Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grabbing the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         }
250                 }
251
252 #ifdef CONFIG_HUGETLB_PAGE
253                 if (PageHuge(new)) {
254                         pte = pte_mkhuge(pte);
255                         pte = arch_make_huge_pte(pte, vma, new, 0);
256                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257                         if (PageAnon(new))
258                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
259                         else
260                                 page_dup_rmap(new, true);
261                 } else
262 #endif
263                 {
264                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265
266                         if (PageAnon(new))
267                                 page_add_anon_rmap(new, vma, pvmw.address, false);
268                         else
269                                 page_add_file_rmap(new, false);
270                 }
271                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272                         mlock_vma_page(new);
273
274                 if (PageTransHuge(page) && PageMlocked(page))
275                         clear_page_mlock(page);
276
277                 /* No need to invalidate - it was non-present before */
278                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279         }
280
281         return true;
282 }
283
284 /*
285  * Get rid of all migration entries and replace them by
286  * references to the indicated page.
287  */
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289 {
290         struct rmap_walk_control rwc = {
291                 .rmap_one = remove_migration_pte,
292                 .arg = old,
293         };
294
295         if (locked)
296                 rmap_walk_locked(new, &rwc);
297         else
298                 rmap_walk(new, &rwc);
299 }
300
301 /*
302  * Something used the pte of a page under migration. We need to
303  * get to the page and wait until migration is finished.
304  * When we return from this function the fault will be retried.
305  */
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307                                 spinlock_t *ptl)
308 {
309         pte_t pte;
310         swp_entry_t entry;
311         struct page *page;
312
313         spin_lock(ptl);
314         pte = *ptep;
315         if (!is_swap_pte(pte))
316                 goto out;
317
318         entry = pte_to_swp_entry(pte);
319         if (!is_migration_entry(entry))
320                 goto out;
321
322         page = migration_entry_to_page(entry);
323
324         /*
325          * Once page cache replacement of page migration started, page_count
326          * is zero; but we must not call put_and_wait_on_page_locked() without
327          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
328          */
329         if (!get_page_unless_zero(page))
330                 goto out;
331         pte_unmap_unlock(ptep, ptl);
332         put_and_wait_on_page_locked(page);
333         return;
334 out:
335         pte_unmap_unlock(ptep, ptl);
336 }
337
338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339                                 unsigned long address)
340 {
341         spinlock_t *ptl = pte_lockptr(mm, pmd);
342         pte_t *ptep = pte_offset_map(pmd, address);
343         __migration_entry_wait(mm, ptep, ptl);
344 }
345
346 void migration_entry_wait_huge(struct vm_area_struct *vma,
347                 struct mm_struct *mm, pte_t *pte)
348 {
349         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350         __migration_entry_wait(mm, pte, ptl);
351 }
352
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355 {
356         spinlock_t *ptl;
357         struct page *page;
358
359         ptl = pmd_lock(mm, pmd);
360         if (!is_pmd_migration_entry(*pmd))
361                 goto unlock;
362         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363         if (!get_page_unless_zero(page))
364                 goto unlock;
365         spin_unlock(ptl);
366         put_and_wait_on_page_locked(page);
367         return;
368 unlock:
369         spin_unlock(ptl);
370 }
371 #endif
372
373 static int expected_page_refs(struct address_space *mapping, struct page *page)
374 {
375         int expected_count = 1;
376
377         /*
378          * Device public or private pages have an extra refcount as they are
379          * ZONE_DEVICE pages.
380          */
381         expected_count += is_device_private_page(page);
382         if (mapping)
383                 expected_count += hpage_nr_pages(page) + page_has_private(page);
384
385         return expected_count;
386 }
387
388 /*
389  * Replace the page in the mapping.
390  *
391  * The number of remaining references must be:
392  * 1 for anonymous pages without a mapping
393  * 2 for pages with a mapping
394  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
395  */
396 int migrate_page_move_mapping(struct address_space *mapping,
397                 struct page *newpage, struct page *page, int extra_count)
398 {
399         XA_STATE(xas, &mapping->i_pages, page_index(page));
400         struct zone *oldzone, *newzone;
401         int dirty;
402         int expected_count = expected_page_refs(mapping, page) + extra_count;
403
404         if (!mapping) {
405                 /* Anonymous page without mapping */
406                 if (page_count(page) != expected_count)
407                         return -EAGAIN;
408
409                 /* No turning back from here */
410                 newpage->index = page->index;
411                 newpage->mapping = page->mapping;
412                 if (PageSwapBacked(page))
413                         __SetPageSwapBacked(newpage);
414
415                 return MIGRATEPAGE_SUCCESS;
416         }
417
418         oldzone = page_zone(page);
419         newzone = page_zone(newpage);
420
421         xas_lock_irq(&xas);
422         if (page_count(page) != expected_count || xas_load(&xas) != page) {
423                 xas_unlock_irq(&xas);
424                 return -EAGAIN;
425         }
426
427         if (!page_ref_freeze(page, expected_count)) {
428                 xas_unlock_irq(&xas);
429                 return -EAGAIN;
430         }
431
432         /*
433          * Now we know that no one else is looking at the page:
434          * no turning back from here.
435          */
436         newpage->index = page->index;
437         newpage->mapping = page->mapping;
438         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
439         if (PageSwapBacked(page)) {
440                 __SetPageSwapBacked(newpage);
441                 if (PageSwapCache(page)) {
442                         SetPageSwapCache(newpage);
443                         set_page_private(newpage, page_private(page));
444                 }
445         } else {
446                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
447         }
448
449         /* Move dirty while page refs frozen and newpage not yet exposed */
450         dirty = PageDirty(page);
451         if (dirty) {
452                 ClearPageDirty(page);
453                 SetPageDirty(newpage);
454         }
455
456         xas_store(&xas, newpage);
457         if (PageTransHuge(page)) {
458                 int i;
459
460                 for (i = 1; i < HPAGE_PMD_NR; i++) {
461                         xas_next(&xas);
462                         xas_store(&xas, newpage + i);
463                 }
464         }
465
466         /*
467          * Drop cache reference from old page by unfreezing
468          * to one less reference.
469          * We know this isn't the last reference.
470          */
471         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
472
473         xas_unlock(&xas);
474         /* Leave irq disabled to prevent preemption while updating stats */
475
476         /*
477          * If moved to a different zone then also account
478          * the page for that zone. Other VM counters will be
479          * taken care of when we establish references to the
480          * new page and drop references to the old page.
481          *
482          * Note that anonymous pages are accounted for
483          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
484          * are mapped to swap space.
485          */
486         if (newzone != oldzone) {
487                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
488                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
489                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
490                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
491                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
492                 }
493                 if (dirty && mapping_cap_account_dirty(mapping)) {
494                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
495                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
496                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
497                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
498                 }
499         }
500         local_irq_enable();
501
502         return MIGRATEPAGE_SUCCESS;
503 }
504 EXPORT_SYMBOL(migrate_page_move_mapping);
505
506 /*
507  * The expected number of remaining references is the same as that
508  * of migrate_page_move_mapping().
509  */
510 int migrate_huge_page_move_mapping(struct address_space *mapping,
511                                    struct page *newpage, struct page *page)
512 {
513         XA_STATE(xas, &mapping->i_pages, page_index(page));
514         int expected_count;
515
516         xas_lock_irq(&xas);
517         expected_count = 2 + page_has_private(page);
518         if (page_count(page) != expected_count || xas_load(&xas) != page) {
519                 xas_unlock_irq(&xas);
520                 return -EAGAIN;
521         }
522
523         if (!page_ref_freeze(page, expected_count)) {
524                 xas_unlock_irq(&xas);
525                 return -EAGAIN;
526         }
527
528         newpage->index = page->index;
529         newpage->mapping = page->mapping;
530
531         get_page(newpage);
532
533         xas_store(&xas, newpage);
534
535         page_ref_unfreeze(page, expected_count - 1);
536
537         xas_unlock_irq(&xas);
538
539         return MIGRATEPAGE_SUCCESS;
540 }
541
542 /*
543  * Gigantic pages are so large that we do not guarantee that page++ pointer
544  * arithmetic will work across the entire page.  We need something more
545  * specialized.
546  */
547 static void __copy_gigantic_page(struct page *dst, struct page *src,
548                                 int nr_pages)
549 {
550         int i;
551         struct page *dst_base = dst;
552         struct page *src_base = src;
553
554         for (i = 0; i < nr_pages; ) {
555                 cond_resched();
556                 copy_highpage(dst, src);
557
558                 i++;
559                 dst = mem_map_next(dst, dst_base, i);
560                 src = mem_map_next(src, src_base, i);
561         }
562 }
563
564 static void copy_huge_page(struct page *dst, struct page *src)
565 {
566         int i;
567         int nr_pages;
568
569         if (PageHuge(src)) {
570                 /* hugetlbfs page */
571                 struct hstate *h = page_hstate(src);
572                 nr_pages = pages_per_huge_page(h);
573
574                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
575                         __copy_gigantic_page(dst, src, nr_pages);
576                         return;
577                 }
578         } else {
579                 /* thp page */
580                 BUG_ON(!PageTransHuge(src));
581                 nr_pages = hpage_nr_pages(src);
582         }
583
584         for (i = 0; i < nr_pages; i++) {
585                 cond_resched();
586                 copy_highpage(dst + i, src + i);
587         }
588 }
589
590 /*
591  * Copy the page to its new location
592  */
593 void migrate_page_states(struct page *newpage, struct page *page)
594 {
595         int cpupid;
596
597         if (PageError(page))
598                 SetPageError(newpage);
599         if (PageReferenced(page))
600                 SetPageReferenced(newpage);
601         if (PageUptodate(page))
602                 SetPageUptodate(newpage);
603         if (TestClearPageActive(page)) {
604                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
605                 SetPageActive(newpage);
606         } else if (TestClearPageUnevictable(page))
607                 SetPageUnevictable(newpage);
608         if (PageWorkingset(page))
609                 SetPageWorkingset(newpage);
610         if (PageChecked(page))
611                 SetPageChecked(newpage);
612         if (PageMappedToDisk(page))
613                 SetPageMappedToDisk(newpage);
614
615         /* Move dirty on pages not done by migrate_page_move_mapping() */
616         if (PageDirty(page))
617                 SetPageDirty(newpage);
618
619         if (page_is_young(page))
620                 set_page_young(newpage);
621         if (page_is_idle(page))
622                 set_page_idle(newpage);
623
624         /*
625          * Copy NUMA information to the new page, to prevent over-eager
626          * future migrations of this same page.
627          */
628         cpupid = page_cpupid_xchg_last(page, -1);
629         page_cpupid_xchg_last(newpage, cpupid);
630
631         ksm_migrate_page(newpage, page);
632         /*
633          * Please do not reorder this without considering how mm/ksm.c's
634          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
635          */
636         if (PageSwapCache(page))
637                 ClearPageSwapCache(page);
638         ClearPagePrivate(page);
639         set_page_private(page, 0);
640
641         /*
642          * If any waiters have accumulated on the new page then
643          * wake them up.
644          */
645         if (PageWriteback(newpage))
646                 end_page_writeback(newpage);
647
648         copy_page_owner(page, newpage);
649
650         mem_cgroup_migrate(page, newpage);
651 }
652 EXPORT_SYMBOL(migrate_page_states);
653
654 void migrate_page_copy(struct page *newpage, struct page *page)
655 {
656         if (PageHuge(page) || PageTransHuge(page))
657                 copy_huge_page(newpage, page);
658         else
659                 copy_highpage(newpage, page);
660
661         migrate_page_states(newpage, page);
662 }
663 EXPORT_SYMBOL(migrate_page_copy);
664
665 /************************************************************
666  *                    Migration functions
667  ***********************************************************/
668
669 /*
670  * Common logic to directly migrate a single LRU page suitable for
671  * pages that do not use PagePrivate/PagePrivate2.
672  *
673  * Pages are locked upon entry and exit.
674  */
675 int migrate_page(struct address_space *mapping,
676                 struct page *newpage, struct page *page,
677                 enum migrate_mode mode)
678 {
679         int rc;
680
681         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
682
683         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
684
685         if (rc != MIGRATEPAGE_SUCCESS)
686                 return rc;
687
688         if (mode != MIGRATE_SYNC_NO_COPY)
689                 migrate_page_copy(newpage, page);
690         else
691                 migrate_page_states(newpage, page);
692         return MIGRATEPAGE_SUCCESS;
693 }
694 EXPORT_SYMBOL(migrate_page);
695
696 #ifdef CONFIG_BLOCK
697 /* Returns true if all buffers are successfully locked */
698 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
699                                                         enum migrate_mode mode)
700 {
701         struct buffer_head *bh = head;
702
703         /* Simple case, sync compaction */
704         if (mode != MIGRATE_ASYNC) {
705                 do {
706                         lock_buffer(bh);
707                         bh = bh->b_this_page;
708
709                 } while (bh != head);
710
711                 return true;
712         }
713
714         /* async case, we cannot block on lock_buffer so use trylock_buffer */
715         do {
716                 if (!trylock_buffer(bh)) {
717                         /*
718                          * We failed to lock the buffer and cannot stall in
719                          * async migration. Release the taken locks
720                          */
721                         struct buffer_head *failed_bh = bh;
722                         bh = head;
723                         while (bh != failed_bh) {
724                                 unlock_buffer(bh);
725                                 bh = bh->b_this_page;
726                         }
727                         return false;
728                 }
729
730                 bh = bh->b_this_page;
731         } while (bh != head);
732         return true;
733 }
734
735 static int __buffer_migrate_page(struct address_space *mapping,
736                 struct page *newpage, struct page *page, enum migrate_mode mode,
737                 bool check_refs)
738 {
739         struct buffer_head *bh, *head;
740         int rc;
741         int expected_count;
742
743         if (!page_has_buffers(page))
744                 return migrate_page(mapping, newpage, page, mode);
745
746         /* Check whether page does not have extra refs before we do more work */
747         expected_count = expected_page_refs(mapping, page);
748         if (page_count(page) != expected_count)
749                 return -EAGAIN;
750
751         head = page_buffers(page);
752         if (!buffer_migrate_lock_buffers(head, mode))
753                 return -EAGAIN;
754
755         if (check_refs) {
756                 bool busy;
757                 bool invalidated = false;
758
759 recheck_buffers:
760                 busy = false;
761                 spin_lock(&mapping->private_lock);
762                 bh = head;
763                 do {
764                         if (atomic_read(&bh->b_count)) {
765                                 busy = true;
766                                 break;
767                         }
768                         bh = bh->b_this_page;
769                 } while (bh != head);
770                 if (busy) {
771                         if (invalidated) {
772                                 rc = -EAGAIN;
773                                 goto unlock_buffers;
774                         }
775                         spin_unlock(&mapping->private_lock);
776                         invalidate_bh_lrus();
777                         invalidated = true;
778                         goto recheck_buffers;
779                 }
780         }
781
782         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
783         if (rc != MIGRATEPAGE_SUCCESS)
784                 goto unlock_buffers;
785
786         ClearPagePrivate(page);
787         set_page_private(newpage, page_private(page));
788         set_page_private(page, 0);
789         put_page(page);
790         get_page(newpage);
791
792         bh = head;
793         do {
794                 set_bh_page(bh, newpage, bh_offset(bh));
795                 bh = bh->b_this_page;
796
797         } while (bh != head);
798
799         SetPagePrivate(newpage);
800
801         if (mode != MIGRATE_SYNC_NO_COPY)
802                 migrate_page_copy(newpage, page);
803         else
804                 migrate_page_states(newpage, page);
805
806         rc = MIGRATEPAGE_SUCCESS;
807 unlock_buffers:
808         if (check_refs)
809                 spin_unlock(&mapping->private_lock);
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 bh = bh->b_this_page;
814
815         } while (bh != head);
816
817         return rc;
818 }
819
820 /*
821  * Migration function for pages with buffers. This function can only be used
822  * if the underlying filesystem guarantees that no other references to "page"
823  * exist. For example attached buffer heads are accessed only under page lock.
824  */
825 int buffer_migrate_page(struct address_space *mapping,
826                 struct page *newpage, struct page *page, enum migrate_mode mode)
827 {
828         return __buffer_migrate_page(mapping, newpage, page, mode, false);
829 }
830 EXPORT_SYMBOL(buffer_migrate_page);
831
832 /*
833  * Same as above except that this variant is more careful and checks that there
834  * are also no buffer head references. This function is the right one for
835  * mappings where buffer heads are directly looked up and referenced (such as
836  * block device mappings).
837  */
838 int buffer_migrate_page_norefs(struct address_space *mapping,
839                 struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841         return __buffer_migrate_page(mapping, newpage, page, mode, true);
842 }
843 #endif
844
845 /*
846  * Writeback a page to clean the dirty state
847  */
848 static int writeout(struct address_space *mapping, struct page *page)
849 {
850         struct writeback_control wbc = {
851                 .sync_mode = WB_SYNC_NONE,
852                 .nr_to_write = 1,
853                 .range_start = 0,
854                 .range_end = LLONG_MAX,
855                 .for_reclaim = 1
856         };
857         int rc;
858
859         if (!mapping->a_ops->writepage)
860                 /* No write method for the address space */
861                 return -EINVAL;
862
863         if (!clear_page_dirty_for_io(page))
864                 /* Someone else already triggered a write */
865                 return -EAGAIN;
866
867         /*
868          * A dirty page may imply that the underlying filesystem has
869          * the page on some queue. So the page must be clean for
870          * migration. Writeout may mean we loose the lock and the
871          * page state is no longer what we checked for earlier.
872          * At this point we know that the migration attempt cannot
873          * be successful.
874          */
875         remove_migration_ptes(page, page, false);
876
877         rc = mapping->a_ops->writepage(page, &wbc);
878
879         if (rc != AOP_WRITEPAGE_ACTIVATE)
880                 /* unlocked. Relock */
881                 lock_page(page);
882
883         return (rc < 0) ? -EIO : -EAGAIN;
884 }
885
886 /*
887  * Default handling if a filesystem does not provide a migration function.
888  */
889 static int fallback_migrate_page(struct address_space *mapping,
890         struct page *newpage, struct page *page, enum migrate_mode mode)
891 {
892         if (PageDirty(page)) {
893                 /* Only writeback pages in full synchronous migration */
894                 switch (mode) {
895                 case MIGRATE_SYNC:
896                 case MIGRATE_SYNC_NO_COPY:
897                         break;
898                 default:
899                         return -EBUSY;
900                 }
901                 return writeout(mapping, page);
902         }
903
904         /*
905          * Buffers may be managed in a filesystem specific way.
906          * We must have no buffers or drop them.
907          */
908         if (page_has_private(page) &&
909             !try_to_release_page(page, GFP_KERNEL))
910                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
911
912         return migrate_page(mapping, newpage, page, mode);
913 }
914
915 /*
916  * Move a page to a newly allocated page
917  * The page is locked and all ptes have been successfully removed.
918  *
919  * The new page will have replaced the old page if this function
920  * is successful.
921  *
922  * Return value:
923  *   < 0 - error code
924  *  MIGRATEPAGE_SUCCESS - success
925  */
926 static int move_to_new_page(struct page *newpage, struct page *page,
927                                 enum migrate_mode mode)
928 {
929         struct address_space *mapping;
930         int rc = -EAGAIN;
931         bool is_lru = !__PageMovable(page);
932
933         VM_BUG_ON_PAGE(!PageLocked(page), page);
934         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
935
936         mapping = page_mapping(page);
937
938         if (likely(is_lru)) {
939                 if (!mapping)
940                         rc = migrate_page(mapping, newpage, page, mode);
941                 else if (mapping->a_ops->migratepage)
942                         /*
943                          * Most pages have a mapping and most filesystems
944                          * provide a migratepage callback. Anonymous pages
945                          * are part of swap space which also has its own
946                          * migratepage callback. This is the most common path
947                          * for page migration.
948                          */
949                         rc = mapping->a_ops->migratepage(mapping, newpage,
950                                                         page, mode);
951                 else
952                         rc = fallback_migrate_page(mapping, newpage,
953                                                         page, mode);
954         } else {
955                 /*
956                  * In case of non-lru page, it could be released after
957                  * isolation step. In that case, we shouldn't try migration.
958                  */
959                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
960                 if (!PageMovable(page)) {
961                         rc = MIGRATEPAGE_SUCCESS;
962                         __ClearPageIsolated(page);
963                         goto out;
964                 }
965
966                 rc = mapping->a_ops->migratepage(mapping, newpage,
967                                                 page, mode);
968                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
969                         !PageIsolated(page));
970         }
971
972         /*
973          * When successful, old pagecache page->mapping must be cleared before
974          * page is freed; but stats require that PageAnon be left as PageAnon.
975          */
976         if (rc == MIGRATEPAGE_SUCCESS) {
977                 if (__PageMovable(page)) {
978                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
979
980                         /*
981                          * We clear PG_movable under page_lock so any compactor
982                          * cannot try to migrate this page.
983                          */
984                         __ClearPageIsolated(page);
985                 }
986
987                 /*
988                  * Anonymous and movable page->mapping will be cleard by
989                  * free_pages_prepare so don't reset it here for keeping
990                  * the type to work PageAnon, for example.
991                  */
992                 if (!PageMappingFlags(page))
993                         page->mapping = NULL;
994
995                 if (likely(!is_zone_device_page(newpage)))
996                         flush_dcache_page(newpage);
997
998         }
999 out:
1000         return rc;
1001 }
1002
1003 static int __unmap_and_move(struct page *page, struct page *newpage,
1004                                 int force, enum migrate_mode mode)
1005 {
1006         int rc = -EAGAIN;
1007         int page_was_mapped = 0;
1008         struct anon_vma *anon_vma = NULL;
1009         bool is_lru = !__PageMovable(page);
1010
1011         if (!trylock_page(page)) {
1012                 if (!force || mode == MIGRATE_ASYNC)
1013                         goto out;
1014
1015                 /*
1016                  * It's not safe for direct compaction to call lock_page.
1017                  * For example, during page readahead pages are added locked
1018                  * to the LRU. Later, when the IO completes the pages are
1019                  * marked uptodate and unlocked. However, the queueing
1020                  * could be merging multiple pages for one bio (e.g.
1021                  * mpage_readpages). If an allocation happens for the
1022                  * second or third page, the process can end up locking
1023                  * the same page twice and deadlocking. Rather than
1024                  * trying to be clever about what pages can be locked,
1025                  * avoid the use of lock_page for direct compaction
1026                  * altogether.
1027                  */
1028                 if (current->flags & PF_MEMALLOC)
1029                         goto out;
1030
1031                 lock_page(page);
1032         }
1033
1034         if (PageWriteback(page)) {
1035                 /*
1036                  * Only in the case of a full synchronous migration is it
1037                  * necessary to wait for PageWriteback. In the async case,
1038                  * the retry loop is too short and in the sync-light case,
1039                  * the overhead of stalling is too much
1040                  */
1041                 switch (mode) {
1042                 case MIGRATE_SYNC:
1043                 case MIGRATE_SYNC_NO_COPY:
1044                         break;
1045                 default:
1046                         rc = -EBUSY;
1047                         goto out_unlock;
1048                 }
1049                 if (!force)
1050                         goto out_unlock;
1051                 wait_on_page_writeback(page);
1052         }
1053
1054         /*
1055          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056          * we cannot notice that anon_vma is freed while we migrates a page.
1057          * This get_anon_vma() delays freeing anon_vma pointer until the end
1058          * of migration. File cache pages are no problem because of page_lock()
1059          * File Caches may use write_page() or lock_page() in migration, then,
1060          * just care Anon page here.
1061          *
1062          * Only page_get_anon_vma() understands the subtleties of
1063          * getting a hold on an anon_vma from outside one of its mms.
1064          * But if we cannot get anon_vma, then we won't need it anyway,
1065          * because that implies that the anon page is no longer mapped
1066          * (and cannot be remapped so long as we hold the page lock).
1067          */
1068         if (PageAnon(page) && !PageKsm(page))
1069                 anon_vma = page_get_anon_vma(page);
1070
1071         /*
1072          * Block others from accessing the new page when we get around to
1073          * establishing additional references. We are usually the only one
1074          * holding a reference to newpage at this point. We used to have a BUG
1075          * here if trylock_page(newpage) fails, but would like to allow for
1076          * cases where there might be a race with the previous use of newpage.
1077          * This is much like races on refcount of oldpage: just don't BUG().
1078          */
1079         if (unlikely(!trylock_page(newpage)))
1080                 goto out_unlock;
1081
1082         if (unlikely(!is_lru)) {
1083                 rc = move_to_new_page(newpage, page, mode);
1084                 goto out_unlock_both;
1085         }
1086
1087         /*
1088          * Corner case handling:
1089          * 1. When a new swap-cache page is read into, it is added to the LRU
1090          * and treated as swapcache but it has no rmap yet.
1091          * Calling try_to_unmap() against a page->mapping==NULL page will
1092          * trigger a BUG.  So handle it here.
1093          * 2. An orphaned page (see truncate_complete_page) might have
1094          * fs-private metadata. The page can be picked up due to memory
1095          * offlining.  Everywhere else except page reclaim, the page is
1096          * invisible to the vm, so the page can not be migrated.  So try to
1097          * free the metadata, so the page can be freed.
1098          */
1099         if (!page->mapping) {
1100                 VM_BUG_ON_PAGE(PageAnon(page), page);
1101                 if (page_has_private(page)) {
1102                         try_to_free_buffers(page);
1103                         goto out_unlock_both;
1104                 }
1105         } else if (page_mapped(page)) {
1106                 /* Establish migration ptes */
1107                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108                                 page);
1109                 try_to_unmap(page,
1110                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111                 page_was_mapped = 1;
1112         }
1113
1114         if (!page_mapped(page))
1115                 rc = move_to_new_page(newpage, page, mode);
1116
1117         if (page_was_mapped)
1118                 remove_migration_ptes(page,
1119                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120
1121 out_unlock_both:
1122         unlock_page(newpage);
1123 out_unlock:
1124         /* Drop an anon_vma reference if we took one */
1125         if (anon_vma)
1126                 put_anon_vma(anon_vma);
1127         unlock_page(page);
1128 out:
1129         /*
1130          * If migration is successful, decrease refcount of the newpage
1131          * which will not free the page because new page owner increased
1132          * refcounter. As well, if it is LRU page, add the page to LRU
1133          * list in here. Use the old state of the isolated source page to
1134          * determine if we migrated a LRU page. newpage was already unlocked
1135          * and possibly modified by its owner - don't rely on the page
1136          * state.
1137          */
1138         if (rc == MIGRATEPAGE_SUCCESS) {
1139                 if (unlikely(!is_lru))
1140                         put_page(newpage);
1141                 else
1142                         putback_lru_page(newpage);
1143         }
1144
1145         return rc;
1146 }
1147
1148 /*
1149  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1150  * around it.
1151  */
1152 #if defined(CONFIG_ARM) && \
1153         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154 #define ICE_noinline noinline
1155 #else
1156 #define ICE_noinline
1157 #endif
1158
1159 /*
1160  * Obtain the lock on page, remove all ptes and migrate the page
1161  * to the newly allocated page in newpage.
1162  */
1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164                                    free_page_t put_new_page,
1165                                    unsigned long private, struct page *page,
1166                                    int force, enum migrate_mode mode,
1167                                    enum migrate_reason reason)
1168 {
1169         int rc = MIGRATEPAGE_SUCCESS;
1170         struct page *newpage;
1171
1172         if (!thp_migration_supported() && PageTransHuge(page))
1173                 return -ENOMEM;
1174
1175         newpage = get_new_page(page, private);
1176         if (!newpage)
1177                 return -ENOMEM;
1178
1179         if (page_count(page) == 1) {
1180                 /* page was freed from under us. So we are done. */
1181                 ClearPageActive(page);
1182                 ClearPageUnevictable(page);
1183                 if (unlikely(__PageMovable(page))) {
1184                         lock_page(page);
1185                         if (!PageMovable(page))
1186                                 __ClearPageIsolated(page);
1187                         unlock_page(page);
1188                 }
1189                 if (put_new_page)
1190                         put_new_page(newpage, private);
1191                 else
1192                         put_page(newpage);
1193                 goto out;
1194         }
1195
1196         rc = __unmap_and_move(page, newpage, force, mode);
1197         if (rc == MIGRATEPAGE_SUCCESS)
1198                 set_page_owner_migrate_reason(newpage, reason);
1199
1200 out:
1201         if (rc != -EAGAIN) {
1202                 /*
1203                  * A page that has been migrated has all references
1204                  * removed and will be freed. A page that has not been
1205                  * migrated will have kepts its references and be
1206                  * restored.
1207                  */
1208                 list_del(&page->lru);
1209
1210                 /*
1211                  * Compaction can migrate also non-LRU pages which are
1212                  * not accounted to NR_ISOLATED_*. They can be recognized
1213                  * as __PageMovable
1214                  */
1215                 if (likely(!__PageMovable(page)))
1216                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217                                         page_is_file_cache(page), -hpage_nr_pages(page));
1218         }
1219
1220         /*
1221          * If migration is successful, releases reference grabbed during
1222          * isolation. Otherwise, restore the page to right list unless
1223          * we want to retry.
1224          */
1225         if (rc == MIGRATEPAGE_SUCCESS) {
1226                 put_page(page);
1227                 if (reason == MR_MEMORY_FAILURE) {
1228                         /*
1229                          * Set PG_HWPoison on just freed page
1230                          * intentionally. Although it's rather weird,
1231                          * it's how HWPoison flag works at the moment.
1232                          */
1233                         if (set_hwpoison_free_buddy_page(page))
1234                                 num_poisoned_pages_inc();
1235                 }
1236         } else {
1237                 if (rc != -EAGAIN) {
1238                         if (likely(!__PageMovable(page))) {
1239                                 putback_lru_page(page);
1240                                 goto put_new;
1241                         }
1242
1243                         lock_page(page);
1244                         if (PageMovable(page))
1245                                 putback_movable_page(page);
1246                         else
1247                                 __ClearPageIsolated(page);
1248                         unlock_page(page);
1249                         put_page(page);
1250                 }
1251 put_new:
1252                 if (put_new_page)
1253                         put_new_page(newpage, private);
1254                 else
1255                         put_page(newpage);
1256         }
1257
1258         return rc;
1259 }
1260
1261 /*
1262  * Counterpart of unmap_and_move_page() for hugepage migration.
1263  *
1264  * This function doesn't wait the completion of hugepage I/O
1265  * because there is no race between I/O and migration for hugepage.
1266  * Note that currently hugepage I/O occurs only in direct I/O
1267  * where no lock is held and PG_writeback is irrelevant,
1268  * and writeback status of all subpages are counted in the reference
1269  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270  * under direct I/O, the reference of the head page is 512 and a bit more.)
1271  * This means that when we try to migrate hugepage whose subpages are
1272  * doing direct I/O, some references remain after try_to_unmap() and
1273  * hugepage migration fails without data corruption.
1274  *
1275  * There is also no race when direct I/O is issued on the page under migration,
1276  * because then pte is replaced with migration swap entry and direct I/O code
1277  * will wait in the page fault for migration to complete.
1278  */
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280                                 free_page_t put_new_page, unsigned long private,
1281                                 struct page *hpage, int force,
1282                                 enum migrate_mode mode, int reason)
1283 {
1284         int rc = -EAGAIN;
1285         int page_was_mapped = 0;
1286         struct page *new_hpage;
1287         struct anon_vma *anon_vma = NULL;
1288
1289         /*
1290          * Migratability of hugepages depends on architectures and their size.
1291          * This check is necessary because some callers of hugepage migration
1292          * like soft offline and memory hotremove don't walk through page
1293          * tables or check whether the hugepage is pmd-based or not before
1294          * kicking migration.
1295          */
1296         if (!hugepage_migration_supported(page_hstate(hpage))) {
1297                 putback_active_hugepage(hpage);
1298                 return -ENOSYS;
1299         }
1300
1301         new_hpage = get_new_page(hpage, private);
1302         if (!new_hpage)
1303                 return -ENOMEM;
1304
1305         if (!trylock_page(hpage)) {
1306                 if (!force)
1307                         goto out;
1308                 switch (mode) {
1309                 case MIGRATE_SYNC:
1310                 case MIGRATE_SYNC_NO_COPY:
1311                         break;
1312                 default:
1313                         goto out;
1314                 }
1315                 lock_page(hpage);
1316         }
1317
1318         /*
1319          * Check for pages which are in the process of being freed.  Without
1320          * page_mapping() set, hugetlbfs specific move page routine will not
1321          * be called and we could leak usage counts for subpools.
1322          */
1323         if (page_private(hpage) && !page_mapping(hpage)) {
1324                 rc = -EBUSY;
1325                 goto out_unlock;
1326         }
1327
1328         if (PageAnon(hpage))
1329                 anon_vma = page_get_anon_vma(hpage);
1330
1331         if (unlikely(!trylock_page(new_hpage)))
1332                 goto put_anon;
1333
1334         if (page_mapped(hpage)) {
1335                 try_to_unmap(hpage,
1336                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1337                 page_was_mapped = 1;
1338         }
1339
1340         if (!page_mapped(hpage))
1341                 rc = move_to_new_page(new_hpage, hpage, mode);
1342
1343         if (page_was_mapped)
1344                 remove_migration_ptes(hpage,
1345                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1346
1347         unlock_page(new_hpage);
1348
1349 put_anon:
1350         if (anon_vma)
1351                 put_anon_vma(anon_vma);
1352
1353         if (rc == MIGRATEPAGE_SUCCESS) {
1354                 move_hugetlb_state(hpage, new_hpage, reason);
1355                 put_new_page = NULL;
1356         }
1357
1358 out_unlock:
1359         unlock_page(hpage);
1360 out:
1361         if (rc != -EAGAIN)
1362                 putback_active_hugepage(hpage);
1363
1364         /*
1365          * If migration was not successful and there's a freeing callback, use
1366          * it.  Otherwise, put_page() will drop the reference grabbed during
1367          * isolation.
1368          */
1369         if (put_new_page)
1370                 put_new_page(new_hpage, private);
1371         else
1372                 putback_active_hugepage(new_hpage);
1373
1374         return rc;
1375 }
1376
1377 /*
1378  * migrate_pages - migrate the pages specified in a list, to the free pages
1379  *                 supplied as the target for the page migration
1380  *
1381  * @from:               The list of pages to be migrated.
1382  * @get_new_page:       The function used to allocate free pages to be used
1383  *                      as the target of the page migration.
1384  * @put_new_page:       The function used to free target pages if migration
1385  *                      fails, or NULL if no special handling is necessary.
1386  * @private:            Private data to be passed on to get_new_page()
1387  * @mode:               The migration mode that specifies the constraints for
1388  *                      page migration, if any.
1389  * @reason:             The reason for page migration.
1390  *
1391  * The function returns after 10 attempts or if no pages are movable any more
1392  * because the list has become empty or no retryable pages exist any more.
1393  * The caller should call putback_movable_pages() to return pages to the LRU
1394  * or free list only if ret != 0.
1395  *
1396  * Returns the number of pages that were not migrated, or an error code.
1397  */
1398 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1399                 free_page_t put_new_page, unsigned long private,
1400                 enum migrate_mode mode, int reason)
1401 {
1402         int retry = 1;
1403         int nr_failed = 0;
1404         int nr_succeeded = 0;
1405         int pass = 0;
1406         struct page *page;
1407         struct page *page2;
1408         int swapwrite = current->flags & PF_SWAPWRITE;
1409         int rc;
1410
1411         if (!swapwrite)
1412                 current->flags |= PF_SWAPWRITE;
1413
1414         for(pass = 0; pass < 10 && retry; pass++) {
1415                 retry = 0;
1416
1417                 list_for_each_entry_safe(page, page2, from, lru) {
1418 retry:
1419                         cond_resched();
1420
1421                         if (PageHuge(page))
1422                                 rc = unmap_and_move_huge_page(get_new_page,
1423                                                 put_new_page, private, page,
1424                                                 pass > 2, mode, reason);
1425                         else
1426                                 rc = unmap_and_move(get_new_page, put_new_page,
1427                                                 private, page, pass > 2, mode,
1428                                                 reason);
1429
1430                         switch(rc) {
1431                         case -ENOMEM:
1432                                 /*
1433                                  * THP migration might be unsupported or the
1434                                  * allocation could've failed so we should
1435                                  * retry on the same page with the THP split
1436                                  * to base pages.
1437                                  *
1438                                  * Head page is retried immediately and tail
1439                                  * pages are added to the tail of the list so
1440                                  * we encounter them after the rest of the list
1441                                  * is processed.
1442                                  */
1443                                 if (PageTransHuge(page) && !PageHuge(page)) {
1444                                         lock_page(page);
1445                                         rc = split_huge_page_to_list(page, from);
1446                                         unlock_page(page);
1447                                         if (!rc) {
1448                                                 list_safe_reset_next(page, page2, lru);
1449                                                 goto retry;
1450                                         }
1451                                 }
1452                                 nr_failed++;
1453                                 goto out;
1454                         case -EAGAIN:
1455                                 retry++;
1456                                 break;
1457                         case MIGRATEPAGE_SUCCESS:
1458                                 nr_succeeded++;
1459                                 break;
1460                         default:
1461                                 /*
1462                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1463                                  * unlike -EAGAIN case, the failed page is
1464                                  * removed from migration page list and not
1465                                  * retried in the next outer loop.
1466                                  */
1467                                 nr_failed++;
1468                                 break;
1469                         }
1470                 }
1471         }
1472         nr_failed += retry;
1473         rc = nr_failed;
1474 out:
1475         if (nr_succeeded)
1476                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1477         if (nr_failed)
1478                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1479         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1480
1481         if (!swapwrite)
1482                 current->flags &= ~PF_SWAPWRITE;
1483
1484         return rc;
1485 }
1486
1487 #ifdef CONFIG_NUMA
1488
1489 static int store_status(int __user *status, int start, int value, int nr)
1490 {
1491         while (nr-- > 0) {
1492                 if (put_user(value, status + start))
1493                         return -EFAULT;
1494                 start++;
1495         }
1496
1497         return 0;
1498 }
1499
1500 static int do_move_pages_to_node(struct mm_struct *mm,
1501                 struct list_head *pagelist, int node)
1502 {
1503         int err;
1504
1505         if (list_empty(pagelist))
1506                 return 0;
1507
1508         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1509                         MIGRATE_SYNC, MR_SYSCALL);
1510         if (err)
1511                 putback_movable_pages(pagelist);
1512         return err;
1513 }
1514
1515 /*
1516  * Resolves the given address to a struct page, isolates it from the LRU and
1517  * puts it to the given pagelist.
1518  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1519  * queued or the page doesn't need to be migrated because it is already on
1520  * the target node
1521  */
1522 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1523                 int node, struct list_head *pagelist, bool migrate_all)
1524 {
1525         struct vm_area_struct *vma;
1526         struct page *page;
1527         unsigned int follflags;
1528         int err;
1529
1530         down_read(&mm->mmap_sem);
1531         err = -EFAULT;
1532         vma = find_vma(mm, addr);
1533         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1534                 goto out;
1535
1536         /* FOLL_DUMP to ignore special (like zero) pages */
1537         follflags = FOLL_GET | FOLL_DUMP;
1538         page = follow_page(vma, addr, follflags);
1539
1540         err = PTR_ERR(page);
1541         if (IS_ERR(page))
1542                 goto out;
1543
1544         err = -ENOENT;
1545         if (!page)
1546                 goto out;
1547
1548         err = 0;
1549         if (page_to_nid(page) == node)
1550                 goto out_putpage;
1551
1552         err = -EACCES;
1553         if (page_mapcount(page) > 1 && !migrate_all)
1554                 goto out_putpage;
1555
1556         if (PageHuge(page)) {
1557                 if (PageHead(page)) {
1558                         isolate_huge_page(page, pagelist);
1559                         err = 0;
1560                 }
1561         } else {
1562                 struct page *head;
1563
1564                 head = compound_head(page);
1565                 err = isolate_lru_page(head);
1566                 if (err)
1567                         goto out_putpage;
1568
1569                 err = 0;
1570                 list_add_tail(&head->lru, pagelist);
1571                 mod_node_page_state(page_pgdat(head),
1572                         NR_ISOLATED_ANON + page_is_file_cache(head),
1573                         hpage_nr_pages(head));
1574         }
1575 out_putpage:
1576         /*
1577          * Either remove the duplicate refcount from
1578          * isolate_lru_page() or drop the page ref if it was
1579          * not isolated.
1580          */
1581         put_page(page);
1582 out:
1583         up_read(&mm->mmap_sem);
1584         return err;
1585 }
1586
1587 /*
1588  * Migrate an array of page address onto an array of nodes and fill
1589  * the corresponding array of status.
1590  */
1591 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1592                          unsigned long nr_pages,
1593                          const void __user * __user *pages,
1594                          const int __user *nodes,
1595                          int __user *status, int flags)
1596 {
1597         int current_node = NUMA_NO_NODE;
1598         LIST_HEAD(pagelist);
1599         int start, i;
1600         int err = 0, err1;
1601
1602         migrate_prep();
1603
1604         for (i = start = 0; i < nr_pages; i++) {
1605                 const void __user *p;
1606                 unsigned long addr;
1607                 int node;
1608
1609                 err = -EFAULT;
1610                 if (get_user(p, pages + i))
1611                         goto out_flush;
1612                 if (get_user(node, nodes + i))
1613                         goto out_flush;
1614                 addr = (unsigned long)p;
1615
1616                 err = -ENODEV;
1617                 if (node < 0 || node >= MAX_NUMNODES)
1618                         goto out_flush;
1619                 if (!node_state(node, N_MEMORY))
1620                         goto out_flush;
1621
1622                 err = -EACCES;
1623                 if (!node_isset(node, task_nodes))
1624                         goto out_flush;
1625
1626                 if (current_node == NUMA_NO_NODE) {
1627                         current_node = node;
1628                         start = i;
1629                 } else if (node != current_node) {
1630                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1631                         if (err)
1632                                 goto out;
1633                         err = store_status(status, start, current_node, i - start);
1634                         if (err)
1635                                 goto out;
1636                         start = i;
1637                         current_node = node;
1638                 }
1639
1640                 /*
1641                  * Errors in the page lookup or isolation are not fatal and we simply
1642                  * report them via status
1643                  */
1644                 err = add_page_for_migration(mm, addr, current_node,
1645                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1646                 if (!err)
1647                         continue;
1648
1649                 err = store_status(status, i, err, 1);
1650                 if (err)
1651                         goto out_flush;
1652
1653                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1654                 if (err)
1655                         goto out;
1656                 if (i > start) {
1657                         err = store_status(status, start, current_node, i - start);
1658                         if (err)
1659                                 goto out;
1660                 }
1661                 current_node = NUMA_NO_NODE;
1662         }
1663 out_flush:
1664         if (list_empty(&pagelist))
1665                 return err;
1666
1667         /* Make sure we do not overwrite the existing error */
1668         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1669         if (!err1)
1670                 err1 = store_status(status, start, current_node, i - start);
1671         if (!err)
1672                 err = err1;
1673 out:
1674         return err;
1675 }
1676
1677 /*
1678  * Determine the nodes of an array of pages and store it in an array of status.
1679  */
1680 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1681                                 const void __user **pages, int *status)
1682 {
1683         unsigned long i;
1684
1685         down_read(&mm->mmap_sem);
1686
1687         for (i = 0; i < nr_pages; i++) {
1688                 unsigned long addr = (unsigned long)(*pages);
1689                 struct vm_area_struct *vma;
1690                 struct page *page;
1691                 int err = -EFAULT;
1692
1693                 vma = find_vma(mm, addr);
1694                 if (!vma || addr < vma->vm_start)
1695                         goto set_status;
1696
1697                 /* FOLL_DUMP to ignore special (like zero) pages */
1698                 page = follow_page(vma, addr, FOLL_DUMP);
1699
1700                 err = PTR_ERR(page);
1701                 if (IS_ERR(page))
1702                         goto set_status;
1703
1704                 err = page ? page_to_nid(page) : -ENOENT;
1705 set_status:
1706                 *status = err;
1707
1708                 pages++;
1709                 status++;
1710         }
1711
1712         up_read(&mm->mmap_sem);
1713 }
1714
1715 /*
1716  * Determine the nodes of a user array of pages and store it in
1717  * a user array of status.
1718  */
1719 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1720                          const void __user * __user *pages,
1721                          int __user *status)
1722 {
1723 #define DO_PAGES_STAT_CHUNK_NR 16
1724         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1725         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1726
1727         while (nr_pages) {
1728                 unsigned long chunk_nr;
1729
1730                 chunk_nr = nr_pages;
1731                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1732                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1733
1734                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1735                         break;
1736
1737                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1738
1739                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1740                         break;
1741
1742                 pages += chunk_nr;
1743                 status += chunk_nr;
1744                 nr_pages -= chunk_nr;
1745         }
1746         return nr_pages ? -EFAULT : 0;
1747 }
1748
1749 /*
1750  * Move a list of pages in the address space of the currently executing
1751  * process.
1752  */
1753 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1754                              const void __user * __user *pages,
1755                              const int __user *nodes,
1756                              int __user *status, int flags)
1757 {
1758         struct task_struct *task;
1759         struct mm_struct *mm;
1760         int err;
1761         nodemask_t task_nodes;
1762
1763         /* Check flags */
1764         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1765                 return -EINVAL;
1766
1767         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1768                 return -EPERM;
1769
1770         /* Find the mm_struct */
1771         rcu_read_lock();
1772         task = pid ? find_task_by_vpid(pid) : current;
1773         if (!task) {
1774                 rcu_read_unlock();
1775                 return -ESRCH;
1776         }
1777         get_task_struct(task);
1778
1779         /*
1780          * Check if this process has the right to modify the specified
1781          * process. Use the regular "ptrace_may_access()" checks.
1782          */
1783         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1784                 rcu_read_unlock();
1785                 err = -EPERM;
1786                 goto out;
1787         }
1788         rcu_read_unlock();
1789
1790         err = security_task_movememory(task);
1791         if (err)
1792                 goto out;
1793
1794         task_nodes = cpuset_mems_allowed(task);
1795         mm = get_task_mm(task);
1796         put_task_struct(task);
1797
1798         if (!mm)
1799                 return -EINVAL;
1800
1801         if (nodes)
1802                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1803                                     nodes, status, flags);
1804         else
1805                 err = do_pages_stat(mm, nr_pages, pages, status);
1806
1807         mmput(mm);
1808         return err;
1809
1810 out:
1811         put_task_struct(task);
1812         return err;
1813 }
1814
1815 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1816                 const void __user * __user *, pages,
1817                 const int __user *, nodes,
1818                 int __user *, status, int, flags)
1819 {
1820         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1821 }
1822
1823 #ifdef CONFIG_COMPAT
1824 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1825                        compat_uptr_t __user *, pages32,
1826                        const int __user *, nodes,
1827                        int __user *, status,
1828                        int, flags)
1829 {
1830         const void __user * __user *pages;
1831         int i;
1832
1833         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1834         for (i = 0; i < nr_pages; i++) {
1835                 compat_uptr_t p;
1836
1837                 if (get_user(p, pages32 + i) ||
1838                         put_user(compat_ptr(p), pages + i))
1839                         return -EFAULT;
1840         }
1841         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1842 }
1843 #endif /* CONFIG_COMPAT */
1844
1845 #ifdef CONFIG_NUMA_BALANCING
1846 /*
1847  * Returns true if this is a safe migration target node for misplaced NUMA
1848  * pages. Currently it only checks the watermarks which crude
1849  */
1850 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1851                                    unsigned long nr_migrate_pages)
1852 {
1853         int z;
1854
1855         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1856                 struct zone *zone = pgdat->node_zones + z;
1857
1858                 if (!populated_zone(zone))
1859                         continue;
1860
1861                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1862                 if (!zone_watermark_ok(zone, 0,
1863                                        high_wmark_pages(zone) +
1864                                        nr_migrate_pages,
1865                                        0, 0))
1866                         continue;
1867                 return true;
1868         }
1869         return false;
1870 }
1871
1872 static struct page *alloc_misplaced_dst_page(struct page *page,
1873                                            unsigned long data)
1874 {
1875         int nid = (int) data;
1876         struct page *newpage;
1877
1878         newpage = __alloc_pages_node(nid,
1879                                          (GFP_HIGHUSER_MOVABLE |
1880                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1881                                           __GFP_NORETRY | __GFP_NOWARN) &
1882                                          ~__GFP_RECLAIM, 0);
1883
1884         return newpage;
1885 }
1886
1887 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1888 {
1889         int page_lru;
1890
1891         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1892
1893         /* Avoid migrating to a node that is nearly full */
1894         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1895                 return 0;
1896
1897         if (isolate_lru_page(page))
1898                 return 0;
1899
1900         /*
1901          * migrate_misplaced_transhuge_page() skips page migration's usual
1902          * check on page_count(), so we must do it here, now that the page
1903          * has been isolated: a GUP pin, or any other pin, prevents migration.
1904          * The expected page count is 3: 1 for page's mapcount and 1 for the
1905          * caller's pin and 1 for the reference taken by isolate_lru_page().
1906          */
1907         if (PageTransHuge(page) && page_count(page) != 3) {
1908                 putback_lru_page(page);
1909                 return 0;
1910         }
1911
1912         page_lru = page_is_file_cache(page);
1913         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1914                                 hpage_nr_pages(page));
1915
1916         /*
1917          * Isolating the page has taken another reference, so the
1918          * caller's reference can be safely dropped without the page
1919          * disappearing underneath us during migration.
1920          */
1921         put_page(page);
1922         return 1;
1923 }
1924
1925 bool pmd_trans_migrating(pmd_t pmd)
1926 {
1927         struct page *page = pmd_page(pmd);
1928         return PageLocked(page);
1929 }
1930
1931 /*
1932  * Attempt to migrate a misplaced page to the specified destination
1933  * node. Caller is expected to have an elevated reference count on
1934  * the page that will be dropped by this function before returning.
1935  */
1936 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1937                            int node)
1938 {
1939         pg_data_t *pgdat = NODE_DATA(node);
1940         int isolated;
1941         int nr_remaining;
1942         LIST_HEAD(migratepages);
1943
1944         /*
1945          * Don't migrate file pages that are mapped in multiple processes
1946          * with execute permissions as they are probably shared libraries.
1947          */
1948         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1949             (vma->vm_flags & VM_EXEC))
1950                 goto out;
1951
1952         /*
1953          * Also do not migrate dirty pages as not all filesystems can move
1954          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1955          */
1956         if (page_is_file_cache(page) && PageDirty(page))
1957                 goto out;
1958
1959         isolated = numamigrate_isolate_page(pgdat, page);
1960         if (!isolated)
1961                 goto out;
1962
1963         list_add(&page->lru, &migratepages);
1964         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1965                                      NULL, node, MIGRATE_ASYNC,
1966                                      MR_NUMA_MISPLACED);
1967         if (nr_remaining) {
1968                 if (!list_empty(&migratepages)) {
1969                         list_del(&page->lru);
1970                         dec_node_page_state(page, NR_ISOLATED_ANON +
1971                                         page_is_file_cache(page));
1972                         putback_lru_page(page);
1973                 }
1974                 isolated = 0;
1975         } else
1976                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1977         BUG_ON(!list_empty(&migratepages));
1978         return isolated;
1979
1980 out:
1981         put_page(page);
1982         return 0;
1983 }
1984 #endif /* CONFIG_NUMA_BALANCING */
1985
1986 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1987 /*
1988  * Migrates a THP to a given target node. page must be locked and is unlocked
1989  * before returning.
1990  */
1991 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1992                                 struct vm_area_struct *vma,
1993                                 pmd_t *pmd, pmd_t entry,
1994                                 unsigned long address,
1995                                 struct page *page, int node)
1996 {
1997         spinlock_t *ptl;
1998         pg_data_t *pgdat = NODE_DATA(node);
1999         int isolated = 0;
2000         struct page *new_page = NULL;
2001         int page_lru = page_is_file_cache(page);
2002         unsigned long start = address & HPAGE_PMD_MASK;
2003
2004         new_page = alloc_pages_node(node,
2005                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2006                 HPAGE_PMD_ORDER);
2007         if (!new_page)
2008                 goto out_fail;
2009         prep_transhuge_page(new_page);
2010
2011         isolated = numamigrate_isolate_page(pgdat, page);
2012         if (!isolated) {
2013                 put_page(new_page);
2014                 goto out_fail;
2015         }
2016
2017         /* Prepare a page as a migration target */
2018         __SetPageLocked(new_page);
2019         if (PageSwapBacked(page))
2020                 __SetPageSwapBacked(new_page);
2021
2022         /* anon mapping, we can simply copy page->mapping to the new page: */
2023         new_page->mapping = page->mapping;
2024         new_page->index = page->index;
2025         /* flush the cache before copying using the kernel virtual address */
2026         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2027         migrate_page_copy(new_page, page);
2028         WARN_ON(PageLRU(new_page));
2029
2030         /* Recheck the target PMD */
2031         ptl = pmd_lock(mm, pmd);
2032         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2033                 spin_unlock(ptl);
2034
2035                 /* Reverse changes made by migrate_page_copy() */
2036                 if (TestClearPageActive(new_page))
2037                         SetPageActive(page);
2038                 if (TestClearPageUnevictable(new_page))
2039                         SetPageUnevictable(page);
2040
2041                 unlock_page(new_page);
2042                 put_page(new_page);             /* Free it */
2043
2044                 /* Retake the callers reference and putback on LRU */
2045                 get_page(page);
2046                 putback_lru_page(page);
2047                 mod_node_page_state(page_pgdat(page),
2048                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2049
2050                 goto out_unlock;
2051         }
2052
2053         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2054         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2055
2056         /*
2057          * Overwrite the old entry under pagetable lock and establish
2058          * the new PTE. Any parallel GUP will either observe the old
2059          * page blocking on the page lock, block on the page table
2060          * lock or observe the new page. The SetPageUptodate on the
2061          * new page and page_add_new_anon_rmap guarantee the copy is
2062          * visible before the pagetable update.
2063          */
2064         page_add_anon_rmap(new_page, vma, start, true);
2065         /*
2066          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2067          * has already been flushed globally.  So no TLB can be currently
2068          * caching this non present pmd mapping.  There's no need to clear the
2069          * pmd before doing set_pmd_at(), nor to flush the TLB after
2070          * set_pmd_at().  Clearing the pmd here would introduce a race
2071          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2072          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2073          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2074          * pmd.
2075          */
2076         set_pmd_at(mm, start, pmd, entry);
2077         update_mmu_cache_pmd(vma, address, &entry);
2078
2079         page_ref_unfreeze(page, 2);
2080         mlock_migrate_page(new_page, page);
2081         page_remove_rmap(page, true);
2082         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2083
2084         spin_unlock(ptl);
2085
2086         /* Take an "isolate" reference and put new page on the LRU. */
2087         get_page(new_page);
2088         putback_lru_page(new_page);
2089
2090         unlock_page(new_page);
2091         unlock_page(page);
2092         put_page(page);                 /* Drop the rmap reference */
2093         put_page(page);                 /* Drop the LRU isolation reference */
2094
2095         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2096         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2097
2098         mod_node_page_state(page_pgdat(page),
2099                         NR_ISOLATED_ANON + page_lru,
2100                         -HPAGE_PMD_NR);
2101         return isolated;
2102
2103 out_fail:
2104         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2105         ptl = pmd_lock(mm, pmd);
2106         if (pmd_same(*pmd, entry)) {
2107                 entry = pmd_modify(entry, vma->vm_page_prot);
2108                 set_pmd_at(mm, start, pmd, entry);
2109                 update_mmu_cache_pmd(vma, address, &entry);
2110         }
2111         spin_unlock(ptl);
2112
2113 out_unlock:
2114         unlock_page(page);
2115         put_page(page);
2116         return 0;
2117 }
2118 #endif /* CONFIG_NUMA_BALANCING */
2119
2120 #endif /* CONFIG_NUMA */
2121
2122 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2123 struct migrate_vma {
2124         struct vm_area_struct   *vma;
2125         unsigned long           *dst;
2126         unsigned long           *src;
2127         unsigned long           cpages;
2128         unsigned long           npages;
2129         unsigned long           start;
2130         unsigned long           end;
2131 };
2132
2133 static int migrate_vma_collect_hole(unsigned long start,
2134                                     unsigned long end,
2135                                     struct mm_walk *walk)
2136 {
2137         struct migrate_vma *migrate = walk->private;
2138         unsigned long addr;
2139
2140         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2141                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2142                 migrate->dst[migrate->npages] = 0;
2143                 migrate->npages++;
2144                 migrate->cpages++;
2145         }
2146
2147         return 0;
2148 }
2149
2150 static int migrate_vma_collect_skip(unsigned long start,
2151                                     unsigned long end,
2152                                     struct mm_walk *walk)
2153 {
2154         struct migrate_vma *migrate = walk->private;
2155         unsigned long addr;
2156
2157         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2158                 migrate->dst[migrate->npages] = 0;
2159                 migrate->src[migrate->npages++] = 0;
2160         }
2161
2162         return 0;
2163 }
2164
2165 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166                                    unsigned long start,
2167                                    unsigned long end,
2168                                    struct mm_walk *walk)
2169 {
2170         struct migrate_vma *migrate = walk->private;
2171         struct vm_area_struct *vma = walk->vma;
2172         struct mm_struct *mm = vma->vm_mm;
2173         unsigned long addr = start, unmapped = 0;
2174         spinlock_t *ptl;
2175         pte_t *ptep;
2176
2177 again:
2178         if (pmd_none(*pmdp))
2179                 return migrate_vma_collect_hole(start, end, walk);
2180
2181         if (pmd_trans_huge(*pmdp)) {
2182                 struct page *page;
2183
2184                 ptl = pmd_lock(mm, pmdp);
2185                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2186                         spin_unlock(ptl);
2187                         goto again;
2188                 }
2189
2190                 page = pmd_page(*pmdp);
2191                 if (is_huge_zero_page(page)) {
2192                         spin_unlock(ptl);
2193                         split_huge_pmd(vma, pmdp, addr);
2194                         if (pmd_trans_unstable(pmdp))
2195                                 return migrate_vma_collect_skip(start, end,
2196                                                                 walk);
2197                 } else {
2198                         int ret;
2199
2200                         get_page(page);
2201                         spin_unlock(ptl);
2202                         if (unlikely(!trylock_page(page)))
2203                                 return migrate_vma_collect_skip(start, end,
2204                                                                 walk);
2205                         ret = split_huge_page(page);
2206                         unlock_page(page);
2207                         put_page(page);
2208                         if (ret)
2209                                 return migrate_vma_collect_skip(start, end,
2210                                                                 walk);
2211                         if (pmd_none(*pmdp))
2212                                 return migrate_vma_collect_hole(start, end,
2213                                                                 walk);
2214                 }
2215         }
2216
2217         if (unlikely(pmd_bad(*pmdp)))
2218                 return migrate_vma_collect_skip(start, end, walk);
2219
2220         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221         arch_enter_lazy_mmu_mode();
2222
2223         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224                 unsigned long mpfn, pfn;
2225                 struct page *page;
2226                 swp_entry_t entry;
2227                 pte_t pte;
2228
2229                 pte = *ptep;
2230                 pfn = pte_pfn(pte);
2231
2232                 if (pte_none(pte)) {
2233                         mpfn = MIGRATE_PFN_MIGRATE;
2234                         migrate->cpages++;
2235                         pfn = 0;
2236                         goto next;
2237                 }
2238
2239                 if (!pte_present(pte)) {
2240                         mpfn = pfn = 0;
2241
2242                         /*
2243                          * Only care about unaddressable device page special
2244                          * page table entry. Other special swap entries are not
2245                          * migratable, and we ignore regular swapped page.
2246                          */
2247                         entry = pte_to_swp_entry(pte);
2248                         if (!is_device_private_entry(entry))
2249                                 goto next;
2250
2251                         page = device_private_entry_to_page(entry);
2252                         mpfn = migrate_pfn(page_to_pfn(page))|
2253                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2254                         if (is_write_device_private_entry(entry))
2255                                 mpfn |= MIGRATE_PFN_WRITE;
2256                 } else {
2257                         if (is_zero_pfn(pfn)) {
2258                                 mpfn = MIGRATE_PFN_MIGRATE;
2259                                 migrate->cpages++;
2260                                 pfn = 0;
2261                                 goto next;
2262                         }
2263                         page = vm_normal_page(migrate->vma, addr, pte);
2264                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2265                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2266                 }
2267
2268                 /* FIXME support THP */
2269                 if (!page || !page->mapping || PageTransCompound(page)) {
2270                         mpfn = pfn = 0;
2271                         goto next;
2272                 }
2273                 pfn = page_to_pfn(page);
2274
2275                 /*
2276                  * By getting a reference on the page we pin it and that blocks
2277                  * any kind of migration. Side effect is that it "freezes" the
2278                  * pte.
2279                  *
2280                  * We drop this reference after isolating the page from the lru
2281                  * for non device page (device page are not on the lru and thus
2282                  * can't be dropped from it).
2283                  */
2284                 get_page(page);
2285                 migrate->cpages++;
2286
2287                 /*
2288                  * Optimize for the common case where page is only mapped once
2289                  * in one process. If we can lock the page, then we can safely
2290                  * set up a special migration page table entry now.
2291                  */
2292                 if (trylock_page(page)) {
2293                         pte_t swp_pte;
2294
2295                         mpfn |= MIGRATE_PFN_LOCKED;
2296                         ptep_get_and_clear(mm, addr, ptep);
2297
2298                         /* Setup special migration page table entry */
2299                         entry = make_migration_entry(page, mpfn &
2300                                                      MIGRATE_PFN_WRITE);
2301                         swp_pte = swp_entry_to_pte(entry);
2302                         if (pte_soft_dirty(pte))
2303                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2304                         set_pte_at(mm, addr, ptep, swp_pte);
2305
2306                         /*
2307                          * This is like regular unmap: we remove the rmap and
2308                          * drop page refcount. Page won't be freed, as we took
2309                          * a reference just above.
2310                          */
2311                         page_remove_rmap(page, false);
2312                         put_page(page);
2313
2314                         if (pte_present(pte))
2315                                 unmapped++;
2316                 }
2317
2318 next:
2319                 migrate->dst[migrate->npages] = 0;
2320                 migrate->src[migrate->npages++] = mpfn;
2321         }
2322         arch_leave_lazy_mmu_mode();
2323         pte_unmap_unlock(ptep - 1, ptl);
2324
2325         /* Only flush the TLB if we actually modified any entries */
2326         if (unmapped)
2327                 flush_tlb_range(walk->vma, start, end);
2328
2329         return 0;
2330 }
2331
2332 /*
2333  * migrate_vma_collect() - collect pages over a range of virtual addresses
2334  * @migrate: migrate struct containing all migration information
2335  *
2336  * This will walk the CPU page table. For each virtual address backed by a
2337  * valid page, it updates the src array and takes a reference on the page, in
2338  * order to pin the page until we lock it and unmap it.
2339  */
2340 static void migrate_vma_collect(struct migrate_vma *migrate)
2341 {
2342         struct mmu_notifier_range range;
2343         struct mm_walk mm_walk = {
2344                 .pmd_entry = migrate_vma_collect_pmd,
2345                 .pte_hole = migrate_vma_collect_hole,
2346                 .vma = migrate->vma,
2347                 .mm = migrate->vma->vm_mm,
2348                 .private = migrate,
2349         };
2350
2351         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2352                                 migrate->start,
2353                                 migrate->end);
2354         mmu_notifier_invalidate_range_start(&range);
2355         walk_page_range(migrate->start, migrate->end, &mm_walk);
2356         mmu_notifier_invalidate_range_end(&range);
2357
2358         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2359 }
2360
2361 /*
2362  * migrate_vma_check_page() - check if page is pinned or not
2363  * @page: struct page to check
2364  *
2365  * Pinned pages cannot be migrated. This is the same test as in
2366  * migrate_page_move_mapping(), except that here we allow migration of a
2367  * ZONE_DEVICE page.
2368  */
2369 static bool migrate_vma_check_page(struct page *page)
2370 {
2371         /*
2372          * One extra ref because caller holds an extra reference, either from
2373          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2374          * a device page.
2375          */
2376         int extra = 1;
2377
2378         /*
2379          * FIXME support THP (transparent huge page), it is bit more complex to
2380          * check them than regular pages, because they can be mapped with a pmd
2381          * or with a pte (split pte mapping).
2382          */
2383         if (PageCompound(page))
2384                 return false;
2385
2386         /* Page from ZONE_DEVICE have one extra reference */
2387         if (is_zone_device_page(page)) {
2388                 /*
2389                  * Private page can never be pin as they have no valid pte and
2390                  * GUP will fail for those. Yet if there is a pending migration
2391                  * a thread might try to wait on the pte migration entry and
2392                  * will bump the page reference count. Sadly there is no way to
2393                  * differentiate a regular pin from migration wait. Hence to
2394                  * avoid 2 racing thread trying to migrate back to CPU to enter
2395                  * infinite loop (one stoping migration because the other is
2396                  * waiting on pte migration entry). We always return true here.
2397                  *
2398                  * FIXME proper solution is to rework migration_entry_wait() so
2399                  * it does not need to take a reference on page.
2400                  */
2401                 return is_device_private_page(page);
2402         }
2403
2404         /* For file back page */
2405         if (page_mapping(page))
2406                 extra += 1 + page_has_private(page);
2407
2408         if ((page_count(page) - extra) > page_mapcount(page))
2409                 return false;
2410
2411         return true;
2412 }
2413
2414 /*
2415  * migrate_vma_prepare() - lock pages and isolate them from the lru
2416  * @migrate: migrate struct containing all migration information
2417  *
2418  * This locks pages that have been collected by migrate_vma_collect(). Once each
2419  * page is locked it is isolated from the lru (for non-device pages). Finally,
2420  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2421  * migrated by concurrent kernel threads.
2422  */
2423 static void migrate_vma_prepare(struct migrate_vma *migrate)
2424 {
2425         const unsigned long npages = migrate->npages;
2426         const unsigned long start = migrate->start;
2427         unsigned long addr, i, restore = 0;
2428         bool allow_drain = true;
2429
2430         lru_add_drain();
2431
2432         for (i = 0; (i < npages) && migrate->cpages; i++) {
2433                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2434                 bool remap = true;
2435
2436                 if (!page)
2437                         continue;
2438
2439                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2440                         /*
2441                          * Because we are migrating several pages there can be
2442                          * a deadlock between 2 concurrent migration where each
2443                          * are waiting on each other page lock.
2444                          *
2445                          * Make migrate_vma() a best effort thing and backoff
2446                          * for any page we can not lock right away.
2447                          */
2448                         if (!trylock_page(page)) {
2449                                 migrate->src[i] = 0;
2450                                 migrate->cpages--;
2451                                 put_page(page);
2452                                 continue;
2453                         }
2454                         remap = false;
2455                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2456                 }
2457
2458                 /* ZONE_DEVICE pages are not on LRU */
2459                 if (!is_zone_device_page(page)) {
2460                         if (!PageLRU(page) && allow_drain) {
2461                                 /* Drain CPU's pagevec */
2462                                 lru_add_drain_all();
2463                                 allow_drain = false;
2464                         }
2465
2466                         if (isolate_lru_page(page)) {
2467                                 if (remap) {
2468                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469                                         migrate->cpages--;
2470                                         restore++;
2471                                 } else {
2472                                         migrate->src[i] = 0;
2473                                         unlock_page(page);
2474                                         migrate->cpages--;
2475                                         put_page(page);
2476                                 }
2477                                 continue;
2478                         }
2479
2480                         /* Drop the reference we took in collect */
2481                         put_page(page);
2482                 }
2483
2484                 if (!migrate_vma_check_page(page)) {
2485                         if (remap) {
2486                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487                                 migrate->cpages--;
2488                                 restore++;
2489
2490                                 if (!is_zone_device_page(page)) {
2491                                         get_page(page);
2492                                         putback_lru_page(page);
2493                                 }
2494                         } else {
2495                                 migrate->src[i] = 0;
2496                                 unlock_page(page);
2497                                 migrate->cpages--;
2498
2499                                 if (!is_zone_device_page(page))
2500                                         putback_lru_page(page);
2501                                 else
2502                                         put_page(page);
2503                         }
2504                 }
2505         }
2506
2507         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2508                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2509
2510                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2511                         continue;
2512
2513                 remove_migration_pte(page, migrate->vma, addr, page);
2514
2515                 migrate->src[i] = 0;
2516                 unlock_page(page);
2517                 put_page(page);
2518                 restore--;
2519         }
2520 }
2521
2522 /*
2523  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2524  * @migrate: migrate struct containing all migration information
2525  *
2526  * Replace page mapping (CPU page table pte) with a special migration pte entry
2527  * and check again if it has been pinned. Pinned pages are restored because we
2528  * cannot migrate them.
2529  *
2530  * This is the last step before we call the device driver callback to allocate
2531  * destination memory and copy contents of original page over to new page.
2532  */
2533 static void migrate_vma_unmap(struct migrate_vma *migrate)
2534 {
2535         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2536         const unsigned long npages = migrate->npages;
2537         const unsigned long start = migrate->start;
2538         unsigned long addr, i, restore = 0;
2539
2540         for (i = 0; i < npages; i++) {
2541                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542
2543                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2544                         continue;
2545
2546                 if (page_mapped(page)) {
2547                         try_to_unmap(page, flags);
2548                         if (page_mapped(page))
2549                                 goto restore;
2550                 }
2551
2552                 if (migrate_vma_check_page(page))
2553                         continue;
2554
2555 restore:
2556                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557                 migrate->cpages--;
2558                 restore++;
2559         }
2560
2561         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2562                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                         continue;
2566
2567                 remove_migration_ptes(page, page, false);
2568
2569                 migrate->src[i] = 0;
2570                 unlock_page(page);
2571                 restore--;
2572
2573                 if (is_zone_device_page(page))
2574                         put_page(page);
2575                 else
2576                         putback_lru_page(page);
2577         }
2578 }
2579
2580 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2581                                     unsigned long addr,
2582                                     struct page *page,
2583                                     unsigned long *src,
2584                                     unsigned long *dst)
2585 {
2586         struct vm_area_struct *vma = migrate->vma;
2587         struct mm_struct *mm = vma->vm_mm;
2588         struct mem_cgroup *memcg;
2589         bool flush = false;
2590         spinlock_t *ptl;
2591         pte_t entry;
2592         pgd_t *pgdp;
2593         p4d_t *p4dp;
2594         pud_t *pudp;
2595         pmd_t *pmdp;
2596         pte_t *ptep;
2597
2598         /* Only allow populating anonymous memory */
2599         if (!vma_is_anonymous(vma))
2600                 goto abort;
2601
2602         pgdp = pgd_offset(mm, addr);
2603         p4dp = p4d_alloc(mm, pgdp, addr);
2604         if (!p4dp)
2605                 goto abort;
2606         pudp = pud_alloc(mm, p4dp, addr);
2607         if (!pudp)
2608                 goto abort;
2609         pmdp = pmd_alloc(mm, pudp, addr);
2610         if (!pmdp)
2611                 goto abort;
2612
2613         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2614                 goto abort;
2615
2616         /*
2617          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2618          * pte_offset_map() on pmds where a huge pmd might be created
2619          * from a different thread.
2620          *
2621          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2622          * parallel threads are excluded by other means.
2623          *
2624          * Here we only have down_read(mmap_sem).
2625          */
2626         if (pte_alloc(mm, pmdp))
2627                 goto abort;
2628
2629         /* See the comment in pte_alloc_one_map() */
2630         if (unlikely(pmd_trans_unstable(pmdp)))
2631                 goto abort;
2632
2633         if (unlikely(anon_vma_prepare(vma)))
2634                 goto abort;
2635         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2636                 goto abort;
2637
2638         /*
2639          * The memory barrier inside __SetPageUptodate makes sure that
2640          * preceding stores to the page contents become visible before
2641          * the set_pte_at() write.
2642          */
2643         __SetPageUptodate(page);
2644
2645         if (is_zone_device_page(page)) {
2646                 if (is_device_private_page(page)) {
2647                         swp_entry_t swp_entry;
2648
2649                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2650                         entry = swp_entry_to_pte(swp_entry);
2651                 }
2652         } else {
2653                 entry = mk_pte(page, vma->vm_page_prot);
2654                 if (vma->vm_flags & VM_WRITE)
2655                         entry = pte_mkwrite(pte_mkdirty(entry));
2656         }
2657
2658         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2659
2660         if (pte_present(*ptep)) {
2661                 unsigned long pfn = pte_pfn(*ptep);
2662
2663                 if (!is_zero_pfn(pfn)) {
2664                         pte_unmap_unlock(ptep, ptl);
2665                         mem_cgroup_cancel_charge(page, memcg, false);
2666                         goto abort;
2667                 }
2668                 flush = true;
2669         } else if (!pte_none(*ptep)) {
2670                 pte_unmap_unlock(ptep, ptl);
2671                 mem_cgroup_cancel_charge(page, memcg, false);
2672                 goto abort;
2673         }
2674
2675         /*
2676          * Check for usefaultfd but do not deliver the fault. Instead,
2677          * just back off.
2678          */
2679         if (userfaultfd_missing(vma)) {
2680                 pte_unmap_unlock(ptep, ptl);
2681                 mem_cgroup_cancel_charge(page, memcg, false);
2682                 goto abort;
2683         }
2684
2685         inc_mm_counter(mm, MM_ANONPAGES);
2686         page_add_new_anon_rmap(page, vma, addr, false);
2687         mem_cgroup_commit_charge(page, memcg, false, false);
2688         if (!is_zone_device_page(page))
2689                 lru_cache_add_active_or_unevictable(page, vma);
2690         get_page(page);
2691
2692         if (flush) {
2693                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2694                 ptep_clear_flush_notify(vma, addr, ptep);
2695                 set_pte_at_notify(mm, addr, ptep, entry);
2696                 update_mmu_cache(vma, addr, ptep);
2697         } else {
2698                 /* No need to invalidate - it was non-present before */
2699                 set_pte_at(mm, addr, ptep, entry);
2700                 update_mmu_cache(vma, addr, ptep);
2701         }
2702
2703         pte_unmap_unlock(ptep, ptl);
2704         *src = MIGRATE_PFN_MIGRATE;
2705         return;
2706
2707 abort:
2708         *src &= ~MIGRATE_PFN_MIGRATE;
2709 }
2710
2711 /*
2712  * migrate_vma_pages() - migrate meta-data from src page to dst page
2713  * @migrate: migrate struct containing all migration information
2714  *
2715  * This migrates struct page meta-data from source struct page to destination
2716  * struct page. This effectively finishes the migration from source page to the
2717  * destination page.
2718  */
2719 static void migrate_vma_pages(struct migrate_vma *migrate)
2720 {
2721         const unsigned long npages = migrate->npages;
2722         const unsigned long start = migrate->start;
2723         struct mmu_notifier_range range;
2724         unsigned long addr, i;
2725         bool notified = false;
2726
2727         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2728                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2729                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2730                 struct address_space *mapping;
2731                 int r;
2732
2733                 if (!newpage) {
2734                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2735                         continue;
2736                 }
2737
2738                 if (!page) {
2739                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2740                                 continue;
2741                         }
2742                         if (!notified) {
2743                                 notified = true;
2744
2745                                 mmu_notifier_range_init(&range,
2746                                                         MMU_NOTIFY_CLEAR, 0,
2747                                                         NULL,
2748                                                         migrate->vma->vm_mm,
2749                                                         addr, migrate->end);
2750                                 mmu_notifier_invalidate_range_start(&range);
2751                         }
2752                         migrate_vma_insert_page(migrate, addr, newpage,
2753                                                 &migrate->src[i],
2754                                                 &migrate->dst[i]);
2755                         continue;
2756                 }
2757
2758                 mapping = page_mapping(page);
2759
2760                 if (is_zone_device_page(newpage)) {
2761                         if (is_device_private_page(newpage)) {
2762                                 /*
2763                                  * For now only support private anonymous when
2764                                  * migrating to un-addressable device memory.
2765                                  */
2766                                 if (mapping) {
2767                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768                                         continue;
2769                                 }
2770                         } else {
2771                                 /*
2772                                  * Other types of ZONE_DEVICE page are not
2773                                  * supported.
2774                                  */
2775                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2776                                 continue;
2777                         }
2778                 }
2779
2780                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2781                 if (r != MIGRATEPAGE_SUCCESS)
2782                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2783         }
2784
2785         /*
2786          * No need to double call mmu_notifier->invalidate_range() callback as
2787          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2788          * did already call it.
2789          */
2790         if (notified)
2791                 mmu_notifier_invalidate_range_only_end(&range);
2792 }
2793
2794 /*
2795  * migrate_vma_finalize() - restore CPU page table entry
2796  * @migrate: migrate struct containing all migration information
2797  *
2798  * This replaces the special migration pte entry with either a mapping to the
2799  * new page if migration was successful for that page, or to the original page
2800  * otherwise.
2801  *
2802  * This also unlocks the pages and puts them back on the lru, or drops the extra
2803  * refcount, for device pages.
2804  */
2805 static void migrate_vma_finalize(struct migrate_vma *migrate)
2806 {
2807         const unsigned long npages = migrate->npages;
2808         unsigned long i;
2809
2810         for (i = 0; i < npages; i++) {
2811                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2812                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2813
2814                 if (!page) {
2815                         if (newpage) {
2816                                 unlock_page(newpage);
2817                                 put_page(newpage);
2818                         }
2819                         continue;
2820                 }
2821
2822                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2823                         if (newpage) {
2824                                 unlock_page(newpage);
2825                                 put_page(newpage);
2826                         }
2827                         newpage = page;
2828                 }
2829
2830                 remove_migration_ptes(page, newpage, false);
2831                 unlock_page(page);
2832                 migrate->cpages--;
2833
2834                 if (is_zone_device_page(page))
2835                         put_page(page);
2836                 else
2837                         putback_lru_page(page);
2838
2839                 if (newpage != page) {
2840                         unlock_page(newpage);
2841                         if (is_zone_device_page(newpage))
2842                                 put_page(newpage);
2843                         else
2844                                 putback_lru_page(newpage);
2845                 }
2846         }
2847 }
2848
2849 /*
2850  * migrate_vma() - migrate a range of memory inside vma
2851  *
2852  * @ops: migration callback for allocating destination memory and copying
2853  * @vma: virtual memory area containing the range to be migrated
2854  * @start: start address of the range to migrate (inclusive)
2855  * @end: end address of the range to migrate (exclusive)
2856  * @src: array of hmm_pfn_t containing source pfns
2857  * @dst: array of hmm_pfn_t containing destination pfns
2858  * @private: pointer passed back to each of the callback
2859  * Returns: 0 on success, error code otherwise
2860  *
2861  * This function tries to migrate a range of memory virtual address range, using
2862  * callbacks to allocate and copy memory from source to destination. First it
2863  * collects all the pages backing each virtual address in the range, saving this
2864  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2865  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2866  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2867  * in the corresponding src array entry. It then restores any pages that are
2868  * pinned, by remapping and unlocking those pages.
2869  *
2870  * At this point it calls the alloc_and_copy() callback. For documentation on
2871  * what is expected from that callback, see struct migrate_vma_ops comments in
2872  * include/linux/migrate.h
2873  *
2874  * After the alloc_and_copy() callback, this function goes over each entry in
2875  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2876  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2877  * then the function tries to migrate struct page information from the source
2878  * struct page to the destination struct page. If it fails to migrate the struct
2879  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2880  * array.
2881  *
2882  * At this point all successfully migrated pages have an entry in the src
2883  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2884  * array entry with MIGRATE_PFN_VALID flag set.
2885  *
2886  * It then calls the finalize_and_map() callback. See comments for "struct
2887  * migrate_vma_ops", in include/linux/migrate.h for details about
2888  * finalize_and_map() behavior.
2889  *
2890  * After the finalize_and_map() callback, for successfully migrated pages, this
2891  * function updates the CPU page table to point to new pages, otherwise it
2892  * restores the CPU page table to point to the original source pages.
2893  *
2894  * Function returns 0 after the above steps, even if no pages were migrated
2895  * (The function only returns an error if any of the arguments are invalid.)
2896  *
2897  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2898  * unsigned long entries.
2899  */
2900 int migrate_vma(const struct migrate_vma_ops *ops,
2901                 struct vm_area_struct *vma,
2902                 unsigned long start,
2903                 unsigned long end,
2904                 unsigned long *src,
2905                 unsigned long *dst,
2906                 void *private)
2907 {
2908         struct migrate_vma migrate;
2909
2910         /* Sanity check the arguments */
2911         start &= PAGE_MASK;
2912         end &= PAGE_MASK;
2913         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2914                         vma_is_dax(vma))
2915                 return -EINVAL;
2916         if (start < vma->vm_start || start >= vma->vm_end)
2917                 return -EINVAL;
2918         if (end <= vma->vm_start || end > vma->vm_end)
2919                 return -EINVAL;
2920         if (!ops || !src || !dst || start >= end)
2921                 return -EINVAL;
2922
2923         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2924         migrate.src = src;
2925         migrate.dst = dst;
2926         migrate.start = start;
2927         migrate.npages = 0;
2928         migrate.cpages = 0;
2929         migrate.end = end;
2930         migrate.vma = vma;
2931
2932         /* Collect, and try to unmap source pages */
2933         migrate_vma_collect(&migrate);
2934         if (!migrate.cpages)
2935                 return 0;
2936
2937         /* Lock and isolate page */
2938         migrate_vma_prepare(&migrate);
2939         if (!migrate.cpages)
2940                 return 0;
2941
2942         /* Unmap pages */
2943         migrate_vma_unmap(&migrate);
2944         if (!migrate.cpages)
2945                 return 0;
2946
2947         /*
2948          * At this point pages are locked and unmapped, and thus they have
2949          * stable content and can safely be copied to destination memory that
2950          * is allocated by the callback.
2951          *
2952          * Note that migration can fail in migrate_vma_struct_page() for each
2953          * individual page.
2954          */
2955         ops->alloc_and_copy(vma, src, dst, start, end, private);
2956
2957         /* This does the real migration of struct page */
2958         migrate_vma_pages(&migrate);
2959
2960         ops->finalize_and_map(vma, src, dst, start, end, private);
2961
2962         /* Unlock and remap pages */
2963         migrate_vma_finalize(&migrate);
2964
2965         return 0;
2966 }
2967 EXPORT_SYMBOL(migrate_vma);
2968 #endif /* defined(MIGRATE_VMA_HELPER) */