo->max_blocks = shmem_default_max_blocks();
3487                 sbinfo->max_inodes = shmem_default_max_inodes();
3488                 if (shmem_parse_options(data, sbinfo, false)) {
3489                         err = -EINVAL;
3490                         goto failed;
3491                 }
3492         } else {
3493                 sb->s_flags |= SB_NOUSER;
3494         }
3495         sb->s_export_op = &shmem_export_ops;
3496         sb->s_flags |= SB_NOSEC;
3497 #else
3498         sb->s_flags |= SB_NOUSER;
3499 #endif
3500
3501         spin_lock_init(&sbinfo->stat_lock);
3502         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3503                 goto failed;
3504         sbinfo->free_inodes = sbinfo->max_inodes;
3505         spin_lock_init(&sbinfo->shrinklist_lock);
3506         INIT_LIST_HEAD(&sbinfo->shrinklist);
3507
3508         sb->s_maxbytes = MAX_LFS_FILESIZE;
3509         sb->s_blocksize = PAGE_SIZE;
3510         sb->s_blocksize_bits = PAGE_SHIFT;
3511         sb->s_magic = TMPFS_MAGIC;
3512         sb->s_op = &shmem_ops;
3513         sb->s_time_gran = 1;
3514 #ifdef CONFIG_TMPFS_XATTR
3515         sb->s_xattr = shmem_xattr_handlers;
3516 #endif
3517 #ifdef CONFIG_TMPFS_POSIX_ACL
3518         sb->s_flags |= SB_POSIXACL;
3519 #endif
3520         uuid_gen(&sb->s_uuid);
3521
3522         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3523         if (!inode)
3524                 goto failed;
3525         inode->i_uid = sbinfo->uid;
3526         inode->i_gid = sbinfo->gid;
3527         sb->s_root = d_make_root(inode);
3528         if (!sb->s_root)
3529                 goto failed;
3530         return 0;
3531
3532 failed:
3533         shmem_put_super(sb);
3534         return err;
3535 }
3536
3537 static struct kmem_cache *shmem_inode_cachep;
3538
3539 static struct inode *shmem_alloc_inode(struct super_block *sb)
3540 {
3541         struct shmem_inode_info *info;
3542         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3543         if (!info)
3544                 return NULL;
3545         return &info->vfs_inode;
3546 }
3547
3548 static void shmem_destroy_callback(struct rcu_head *head)
3549 {
3550         struct inode *inode = container_of(head, struct inode, i_rcu);
3551         if (S_ISLNK(inode->i_mode))
3552                 kfree(inode->i_link);
3553         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3554 }
3555
3556 static void shmem_destroy_inode(struct inode *inode)
3557 {
3558         if (S_ISREG(inode->i_mode))
3559                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3560         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3561 }
3562
3563 static void shmem_init_inode(void *foo)
3564 {
3565         struct shmem_inode_info *info = foo;
3566         inode_init_once(&info->vfs_inode);
3567 }
3568
3569 static void shmem_init_inodecache(void)
3570 {
3571         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3572                                 sizeof(struct shmem_inode_info),
3573                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3574 }
3575
3576 static void shmem_destroy_inodecache(void)
3577 {
3578         kmem_cache_destroy(shmem_inode_cachep);
3579 }
3580
3581 static const struct address_space_operations shmem_aops = {
3582         .writepage      = shmem_writepage,
3583         .set_page_dirty = __set_page_dirty_no_writeback,
3584 #ifdef CONFIG_TMPFS
3585         .write_begin    = shmem_write_begin,
3586         .write_end      = shmem_write_end,
3587 #endif
3588 #ifdef CONFIG_MIGRATION
3589         .migratepage    = migrate_page,
3590 #endif
3591         .error_remove_page = generic_error_remove_page,
3592 };
3593
3594 static const struct file_operations shmem_file_operations = {
3595         .mmap           = shmem_mmap,
3596         .get_unmapped_area = shmem_get_unmapped_area,
3597 #ifdef CONFIG_TMPFS
3598         .llseek         = shmem_file_llseek,
3599         .read_iter      = shmem_file_read_iter,
3600         .write_iter     = generic_file_write_iter,
3601         .fsync          = noop_fsync,
3602         .splice_read    = generic_file_splice_read,
3603         .splice_write   = iter_file_splice_write,
3604         .fallocate      = shmem_fallocate,
3605 #endif
3606 };
3607
3608 static const struct inode_operations shmem_inode_operations = {
3609         .getattr        = shmem_getattr,
3610         .setattr        = shmem_setattr,
3611 #ifdef CONFIG_TMPFS_XATTR
3612         .listxattr      = shmem_listxattr,
3613         .set_acl        = simple_set_acl,
3614 #endif
3615 };
3616
3617 static const struct inode_operations shmem_dir_inode_operations = {
3618 #ifdef CONFIG_TMPFS
3619         .create         = shmem_create,
3620         .lookup         = simple_lookup,
3621         .link           = shmem_link,
3622         .unlink         = shmem_unlink,
3623         .symlink        = shmem_symlink,
3624         .mkdir          = shmem_mkdir,
3625         .rmdir          = shmem_rmdir,
3626         .mknod          = shmem_mknod,
3627         .rename         = shmem_rename2,
3628         .tmpfile        = shmem_tmpfile,
3629 #endif
3630 #ifdef CONFIG_TMPFS_XATTR
3631         .listxattr      = shmem_listxattr,
3632 #endif
3633 #ifdef CONFIG_TMPFS_POSIX_ACL
3634         .setattr        = shmem_setattr,
3635         .set_acl        = simple_set_acl,
3636 #endif
3637 };
3638
3639 static const struct inode_operations shmem_special_inode_operations = {
3640 #ifdef CONFIG_TMPFS_XATTR
3641         .listxattr      = shmem_listxattr,
3642 #endif
3643 #ifdef CONFIG_TMPFS_POSIX_ACL
3644         .setattr        = shmem_setattr,
3645         .set_acl        = simple_set_acl,
3646 #endif
3647 };
3648
3649 static const struct super_operations shmem_ops = {
3650         .alloc_inode    = shmem_alloc_inode,
3651         .destroy_inode  = shmem_destroy_inode,
3652 #ifdef CONFIG_TMPFS
3653         .statfs         = shmem_statfs,
3654         .remount_fs     = shmem_remount_fs,
3655         .show_options   = shmem_show_options,
3656 #endif
3657         .evict_inode    = shmem_evict_inode,
3658         .drop_inode     = generic_delete_inode,
3659         .put_super      = shmem_put_super,
3660 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3661         .nr_cached_objects      = shmem_unused_huge_count,
3662         .free_cached_objects    = shmem_unused_huge_scan,
3663 #endif
3664 };
3665
3666 static const struct vm_operations_struct shmem_vm_ops = {
3667         .fault          = shmem_fault,
3668         .map_pages      = filemap_map_pages,
3669 #ifdef CONFIG_NUMA
3670         .set_policy     = shmem_set_policy,
3671         .get_policy     = shmem_get_policy,
3672 #endif
3673 };
3674
3675 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3676         int flags, const char *dev_name, void *data)
3677 {
3678         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3679 }
3680
3681 static struct file_system_type shmem_fs_type = {
3682         .owner          = THIS_MODULE,
3683         .name           = "tmpfs",
3684         .mount          = shmem_mount,
3685         .kill_sb        = kill_litter_super,
3686         .fs_flags       = FS_USERNS_MOUNT,
3687 };
3688
3689 int __init shmem_init(void)
3690 {
3691         int error;
3692
3693         /* If rootfs called this, don't re-init */
3694         if (shmem_inode_cachep)
3695                 return 0;
3696
3697         shmem_init_inodecache();
3698
3699         error = register_filesystem(&shmem_fs_type);
3700         if (error) {
3701                 pr_err("Could not register tmpfs\n");
3702                 goto out2;
3703         }
3704
3705         shm_mnt = kern_mount(&shmem_fs_type);
3706         if (IS_ERR(shm_mnt)) {
3707                 error = PTR_ERR(shm_mnt);
3708                 pr_err("Could not kern_mount tmpfs\n");
3709                 goto out1;
3710         }
3711
3712 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3713         if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3714                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3715         else
3716                 shmem_huge = 0; /* just in case it was patched */
3717 #endif
3718         return 0;
3719
3720 out1:
3721         unregister_filesystem(&shmem_fs_type);
3722 out2:
3723         shmem_destroy_inodecache();
3724         shm_mnt = ERR_PTR(error);
3725         return error;
3726 }
3727
3728 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3729 static ssize_t shmem_enabled_show(struct kobject *kobj,
3730                 struct kobj_attribute *attr, char *buf)
3731 {
3732         int values[] = {
3733                 SHMEM_HUGE_ALWAYS,
3734                 SHMEM_HUGE_WITHIN_SIZE,
3735                 SHMEM_HUGE_ADVISE,
3736                 SHMEM_HUGE_NEVER,
3737                 SHMEM_HUGE_DENY,
3738                 SHMEM_HUGE_FORCE,
3739         };
3740         int i, count;
3741
3742         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3743                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3744
3745                 count += sprintf(buf + count, fmt,
3746                                 shmem_format_huge(values[i]));
3747         }
3748         buf[count - 1] = '\n';
3749         return count;
3750 }
3751
3752 static ssize_t shmem_enabled_store(struct kobject *kobj,
3753                 struct kobj_attribute *attr, const char *buf, size_t count)
3754 {
3755         char tmp[16];
3756         int huge;
3757
3758         if (count + 1 > sizeof(tmp))
3759                 return -EINVAL;
3760         memcpy(tmp, buf, count);
3761         tmp[count] = '\0';
3762         if (count && tmp[count - 1] == '\n')
3763                 tmp[count - 1] = '\0';
3764
3765         huge = shmem_parse_huge(tmp);
3766         if (huge == -EINVAL)
3767                 return -EINVAL;
3768         if (!has_transparent_hugepage() &&
3769                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3770                 return -EINVAL;
3771
3772         shmem_huge = huge;
3773         if (shmem_huge > SHMEM_HUGE_DENY)
3774                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3775         return count;
3776 }
3777
3778 struct kobj_attribute shmem_enabled_attr =
3779         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3780 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3781
3782 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3783 bool shmem_huge_enabled(struct vm_area_struct *vma)
3784 {
3785         struct inode *inode = file_inode(vma->vm_file);
3786         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3787         loff_t i_size;
3788         pgoff_t off;
3789
3790         if (shmem_huge == SHMEM_HUGE_FORCE)
3791                 return true;
3792         if (shmem_huge == SHMEM_HUGE_DENY)
3793                 return false;
3794         switch (sbinfo->huge) {
3795                 case SHMEM_HUGE_NEVER:
3796                         return false;
3797                 case SHMEM_HUGE_ALWAYS:
3798                         return true;
3799                 case SHMEM_HUGE_WITHIN_SIZE:
3800                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3801                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
3802                         if (i_size >= HPAGE_PMD_SIZE &&
3803                                         i_size >> PAGE_SHIFT >= off)
3804                                 return true;
3805                         /* fall through */
3806                 case SHMEM_HUGE_ADVISE:
3807                         /* TODO: implement fadvise() hints */
3808                         return (vma->vm_flags & VM_HUGEPAGE);
3809                 default:
3810                         VM_BUG_ON(1);
3811                         return false;
3812         }
3813 }
3814 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3815
3816 #else /* !CONFIG_SHMEM */
3817
3818 /*
3819  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3820  *
3821  * This is intended for small system where the benefits of the full
3822  * shmem code (swap-backed and resource-limited) are outweighed by
3823  * their complexity. On systems without swap this code should be
3824  * effectively equivalent, but much lighter weight.
3825  */
3826
3827 static struct file_system_type shmem_fs_type = {
3828         .name           = "tmpfs",
3829         .mount          = ramfs_mount,
3830         .kill_sb        = kill_litter_super,
3831         .fs_flags       = FS_USERNS_MOUNT,
3832 };
3833
3834 int __init shmem_init(void)
3835 {
3836         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3837
3838         shm_mnt = kern_mount(&shmem_fs_type);
3839         BUG_ON(IS_ERR(shm_mnt));
3840
3841         return 0;
3842 }
3843
3844 int shmem_unuse(swp_entry_t swap, struct page *page)
3845 {
3846         return 0;
3847 }
3848
3849 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3850 {
3851         return 0;
3852 }
3853
3854 void shmem_unlock_mapping(struct address_space *mapping)
3855 {
3856 }
3857
3858 #ifdef CONFIG_MMU
3859 unsigned long shmem_get_unmapped_area(struct file *file,
3860                                       unsigned long addr, unsigned long len,
3861                                       unsigned long pgoff, unsigned long flags)
3862 {
3863         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3864 }
3865 #endif
3866
3867 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3868 {
3869         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3870 }
3871 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3872
3873 #define shmem_vm_ops                            generic_file_vm_ops
3874 #define shmem_file_operations                   ramfs_file_operations
3875 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3876 #define shmem_acct_size(flags, size)            0
3877 #define shmem_unacct_size(flags, size)          do {} while (0)
3878
3879 #endif /* CONFIG_SHMEM */
3880
3881 /* common code */
3882
3883 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3884                                        unsigned long flags, unsigned int i_flags)
3885 {
3886         struct inode *inode;
3887         struct file *res;
3888
3889         if (IS_ERR(mnt))
3890                 return ERR_CAST(mnt);
3891
3892         if (size < 0 || size > MAX_LFS_FILESIZE)
3893                 return ERR_PTR(-EINVAL);
3894
3895         if (shmem_acct_size(flags, size))
3896                 return ERR_PTR(-ENOMEM);
3897
3898         inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3899                                 flags);
3900         if (unlikely(!inode)) {
3901                 shmem_unacct_size(flags, size);
3902                 return ERR_PTR(-ENOSPC);
3903         }
3904         inode->i_flags |= i_flags;
3905         inode->i_size = size;
3906         clear_nlink(inode);     /* It is unlinked */
3907         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3908         if (!IS_ERR(res))
3909                 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3910                                 &shmem_file_operations);
3911         if (IS_ERR(res))
3912                 iput(inode);
3913         return res;
3914 }
3915
3916 /**
3917  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3918  *      kernel internal.  There will be NO LSM permission checks against the
3919  *      underlying inode.  So users of this interface must do LSM checks at a
3920  *      higher layer.  The users are the big_key and shm implementations.  LSM
3921  *      checks are provided at the key or shm level rather than the inode.
3922  * @name: name for dentry (to be seen in /proc/<pid>/maps
3923  * @size: size to be set for the file
3924  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3925  */
3926 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3927 {
3928         return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3929 }
3930
3931 /**
3932  * shmem_file_setup - get an unlinked file living in tmpfs
3933  * @name: name for dentry (to be seen in /proc/<pid>/maps
3934  * @size: size to be set for the file
3935  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3936  */
3937 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3938 {
3939         return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3940 }
3941 EXPORT_SYMBOL_GPL(shmem_file_setup);
3942
3943 /**
3944  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3945  * @mnt: the tmpfs mount where the file will be created
3946  * @name: name for dentry (to be seen in /proc/<pid>/maps
3947  * @size: size to be set for the file
3948  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3949  */
3950 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3951                                        loff_t size, unsigned long flags)
3952 {
3953         return __shmem_file_setup(mnt, name, size, flags, 0);
3954 }
3955 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3956
3957 /**
3958  * shmem_zero_setup - setup a shared anonymous mapping
3959  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3960  */
3961 int shmem_zero_setup(struct vm_area_struct *vma)
3962 {
3963         struct file *file;
3964         loff_t size = vma->vm_end - vma->vm_start;
3965
3966         /*
3967          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3968          * between XFS directory reading and selinux: since this file is only
3969          * accessible to the user through its mapping, use S_PRIVATE flag to
3970          * bypass file security, in the same way as shmem_kernel_file_setup().
3971          */
3972         file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3973         if (IS_ERR(file))
3974                 return PTR_ERR(file);
3975
3976         if (vma->vm_file)
3977                 fput(vma->vm_file);
3978         vma->vm_file = file;
3979         vma->vm_ops = &shmem_vm_ops;
3980
3981         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3982                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3983                         (vma->vm_end & HPAGE_PMD_MASK)) {
3984                 khugepaged_enter(vma, vma->vm_flags);
3985         }
3986
3987         return 0;
3988 }
3989
3990 /**
3991  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3992  * @mapping:    the page's address_space
3993  * @index:      the page index
3994  * @gfp:        the page allocator flags to use if allocating
3995  *
3996  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3997  * with any new page allocations done using the specified allocation flags.
3998  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3999  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4000  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4001  *
4002  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4003  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4004  */
4005 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4006                                          pgoff_t index, gfp_t gfp)
4007 {
4008 #ifdef CONFIG_SHMEM
4009         struct inode *inode = mapping->host;
4010         struct page *page;
4011         int error;
4012
4013         BUG_ON(mapping->a_ops != &shmem_aops);
4014         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4015                                   gfp, NULL, NULL, NULL);
4016         if (error)
4017                 page = ERR_PTR(error);
4018         else
4019                 unlock_page(page);
4020         return page;
4021 #else
4022         /*
4023          * The tiny !SHMEM case uses ramfs without swap
4024          */
4025         return read_cache_page_gfp(mapping, index, gfp);
4026 #endif
4027 }
4028 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);