Merge tag 'nfs-for-6.10-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-2.6-block.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                                       struct address_space *mapping)
109 {
110         if (vma_is_shared_maywrite(vma))
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma_is_shared_maywrite(vma))
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static void vma_link_file(struct vm_area_struct *vma)
396 {
397         struct file *file = vma->vm_file;
398         struct address_space *mapping;
399
400         if (file) {
401                 mapping = file->f_mapping;
402                 i_mmap_lock_write(mapping);
403                 __vma_link_file(vma, mapping);
404                 i_mmap_unlock_write(mapping);
405         }
406 }
407
408 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
409 {
410         VMA_ITERATOR(vmi, mm, 0);
411
412         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
413         if (vma_iter_prealloc(&vmi, vma))
414                 return -ENOMEM;
415
416         vma_start_write(vma);
417         vma_iter_store(&vmi, vma);
418         vma_link_file(vma);
419         mm->map_count++;
420         validate_mm(mm);
421         return 0;
422 }
423
424 /*
425  * init_multi_vma_prep() - Initializer for struct vma_prepare
426  * @vp: The vma_prepare struct
427  * @vma: The vma that will be altered once locked
428  * @next: The next vma if it is to be adjusted
429  * @remove: The first vma to be removed
430  * @remove2: The second vma to be removed
431  */
432 static inline void init_multi_vma_prep(struct vma_prepare *vp,
433                 struct vm_area_struct *vma, struct vm_area_struct *next,
434                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
435 {
436         memset(vp, 0, sizeof(struct vma_prepare));
437         vp->vma = vma;
438         vp->anon_vma = vma->anon_vma;
439         vp->remove = remove;
440         vp->remove2 = remove2;
441         vp->adj_next = next;
442         if (!vp->anon_vma && next)
443                 vp->anon_vma = next->anon_vma;
444
445         vp->file = vma->vm_file;
446         if (vp->file)
447                 vp->mapping = vma->vm_file->f_mapping;
448
449 }
450
451 /*
452  * init_vma_prep() - Initializer wrapper for vma_prepare struct
453  * @vp: The vma_prepare struct
454  * @vma: The vma that will be altered once locked
455  */
456 static inline void init_vma_prep(struct vma_prepare *vp,
457                                  struct vm_area_struct *vma)
458 {
459         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
460 }
461
462
463 /*
464  * vma_prepare() - Helper function for handling locking VMAs prior to altering
465  * @vp: The initialized vma_prepare struct
466  */
467 static inline void vma_prepare(struct vma_prepare *vp)
468 {
469         if (vp->file) {
470                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
471
472                 if (vp->adj_next)
473                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
474                                       vp->adj_next->vm_end);
475
476                 i_mmap_lock_write(vp->mapping);
477                 if (vp->insert && vp->insert->vm_file) {
478                         /*
479                          * Put into interval tree now, so instantiated pages
480                          * are visible to arm/parisc __flush_dcache_page
481                          * throughout; but we cannot insert into address
482                          * space until vma start or end is updated.
483                          */
484                         __vma_link_file(vp->insert,
485                                         vp->insert->vm_file->f_mapping);
486                 }
487         }
488
489         if (vp->anon_vma) {
490                 anon_vma_lock_write(vp->anon_vma);
491                 anon_vma_interval_tree_pre_update_vma(vp->vma);
492                 if (vp->adj_next)
493                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
494         }
495
496         if (vp->file) {
497                 flush_dcache_mmap_lock(vp->mapping);
498                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
499                 if (vp->adj_next)
500                         vma_interval_tree_remove(vp->adj_next,
501                                                  &vp->mapping->i_mmap);
502         }
503
504 }
505
506 /*
507  * vma_complete- Helper function for handling the unlocking after altering VMAs,
508  * or for inserting a VMA.
509  *
510  * @vp: The vma_prepare struct
511  * @vmi: The vma iterator
512  * @mm: The mm_struct
513  */
514 static inline void vma_complete(struct vma_prepare *vp,
515                                 struct vma_iterator *vmi, struct mm_struct *mm)
516 {
517         if (vp->file) {
518                 if (vp->adj_next)
519                         vma_interval_tree_insert(vp->adj_next,
520                                                  &vp->mapping->i_mmap);
521                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
522                 flush_dcache_mmap_unlock(vp->mapping);
523         }
524
525         if (vp->remove && vp->file) {
526                 __remove_shared_vm_struct(vp->remove, vp->mapping);
527                 if (vp->remove2)
528                         __remove_shared_vm_struct(vp->remove2, vp->mapping);
529         } else if (vp->insert) {
530                 /*
531                  * split_vma has split insert from vma, and needs
532                  * us to insert it before dropping the locks
533                  * (it may either follow vma or precede it).
534                  */
535                 vma_iter_store(vmi, vp->insert);
536                 mm->map_count++;
537         }
538
539         if (vp->anon_vma) {
540                 anon_vma_interval_tree_post_update_vma(vp->vma);
541                 if (vp->adj_next)
542                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
543                 anon_vma_unlock_write(vp->anon_vma);
544         }
545
546         if (vp->file) {
547                 i_mmap_unlock_write(vp->mapping);
548                 uprobe_mmap(vp->vma);
549
550                 if (vp->adj_next)
551                         uprobe_mmap(vp->adj_next);
552         }
553
554         if (vp->remove) {
555 again:
556                 vma_mark_detached(vp->remove, true);
557                 if (vp->file) {
558                         uprobe_munmap(vp->remove, vp->remove->vm_start,
559                                       vp->remove->vm_end);
560                         fput(vp->file);
561                 }
562                 if (vp->remove->anon_vma)
563                         anon_vma_merge(vp->vma, vp->remove);
564                 mm->map_count--;
565                 mpol_put(vma_policy(vp->remove));
566                 if (!vp->remove2)
567                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
568                 vm_area_free(vp->remove);
569
570                 /*
571                  * In mprotect's case 6 (see comments on vma_merge),
572                  * we are removing both mid and next vmas
573                  */
574                 if (vp->remove2) {
575                         vp->remove = vp->remove2;
576                         vp->remove2 = NULL;
577                         goto again;
578                 }
579         }
580         if (vp->insert && vp->file)
581                 uprobe_mmap(vp->insert);
582         validate_mm(mm);
583 }
584
585 /*
586  * dup_anon_vma() - Helper function to duplicate anon_vma
587  * @dst: The destination VMA
588  * @src: The source VMA
589  * @dup: Pointer to the destination VMA when successful.
590  *
591  * Returns: 0 on success.
592  */
593 static inline int dup_anon_vma(struct vm_area_struct *dst,
594                 struct vm_area_struct *src, struct vm_area_struct **dup)
595 {
596         /*
597          * Easily overlooked: when mprotect shifts the boundary, make sure the
598          * expanding vma has anon_vma set if the shrinking vma had, to cover any
599          * anon pages imported.
600          */
601         if (src->anon_vma && !dst->anon_vma) {
602                 int ret;
603
604                 vma_assert_write_locked(dst);
605                 dst->anon_vma = src->anon_vma;
606                 ret = anon_vma_clone(dst, src);
607                 if (ret)
608                         return ret;
609
610                 *dup = dst;
611         }
612
613         return 0;
614 }
615
616 /*
617  * vma_expand - Expand an existing VMA
618  *
619  * @vmi: The vma iterator
620  * @vma: The vma to expand
621  * @start: The start of the vma
622  * @end: The exclusive end of the vma
623  * @pgoff: The page offset of vma
624  * @next: The current of next vma.
625  *
626  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
627  * expand over @next if it's different from @vma and @end == @next->vm_end.
628  * Checking if the @vma can expand and merge with @next needs to be handled by
629  * the caller.
630  *
631  * Returns: 0 on success
632  */
633 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
634                unsigned long start, unsigned long end, pgoff_t pgoff,
635                struct vm_area_struct *next)
636 {
637         struct vm_area_struct *anon_dup = NULL;
638         bool remove_next = false;
639         struct vma_prepare vp;
640
641         vma_start_write(vma);
642         if (next && (vma != next) && (end == next->vm_end)) {
643                 int ret;
644
645                 remove_next = true;
646                 vma_start_write(next);
647                 ret = dup_anon_vma(vma, next, &anon_dup);
648                 if (ret)
649                         return ret;
650         }
651
652         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
653         /* Not merging but overwriting any part of next is not handled. */
654         VM_WARN_ON(next && !vp.remove &&
655                   next != vma && end > next->vm_start);
656         /* Only handles expanding */
657         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
658
659         /* Note: vma iterator must be pointing to 'start' */
660         vma_iter_config(vmi, start, end);
661         if (vma_iter_prealloc(vmi, vma))
662                 goto nomem;
663
664         vma_prepare(&vp);
665         vma_adjust_trans_huge(vma, start, end, 0);
666         vma_set_range(vma, start, end, pgoff);
667         vma_iter_store(vmi, vma);
668
669         vma_complete(&vp, vmi, vma->vm_mm);
670         return 0;
671
672 nomem:
673         if (anon_dup)
674                 unlink_anon_vmas(anon_dup);
675         return -ENOMEM;
676 }
677
678 /*
679  * vma_shrink() - Reduce an existing VMAs memory area
680  * @vmi: The vma iterator
681  * @vma: The VMA to modify
682  * @start: The new start
683  * @end: The new end
684  *
685  * Returns: 0 on success, -ENOMEM otherwise
686  */
687 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
688                unsigned long start, unsigned long end, pgoff_t pgoff)
689 {
690         struct vma_prepare vp;
691
692         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
693
694         if (vma->vm_start < start)
695                 vma_iter_config(vmi, vma->vm_start, start);
696         else
697                 vma_iter_config(vmi, end, vma->vm_end);
698
699         if (vma_iter_prealloc(vmi, NULL))
700                 return -ENOMEM;
701
702         vma_start_write(vma);
703
704         init_vma_prep(&vp, vma);
705         vma_prepare(&vp);
706         vma_adjust_trans_huge(vma, start, end, 0);
707
708         vma_iter_clear(vmi);
709         vma_set_range(vma, start, end, pgoff);
710         vma_complete(&vp, vmi, vma->vm_mm);
711         return 0;
712 }
713
714 /*
715  * If the vma has a ->close operation then the driver probably needs to release
716  * per-vma resources, so we don't attempt to merge those if the caller indicates
717  * the current vma may be removed as part of the merge.
718  */
719 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
720                 struct file *file, unsigned long vm_flags,
721                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
722                 struct anon_vma_name *anon_name, bool may_remove_vma)
723 {
724         /*
725          * VM_SOFTDIRTY should not prevent from VMA merging, if we
726          * match the flags but dirty bit -- the caller should mark
727          * merged VMA as dirty. If dirty bit won't be excluded from
728          * comparison, we increase pressure on the memory system forcing
729          * the kernel to generate new VMAs when old one could be
730          * extended instead.
731          */
732         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
733                 return false;
734         if (vma->vm_file != file)
735                 return false;
736         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
737                 return false;
738         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
739                 return false;
740         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
741                 return false;
742         return true;
743 }
744
745 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
746                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
747 {
748         /*
749          * The list_is_singular() test is to avoid merging VMA cloned from
750          * parents. This can improve scalability caused by anon_vma lock.
751          */
752         if ((!anon_vma1 || !anon_vma2) && (!vma ||
753                 list_is_singular(&vma->anon_vma_chain)))
754                 return true;
755         return anon_vma1 == anon_vma2;
756 }
757
758 /*
759  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
760  * in front of (at a lower virtual address and file offset than) the vma.
761  *
762  * We cannot merge two vmas if they have differently assigned (non-NULL)
763  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
764  *
765  * We don't check here for the merged mmap wrapping around the end of pagecache
766  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
767  * wrap, nor mmaps which cover the final page at index -1UL.
768  *
769  * We assume the vma may be removed as part of the merge.
770  */
771 static bool
772 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
773                 struct anon_vma *anon_vma, struct file *file,
774                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
775                 struct anon_vma_name *anon_name)
776 {
777         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
778             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
779                 if (vma->vm_pgoff == vm_pgoff)
780                         return true;
781         }
782         return false;
783 }
784
785 /*
786  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
787  * beyond (at a higher virtual address and file offset than) the vma.
788  *
789  * We cannot merge two vmas if they have differently assigned (non-NULL)
790  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
791  *
792  * We assume that vma is not removed as part of the merge.
793  */
794 static bool
795 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
796                 struct anon_vma *anon_vma, struct file *file,
797                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
798                 struct anon_vma_name *anon_name)
799 {
800         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
801             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
802                 pgoff_t vm_pglen;
803                 vm_pglen = vma_pages(vma);
804                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
805                         return true;
806         }
807         return false;
808 }
809
810 /*
811  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
812  * figure out whether that can be merged with its predecessor or its
813  * successor.  Or both (it neatly fills a hole).
814  *
815  * In most cases - when called for mmap, brk or mremap - [addr,end) is
816  * certain not to be mapped by the time vma_merge is called; but when
817  * called for mprotect, it is certain to be already mapped (either at
818  * an offset within prev, or at the start of next), and the flags of
819  * this area are about to be changed to vm_flags - and the no-change
820  * case has already been eliminated.
821  *
822  * The following mprotect cases have to be considered, where **** is
823  * the area passed down from mprotect_fixup, never extending beyond one
824  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
825  * at the same address as **** and is of the same or larger span, and
826  * NNNN the next vma after ****:
827  *
828  *     ****             ****                   ****
829  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
830  *    cannot merge    might become       might become
831  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
832  *    mmap, brk or    case 4 below       case 5 below
833  *    mremap move:
834  *                        ****               ****
835  *                    PPPP    NNNN       PPPPCCCCNNNN
836  *                    might become       might become
837  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
838  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
839  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
840  *
841  * It is important for case 8 that the vma CCCC overlapping the
842  * region **** is never going to extended over NNNN. Instead NNNN must
843  * be extended in region **** and CCCC must be removed. This way in
844  * all cases where vma_merge succeeds, the moment vma_merge drops the
845  * rmap_locks, the properties of the merged vma will be already
846  * correct for the whole merged range. Some of those properties like
847  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
848  * be correct for the whole merged range immediately after the
849  * rmap_locks are released. Otherwise if NNNN would be removed and
850  * CCCC would be extended over the NNNN range, remove_migration_ptes
851  * or other rmap walkers (if working on addresses beyond the "end"
852  * parameter) may establish ptes with the wrong permissions of CCCC
853  * instead of the right permissions of NNNN.
854  *
855  * In the code below:
856  * PPPP is represented by *prev
857  * CCCC is represented by *curr or not represented at all (NULL)
858  * NNNN is represented by *next or not represented at all (NULL)
859  * **** is not represented - it will be merged and the vma containing the
860  *      area is returned, or the function will return NULL
861  */
862 static struct vm_area_struct
863 *vma_merge(struct vma_iterator *vmi, struct vm_area_struct *prev,
864            struct vm_area_struct *src, unsigned long addr, unsigned long end,
865            unsigned long vm_flags, pgoff_t pgoff, struct mempolicy *policy,
866            struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
867            struct anon_vma_name *anon_name)
868 {
869         struct mm_struct *mm = src->vm_mm;
870         struct anon_vma *anon_vma = src->anon_vma;
871         struct file *file = src->vm_file;
872         struct vm_area_struct *curr, *next, *res;
873         struct vm_area_struct *vma, *adjust, *remove, *remove2;
874         struct vm_area_struct *anon_dup = NULL;
875         struct vma_prepare vp;
876         pgoff_t vma_pgoff;
877         int err = 0;
878         bool merge_prev = false;
879         bool merge_next = false;
880         bool vma_expanded = false;
881         unsigned long vma_start = addr;
882         unsigned long vma_end = end;
883         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
884         long adj_start = 0;
885
886         /*
887          * We later require that vma->vm_flags == vm_flags,
888          * so this tests vma->vm_flags & VM_SPECIAL, too.
889          */
890         if (vm_flags & VM_SPECIAL)
891                 return NULL;
892
893         /* Does the input range span an existing VMA? (cases 5 - 8) */
894         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
895
896         if (!curr ||                    /* cases 1 - 4 */
897             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
898                 next = vma_lookup(mm, end);
899         else
900                 next = NULL;            /* case 5 */
901
902         if (prev) {
903                 vma_start = prev->vm_start;
904                 vma_pgoff = prev->vm_pgoff;
905
906                 /* Can we merge the predecessor? */
907                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
908                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
909                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
910                         merge_prev = true;
911                         vma_prev(vmi);
912                 }
913         }
914
915         /* Can we merge the successor? */
916         if (next && mpol_equal(policy, vma_policy(next)) &&
917             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
918                                  vm_userfaultfd_ctx, anon_name)) {
919                 merge_next = true;
920         }
921
922         /* Verify some invariant that must be enforced by the caller. */
923         VM_WARN_ON(prev && addr <= prev->vm_start);
924         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
925         VM_WARN_ON(addr >= end);
926
927         if (!merge_prev && !merge_next)
928                 return NULL; /* Not mergeable. */
929
930         if (merge_prev)
931                 vma_start_write(prev);
932
933         res = vma = prev;
934         remove = remove2 = adjust = NULL;
935
936         /* Can we merge both the predecessor and the successor? */
937         if (merge_prev && merge_next &&
938             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
939                 vma_start_write(next);
940                 remove = next;                          /* case 1 */
941                 vma_end = next->vm_end;
942                 err = dup_anon_vma(prev, next, &anon_dup);
943                 if (curr) {                             /* case 6 */
944                         vma_start_write(curr);
945                         remove = curr;
946                         remove2 = next;
947                         /*
948                          * Note that the dup_anon_vma below cannot overwrite err
949                          * since the first caller would do nothing unless next
950                          * has an anon_vma.
951                          */
952                         if (!next->anon_vma)
953                                 err = dup_anon_vma(prev, curr, &anon_dup);
954                 }
955         } else if (merge_prev) {                        /* case 2 */
956                 if (curr) {
957                         vma_start_write(curr);
958                         if (end == curr->vm_end) {      /* case 7 */
959                                 /*
960                                  * can_vma_merge_after() assumed we would not be
961                                  * removing prev vma, so it skipped the check
962                                  * for vm_ops->close, but we are removing curr
963                                  */
964                                 if (curr->vm_ops && curr->vm_ops->close)
965                                         err = -EINVAL;
966                                 remove = curr;
967                         } else {                        /* case 5 */
968                                 adjust = curr;
969                                 adj_start = (end - curr->vm_start);
970                         }
971                         if (!err)
972                                 err = dup_anon_vma(prev, curr, &anon_dup);
973                 }
974         } else { /* merge_next */
975                 vma_start_write(next);
976                 res = next;
977                 if (prev && addr < prev->vm_end) {      /* case 4 */
978                         vma_start_write(prev);
979                         vma_end = addr;
980                         adjust = next;
981                         adj_start = -(prev->vm_end - addr);
982                         err = dup_anon_vma(next, prev, &anon_dup);
983                 } else {
984                         /*
985                          * Note that cases 3 and 8 are the ONLY ones where prev
986                          * is permitted to be (but is not necessarily) NULL.
987                          */
988                         vma = next;                     /* case 3 */
989                         vma_start = addr;
990                         vma_end = next->vm_end;
991                         vma_pgoff = next->vm_pgoff - pglen;
992                         if (curr) {                     /* case 8 */
993                                 vma_pgoff = curr->vm_pgoff;
994                                 vma_start_write(curr);
995                                 remove = curr;
996                                 err = dup_anon_vma(next, curr, &anon_dup);
997                         }
998                 }
999         }
1000
1001         /* Error in anon_vma clone. */
1002         if (err)
1003                 goto anon_vma_fail;
1004
1005         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1006                 vma_expanded = true;
1007
1008         if (vma_expanded) {
1009                 vma_iter_config(vmi, vma_start, vma_end);
1010         } else {
1011                 vma_iter_config(vmi, adjust->vm_start + adj_start,
1012                                 adjust->vm_end);
1013         }
1014
1015         if (vma_iter_prealloc(vmi, vma))
1016                 goto prealloc_fail;
1017
1018         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1019         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1020                    vp.anon_vma != adjust->anon_vma);
1021
1022         vma_prepare(&vp);
1023         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1024         vma_set_range(vma, vma_start, vma_end, vma_pgoff);
1025
1026         if (vma_expanded)
1027                 vma_iter_store(vmi, vma);
1028
1029         if (adj_start) {
1030                 adjust->vm_start += adj_start;
1031                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1032                 if (adj_start < 0) {
1033                         WARN_ON(vma_expanded);
1034                         vma_iter_store(vmi, next);
1035                 }
1036         }
1037
1038         vma_complete(&vp, vmi, mm);
1039         khugepaged_enter_vma(res, vm_flags);
1040         return res;
1041
1042 prealloc_fail:
1043         if (anon_dup)
1044                 unlink_anon_vmas(anon_dup);
1045
1046 anon_vma_fail:
1047         vma_iter_set(vmi, addr);
1048         vma_iter_load(vmi);
1049         return NULL;
1050 }
1051
1052 /*
1053  * Rough compatibility check to quickly see if it's even worth looking
1054  * at sharing an anon_vma.
1055  *
1056  * They need to have the same vm_file, and the flags can only differ
1057  * in things that mprotect may change.
1058  *
1059  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1060  * we can merge the two vma's. For example, we refuse to merge a vma if
1061  * there is a vm_ops->close() function, because that indicates that the
1062  * driver is doing some kind of reference counting. But that doesn't
1063  * really matter for the anon_vma sharing case.
1064  */
1065 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067         return a->vm_end == b->vm_start &&
1068                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1069                 a->vm_file == b->vm_file &&
1070                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1071                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1072 }
1073
1074 /*
1075  * Do some basic sanity checking to see if we can re-use the anon_vma
1076  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1077  * the same as 'old', the other will be the new one that is trying
1078  * to share the anon_vma.
1079  *
1080  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1081  * the anon_vma of 'old' is concurrently in the process of being set up
1082  * by another page fault trying to merge _that_. But that's ok: if it
1083  * is being set up, that automatically means that it will be a singleton
1084  * acceptable for merging, so we can do all of this optimistically. But
1085  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1086  *
1087  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1088  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1089  * is to return an anon_vma that is "complex" due to having gone through
1090  * a fork).
1091  *
1092  * We also make sure that the two vma's are compatible (adjacent,
1093  * and with the same memory policies). That's all stable, even with just
1094  * a read lock on the mmap_lock.
1095  */
1096 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1097 {
1098         if (anon_vma_compatible(a, b)) {
1099                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1100
1101                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1102                         return anon_vma;
1103         }
1104         return NULL;
1105 }
1106
1107 /*
1108  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1109  * neighbouring vmas for a suitable anon_vma, before it goes off
1110  * to allocate a new anon_vma.  It checks because a repetitive
1111  * sequence of mprotects and faults may otherwise lead to distinct
1112  * anon_vmas being allocated, preventing vma merge in subsequent
1113  * mprotect.
1114  */
1115 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1116 {
1117         struct anon_vma *anon_vma = NULL;
1118         struct vm_area_struct *prev, *next;
1119         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1120
1121         /* Try next first. */
1122         next = vma_iter_load(&vmi);
1123         if (next) {
1124                 anon_vma = reusable_anon_vma(next, vma, next);
1125                 if (anon_vma)
1126                         return anon_vma;
1127         }
1128
1129         prev = vma_prev(&vmi);
1130         VM_BUG_ON_VMA(prev != vma, vma);
1131         prev = vma_prev(&vmi);
1132         /* Try prev next. */
1133         if (prev)
1134                 anon_vma = reusable_anon_vma(prev, prev, vma);
1135
1136         /*
1137          * We might reach here with anon_vma == NULL if we can't find
1138          * any reusable anon_vma.
1139          * There's no absolute need to look only at touching neighbours:
1140          * we could search further afield for "compatible" anon_vmas.
1141          * But it would probably just be a waste of time searching,
1142          * or lead to too many vmas hanging off the same anon_vma.
1143          * We're trying to allow mprotect remerging later on,
1144          * not trying to minimize memory used for anon_vmas.
1145          */
1146         return anon_vma;
1147 }
1148
1149 /*
1150  * If a hint addr is less than mmap_min_addr change hint to be as
1151  * low as possible but still greater than mmap_min_addr
1152  */
1153 static inline unsigned long round_hint_to_min(unsigned long hint)
1154 {
1155         hint &= PAGE_MASK;
1156         if (((void *)hint != NULL) &&
1157             (hint < mmap_min_addr))
1158                 return PAGE_ALIGN(mmap_min_addr);
1159         return hint;
1160 }
1161
1162 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1163                         unsigned long bytes)
1164 {
1165         unsigned long locked_pages, limit_pages;
1166
1167         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1168                 return true;
1169
1170         locked_pages = bytes >> PAGE_SHIFT;
1171         locked_pages += mm->locked_vm;
1172
1173         limit_pages = rlimit(RLIMIT_MEMLOCK);
1174         limit_pages >>= PAGE_SHIFT;
1175
1176         return locked_pages <= limit_pages;
1177 }
1178
1179 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1180 {
1181         if (S_ISREG(inode->i_mode))
1182                 return MAX_LFS_FILESIZE;
1183
1184         if (S_ISBLK(inode->i_mode))
1185                 return MAX_LFS_FILESIZE;
1186
1187         if (S_ISSOCK(inode->i_mode))
1188                 return MAX_LFS_FILESIZE;
1189
1190         /* Special "we do even unsigned file positions" case */
1191         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1192                 return 0;
1193
1194         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1195         return ULONG_MAX;
1196 }
1197
1198 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1199                                 unsigned long pgoff, unsigned long len)
1200 {
1201         u64 maxsize = file_mmap_size_max(file, inode);
1202
1203         if (maxsize && len > maxsize)
1204                 return false;
1205         maxsize -= len;
1206         if (pgoff > maxsize >> PAGE_SHIFT)
1207                 return false;
1208         return true;
1209 }
1210
1211 /*
1212  * The caller must write-lock current->mm->mmap_lock.
1213  */
1214 unsigned long do_mmap(struct file *file, unsigned long addr,
1215                         unsigned long len, unsigned long prot,
1216                         unsigned long flags, vm_flags_t vm_flags,
1217                         unsigned long pgoff, unsigned long *populate,
1218                         struct list_head *uf)
1219 {
1220         struct mm_struct *mm = current->mm;
1221         int pkey = 0;
1222
1223         *populate = 0;
1224
1225         if (!len)
1226                 return -EINVAL;
1227
1228         /*
1229          * Does the application expect PROT_READ to imply PROT_EXEC?
1230          *
1231          * (the exception is when the underlying filesystem is noexec
1232          *  mounted, in which case we don't add PROT_EXEC.)
1233          */
1234         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1235                 if (!(file && path_noexec(&file->f_path)))
1236                         prot |= PROT_EXEC;
1237
1238         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1239         if (flags & MAP_FIXED_NOREPLACE)
1240                 flags |= MAP_FIXED;
1241
1242         if (!(flags & MAP_FIXED))
1243                 addr = round_hint_to_min(addr);
1244
1245         /* Careful about overflows.. */
1246         len = PAGE_ALIGN(len);
1247         if (!len)
1248                 return -ENOMEM;
1249
1250         /* offset overflow? */
1251         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1252                 return -EOVERFLOW;
1253
1254         /* Too many mappings? */
1255         if (mm->map_count > sysctl_max_map_count)
1256                 return -ENOMEM;
1257
1258         if (prot == PROT_EXEC) {
1259                 pkey = execute_only_pkey(mm);
1260                 if (pkey < 0)
1261                         pkey = 0;
1262         }
1263
1264         /* Do simple checking here so the lower-level routines won't have
1265          * to. we assume access permissions have been handled by the open
1266          * of the memory object, so we don't do any here.
1267          */
1268         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1270
1271         /* Obtain the address to map to. we verify (or select) it and ensure
1272          * that it represents a valid section of the address space.
1273          */
1274         addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
1275         if (IS_ERR_VALUE(addr))
1276                 return addr;
1277
1278         if (flags & MAP_FIXED_NOREPLACE) {
1279                 if (find_vma_intersection(mm, addr, addr + len))
1280                         return -EEXIST;
1281         }
1282
1283         if (flags & MAP_LOCKED)
1284                 if (!can_do_mlock())
1285                         return -EPERM;
1286
1287         if (!mlock_future_ok(mm, vm_flags, len))
1288                 return -EAGAIN;
1289
1290         if (file) {
1291                 struct inode *inode = file_inode(file);
1292                 unsigned long flags_mask;
1293
1294                 if (!file_mmap_ok(file, inode, pgoff, len))
1295                         return -EOVERFLOW;
1296
1297                 flags_mask = LEGACY_MAP_MASK;
1298                 if (file->f_op->fop_flags & FOP_MMAP_SYNC)
1299                         flags_mask |= MAP_SYNC;
1300
1301                 switch (flags & MAP_TYPE) {
1302                 case MAP_SHARED:
1303                         /*
1304                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1305                          * flags. E.g. MAP_SYNC is dangerous to use with
1306                          * MAP_SHARED as you don't know which consistency model
1307                          * you will get. We silently ignore unsupported flags
1308                          * with MAP_SHARED to preserve backward compatibility.
1309                          */
1310                         flags &= LEGACY_MAP_MASK;
1311                         fallthrough;
1312                 case MAP_SHARED_VALIDATE:
1313                         if (flags & ~flags_mask)
1314                                 return -EOPNOTSUPP;
1315                         if (prot & PROT_WRITE) {
1316                                 if (!(file->f_mode & FMODE_WRITE))
1317                                         return -EACCES;
1318                                 if (IS_SWAPFILE(file->f_mapping->host))
1319                                         return -ETXTBSY;
1320                         }
1321
1322                         /*
1323                          * Make sure we don't allow writing to an append-only
1324                          * file..
1325                          */
1326                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1327                                 return -EACCES;
1328
1329                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1330                         if (!(file->f_mode & FMODE_WRITE))
1331                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1332                         fallthrough;
1333                 case MAP_PRIVATE:
1334                         if (!(file->f_mode & FMODE_READ))
1335                                 return -EACCES;
1336                         if (path_noexec(&file->f_path)) {
1337                                 if (vm_flags & VM_EXEC)
1338                                         return -EPERM;
1339                                 vm_flags &= ~VM_MAYEXEC;
1340                         }
1341
1342                         if (!file->f_op->mmap)
1343                                 return -ENODEV;
1344                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1345                                 return -EINVAL;
1346                         break;
1347
1348                 default:
1349                         return -EINVAL;
1350                 }
1351         } else {
1352                 switch (flags & MAP_TYPE) {
1353                 case MAP_SHARED:
1354                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355                                 return -EINVAL;
1356                         /*
1357                          * Ignore pgoff.
1358                          */
1359                         pgoff = 0;
1360                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1361                         break;
1362                 case MAP_PRIVATE:
1363                         /*
1364                          * Set pgoff according to addr for anon_vma.
1365                          */
1366                         pgoff = addr >> PAGE_SHIFT;
1367                         break;
1368                 default:
1369                         return -EINVAL;
1370                 }
1371         }
1372
1373         /*
1374          * Set 'VM_NORESERVE' if we should not account for the
1375          * memory use of this mapping.
1376          */
1377         if (flags & MAP_NORESERVE) {
1378                 /* We honor MAP_NORESERVE if allowed to overcommit */
1379                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1380                         vm_flags |= VM_NORESERVE;
1381
1382                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1383                 if (file && is_file_hugepages(file))
1384                         vm_flags |= VM_NORESERVE;
1385         }
1386
1387         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1388         if (!IS_ERR_VALUE(addr) &&
1389             ((vm_flags & VM_LOCKED) ||
1390              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1391                 *populate = len;
1392         return addr;
1393 }
1394
1395 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1396                               unsigned long prot, unsigned long flags,
1397                               unsigned long fd, unsigned long pgoff)
1398 {
1399         struct file *file = NULL;
1400         unsigned long retval;
1401
1402         if (!(flags & MAP_ANONYMOUS)) {
1403                 audit_mmap_fd(fd, flags);
1404                 file = fget(fd);
1405                 if (!file)
1406                         return -EBADF;
1407                 if (is_file_hugepages(file)) {
1408                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1409                 } else if (unlikely(flags & MAP_HUGETLB)) {
1410                         retval = -EINVAL;
1411                         goto out_fput;
1412                 }
1413         } else if (flags & MAP_HUGETLB) {
1414                 struct hstate *hs;
1415
1416                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1417                 if (!hs)
1418                         return -EINVAL;
1419
1420                 len = ALIGN(len, huge_page_size(hs));
1421                 /*
1422                  * VM_NORESERVE is used because the reservations will be
1423                  * taken when vm_ops->mmap() is called
1424                  */
1425                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1426                                 VM_NORESERVE,
1427                                 HUGETLB_ANONHUGE_INODE,
1428                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1429                 if (IS_ERR(file))
1430                         return PTR_ERR(file);
1431         }
1432
1433         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1434 out_fput:
1435         if (file)
1436                 fput(file);
1437         return retval;
1438 }
1439
1440 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1441                 unsigned long, prot, unsigned long, flags,
1442                 unsigned long, fd, unsigned long, pgoff)
1443 {
1444         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1445 }
1446
1447 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1448 struct mmap_arg_struct {
1449         unsigned long addr;
1450         unsigned long len;
1451         unsigned long prot;
1452         unsigned long flags;
1453         unsigned long fd;
1454         unsigned long offset;
1455 };
1456
1457 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1458 {
1459         struct mmap_arg_struct a;
1460
1461         if (copy_from_user(&a, arg, sizeof(a)))
1462                 return -EFAULT;
1463         if (offset_in_page(a.offset))
1464                 return -EINVAL;
1465
1466         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1467                                a.offset >> PAGE_SHIFT);
1468 }
1469 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1470
1471 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1472 {
1473         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1474 }
1475
1476 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1477 {
1478         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1479                 (VM_WRITE | VM_SHARED);
1480 }
1481
1482 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1483 {
1484         /* No managed pages to writeback. */
1485         if (vma->vm_flags & VM_PFNMAP)
1486                 return false;
1487
1488         return vma->vm_file && vma->vm_file->f_mapping &&
1489                 mapping_can_writeback(vma->vm_file->f_mapping);
1490 }
1491
1492 /*
1493  * Does this VMA require the underlying folios to have their dirty state
1494  * tracked?
1495  */
1496 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1497 {
1498         /* Only shared, writable VMAs require dirty tracking. */
1499         if (!vma_is_shared_writable(vma))
1500                 return false;
1501
1502         /* Does the filesystem need to be notified? */
1503         if (vm_ops_needs_writenotify(vma->vm_ops))
1504                 return true;
1505
1506         /*
1507          * Even if the filesystem doesn't indicate a need for writenotify, if it
1508          * can writeback, dirty tracking is still required.
1509          */
1510         return vma_fs_can_writeback(vma);
1511 }
1512
1513 /*
1514  * Some shared mappings will want the pages marked read-only
1515  * to track write events. If so, we'll downgrade vm_page_prot
1516  * to the private version (using protection_map[] without the
1517  * VM_SHARED bit).
1518  */
1519 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1520 {
1521         /* If it was private or non-writable, the write bit is already clear */
1522         if (!vma_is_shared_writable(vma))
1523                 return false;
1524
1525         /* The backer wishes to know when pages are first written to? */
1526         if (vm_ops_needs_writenotify(vma->vm_ops))
1527                 return true;
1528
1529         /* The open routine did something to the protections that pgprot_modify
1530          * won't preserve? */
1531         if (pgprot_val(vm_page_prot) !=
1532             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1533                 return false;
1534
1535         /*
1536          * Do we need to track softdirty? hugetlb does not support softdirty
1537          * tracking yet.
1538          */
1539         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1540                 return true;
1541
1542         /* Do we need write faults for uffd-wp tracking? */
1543         if (userfaultfd_wp(vma))
1544                 return true;
1545
1546         /* Can the mapping track the dirty pages? */
1547         return vma_fs_can_writeback(vma);
1548 }
1549
1550 /*
1551  * We account for memory if it's a private writeable mapping,
1552  * not hugepages and VM_NORESERVE wasn't set.
1553  */
1554 static inline bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
1555 {
1556         /*
1557          * hugetlb has its own accounting separate from the core VM
1558          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1559          */
1560         if (file && is_file_hugepages(file))
1561                 return false;
1562
1563         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1564 }
1565
1566 /**
1567  * unmapped_area() - Find an area between the low_limit and the high_limit with
1568  * the correct alignment and offset, all from @info. Note: current->mm is used
1569  * for the search.
1570  *
1571  * @info: The unmapped area information including the range [low_limit -
1572  * high_limit), the alignment offset and mask.
1573  *
1574  * Return: A memory address or -ENOMEM.
1575  */
1576 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578         unsigned long length, gap;
1579         unsigned long low_limit, high_limit;
1580         struct vm_area_struct *tmp;
1581         VMA_ITERATOR(vmi, current->mm, 0);
1582
1583         /* Adjust search length to account for worst case alignment overhead */
1584         length = info->length + info->align_mask + info->start_gap;
1585         if (length < info->length)
1586                 return -ENOMEM;
1587
1588         low_limit = info->low_limit;
1589         if (low_limit < mmap_min_addr)
1590                 low_limit = mmap_min_addr;
1591         high_limit = info->high_limit;
1592 retry:
1593         if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
1594                 return -ENOMEM;
1595
1596         /*
1597          * Adjust for the gap first so it doesn't interfere with the
1598          * later alignment. The first step is the minimum needed to
1599          * fulill the start gap, the next steps is the minimum to align
1600          * that. It is the minimum needed to fulill both.
1601          */
1602         gap = vma_iter_addr(&vmi) + info->start_gap;
1603         gap += (info->align_offset - gap) & info->align_mask;
1604         tmp = vma_next(&vmi);
1605         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1606                 if (vm_start_gap(tmp) < gap + length - 1) {
1607                         low_limit = tmp->vm_end;
1608                         vma_iter_reset(&vmi);
1609                         goto retry;
1610                 }
1611         } else {
1612                 tmp = vma_prev(&vmi);
1613                 if (tmp && vm_end_gap(tmp) > gap) {
1614                         low_limit = vm_end_gap(tmp);
1615                         vma_iter_reset(&vmi);
1616                         goto retry;
1617                 }
1618         }
1619
1620         return gap;
1621 }
1622
1623 /**
1624  * unmapped_area_topdown() - Find an area between the low_limit and the
1625  * high_limit with the correct alignment and offset at the highest available
1626  * address, all from @info. Note: current->mm is used for the search.
1627  *
1628  * @info: The unmapped area information including the range [low_limit -
1629  * high_limit), the alignment offset and mask.
1630  *
1631  * Return: A memory address or -ENOMEM.
1632  */
1633 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1634 {
1635         unsigned long length, gap, gap_end;
1636         unsigned long low_limit, high_limit;
1637         struct vm_area_struct *tmp;
1638         VMA_ITERATOR(vmi, current->mm, 0);
1639
1640         /* Adjust search length to account for worst case alignment overhead */
1641         length = info->length + info->align_mask + info->start_gap;
1642         if (length < info->length)
1643                 return -ENOMEM;
1644
1645         low_limit = info->low_limit;
1646         if (low_limit < mmap_min_addr)
1647                 low_limit = mmap_min_addr;
1648         high_limit = info->high_limit;
1649 retry:
1650         if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
1651                 return -ENOMEM;
1652
1653         gap = vma_iter_end(&vmi) - info->length;
1654         gap -= (gap - info->align_offset) & info->align_mask;
1655         gap_end = vma_iter_end(&vmi);
1656         tmp = vma_next(&vmi);
1657         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1658                 if (vm_start_gap(tmp) < gap_end) {
1659                         high_limit = vm_start_gap(tmp);
1660                         vma_iter_reset(&vmi);
1661                         goto retry;
1662                 }
1663         } else {
1664                 tmp = vma_prev(&vmi);
1665                 if (tmp && vm_end_gap(tmp) > gap) {
1666                         high_limit = tmp->vm_start;
1667                         vma_iter_reset(&vmi);
1668                         goto retry;
1669                 }
1670         }
1671
1672         return gap;
1673 }
1674
1675 /*
1676  * Search for an unmapped address range.
1677  *
1678  * We are looking for a range that:
1679  * - does not intersect with any VMA;
1680  * - is contained within the [low_limit, high_limit) interval;
1681  * - is at least the desired size.
1682  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1683  */
1684 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1685 {
1686         unsigned long addr;
1687
1688         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1689                 addr = unmapped_area_topdown(info);
1690         else
1691                 addr = unmapped_area(info);
1692
1693         trace_vm_unmapped_area(addr, info);
1694         return addr;
1695 }
1696
1697 /* Get an address range which is currently unmapped.
1698  * For shmat() with addr=0.
1699  *
1700  * Ugly calling convention alert:
1701  * Return value with the low bits set means error value,
1702  * ie
1703  *      if (ret & ~PAGE_MASK)
1704  *              error = ret;
1705  *
1706  * This function "knows" that -ENOMEM has the bits set.
1707  */
1708 unsigned long
1709 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1710                           unsigned long len, unsigned long pgoff,
1711                           unsigned long flags)
1712 {
1713         struct mm_struct *mm = current->mm;
1714         struct vm_area_struct *vma, *prev;
1715         struct vm_unmapped_area_info info = {};
1716         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1717
1718         if (len > mmap_end - mmap_min_addr)
1719                 return -ENOMEM;
1720
1721         if (flags & MAP_FIXED)
1722                 return addr;
1723
1724         if (addr) {
1725                 addr = PAGE_ALIGN(addr);
1726                 vma = find_vma_prev(mm, addr, &prev);
1727                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1728                     (!vma || addr + len <= vm_start_gap(vma)) &&
1729                     (!prev || addr >= vm_end_gap(prev)))
1730                         return addr;
1731         }
1732
1733         info.length = len;
1734         info.low_limit = mm->mmap_base;
1735         info.high_limit = mmap_end;
1736         return vm_unmapped_area(&info);
1737 }
1738
1739 #ifndef HAVE_ARCH_UNMAPPED_AREA
1740 unsigned long
1741 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1742                        unsigned long len, unsigned long pgoff,
1743                        unsigned long flags)
1744 {
1745         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1746 }
1747 #endif
1748
1749 /*
1750  * This mmap-allocator allocates new areas top-down from below the
1751  * stack's low limit (the base):
1752  */
1753 unsigned long
1754 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1755                                   unsigned long len, unsigned long pgoff,
1756                                   unsigned long flags)
1757 {
1758         struct vm_area_struct *vma, *prev;
1759         struct mm_struct *mm = current->mm;
1760         struct vm_unmapped_area_info info = {};
1761         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1762
1763         /* requested length too big for entire address space */
1764         if (len > mmap_end - mmap_min_addr)
1765                 return -ENOMEM;
1766
1767         if (flags & MAP_FIXED)
1768                 return addr;
1769
1770         /* requesting a specific address */
1771         if (addr) {
1772                 addr = PAGE_ALIGN(addr);
1773                 vma = find_vma_prev(mm, addr, &prev);
1774                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1775                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1776                                 (!prev || addr >= vm_end_gap(prev)))
1777                         return addr;
1778         }
1779
1780         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1781         info.length = len;
1782         info.low_limit = PAGE_SIZE;
1783         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1784         addr = vm_unmapped_area(&info);
1785
1786         /*
1787          * A failed mmap() very likely causes application failure,
1788          * so fall back to the bottom-up function here. This scenario
1789          * can happen with large stack limits and large mmap()
1790          * allocations.
1791          */
1792         if (offset_in_page(addr)) {
1793                 VM_BUG_ON(addr != -ENOMEM);
1794                 info.flags = 0;
1795                 info.low_limit = TASK_UNMAPPED_BASE;
1796                 info.high_limit = mmap_end;
1797                 addr = vm_unmapped_area(&info);
1798         }
1799
1800         return addr;
1801 }
1802
1803 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1804 unsigned long
1805 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1806                                unsigned long len, unsigned long pgoff,
1807                                unsigned long flags)
1808 {
1809         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1810 }
1811 #endif
1812
1813 #ifndef HAVE_ARCH_UNMAPPED_AREA_VMFLAGS
1814 unsigned long
1815 arch_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, unsigned long len,
1816                                unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1817 {
1818         return arch_get_unmapped_area(filp, addr, len, pgoff, flags);
1819 }
1820
1821 unsigned long
1822 arch_get_unmapped_area_topdown_vmflags(struct file *filp, unsigned long addr,
1823                                        unsigned long len, unsigned long pgoff,
1824                                        unsigned long flags, vm_flags_t vm_flags)
1825 {
1826         return arch_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1827 }
1828 #endif
1829
1830 unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
1831                                            unsigned long addr, unsigned long len,
1832                                            unsigned long pgoff, unsigned long flags,
1833                                            vm_flags_t vm_flags)
1834 {
1835         if (test_bit(MMF_TOPDOWN, &mm->flags))
1836                 return arch_get_unmapped_area_topdown_vmflags(filp, addr, len, pgoff,
1837                                                               flags, vm_flags);
1838         return arch_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, vm_flags);
1839 }
1840
1841 unsigned long
1842 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1843                 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
1844 {
1845         unsigned long (*get_area)(struct file *, unsigned long,
1846                                   unsigned long, unsigned long, unsigned long)
1847                                   = NULL;
1848
1849         unsigned long error = arch_mmap_check(addr, len, flags);
1850         if (error)
1851                 return error;
1852
1853         /* Careful about overflows.. */
1854         if (len > TASK_SIZE)
1855                 return -ENOMEM;
1856
1857         if (file) {
1858                 if (file->f_op->get_unmapped_area)
1859                         get_area = file->f_op->get_unmapped_area;
1860         } else if (flags & MAP_SHARED) {
1861                 /*
1862                  * mmap_region() will call shmem_zero_setup() to create a file,
1863                  * so use shmem's get_unmapped_area in case it can be huge.
1864                  */
1865                 get_area = shmem_get_unmapped_area;
1866         }
1867
1868         /* Always treat pgoff as zero for anonymous memory. */
1869         if (!file)
1870                 pgoff = 0;
1871
1872         if (get_area) {
1873                 addr = get_area(file, addr, len, pgoff, flags);
1874         } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1875                 /* Ensures that larger anonymous mappings are THP aligned. */
1876                 addr = thp_get_unmapped_area_vmflags(file, addr, len,
1877                                                      pgoff, flags, vm_flags);
1878         } else {
1879                 addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
1880                                                     pgoff, flags, vm_flags);
1881         }
1882         if (IS_ERR_VALUE(addr))
1883                 return addr;
1884
1885         if (addr > TASK_SIZE - len)
1886                 return -ENOMEM;
1887         if (offset_in_page(addr))
1888                 return -EINVAL;
1889
1890         error = security_mmap_addr(addr);
1891         return error ? error : addr;
1892 }
1893
1894 unsigned long
1895 mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
1896                      unsigned long addr, unsigned long len,
1897                      unsigned long pgoff, unsigned long flags)
1898 {
1899         if (test_bit(MMF_TOPDOWN, &mm->flags))
1900                 return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags);
1901         return arch_get_unmapped_area(file, addr, len, pgoff, flags);
1902 }
1903 EXPORT_SYMBOL(mm_get_unmapped_area);
1904
1905 /**
1906  * find_vma_intersection() - Look up the first VMA which intersects the interval
1907  * @mm: The process address space.
1908  * @start_addr: The inclusive start user address.
1909  * @end_addr: The exclusive end user address.
1910  *
1911  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1912  * start_addr < end_addr.
1913  */
1914 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1915                                              unsigned long start_addr,
1916                                              unsigned long end_addr)
1917 {
1918         unsigned long index = start_addr;
1919
1920         mmap_assert_locked(mm);
1921         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1922 }
1923 EXPORT_SYMBOL(find_vma_intersection);
1924
1925 /**
1926  * find_vma() - Find the VMA for a given address, or the next VMA.
1927  * @mm: The mm_struct to check
1928  * @addr: The address
1929  *
1930  * Returns: The VMA associated with addr, or the next VMA.
1931  * May return %NULL in the case of no VMA at addr or above.
1932  */
1933 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1934 {
1935         unsigned long index = addr;
1936
1937         mmap_assert_locked(mm);
1938         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1939 }
1940 EXPORT_SYMBOL(find_vma);
1941
1942 /**
1943  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1944  * set %pprev to the previous VMA, if any.
1945  * @mm: The mm_struct to check
1946  * @addr: The address
1947  * @pprev: The pointer to set to the previous VMA
1948  *
1949  * Note that RCU lock is missing here since the external mmap_lock() is used
1950  * instead.
1951  *
1952  * Returns: The VMA associated with @addr, or the next vma.
1953  * May return %NULL in the case of no vma at addr or above.
1954  */
1955 struct vm_area_struct *
1956 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1957                         struct vm_area_struct **pprev)
1958 {
1959         struct vm_area_struct *vma;
1960         VMA_ITERATOR(vmi, mm, addr);
1961
1962         vma = vma_iter_load(&vmi);
1963         *pprev = vma_prev(&vmi);
1964         if (!vma)
1965                 vma = vma_next(&vmi);
1966         return vma;
1967 }
1968
1969 /*
1970  * Verify that the stack growth is acceptable and
1971  * update accounting. This is shared with both the
1972  * grow-up and grow-down cases.
1973  */
1974 static int acct_stack_growth(struct vm_area_struct *vma,
1975                              unsigned long size, unsigned long grow)
1976 {
1977         struct mm_struct *mm = vma->vm_mm;
1978         unsigned long new_start;
1979
1980         /* address space limit tests */
1981         if (!may_expand_vm(mm, vma->vm_flags, grow))
1982                 return -ENOMEM;
1983
1984         /* Stack limit test */
1985         if (size > rlimit(RLIMIT_STACK))
1986                 return -ENOMEM;
1987
1988         /* mlock limit tests */
1989         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1990                 return -ENOMEM;
1991
1992         /* Check to ensure the stack will not grow into a hugetlb-only region */
1993         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1994                         vma->vm_end - size;
1995         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1996                 return -EFAULT;
1997
1998         /*
1999          * Overcommit..  This must be the final test, as it will
2000          * update security statistics.
2001          */
2002         if (security_vm_enough_memory_mm(mm, grow))
2003                 return -ENOMEM;
2004
2005         return 0;
2006 }
2007
2008 #if defined(CONFIG_STACK_GROWSUP)
2009 /*
2010  * PA-RISC uses this for its stack.
2011  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2012  */
2013 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2014 {
2015         struct mm_struct *mm = vma->vm_mm;
2016         struct vm_area_struct *next;
2017         unsigned long gap_addr;
2018         int error = 0;
2019         VMA_ITERATOR(vmi, mm, vma->vm_start);
2020
2021         if (!(vma->vm_flags & VM_GROWSUP))
2022                 return -EFAULT;
2023
2024         /* Guard against exceeding limits of the address space. */
2025         address &= PAGE_MASK;
2026         if (address >= (TASK_SIZE & PAGE_MASK))
2027                 return -ENOMEM;
2028         address += PAGE_SIZE;
2029
2030         /* Enforce stack_guard_gap */
2031         gap_addr = address + stack_guard_gap;
2032
2033         /* Guard against overflow */
2034         if (gap_addr < address || gap_addr > TASK_SIZE)
2035                 gap_addr = TASK_SIZE;
2036
2037         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2038         if (next && vma_is_accessible(next)) {
2039                 if (!(next->vm_flags & VM_GROWSUP))
2040                         return -ENOMEM;
2041                 /* Check that both stack segments have the same anon_vma? */
2042         }
2043
2044         if (next)
2045                 vma_iter_prev_range_limit(&vmi, address);
2046
2047         vma_iter_config(&vmi, vma->vm_start, address);
2048         if (vma_iter_prealloc(&vmi, vma))
2049                 return -ENOMEM;
2050
2051         /* We must make sure the anon_vma is allocated. */
2052         if (unlikely(anon_vma_prepare(vma))) {
2053                 vma_iter_free(&vmi);
2054                 return -ENOMEM;
2055         }
2056
2057         /* Lock the VMA before expanding to prevent concurrent page faults */
2058         vma_start_write(vma);
2059         /*
2060          * vma->vm_start/vm_end cannot change under us because the caller
2061          * is required to hold the mmap_lock in read mode.  We need the
2062          * anon_vma lock to serialize against concurrent expand_stacks.
2063          */
2064         anon_vma_lock_write(vma->anon_vma);
2065
2066         /* Somebody else might have raced and expanded it already */
2067         if (address > vma->vm_end) {
2068                 unsigned long size, grow;
2069
2070                 size = address - vma->vm_start;
2071                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2072
2073                 error = -ENOMEM;
2074                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2075                         error = acct_stack_growth(vma, size, grow);
2076                         if (!error) {
2077                                 /*
2078                                  * We only hold a shared mmap_lock lock here, so
2079                                  * we need to protect against concurrent vma
2080                                  * expansions.  anon_vma_lock_write() doesn't
2081                                  * help here, as we don't guarantee that all
2082                                  * growable vmas in a mm share the same root
2083                                  * anon vma.  So, we reuse mm->page_table_lock
2084                                  * to guard against concurrent vma expansions.
2085                                  */
2086                                 spin_lock(&mm->page_table_lock);
2087                                 if (vma->vm_flags & VM_LOCKED)
2088                                         mm->locked_vm += grow;
2089                                 vm_stat_account(mm, vma->vm_flags, grow);
2090                                 anon_vma_interval_tree_pre_update_vma(vma);
2091                                 vma->vm_end = address;
2092                                 /* Overwrite old entry in mtree. */
2093                                 vma_iter_store(&vmi, vma);
2094                                 anon_vma_interval_tree_post_update_vma(vma);
2095                                 spin_unlock(&mm->page_table_lock);
2096
2097                                 perf_event_mmap(vma);
2098                         }
2099                 }
2100         }
2101         anon_vma_unlock_write(vma->anon_vma);
2102         vma_iter_free(&vmi);
2103         validate_mm(mm);
2104         return error;
2105 }
2106 #endif /* CONFIG_STACK_GROWSUP */
2107
2108 /*
2109  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2110  * mmap_lock held for writing.
2111  */
2112 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2113 {
2114         struct mm_struct *mm = vma->vm_mm;
2115         struct vm_area_struct *prev;
2116         int error = 0;
2117         VMA_ITERATOR(vmi, mm, vma->vm_start);
2118
2119         if (!(vma->vm_flags & VM_GROWSDOWN))
2120                 return -EFAULT;
2121
2122         address &= PAGE_MASK;
2123         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2124                 return -EPERM;
2125
2126         /* Enforce stack_guard_gap */
2127         prev = vma_prev(&vmi);
2128         /* Check that both stack segments have the same anon_vma? */
2129         if (prev) {
2130                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2131                     vma_is_accessible(prev) &&
2132                     (address - prev->vm_end < stack_guard_gap))
2133                         return -ENOMEM;
2134         }
2135
2136         if (prev)
2137                 vma_iter_next_range_limit(&vmi, vma->vm_start);
2138
2139         vma_iter_config(&vmi, address, vma->vm_end);
2140         if (vma_iter_prealloc(&vmi, vma))
2141                 return -ENOMEM;
2142
2143         /* We must make sure the anon_vma is allocated. */
2144         if (unlikely(anon_vma_prepare(vma))) {
2145                 vma_iter_free(&vmi);
2146                 return -ENOMEM;
2147         }
2148
2149         /* Lock the VMA before expanding to prevent concurrent page faults */
2150         vma_start_write(vma);
2151         /*
2152          * vma->vm_start/vm_end cannot change under us because the caller
2153          * is required to hold the mmap_lock in read mode.  We need the
2154          * anon_vma lock to serialize against concurrent expand_stacks.
2155          */
2156         anon_vma_lock_write(vma->anon_vma);
2157
2158         /* Somebody else might have raced and expanded it already */
2159         if (address < vma->vm_start) {
2160                 unsigned long size, grow;
2161
2162                 size = vma->vm_end - address;
2163                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2164
2165                 error = -ENOMEM;
2166                 if (grow <= vma->vm_pgoff) {
2167                         error = acct_stack_growth(vma, size, grow);
2168                         if (!error) {
2169                                 /*
2170                                  * We only hold a shared mmap_lock lock here, so
2171                                  * we need to protect against concurrent vma
2172                                  * expansions.  anon_vma_lock_write() doesn't
2173                                  * help here, as we don't guarantee that all
2174                                  * growable vmas in a mm share the same root
2175                                  * anon vma.  So, we reuse mm->page_table_lock
2176                                  * to guard against concurrent vma expansions.
2177                                  */
2178                                 spin_lock(&mm->page_table_lock);
2179                                 if (vma->vm_flags & VM_LOCKED)
2180                                         mm->locked_vm += grow;
2181                                 vm_stat_account(mm, vma->vm_flags, grow);
2182                                 anon_vma_interval_tree_pre_update_vma(vma);
2183                                 vma->vm_start = address;
2184                                 vma->vm_pgoff -= grow;
2185                                 /* Overwrite old entry in mtree. */
2186                                 vma_iter_store(&vmi, vma);
2187                                 anon_vma_interval_tree_post_update_vma(vma);
2188                                 spin_unlock(&mm->page_table_lock);
2189
2190                                 perf_event_mmap(vma);
2191                         }
2192                 }
2193         }
2194         anon_vma_unlock_write(vma->anon_vma);
2195         vma_iter_free(&vmi);
2196         validate_mm(mm);
2197         return error;
2198 }
2199
2200 /* enforced gap between the expanding stack and other mappings. */
2201 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2202
2203 static int __init cmdline_parse_stack_guard_gap(char *p)
2204 {
2205         unsigned long val;
2206         char *endptr;
2207
2208         val = simple_strtoul(p, &endptr, 10);
2209         if (!*endptr)
2210                 stack_guard_gap = val << PAGE_SHIFT;
2211
2212         return 1;
2213 }
2214 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2215
2216 #ifdef CONFIG_STACK_GROWSUP
2217 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2218 {
2219         return expand_upwards(vma, address);
2220 }
2221
2222 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2223 {
2224         struct vm_area_struct *vma, *prev;
2225
2226         addr &= PAGE_MASK;
2227         vma = find_vma_prev(mm, addr, &prev);
2228         if (vma && (vma->vm_start <= addr))
2229                 return vma;
2230         if (!prev)
2231                 return NULL;
2232         if (expand_stack_locked(prev, addr))
2233                 return NULL;
2234         if (prev->vm_flags & VM_LOCKED)
2235                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2236         return prev;
2237 }
2238 #else
2239 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2240 {
2241         return expand_downwards(vma, address);
2242 }
2243
2244 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2245 {
2246         struct vm_area_struct *vma;
2247         unsigned long start;
2248
2249         addr &= PAGE_MASK;
2250         vma = find_vma(mm, addr);
2251         if (!vma)
2252                 return NULL;
2253         if (vma->vm_start <= addr)
2254                 return vma;
2255         start = vma->vm_start;
2256         if (expand_stack_locked(vma, addr))
2257                 return NULL;
2258         if (vma->vm_flags & VM_LOCKED)
2259                 populate_vma_page_range(vma, addr, start, NULL);
2260         return vma;
2261 }
2262 #endif
2263
2264 #if defined(CONFIG_STACK_GROWSUP)
2265
2266 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2267 #define vma_expand_down(vma, addr) (-EFAULT)
2268
2269 #else
2270
2271 #define vma_expand_up(vma,addr) (-EFAULT)
2272 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2273
2274 #endif
2275
2276 /*
2277  * expand_stack(): legacy interface for page faulting. Don't use unless
2278  * you have to.
2279  *
2280  * This is called with the mm locked for reading, drops the lock, takes
2281  * the lock for writing, tries to look up a vma again, expands it if
2282  * necessary, and downgrades the lock to reading again.
2283  *
2284  * If no vma is found or it can't be expanded, it returns NULL and has
2285  * dropped the lock.
2286  */
2287 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2288 {
2289         struct vm_area_struct *vma, *prev;
2290
2291         mmap_read_unlock(mm);
2292         if (mmap_write_lock_killable(mm))
2293                 return NULL;
2294
2295         vma = find_vma_prev(mm, addr, &prev);
2296         if (vma && vma->vm_start <= addr)
2297                 goto success;
2298
2299         if (prev && !vma_expand_up(prev, addr)) {
2300                 vma = prev;
2301                 goto success;
2302         }
2303
2304         if (vma && !vma_expand_down(vma, addr))
2305                 goto success;
2306
2307         mmap_write_unlock(mm);
2308         return NULL;
2309
2310 success:
2311         mmap_write_downgrade(mm);
2312         return vma;
2313 }
2314
2315 /*
2316  * Ok - we have the memory areas we should free on a maple tree so release them,
2317  * and do the vma updates.
2318  *
2319  * Called with the mm semaphore held.
2320  */
2321 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2322 {
2323         unsigned long nr_accounted = 0;
2324         struct vm_area_struct *vma;
2325
2326         /* Update high watermark before we lower total_vm */
2327         update_hiwater_vm(mm);
2328         mas_for_each(mas, vma, ULONG_MAX) {
2329                 long nrpages = vma_pages(vma);
2330
2331                 if (vma->vm_flags & VM_ACCOUNT)
2332                         nr_accounted += nrpages;
2333                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2334                 remove_vma(vma, false);
2335         }
2336         vm_unacct_memory(nr_accounted);
2337 }
2338
2339 /*
2340  * Get rid of page table information in the indicated region.
2341  *
2342  * Called with the mm semaphore held.
2343  */
2344 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2345                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2346                 struct vm_area_struct *next, unsigned long start,
2347                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2348 {
2349         struct mmu_gather tlb;
2350         unsigned long mt_start = mas->index;
2351
2352         lru_add_drain();
2353         tlb_gather_mmu(&tlb, mm);
2354         update_hiwater_rss(mm);
2355         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2356         mas_set(mas, mt_start);
2357         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2358                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2359                                  mm_wr_locked);
2360         tlb_finish_mmu(&tlb);
2361 }
2362
2363 /*
2364  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2365  * has already been checked or doesn't make sense to fail.
2366  * VMA Iterator will point to the end VMA.
2367  */
2368 static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2369                        unsigned long addr, int new_below)
2370 {
2371         struct vma_prepare vp;
2372         struct vm_area_struct *new;
2373         int err;
2374
2375         WARN_ON(vma->vm_start >= addr);
2376         WARN_ON(vma->vm_end <= addr);
2377
2378         if (vma->vm_ops && vma->vm_ops->may_split) {
2379                 err = vma->vm_ops->may_split(vma, addr);
2380                 if (err)
2381                         return err;
2382         }
2383
2384         new = vm_area_dup(vma);
2385         if (!new)
2386                 return -ENOMEM;
2387
2388         if (new_below) {
2389                 new->vm_end = addr;
2390         } else {
2391                 new->vm_start = addr;
2392                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2393         }
2394
2395         err = -ENOMEM;
2396         vma_iter_config(vmi, new->vm_start, new->vm_end);
2397         if (vma_iter_prealloc(vmi, new))
2398                 goto out_free_vma;
2399
2400         err = vma_dup_policy(vma, new);
2401         if (err)
2402                 goto out_free_vmi;
2403
2404         err = anon_vma_clone(new, vma);
2405         if (err)
2406                 goto out_free_mpol;
2407
2408         if (new->vm_file)
2409                 get_file(new->vm_file);
2410
2411         if (new->vm_ops && new->vm_ops->open)
2412                 new->vm_ops->open(new);
2413
2414         vma_start_write(vma);
2415         vma_start_write(new);
2416
2417         init_vma_prep(&vp, vma);
2418         vp.insert = new;
2419         vma_prepare(&vp);
2420         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2421
2422         if (new_below) {
2423                 vma->vm_start = addr;
2424                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2425         } else {
2426                 vma->vm_end = addr;
2427         }
2428
2429         /* vma_complete stores the new vma */
2430         vma_complete(&vp, vmi, vma->vm_mm);
2431
2432         /* Success. */
2433         if (new_below)
2434                 vma_next(vmi);
2435         return 0;
2436
2437 out_free_mpol:
2438         mpol_put(vma_policy(new));
2439 out_free_vmi:
2440         vma_iter_free(vmi);
2441 out_free_vma:
2442         vm_area_free(new);
2443         return err;
2444 }
2445
2446 /*
2447  * Split a vma into two pieces at address 'addr', a new vma is allocated
2448  * either for the first part or the tail.
2449  */
2450 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2451                      unsigned long addr, int new_below)
2452 {
2453         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2454                 return -ENOMEM;
2455
2456         return __split_vma(vmi, vma, addr, new_below);
2457 }
2458
2459 /*
2460  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
2461  * context and anonymous VMA name within the range [start, end).
2462  *
2463  * As a result, we might be able to merge the newly modified VMA range with an
2464  * adjacent VMA with identical properties.
2465  *
2466  * If no merge is possible and the range does not span the entirety of the VMA,
2467  * we then need to split the VMA to accommodate the change.
2468  *
2469  * The function returns either the merged VMA, the original VMA if a split was
2470  * required instead, or an error if the split failed.
2471  */
2472 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
2473                                   struct vm_area_struct *prev,
2474                                   struct vm_area_struct *vma,
2475                                   unsigned long start, unsigned long end,
2476                                   unsigned long vm_flags,
2477                                   struct mempolicy *policy,
2478                                   struct vm_userfaultfd_ctx uffd_ctx,
2479                                   struct anon_vma_name *anon_name)
2480 {
2481         pgoff_t pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2482         struct vm_area_struct *merged;
2483
2484         merged = vma_merge(vmi, prev, vma, start, end, vm_flags,
2485                            pgoff, policy, uffd_ctx, anon_name);
2486         if (merged)
2487                 return merged;
2488
2489         if (vma->vm_start < start) {
2490                 int err = split_vma(vmi, vma, start, 1);
2491
2492                 if (err)
2493                         return ERR_PTR(err);
2494         }
2495
2496         if (vma->vm_end > end) {
2497                 int err = split_vma(vmi, vma, end, 0);
2498
2499                 if (err)
2500                         return ERR_PTR(err);
2501         }
2502
2503         return vma;
2504 }
2505
2506 /*
2507  * Attempt to merge a newly mapped VMA with those adjacent to it. The caller
2508  * must ensure that [start, end) does not overlap any existing VMA.
2509  */
2510 static struct vm_area_struct
2511 *vma_merge_new_vma(struct vma_iterator *vmi, struct vm_area_struct *prev,
2512                    struct vm_area_struct *vma, unsigned long start,
2513                    unsigned long end, pgoff_t pgoff)
2514 {
2515         return vma_merge(vmi, prev, vma, start, end, vma->vm_flags, pgoff,
2516                          vma_policy(vma), vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2517 }
2518
2519 /*
2520  * Expand vma by delta bytes, potentially merging with an immediately adjacent
2521  * VMA with identical properties.
2522  */
2523 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
2524                                         struct vm_area_struct *vma,
2525                                         unsigned long delta)
2526 {
2527         pgoff_t pgoff = vma->vm_pgoff + vma_pages(vma);
2528
2529         /* vma is specified as prev, so case 1 or 2 will apply. */
2530         return vma_merge(vmi, vma, vma, vma->vm_end, vma->vm_end + delta,
2531                          vma->vm_flags, pgoff, vma_policy(vma),
2532                          vma->vm_userfaultfd_ctx, anon_vma_name(vma));
2533 }
2534
2535 /*
2536  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2537  * @vmi: The vma iterator
2538  * @vma: The starting vm_area_struct
2539  * @mm: The mm_struct
2540  * @start: The aligned start address to munmap.
2541  * @end: The aligned end address to munmap.
2542  * @uf: The userfaultfd list_head
2543  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2544  * success.
2545  *
2546  * Return: 0 on success and drops the lock if so directed, error and leaves the
2547  * lock held otherwise.
2548  */
2549 static int
2550 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2551                     struct mm_struct *mm, unsigned long start,
2552                     unsigned long end, struct list_head *uf, bool unlock)
2553 {
2554         struct vm_area_struct *prev, *next = NULL;
2555         struct maple_tree mt_detach;
2556         int count = 0;
2557         int error = -ENOMEM;
2558         unsigned long locked_vm = 0;
2559         MA_STATE(mas_detach, &mt_detach, 0, 0);
2560         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2561         mt_on_stack(mt_detach);
2562
2563         /*
2564          * If we need to split any vma, do it now to save pain later.
2565          *
2566          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2567          * unmapped vm_area_struct will remain in use: so lower split_vma
2568          * places tmp vma above, and higher split_vma places tmp vma below.
2569          */
2570
2571         /* Does it split the first one? */
2572         if (start > vma->vm_start) {
2573
2574                 /*
2575                  * Make sure that map_count on return from munmap() will
2576                  * not exceed its limit; but let map_count go just above
2577                  * its limit temporarily, to help free resources as expected.
2578                  */
2579                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2580                         goto map_count_exceeded;
2581
2582                 error = __split_vma(vmi, vma, start, 1);
2583                 if (error)
2584                         goto start_split_failed;
2585         }
2586
2587         /*
2588          * Detach a range of VMAs from the mm. Using next as a temp variable as
2589          * it is always overwritten.
2590          */
2591         next = vma;
2592         do {
2593                 /* Does it split the end? */
2594                 if (next->vm_end > end) {
2595                         error = __split_vma(vmi, next, end, 0);
2596                         if (error)
2597                                 goto end_split_failed;
2598                 }
2599                 vma_start_write(next);
2600                 mas_set(&mas_detach, count);
2601                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2602                 if (error)
2603                         goto munmap_gather_failed;
2604                 vma_mark_detached(next, true);
2605                 if (next->vm_flags & VM_LOCKED)
2606                         locked_vm += vma_pages(next);
2607
2608                 count++;
2609                 if (unlikely(uf)) {
2610                         /*
2611                          * If userfaultfd_unmap_prep returns an error the vmas
2612                          * will remain split, but userland will get a
2613                          * highly unexpected error anyway. This is no
2614                          * different than the case where the first of the two
2615                          * __split_vma fails, but we don't undo the first
2616                          * split, despite we could. This is unlikely enough
2617                          * failure that it's not worth optimizing it for.
2618                          */
2619                         error = userfaultfd_unmap_prep(next, start, end, uf);
2620
2621                         if (error)
2622                                 goto userfaultfd_error;
2623                 }
2624 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2625                 BUG_ON(next->vm_start < start);
2626                 BUG_ON(next->vm_start > end);
2627 #endif
2628         } for_each_vma_range(*vmi, next, end);
2629
2630 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2631         /* Make sure no VMAs are about to be lost. */
2632         {
2633                 MA_STATE(test, &mt_detach, 0, 0);
2634                 struct vm_area_struct *vma_mas, *vma_test;
2635                 int test_count = 0;
2636
2637                 vma_iter_set(vmi, start);
2638                 rcu_read_lock();
2639                 vma_test = mas_find(&test, count - 1);
2640                 for_each_vma_range(*vmi, vma_mas, end) {
2641                         BUG_ON(vma_mas != vma_test);
2642                         test_count++;
2643                         vma_test = mas_next(&test, count - 1);
2644                 }
2645                 rcu_read_unlock();
2646                 BUG_ON(count != test_count);
2647         }
2648 #endif
2649
2650         while (vma_iter_addr(vmi) > start)
2651                 vma_iter_prev_range(vmi);
2652
2653         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2654         if (error)
2655                 goto clear_tree_failed;
2656
2657         /* Point of no return */
2658         mm->locked_vm -= locked_vm;
2659         mm->map_count -= count;
2660         if (unlock)
2661                 mmap_write_downgrade(mm);
2662
2663         prev = vma_iter_prev_range(vmi);
2664         next = vma_next(vmi);
2665         if (next)
2666                 vma_iter_prev_range(vmi);
2667
2668         /*
2669          * We can free page tables without write-locking mmap_lock because VMAs
2670          * were isolated before we downgraded mmap_lock.
2671          */
2672         mas_set(&mas_detach, 1);
2673         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2674                      !unlock);
2675         /* Statistics and freeing VMAs */
2676         mas_set(&mas_detach, 0);
2677         remove_mt(mm, &mas_detach);
2678         validate_mm(mm);
2679         if (unlock)
2680                 mmap_read_unlock(mm);
2681
2682         __mt_destroy(&mt_detach);
2683         return 0;
2684
2685 clear_tree_failed:
2686 userfaultfd_error:
2687 munmap_gather_failed:
2688 end_split_failed:
2689         mas_set(&mas_detach, 0);
2690         mas_for_each(&mas_detach, next, end)
2691                 vma_mark_detached(next, false);
2692
2693         __mt_destroy(&mt_detach);
2694 start_split_failed:
2695 map_count_exceeded:
2696         validate_mm(mm);
2697         return error;
2698 }
2699
2700 /*
2701  * do_vmi_munmap() - munmap a given range.
2702  * @vmi: The vma iterator
2703  * @mm: The mm_struct
2704  * @start: The start address to munmap
2705  * @len: The length of the range to munmap
2706  * @uf: The userfaultfd list_head
2707  * @unlock: set to true if the user wants to drop the mmap_lock on success
2708  *
2709  * This function takes a @mas that is either pointing to the previous VMA or set
2710  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2711  * aligned and any arch_unmap work will be preformed.
2712  *
2713  * Return: 0 on success and drops the lock if so directed, error and leaves the
2714  * lock held otherwise.
2715  */
2716 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2717                   unsigned long start, size_t len, struct list_head *uf,
2718                   bool unlock)
2719 {
2720         unsigned long end;
2721         struct vm_area_struct *vma;
2722
2723         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2724                 return -EINVAL;
2725
2726         end = start + PAGE_ALIGN(len);
2727         if (end == start)
2728                 return -EINVAL;
2729
2730          /* arch_unmap() might do unmaps itself.  */
2731         arch_unmap(mm, start, end);
2732
2733         /* Find the first overlapping VMA */
2734         vma = vma_find(vmi, end);
2735         if (!vma) {
2736                 if (unlock)
2737                         mmap_write_unlock(mm);
2738                 return 0;
2739         }
2740
2741         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2742 }
2743
2744 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2745  * @mm: The mm_struct
2746  * @start: The start address to munmap
2747  * @len: The length to be munmapped.
2748  * @uf: The userfaultfd list_head
2749  *
2750  * Return: 0 on success, error otherwise.
2751  */
2752 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2753               struct list_head *uf)
2754 {
2755         VMA_ITERATOR(vmi, mm, start);
2756
2757         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2758 }
2759
2760 unsigned long mmap_region(struct file *file, unsigned long addr,
2761                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2762                 struct list_head *uf)
2763 {
2764         struct mm_struct *mm = current->mm;
2765         struct vm_area_struct *vma = NULL;
2766         struct vm_area_struct *next, *prev, *merge;
2767         pgoff_t pglen = len >> PAGE_SHIFT;
2768         unsigned long charged = 0;
2769         unsigned long end = addr + len;
2770         unsigned long merge_start = addr, merge_end = end;
2771         bool writable_file_mapping = false;
2772         pgoff_t vm_pgoff;
2773         int error;
2774         VMA_ITERATOR(vmi, mm, addr);
2775
2776         /* Check against address space limit. */
2777         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2778                 unsigned long nr_pages;
2779
2780                 /*
2781                  * MAP_FIXED may remove pages of mappings that intersects with
2782                  * requested mapping. Account for the pages it would unmap.
2783                  */
2784                 nr_pages = count_vma_pages_range(mm, addr, end);
2785
2786                 if (!may_expand_vm(mm, vm_flags,
2787                                         (len >> PAGE_SHIFT) - nr_pages))
2788                         return -ENOMEM;
2789         }
2790
2791         /* Unmap any existing mapping in the area */
2792         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2793                 return -ENOMEM;
2794
2795         /*
2796          * Private writable mapping: check memory availability
2797          */
2798         if (accountable_mapping(file, vm_flags)) {
2799                 charged = len >> PAGE_SHIFT;
2800                 if (security_vm_enough_memory_mm(mm, charged))
2801                         return -ENOMEM;
2802                 vm_flags |= VM_ACCOUNT;
2803         }
2804
2805         next = vma_next(&vmi);
2806         prev = vma_prev(&vmi);
2807         if (vm_flags & VM_SPECIAL) {
2808                 if (prev)
2809                         vma_iter_next_range(&vmi);
2810                 goto cannot_expand;
2811         }
2812
2813         /* Attempt to expand an old mapping */
2814         /* Check next */
2815         if (next && next->vm_start == end && !vma_policy(next) &&
2816             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2817                                  NULL_VM_UFFD_CTX, NULL)) {
2818                 merge_end = next->vm_end;
2819                 vma = next;
2820                 vm_pgoff = next->vm_pgoff - pglen;
2821         }
2822
2823         /* Check prev */
2824         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2825             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2826                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2827                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2828                                        NULL_VM_UFFD_CTX, NULL))) {
2829                 merge_start = prev->vm_start;
2830                 vma = prev;
2831                 vm_pgoff = prev->vm_pgoff;
2832         } else if (prev) {
2833                 vma_iter_next_range(&vmi);
2834         }
2835
2836         /* Actually expand, if possible */
2837         if (vma &&
2838             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2839                 khugepaged_enter_vma(vma, vm_flags);
2840                 goto expanded;
2841         }
2842
2843         if (vma == prev)
2844                 vma_iter_set(&vmi, addr);
2845 cannot_expand:
2846
2847         /*
2848          * Determine the object being mapped and call the appropriate
2849          * specific mapper. the address has already been validated, but
2850          * not unmapped, but the maps are removed from the list.
2851          */
2852         vma = vm_area_alloc(mm);
2853         if (!vma) {
2854                 error = -ENOMEM;
2855                 goto unacct_error;
2856         }
2857
2858         vma_iter_config(&vmi, addr, end);
2859         vma_set_range(vma, addr, end, pgoff);
2860         vm_flags_init(vma, vm_flags);
2861         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2862
2863         if (file) {
2864                 vma->vm_file = get_file(file);
2865                 error = call_mmap(file, vma);
2866                 if (error)
2867                         goto unmap_and_free_vma;
2868
2869                 if (vma_is_shared_maywrite(vma)) {
2870                         error = mapping_map_writable(file->f_mapping);
2871                         if (error)
2872                                 goto close_and_free_vma;
2873
2874                         writable_file_mapping = true;
2875                 }
2876
2877                 /*
2878                  * Expansion is handled above, merging is handled below.
2879                  * Drivers should not alter the address of the VMA.
2880                  */
2881                 error = -EINVAL;
2882                 if (WARN_ON((addr != vma->vm_start)))
2883                         goto close_and_free_vma;
2884
2885                 vma_iter_config(&vmi, addr, end);
2886                 /*
2887                  * If vm_flags changed after call_mmap(), we should try merge
2888                  * vma again as we may succeed this time.
2889                  */
2890                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2891                         merge = vma_merge_new_vma(&vmi, prev, vma,
2892                                                   vma->vm_start, vma->vm_end,
2893                                                   vma->vm_pgoff);
2894                         if (merge) {
2895                                 /*
2896                                  * ->mmap() can change vma->vm_file and fput
2897                                  * the original file. So fput the vma->vm_file
2898                                  * here or we would add an extra fput for file
2899                                  * and cause general protection fault
2900                                  * ultimately.
2901                                  */
2902                                 fput(vma->vm_file);
2903                                 vm_area_free(vma);
2904                                 vma = merge;
2905                                 /* Update vm_flags to pick up the change. */
2906                                 vm_flags = vma->vm_flags;
2907                                 goto unmap_writable;
2908                         }
2909                 }
2910
2911                 vm_flags = vma->vm_flags;
2912         } else if (vm_flags & VM_SHARED) {
2913                 error = shmem_zero_setup(vma);
2914                 if (error)
2915                         goto free_vma;
2916         } else {
2917                 vma_set_anonymous(vma);
2918         }
2919
2920         if (map_deny_write_exec(vma, vma->vm_flags)) {
2921                 error = -EACCES;
2922                 goto close_and_free_vma;
2923         }
2924
2925         /* Allow architectures to sanity-check the vm_flags */
2926         error = -EINVAL;
2927         if (!arch_validate_flags(vma->vm_flags))
2928                 goto close_and_free_vma;
2929
2930         error = -ENOMEM;
2931         if (vma_iter_prealloc(&vmi, vma))
2932                 goto close_and_free_vma;
2933
2934         /* Lock the VMA since it is modified after insertion into VMA tree */
2935         vma_start_write(vma);
2936         vma_iter_store(&vmi, vma);
2937         mm->map_count++;
2938         vma_link_file(vma);
2939
2940         /*
2941          * vma_merge() calls khugepaged_enter_vma() either, the below
2942          * call covers the non-merge case.
2943          */
2944         khugepaged_enter_vma(vma, vma->vm_flags);
2945
2946         /* Once vma denies write, undo our temporary denial count */
2947 unmap_writable:
2948         if (writable_file_mapping)
2949                 mapping_unmap_writable(file->f_mapping);
2950         file = vma->vm_file;
2951         ksm_add_vma(vma);
2952 expanded:
2953         perf_event_mmap(vma);
2954
2955         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2956         if (vm_flags & VM_LOCKED) {
2957                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2958                                         is_vm_hugetlb_page(vma) ||
2959                                         vma == get_gate_vma(current->mm))
2960                         vm_flags_clear(vma, VM_LOCKED_MASK);
2961                 else
2962                         mm->locked_vm += (len >> PAGE_SHIFT);
2963         }
2964
2965         if (file)
2966                 uprobe_mmap(vma);
2967
2968         /*
2969          * New (or expanded) vma always get soft dirty status.
2970          * Otherwise user-space soft-dirty page tracker won't
2971          * be able to distinguish situation when vma area unmapped,
2972          * then new mapped in-place (which must be aimed as
2973          * a completely new data area).
2974          */
2975         vm_flags_set(vma, VM_SOFTDIRTY);
2976
2977         vma_set_page_prot(vma);
2978
2979         validate_mm(mm);
2980         return addr;
2981
2982 close_and_free_vma:
2983         if (file && vma->vm_ops && vma->vm_ops->close)
2984                 vma->vm_ops->close(vma);
2985
2986         if (file || vma->vm_file) {
2987 unmap_and_free_vma:
2988                 fput(vma->vm_file);
2989                 vma->vm_file = NULL;
2990
2991                 vma_iter_set(&vmi, vma->vm_end);
2992                 /* Undo any partial mapping done by a device driver. */
2993                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2994                              vma->vm_end, vma->vm_end, true);
2995         }
2996         if (writable_file_mapping)
2997                 mapping_unmap_writable(file->f_mapping);
2998 free_vma:
2999         vm_area_free(vma);
3000 unacct_error:
3001         if (charged)
3002                 vm_unacct_memory(charged);
3003         validate_mm(mm);
3004         return error;
3005 }
3006
3007 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
3008 {
3009         int ret;
3010         struct mm_struct *mm = current->mm;
3011         LIST_HEAD(uf);
3012         VMA_ITERATOR(vmi, mm, start);
3013
3014         if (mmap_write_lock_killable(mm))
3015                 return -EINTR;
3016
3017         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
3018         if (ret || !unlock)
3019                 mmap_write_unlock(mm);
3020
3021         userfaultfd_unmap_complete(mm, &uf);
3022         return ret;
3023 }
3024
3025 int vm_munmap(unsigned long start, size_t len)
3026 {
3027         return __vm_munmap(start, len, false);
3028 }
3029 EXPORT_SYMBOL(vm_munmap);
3030
3031 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3032 {
3033         addr = untagged_addr(addr);
3034         return __vm_munmap(addr, len, true);
3035 }
3036
3037
3038 /*
3039  * Emulation of deprecated remap_file_pages() syscall.
3040  */
3041 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3042                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3043 {
3044
3045         struct mm_struct *mm = current->mm;
3046         struct vm_area_struct *vma;
3047         unsigned long populate = 0;
3048         unsigned long ret = -EINVAL;
3049         struct file *file;
3050
3051         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
3052                      current->comm, current->pid);
3053
3054         if (prot)
3055                 return ret;
3056         start = start & PAGE_MASK;
3057         size = size & PAGE_MASK;
3058
3059         if (start + size <= start)
3060                 return ret;
3061
3062         /* Does pgoff wrap? */
3063         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3064                 return ret;
3065
3066         if (mmap_write_lock_killable(mm))
3067                 return -EINTR;
3068
3069         vma = vma_lookup(mm, start);
3070
3071         if (!vma || !(vma->vm_flags & VM_SHARED))
3072                 goto out;
3073
3074         if (start + size > vma->vm_end) {
3075                 VMA_ITERATOR(vmi, mm, vma->vm_end);
3076                 struct vm_area_struct *next, *prev = vma;
3077
3078                 for_each_vma_range(vmi, next, start + size) {
3079                         /* hole between vmas ? */
3080                         if (next->vm_start != prev->vm_end)
3081                                 goto out;
3082
3083                         if (next->vm_file != vma->vm_file)
3084                                 goto out;
3085
3086                         if (next->vm_flags != vma->vm_flags)
3087                                 goto out;
3088
3089                         if (start + size <= next->vm_end)
3090                                 break;
3091
3092                         prev = next;
3093                 }
3094
3095                 if (!next)
3096                         goto out;
3097         }
3098
3099         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3100         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3101         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3102
3103         flags &= MAP_NONBLOCK;
3104         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3105         if (vma->vm_flags & VM_LOCKED)
3106                 flags |= MAP_LOCKED;
3107
3108         file = get_file(vma->vm_file);
3109         ret = do_mmap(vma->vm_file, start, size,
3110                         prot, flags, 0, pgoff, &populate, NULL);
3111         fput(file);
3112 out:
3113         mmap_write_unlock(mm);
3114         if (populate)
3115                 mm_populate(ret, populate);
3116         if (!IS_ERR_VALUE(ret))
3117                 ret = 0;
3118         return ret;
3119 }
3120
3121 /*
3122  * do_vma_munmap() - Unmap a full or partial vma.
3123  * @vmi: The vma iterator pointing at the vma
3124  * @vma: The first vma to be munmapped
3125  * @start: the start of the address to unmap
3126  * @end: The end of the address to unmap
3127  * @uf: The userfaultfd list_head
3128  * @unlock: Drop the lock on success
3129  *
3130  * unmaps a VMA mapping when the vma iterator is already in position.
3131  * Does not handle alignment.
3132  *
3133  * Return: 0 on success drops the lock of so directed, error on failure and will
3134  * still hold the lock.
3135  */
3136 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3137                 unsigned long start, unsigned long end, struct list_head *uf,
3138                 bool unlock)
3139 {
3140         struct mm_struct *mm = vma->vm_mm;
3141
3142         arch_unmap(mm, start, end);
3143         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3144 }
3145
3146 /*
3147  * do_brk_flags() - Increase the brk vma if the flags match.
3148  * @vmi: The vma iterator
3149  * @addr: The start address
3150  * @len: The length of the increase
3151  * @vma: The vma,
3152  * @flags: The VMA Flags
3153  *
3154  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3155  * do not match then create a new anonymous VMA.  Eventually we may be able to
3156  * do some brk-specific accounting here.
3157  */
3158 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3159                 unsigned long addr, unsigned long len, unsigned long flags)
3160 {
3161         struct mm_struct *mm = current->mm;
3162         struct vma_prepare vp;
3163
3164         /*
3165          * Check against address space limits by the changed size
3166          * Note: This happens *after* clearing old mappings in some code paths.
3167          */
3168         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3169         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3170                 return -ENOMEM;
3171
3172         if (mm->map_count > sysctl_max_map_count)
3173                 return -ENOMEM;
3174
3175         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3176                 return -ENOMEM;
3177
3178         /*
3179          * Expand the existing vma if possible; Note that singular lists do not
3180          * occur after forking, so the expand will only happen on new VMAs.
3181          */
3182         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3183             can_vma_merge_after(vma, flags, NULL, NULL,
3184                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3185                 vma_iter_config(vmi, vma->vm_start, addr + len);
3186                 if (vma_iter_prealloc(vmi, vma))
3187                         goto unacct_fail;
3188
3189                 vma_start_write(vma);
3190
3191                 init_vma_prep(&vp, vma);
3192                 vma_prepare(&vp);
3193                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3194                 vma->vm_end = addr + len;
3195                 vm_flags_set(vma, VM_SOFTDIRTY);
3196                 vma_iter_store(vmi, vma);
3197
3198                 vma_complete(&vp, vmi, mm);
3199                 khugepaged_enter_vma(vma, flags);
3200                 goto out;
3201         }
3202
3203         if (vma)
3204                 vma_iter_next_range(vmi);
3205         /* create a vma struct for an anonymous mapping */
3206         vma = vm_area_alloc(mm);
3207         if (!vma)
3208                 goto unacct_fail;
3209
3210         vma_set_anonymous(vma);
3211         vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
3212         vm_flags_init(vma, flags);
3213         vma->vm_page_prot = vm_get_page_prot(flags);
3214         vma_start_write(vma);
3215         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3216                 goto mas_store_fail;
3217
3218         mm->map_count++;
3219         validate_mm(mm);
3220         ksm_add_vma(vma);
3221 out:
3222         perf_event_mmap(vma);
3223         mm->total_vm += len >> PAGE_SHIFT;
3224         mm->data_vm += len >> PAGE_SHIFT;
3225         if (flags & VM_LOCKED)
3226                 mm->locked_vm += (len >> PAGE_SHIFT);
3227         vm_flags_set(vma, VM_SOFTDIRTY);
3228         return 0;
3229
3230 mas_store_fail:
3231         vm_area_free(vma);
3232 unacct_fail:
3233         vm_unacct_memory(len >> PAGE_SHIFT);
3234         return -ENOMEM;
3235 }
3236
3237 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3238 {
3239         struct mm_struct *mm = current->mm;
3240         struct vm_area_struct *vma = NULL;
3241         unsigned long len;
3242         int ret;
3243         bool populate;
3244         LIST_HEAD(uf);
3245         VMA_ITERATOR(vmi, mm, addr);
3246
3247         len = PAGE_ALIGN(request);
3248         if (len < request)
3249                 return -ENOMEM;
3250         if (!len)
3251                 return 0;
3252
3253         /* Until we need other flags, refuse anything except VM_EXEC. */
3254         if ((flags & (~VM_EXEC)) != 0)
3255                 return -EINVAL;
3256
3257         if (mmap_write_lock_killable(mm))
3258                 return -EINTR;
3259
3260         ret = check_brk_limits(addr, len);
3261         if (ret)
3262                 goto limits_failed;
3263
3264         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3265         if (ret)
3266                 goto munmap_failed;
3267
3268         vma = vma_prev(&vmi);
3269         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3270         populate = ((mm->def_flags & VM_LOCKED) != 0);
3271         mmap_write_unlock(mm);
3272         userfaultfd_unmap_complete(mm, &uf);
3273         if (populate && !ret)
3274                 mm_populate(addr, len);
3275         return ret;
3276
3277 munmap_failed:
3278 limits_failed:
3279         mmap_write_unlock(mm);
3280         return ret;
3281 }
3282 EXPORT_SYMBOL(vm_brk_flags);
3283
3284 /* Release all mmaps. */
3285 void exit_mmap(struct mm_struct *mm)
3286 {
3287         struct mmu_gather tlb;
3288         struct vm_area_struct *vma;
3289         unsigned long nr_accounted = 0;
3290         VMA_ITERATOR(vmi, mm, 0);
3291         int count = 0;
3292
3293         /* mm's last user has gone, and its about to be pulled down */
3294         mmu_notifier_release(mm);
3295
3296         mmap_read_lock(mm);
3297         arch_exit_mmap(mm);
3298
3299         vma = vma_next(&vmi);
3300         if (!vma || unlikely(xa_is_zero(vma))) {
3301                 /* Can happen if dup_mmap() received an OOM */
3302                 mmap_read_unlock(mm);
3303                 mmap_write_lock(mm);
3304                 goto destroy;
3305         }
3306
3307         lru_add_drain();
3308         flush_cache_mm(mm);
3309         tlb_gather_mmu_fullmm(&tlb, mm);
3310         /* update_hiwater_rss(mm) here? but nobody should be looking */
3311         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3312         unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3313         mmap_read_unlock(mm);
3314
3315         /*
3316          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3317          * because the memory has been already freed.
3318          */
3319         set_bit(MMF_OOM_SKIP, &mm->flags);
3320         mmap_write_lock(mm);
3321         mt_clear_in_rcu(&mm->mm_mt);
3322         vma_iter_set(&vmi, vma->vm_end);
3323         free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
3324                       USER_PGTABLES_CEILING, true);
3325         tlb_finish_mmu(&tlb);
3326
3327         /*
3328          * Walk the list again, actually closing and freeing it, with preemption
3329          * enabled, without holding any MM locks besides the unreachable
3330          * mmap_write_lock.
3331          */
3332         vma_iter_set(&vmi, vma->vm_end);
3333         do {
3334                 if (vma->vm_flags & VM_ACCOUNT)
3335                         nr_accounted += vma_pages(vma);
3336                 remove_vma(vma, true);
3337                 count++;
3338                 cond_resched();
3339                 vma = vma_next(&vmi);
3340         } while (vma && likely(!xa_is_zero(vma)));
3341
3342         BUG_ON(count != mm->map_count);
3343
3344         trace_exit_mmap(mm);
3345 destroy:
3346         __mt_destroy(&mm->mm_mt);
3347         mmap_write_unlock(mm);
3348         vm_unacct_memory(nr_accounted);
3349 }
3350
3351 /* Insert vm structure into process list sorted by address
3352  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3353  * then i_mmap_rwsem is taken here.
3354  */
3355 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3356 {
3357         unsigned long charged = vma_pages(vma);
3358
3359
3360         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3361                 return -ENOMEM;
3362
3363         if ((vma->vm_flags & VM_ACCOUNT) &&
3364              security_vm_enough_memory_mm(mm, charged))
3365                 return -ENOMEM;
3366
3367         /*
3368          * The vm_pgoff of a purely anonymous vma should be irrelevant
3369          * until its first write fault, when page's anon_vma and index
3370          * are set.  But now set the vm_pgoff it will almost certainly
3371          * end up with (unless mremap moves it elsewhere before that
3372          * first wfault), so /proc/pid/maps tells a consistent story.
3373          *
3374          * By setting it to reflect the virtual start address of the
3375          * vma, merges and splits can happen in a seamless way, just
3376          * using the existing file pgoff checks and manipulations.
3377          * Similarly in do_mmap and in do_brk_flags.
3378          */
3379         if (vma_is_anonymous(vma)) {
3380                 BUG_ON(vma->anon_vma);
3381                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3382         }
3383
3384         if (vma_link(mm, vma)) {
3385                 if (vma->vm_flags & VM_ACCOUNT)
3386                         vm_unacct_memory(charged);
3387                 return -ENOMEM;
3388         }
3389
3390         return 0;
3391 }
3392
3393 /*
3394  * Copy the vma structure to a new location in the same mm,
3395  * prior to moving page table entries, to effect an mremap move.
3396  */
3397 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3398         unsigned long addr, unsigned long len, pgoff_t pgoff,
3399         bool *need_rmap_locks)
3400 {
3401         struct vm_area_struct *vma = *vmap;
3402         unsigned long vma_start = vma->vm_start;
3403         struct mm_struct *mm = vma->vm_mm;
3404         struct vm_area_struct *new_vma, *prev;
3405         bool faulted_in_anon_vma = true;
3406         VMA_ITERATOR(vmi, mm, addr);
3407
3408         /*
3409          * If anonymous vma has not yet been faulted, update new pgoff
3410          * to match new location, to increase its chance of merging.
3411          */
3412         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3413                 pgoff = addr >> PAGE_SHIFT;
3414                 faulted_in_anon_vma = false;
3415         }
3416
3417         new_vma = find_vma_prev(mm, addr, &prev);
3418         if (new_vma && new_vma->vm_start < addr + len)
3419                 return NULL;    /* should never get here */
3420
3421         new_vma = vma_merge_new_vma(&vmi, prev, vma, addr, addr + len, pgoff);
3422         if (new_vma) {
3423                 /*
3424                  * Source vma may have been merged into new_vma
3425                  */
3426                 if (unlikely(vma_start >= new_vma->vm_start &&
3427                              vma_start < new_vma->vm_end)) {
3428                         /*
3429                          * The only way we can get a vma_merge with
3430                          * self during an mremap is if the vma hasn't
3431                          * been faulted in yet and we were allowed to
3432                          * reset the dst vma->vm_pgoff to the
3433                          * destination address of the mremap to allow
3434                          * the merge to happen. mremap must change the
3435                          * vm_pgoff linearity between src and dst vmas
3436                          * (in turn preventing a vma_merge) to be
3437                          * safe. It is only safe to keep the vm_pgoff
3438                          * linear if there are no pages mapped yet.
3439                          */
3440                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3441                         *vmap = vma = new_vma;
3442                 }
3443                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3444         } else {
3445                 new_vma = vm_area_dup(vma);
3446                 if (!new_vma)
3447                         goto out;
3448                 vma_set_range(new_vma, addr, addr + len, pgoff);
3449                 if (vma_dup_policy(vma, new_vma))
3450                         goto out_free_vma;
3451                 if (anon_vma_clone(new_vma, vma))
3452                         goto out_free_mempol;
3453                 if (new_vma->vm_file)
3454                         get_file(new_vma->vm_file);
3455                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3456                         new_vma->vm_ops->open(new_vma);
3457                 if (vma_link(mm, new_vma))
3458                         goto out_vma_link;
3459                 *need_rmap_locks = false;
3460         }
3461         return new_vma;
3462
3463 out_vma_link:
3464         if (new_vma->vm_ops && new_vma->vm_ops->close)
3465                 new_vma->vm_ops->close(new_vma);
3466
3467         if (new_vma->vm_file)
3468                 fput(new_vma->vm_file);
3469
3470         unlink_anon_vmas(new_vma);
3471 out_free_mempol:
3472         mpol_put(vma_policy(new_vma));
3473 out_free_vma:
3474         vm_area_free(new_vma);
3475 out:
3476         return NULL;
3477 }
3478
3479 /*
3480  * Return true if the calling process may expand its vm space by the passed
3481  * number of pages
3482  */
3483 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3484 {
3485         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3486                 return false;
3487
3488         if (is_data_mapping(flags) &&
3489             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3490                 /* Workaround for Valgrind */
3491                 if (rlimit(RLIMIT_DATA) == 0 &&
3492                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3493                         return true;
3494
3495                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3496                              current->comm, current->pid,
3497                              (mm->data_vm + npages) << PAGE_SHIFT,
3498                              rlimit(RLIMIT_DATA),
3499                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3500
3501                 if (!ignore_rlimit_data)
3502                         return false;
3503         }
3504
3505         return true;
3506 }
3507
3508 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3509 {
3510         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3511
3512         if (is_exec_mapping(flags))
3513                 mm->exec_vm += npages;
3514         else if (is_stack_mapping(flags))
3515                 mm->stack_vm += npages;
3516         else if (is_data_mapping(flags))
3517                 mm->data_vm += npages;
3518 }
3519
3520 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3521
3522 /*
3523  * Having a close hook prevents vma merging regardless of flags.
3524  */
3525 static void special_mapping_close(struct vm_area_struct *vma)
3526 {
3527 }
3528
3529 static const char *special_mapping_name(struct vm_area_struct *vma)
3530 {
3531         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3532 }
3533
3534 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3535 {
3536         struct vm_special_mapping *sm = new_vma->vm_private_data;
3537
3538         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3539                 return -EFAULT;
3540
3541         if (sm->mremap)
3542                 return sm->mremap(sm, new_vma);
3543
3544         return 0;
3545 }
3546
3547 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3548 {
3549         /*
3550          * Forbid splitting special mappings - kernel has expectations over
3551          * the number of pages in mapping. Together with VM_DONTEXPAND
3552          * the size of vma should stay the same over the special mapping's
3553          * lifetime.
3554          */
3555         return -EINVAL;
3556 }
3557
3558 static const struct vm_operations_struct special_mapping_vmops = {
3559         .close = special_mapping_close,
3560         .fault = special_mapping_fault,
3561         .mremap = special_mapping_mremap,
3562         .name = special_mapping_name,
3563         /* vDSO code relies that VVAR can't be accessed remotely */
3564         .access = NULL,
3565         .may_split = special_mapping_split,
3566 };
3567
3568 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3569         .close = special_mapping_close,
3570         .fault = special_mapping_fault,
3571 };
3572
3573 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3574 {
3575         struct vm_area_struct *vma = vmf->vma;
3576         pgoff_t pgoff;
3577         struct page **pages;
3578
3579         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3580                 pages = vma->vm_private_data;
3581         } else {
3582                 struct vm_special_mapping *sm = vma->vm_private_data;
3583
3584                 if (sm->fault)
3585                         return sm->fault(sm, vmf->vma, vmf);
3586
3587                 pages = sm->pages;
3588         }
3589
3590         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3591                 pgoff--;
3592
3593         if (*pages) {
3594                 struct page *page = *pages;
3595                 get_page(page);
3596                 vmf->page = page;
3597                 return 0;
3598         }
3599
3600         return VM_FAULT_SIGBUS;
3601 }
3602
3603 static struct vm_area_struct *__install_special_mapping(
3604         struct mm_struct *mm,
3605         unsigned long addr, unsigned long len,
3606         unsigned long vm_flags, void *priv,
3607         const struct vm_operations_struct *ops)
3608 {
3609         int ret;
3610         struct vm_area_struct *vma;
3611
3612         vma = vm_area_alloc(mm);
3613         if (unlikely(vma == NULL))
3614                 return ERR_PTR(-ENOMEM);
3615
3616         vma_set_range(vma, addr, addr + len, 0);
3617         vm_flags_init(vma, (vm_flags | mm->def_flags |
3618                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3619         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3620
3621         vma->vm_ops = ops;
3622         vma->vm_private_data = priv;
3623
3624         ret = insert_vm_struct(mm, vma);
3625         if (ret)
3626                 goto out;
3627
3628         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3629
3630         perf_event_mmap(vma);
3631
3632         return vma;
3633
3634 out:
3635         vm_area_free(vma);
3636         return ERR_PTR(ret);
3637 }
3638
3639 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3640         const struct vm_special_mapping *sm)
3641 {
3642         return vma->vm_private_data == sm &&
3643                 (vma->vm_ops == &special_mapping_vmops ||
3644                  vma->vm_ops == &legacy_special_mapping_vmops);
3645 }
3646
3647 /*
3648  * Called with mm->mmap_lock held for writing.
3649  * Insert a new vma covering the given region, with the given flags.
3650  * Its pages are supplied by the given array of struct page *.
3651  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3652  * The region past the last page supplied will always produce SIGBUS.
3653  * The array pointer and the pages it points to are assumed to stay alive
3654  * for as long as this mapping might exist.
3655  */
3656 struct vm_area_struct *_install_special_mapping(
3657         struct mm_struct *mm,
3658         unsigned long addr, unsigned long len,
3659         unsigned long vm_flags, const struct vm_special_mapping *spec)
3660 {
3661         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3662                                         &special_mapping_vmops);
3663 }
3664
3665 int install_special_mapping(struct mm_struct *mm,
3666                             unsigned long addr, unsigned long len,
3667                             unsigned long vm_flags, struct page **pages)
3668 {
3669         struct vm_area_struct *vma = __install_special_mapping(
3670                 mm, addr, len, vm_flags, (void *)pages,
3671                 &legacy_special_mapping_vmops);
3672
3673         return PTR_ERR_OR_ZERO(vma);
3674 }
3675
3676 static DEFINE_MUTEX(mm_all_locks_mutex);
3677
3678 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3679 {
3680         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3681                 /*
3682                  * The LSB of head.next can't change from under us
3683                  * because we hold the mm_all_locks_mutex.
3684                  */
3685                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3686                 /*
3687                  * We can safely modify head.next after taking the
3688                  * anon_vma->root->rwsem. If some other vma in this mm shares
3689                  * the same anon_vma we won't take it again.
3690                  *
3691                  * No need of atomic instructions here, head.next
3692                  * can't change from under us thanks to the
3693                  * anon_vma->root->rwsem.
3694                  */
3695                 if (__test_and_set_bit(0, (unsigned long *)
3696                                        &anon_vma->root->rb_root.rb_root.rb_node))
3697                         BUG();
3698         }
3699 }
3700
3701 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3702 {
3703         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3704                 /*
3705                  * AS_MM_ALL_LOCKS can't change from under us because
3706                  * we hold the mm_all_locks_mutex.
3707                  *
3708                  * Operations on ->flags have to be atomic because
3709                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3710                  * mm_all_locks_mutex, there may be other cpus
3711                  * changing other bitflags in parallel to us.
3712                  */
3713                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3714                         BUG();
3715                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3716         }
3717 }
3718
3719 /*
3720  * This operation locks against the VM for all pte/vma/mm related
3721  * operations that could ever happen on a certain mm. This includes
3722  * vmtruncate, try_to_unmap, and all page faults.
3723  *
3724  * The caller must take the mmap_lock in write mode before calling
3725  * mm_take_all_locks(). The caller isn't allowed to release the
3726  * mmap_lock until mm_drop_all_locks() returns.
3727  *
3728  * mmap_lock in write mode is required in order to block all operations
3729  * that could modify pagetables and free pages without need of
3730  * altering the vma layout. It's also needed in write mode to avoid new
3731  * anon_vmas to be associated with existing vmas.
3732  *
3733  * A single task can't take more than one mm_take_all_locks() in a row
3734  * or it would deadlock.
3735  *
3736  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3737  * mapping->flags avoid to take the same lock twice, if more than one
3738  * vma in this mm is backed by the same anon_vma or address_space.
3739  *
3740  * We take locks in following order, accordingly to comment at beginning
3741  * of mm/rmap.c:
3742  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3743  *     hugetlb mapping);
3744  *   - all vmas marked locked
3745  *   - all i_mmap_rwsem locks;
3746  *   - all anon_vma->rwseml
3747  *
3748  * We can take all locks within these types randomly because the VM code
3749  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3750  * mm_all_locks_mutex.
3751  *
3752  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3753  * that may have to take thousand of locks.
3754  *
3755  * mm_take_all_locks() can fail if it's interrupted by signals.
3756  */
3757 int mm_take_all_locks(struct mm_struct *mm)
3758 {
3759         struct vm_area_struct *vma;
3760         struct anon_vma_chain *avc;
3761         VMA_ITERATOR(vmi, mm, 0);
3762
3763         mmap_assert_write_locked(mm);
3764
3765         mutex_lock(&mm_all_locks_mutex);
3766
3767         /*
3768          * vma_start_write() does not have a complement in mm_drop_all_locks()
3769          * because vma_start_write() is always asymmetrical; it marks a VMA as
3770          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3771          * is reached.
3772          */
3773         for_each_vma(vmi, vma) {
3774                 if (signal_pending(current))
3775                         goto out_unlock;
3776                 vma_start_write(vma);
3777         }
3778
3779         vma_iter_init(&vmi, mm, 0);
3780         for_each_vma(vmi, vma) {
3781                 if (signal_pending(current))
3782                         goto out_unlock;
3783                 if (vma->vm_file && vma->vm_file->f_mapping &&
3784                                 is_vm_hugetlb_page(vma))
3785                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3786         }
3787
3788         vma_iter_init(&vmi, mm, 0);
3789         for_each_vma(vmi, vma) {
3790                 if (signal_pending(current))
3791                         goto out_unlock;
3792                 if (vma->vm_file && vma->vm_file->f_mapping &&
3793                                 !is_vm_hugetlb_page(vma))
3794                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3795         }
3796
3797         vma_iter_init(&vmi, mm, 0);
3798         for_each_vma(vmi, vma) {
3799                 if (signal_pending(current))
3800                         goto out_unlock;
3801                 if (vma->anon_vma)
3802                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3803                                 vm_lock_anon_vma(mm, avc->anon_vma);
3804         }
3805
3806         return 0;
3807
3808 out_unlock:
3809         mm_drop_all_locks(mm);
3810         return -EINTR;
3811 }
3812
3813 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3814 {
3815         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3816                 /*
3817                  * The LSB of head.next can't change to 0 from under
3818                  * us because we hold the mm_all_locks_mutex.
3819                  *
3820                  * We must however clear the bitflag before unlocking
3821                  * the vma so the users using the anon_vma->rb_root will
3822                  * never see our bitflag.
3823                  *
3824                  * No need of atomic instructions here, head.next
3825                  * can't change from under us until we release the
3826                  * anon_vma->root->rwsem.
3827                  */
3828                 if (!__test_and_clear_bit(0, (unsigned long *)
3829                                           &anon_vma->root->rb_root.rb_root.rb_node))
3830                         BUG();
3831                 anon_vma_unlock_write(anon_vma);
3832         }
3833 }
3834
3835 static void vm_unlock_mapping(struct address_space *mapping)
3836 {
3837         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3838                 /*
3839                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3840                  * because we hold the mm_all_locks_mutex.
3841                  */
3842                 i_mmap_unlock_write(mapping);
3843                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3844                                         &mapping->flags))
3845                         BUG();
3846         }
3847 }
3848
3849 /*
3850  * The mmap_lock cannot be released by the caller until
3851  * mm_drop_all_locks() returns.
3852  */
3853 void mm_drop_all_locks(struct mm_struct *mm)
3854 {
3855         struct vm_area_struct *vma;
3856         struct anon_vma_chain *avc;
3857         VMA_ITERATOR(vmi, mm, 0);
3858
3859         mmap_assert_write_locked(mm);
3860         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3861
3862         for_each_vma(vmi, vma) {
3863                 if (vma->anon_vma)
3864                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3865                                 vm_unlock_anon_vma(avc->anon_vma);
3866                 if (vma->vm_file && vma->vm_file->f_mapping)
3867                         vm_unlock_mapping(vma->vm_file->f_mapping);
3868         }
3869
3870         mutex_unlock(&mm_all_locks_mutex);
3871 }
3872
3873 /*
3874  * initialise the percpu counter for VM
3875  */
3876 void __init mmap_init(void)
3877 {
3878         int ret;
3879
3880         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3881         VM_BUG_ON(ret);
3882 }
3883
3884 /*
3885  * Initialise sysctl_user_reserve_kbytes.
3886  *
3887  * This is intended to prevent a user from starting a single memory hogging
3888  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3889  * mode.
3890  *
3891  * The default value is min(3% of free memory, 128MB)
3892  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3893  */
3894 static int init_user_reserve(void)
3895 {
3896         unsigned long free_kbytes;
3897
3898         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3899
3900         sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
3901         return 0;
3902 }
3903 subsys_initcall(init_user_reserve);
3904
3905 /*
3906  * Initialise sysctl_admin_reserve_kbytes.
3907  *
3908  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3909  * to log in and kill a memory hogging process.
3910  *
3911  * Systems with more than 256MB will reserve 8MB, enough to recover
3912  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3913  * only reserve 3% of free pages by default.
3914  */
3915 static int init_admin_reserve(void)
3916 {
3917         unsigned long free_kbytes;
3918
3919         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3920
3921         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
3922         return 0;
3923 }
3924 subsys_initcall(init_admin_reserve);
3925
3926 /*
3927  * Reinititalise user and admin reserves if memory is added or removed.
3928  *
3929  * The default user reserve max is 128MB, and the default max for the
3930  * admin reserve is 8MB. These are usually, but not always, enough to
3931  * enable recovery from a memory hogging process using login/sshd, a shell,
3932  * and tools like top. It may make sense to increase or even disable the
3933  * reserve depending on the existence of swap or variations in the recovery
3934  * tools. So, the admin may have changed them.
3935  *
3936  * If memory is added and the reserves have been eliminated or increased above
3937  * the default max, then we'll trust the admin.
3938  *
3939  * If memory is removed and there isn't enough free memory, then we
3940  * need to reset the reserves.
3941  *
3942  * Otherwise keep the reserve set by the admin.
3943  */
3944 static int reserve_mem_notifier(struct notifier_block *nb,
3945                              unsigned long action, void *data)
3946 {
3947         unsigned long tmp, free_kbytes;
3948
3949         switch (action) {
3950         case MEM_ONLINE:
3951                 /* Default max is 128MB. Leave alone if modified by operator. */
3952                 tmp = sysctl_user_reserve_kbytes;
3953                 if (tmp > 0 && tmp < SZ_128K)
3954                         init_user_reserve();
3955
3956                 /* Default max is 8MB.  Leave alone if modified by operator. */
3957                 tmp = sysctl_admin_reserve_kbytes;
3958                 if (tmp > 0 && tmp < SZ_8K)
3959                         init_admin_reserve();
3960
3961                 break;
3962         case MEM_OFFLINE:
3963                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3964
3965                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3966                         init_user_reserve();
3967                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3968                                 sysctl_user_reserve_kbytes);
3969                 }
3970
3971                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3972                         init_admin_reserve();
3973                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3974                                 sysctl_admin_reserve_kbytes);
3975                 }
3976                 break;
3977         default:
3978                 break;
3979         }
3980         return NOTIFY_OK;
3981 }
3982
3983 static int __meminit init_reserve_notifier(void)
3984 {
3985         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3986                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3987
3988         return 0;
3989 }
3990 subsys_initcall(init_reserve_notifier);