drm/amdgpu/powerplay: fix typo in mvdd table setup
[linux-2.6-block.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51
52 #include <asm/tlbflush.h>
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/migrate.h>
56
57 #include "internal.h"
58
59 /*
60  * migrate_prep() needs to be called before we start compiling a list of pages
61  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
62  * undesirable, use migrate_prep_local()
63  */
64 int migrate_prep(void)
65 {
66         /*
67          * Clear the LRU lists so pages can be isolated.
68          * Note that pages may be moved off the LRU after we have
69          * drained them. Those pages will fail to migrate like other
70          * pages that may be busy.
71          */
72         lru_add_drain_all();
73
74         return 0;
75 }
76
77 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
78 int migrate_prep_local(void)
79 {
80         lru_add_drain();
81
82         return 0;
83 }
84
85 int isolate_movable_page(struct page *page, isolate_mode_t mode)
86 {
87         struct address_space *mapping;
88
89         /*
90          * Avoid burning cycles with pages that are yet under __free_pages(),
91          * or just got freed under us.
92          *
93          * In case we 'win' a race for a movable page being freed under us and
94          * raise its refcount preventing __free_pages() from doing its job
95          * the put_page() at the end of this block will take care of
96          * release this page, thus avoiding a nasty leakage.
97          */
98         if (unlikely(!get_page_unless_zero(page)))
99                 goto out;
100
101         /*
102          * Check PageMovable before holding a PG_lock because page's owner
103          * assumes anybody doesn't touch PG_lock of newly allocated page
104          * so unconditionally grabbing the lock ruins page's owner side.
105          */
106         if (unlikely(!__PageMovable(page)))
107                 goto out_putpage;
108         /*
109          * As movable pages are not isolated from LRU lists, concurrent
110          * compaction threads can race against page migration functions
111          * as well as race against the releasing a page.
112          *
113          * In order to avoid having an already isolated movable page
114          * being (wrongly) re-isolated while it is under migration,
115          * or to avoid attempting to isolate pages being released,
116          * lets be sure we have the page lock
117          * before proceeding with the movable page isolation steps.
118          */
119         if (unlikely(!trylock_page(page)))
120                 goto out_putpage;
121
122         if (!PageMovable(page) || PageIsolated(page))
123                 goto out_no_isolated;
124
125         mapping = page_mapping(page);
126         VM_BUG_ON_PAGE(!mapping, page);
127
128         if (!mapping->a_ops->isolate_page(page, mode))
129                 goto out_no_isolated;
130
131         /* Driver shouldn't use PG_isolated bit of page->flags */
132         WARN_ON_ONCE(PageIsolated(page));
133         __SetPageIsolated(page);
134         unlock_page(page);
135
136         return 0;
137
138 out_no_isolated:
139         unlock_page(page);
140 out_putpage:
141         put_page(page);
142 out:
143         return -EBUSY;
144 }
145
146 /* It should be called on page which is PG_movable */
147 void putback_movable_page(struct page *page)
148 {
149         struct address_space *mapping;
150
151         VM_BUG_ON_PAGE(!PageLocked(page), page);
152         VM_BUG_ON_PAGE(!PageMovable(page), page);
153         VM_BUG_ON_PAGE(!PageIsolated(page), page);
154
155         mapping = page_mapping(page);
156         mapping->a_ops->putback_page(page);
157         __ClearPageIsolated(page);
158 }
159
160 /*
161  * Put previously isolated pages back onto the appropriate lists
162  * from where they were once taken off for compaction/migration.
163  *
164  * This function shall be used whenever the isolated pageset has been
165  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
166  * and isolate_huge_page().
167  */
168 void putback_movable_pages(struct list_head *l)
169 {
170         struct page *page;
171         struct page *page2;
172
173         list_for_each_entry_safe(page, page2, l, lru) {
174                 if (unlikely(PageHuge(page))) {
175                         putback_active_hugepage(page);
176                         continue;
177                 }
178                 list_del(&page->lru);
179                 /*
180                  * We isolated non-lru movable page so here we can use
181                  * __PageMovable because LRU page's mapping cannot have
182                  * PAGE_MAPPING_MOVABLE.
183                  */
184                 if (unlikely(__PageMovable(page))) {
185                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
186                         lock_page(page);
187                         if (PageMovable(page))
188                                 putback_movable_page(page);
189                         else
190                                 __ClearPageIsolated(page);
191                         unlock_page(page);
192                         put_page(page);
193                 } else {
194                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
195                                         page_is_file_cache(page), -hpage_nr_pages(page));
196                         putback_lru_page(page);
197                 }
198         }
199 }
200
201 /*
202  * Restore a potential migration pte to a working pte entry
203  */
204 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
205                                  unsigned long addr, void *old)
206 {
207         struct page_vma_mapped_walk pvmw = {
208                 .page = old,
209                 .vma = vma,
210                 .address = addr,
211                 .flags = PVMW_SYNC | PVMW_MIGRATION,
212         };
213         struct page *new;
214         pte_t pte;
215         swp_entry_t entry;
216
217         VM_BUG_ON_PAGE(PageTail(page), page);
218         while (page_vma_mapped_walk(&pvmw)) {
219                 if (PageKsm(page))
220                         new = page;
221                 else
222                         new = page - pvmw.page->index +
223                                 linear_page_index(vma, pvmw.address);
224
225 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
226                 /* PMD-mapped THP migration entry */
227                 if (!pvmw.pte) {
228                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
229                         remove_migration_pmd(&pvmw, new);
230                         continue;
231                 }
232 #endif
233
234                 get_page(new);
235                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
236                 if (pte_swp_soft_dirty(*pvmw.pte))
237                         pte = pte_mksoft_dirty(pte);
238
239                 /*
240                  * Recheck VMA as permissions can change since migration started
241                  */
242                 entry = pte_to_swp_entry(*pvmw.pte);
243                 if (is_write_migration_entry(entry))
244                         pte = maybe_mkwrite(pte, vma);
245
246                 if (unlikely(is_zone_device_page(new))) {
247                         if (is_device_private_page(new)) {
248                                 entry = make_device_private_entry(new, pte_write(pte));
249                                 pte = swp_entry_to_pte(entry);
250                         }
251                 }
252
253 #ifdef CONFIG_HUGETLB_PAGE
254                 if (PageHuge(new)) {
255                         pte = pte_mkhuge(pte);
256                         pte = arch_make_huge_pte(pte, vma, new, 0);
257                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
258                         if (PageAnon(new))
259                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
260                         else
261                                 page_dup_rmap(new, true);
262                 } else
263 #endif
264                 {
265                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
266
267                         if (PageAnon(new))
268                                 page_add_anon_rmap(new, vma, pvmw.address, false);
269                         else
270                                 page_add_file_rmap(new, false);
271                 }
272                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273                         mlock_vma_page(new);
274
275                 if (PageTransHuge(page) && PageMlocked(page))
276                         clear_page_mlock(page);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once page cache replacement of page migration started, page_count
327          * is zero; but we must not call put_and_wait_on_page_locked() without
328          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
329          */
330         if (!get_page_unless_zero(page))
331                 goto out;
332         pte_unmap_unlock(ptep, ptl);
333         put_and_wait_on_page_locked(page);
334         return;
335 out:
336         pte_unmap_unlock(ptep, ptl);
337 }
338
339 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
340                                 unsigned long address)
341 {
342         spinlock_t *ptl = pte_lockptr(mm, pmd);
343         pte_t *ptep = pte_offset_map(pmd, address);
344         __migration_entry_wait(mm, ptep, ptl);
345 }
346
347 void migration_entry_wait_huge(struct vm_area_struct *vma,
348                 struct mm_struct *mm, pte_t *pte)
349 {
350         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
351         __migration_entry_wait(mm, pte, ptl);
352 }
353
354 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
355 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
356 {
357         spinlock_t *ptl;
358         struct page *page;
359
360         ptl = pmd_lock(mm, pmd);
361         if (!is_pmd_migration_entry(*pmd))
362                 goto unlock;
363         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
364         if (!get_page_unless_zero(page))
365                 goto unlock;
366         spin_unlock(ptl);
367         put_and_wait_on_page_locked(page);
368         return;
369 unlock:
370         spin_unlock(ptl);
371 }
372 #endif
373
374 static int expected_page_refs(struct address_space *mapping, struct page *page)
375 {
376         int expected_count = 1;
377
378         /*
379          * Device public or private pages have an extra refcount as they are
380          * ZONE_DEVICE pages.
381          */
382         expected_count += is_device_private_page(page);
383         if (mapping)
384                 expected_count += hpage_nr_pages(page) + page_has_private(page);
385
386         return expected_count;
387 }
388
389 /*
390  * Replace the page in the mapping.
391  *
392  * The number of remaining references must be:
393  * 1 for anonymous pages without a mapping
394  * 2 for pages with a mapping
395  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
396  */
397 int migrate_page_move_mapping(struct address_space *mapping,
398                 struct page *newpage, struct page *page, int extra_count)
399 {
400         XA_STATE(xas, &mapping->i_pages, page_index(page));
401         struct zone *oldzone, *newzone;
402         int dirty;
403         int expected_count = expected_page_refs(mapping, page) + extra_count;
404
405         if (!mapping) {
406                 /* Anonymous page without mapping */
407                 if (page_count(page) != expected_count)
408                         return -EAGAIN;
409
410                 /* No turning back from here */
411                 newpage->index = page->index;
412                 newpage->mapping = page->mapping;
413                 if (PageSwapBacked(page))
414                         __SetPageSwapBacked(newpage);
415
416                 return MIGRATEPAGE_SUCCESS;
417         }
418
419         oldzone = page_zone(page);
420         newzone = page_zone(newpage);
421
422         xas_lock_irq(&xas);
423         if (page_count(page) != expected_count || xas_load(&xas) != page) {
424                 xas_unlock_irq(&xas);
425                 return -EAGAIN;
426         }
427
428         if (!page_ref_freeze(page, expected_count)) {
429                 xas_unlock_irq(&xas);
430                 return -EAGAIN;
431         }
432
433         /*
434          * Now we know that no one else is looking at the page:
435          * no turning back from here.
436          */
437         newpage->index = page->index;
438         newpage->mapping = page->mapping;
439         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
440         if (PageSwapBacked(page)) {
441                 __SetPageSwapBacked(newpage);
442                 if (PageSwapCache(page)) {
443                         SetPageSwapCache(newpage);
444                         set_page_private(newpage, page_private(page));
445                 }
446         } else {
447                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
448         }
449
450         /* Move dirty while page refs frozen and newpage not yet exposed */
451         dirty = PageDirty(page);
452         if (dirty) {
453                 ClearPageDirty(page);
454                 SetPageDirty(newpage);
455         }
456
457         xas_store(&xas, newpage);
458         if (PageTransHuge(page)) {
459                 int i;
460
461                 for (i = 1; i < HPAGE_PMD_NR; i++) {
462                         xas_next(&xas);
463                         xas_store(&xas, newpage);
464                 }
465         }
466
467         /*
468          * Drop cache reference from old page by unfreezing
469          * to one less reference.
470          * We know this isn't the last reference.
471          */
472         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
473
474         xas_unlock(&xas);
475         /* Leave irq disabled to prevent preemption while updating stats */
476
477         /*
478          * If moved to a different zone then also account
479          * the page for that zone. Other VM counters will be
480          * taken care of when we establish references to the
481          * new page and drop references to the old page.
482          *
483          * Note that anonymous pages are accounted for
484          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
485          * are mapped to swap space.
486          */
487         if (newzone != oldzone) {
488                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
489                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
490                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
491                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
492                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
493                 }
494                 if (dirty && mapping_cap_account_dirty(mapping)) {
495                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
496                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
497                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
498                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
499                 }
500         }
501         local_irq_enable();
502
503         return MIGRATEPAGE_SUCCESS;
504 }
505 EXPORT_SYMBOL(migrate_page_move_mapping);
506
507 /*
508  * The expected number of remaining references is the same as that
509  * of migrate_page_move_mapping().
510  */
511 int migrate_huge_page_move_mapping(struct address_space *mapping,
512                                    struct page *newpage, struct page *page)
513 {
514         XA_STATE(xas, &mapping->i_pages, page_index(page));
515         int expected_count;
516
517         xas_lock_irq(&xas);
518         expected_count = 2 + page_has_private(page);
519         if (page_count(page) != expected_count || xas_load(&xas) != page) {
520                 xas_unlock_irq(&xas);
521                 return -EAGAIN;
522         }
523
524         if (!page_ref_freeze(page, expected_count)) {
525                 xas_unlock_irq(&xas);
526                 return -EAGAIN;
527         }
528
529         newpage->index = page->index;
530         newpage->mapping = page->mapping;
531
532         get_page(newpage);
533
534         xas_store(&xas, newpage);
535
536         page_ref_unfreeze(page, expected_count - 1);
537
538         xas_unlock_irq(&xas);
539
540         return MIGRATEPAGE_SUCCESS;
541 }
542
543 /*
544  * Gigantic pages are so large that we do not guarantee that page++ pointer
545  * arithmetic will work across the entire page.  We need something more
546  * specialized.
547  */
548 static void __copy_gigantic_page(struct page *dst, struct page *src,
549                                 int nr_pages)
550 {
551         int i;
552         struct page *dst_base = dst;
553         struct page *src_base = src;
554
555         for (i = 0; i < nr_pages; ) {
556                 cond_resched();
557                 copy_highpage(dst, src);
558
559                 i++;
560                 dst = mem_map_next(dst, dst_base, i);
561                 src = mem_map_next(src, src_base, i);
562         }
563 }
564
565 static void copy_huge_page(struct page *dst, struct page *src)
566 {
567         int i;
568         int nr_pages;
569
570         if (PageHuge(src)) {
571                 /* hugetlbfs page */
572                 struct hstate *h = page_hstate(src);
573                 nr_pages = pages_per_huge_page(h);
574
575                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
576                         __copy_gigantic_page(dst, src, nr_pages);
577                         return;
578                 }
579         } else {
580                 /* thp page */
581                 BUG_ON(!PageTransHuge(src));
582                 nr_pages = hpage_nr_pages(src);
583         }
584
585         for (i = 0; i < nr_pages; i++) {
586                 cond_resched();
587                 copy_highpage(dst + i, src + i);
588         }
589 }
590
591 /*
592  * Copy the page to its new location
593  */
594 void migrate_page_states(struct page *newpage, struct page *page)
595 {
596         int cpupid;
597
598         if (PageError(page))
599                 SetPageError(newpage);
600         if (PageReferenced(page))
601                 SetPageReferenced(newpage);
602         if (PageUptodate(page))
603                 SetPageUptodate(newpage);
604         if (TestClearPageActive(page)) {
605                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
606                 SetPageActive(newpage);
607         } else if (TestClearPageUnevictable(page))
608                 SetPageUnevictable(newpage);
609         if (PageWorkingset(page))
610                 SetPageWorkingset(newpage);
611         if (PageChecked(page))
612                 SetPageChecked(newpage);
613         if (PageMappedToDisk(page))
614                 SetPageMappedToDisk(newpage);
615
616         /* Move dirty on pages not done by migrate_page_move_mapping() */
617         if (PageDirty(page))
618                 SetPageDirty(newpage);
619
620         if (page_is_young(page))
621                 set_page_young(newpage);
622         if (page_is_idle(page))
623                 set_page_idle(newpage);
624
625         /*
626          * Copy NUMA information to the new page, to prevent over-eager
627          * future migrations of this same page.
628          */
629         cpupid = page_cpupid_xchg_last(page, -1);
630         page_cpupid_xchg_last(newpage, cpupid);
631
632         ksm_migrate_page(newpage, page);
633         /*
634          * Please do not reorder this without considering how mm/ksm.c's
635          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
636          */
637         if (PageSwapCache(page))
638                 ClearPageSwapCache(page);
639         ClearPagePrivate(page);
640         set_page_private(page, 0);
641
642         /*
643          * If any waiters have accumulated on the new page then
644          * wake them up.
645          */
646         if (PageWriteback(newpage))
647                 end_page_writeback(newpage);
648
649         copy_page_owner(page, newpage);
650
651         mem_cgroup_migrate(page, newpage);
652 }
653 EXPORT_SYMBOL(migrate_page_states);
654
655 void migrate_page_copy(struct page *newpage, struct page *page)
656 {
657         if (PageHuge(page) || PageTransHuge(page))
658                 copy_huge_page(newpage, page);
659         else
660                 copy_highpage(newpage, page);
661
662         migrate_page_states(newpage, page);
663 }
664 EXPORT_SYMBOL(migrate_page_copy);
665
666 /************************************************************
667  *                    Migration functions
668  ***********************************************************/
669
670 /*
671  * Common logic to directly migrate a single LRU page suitable for
672  * pages that do not use PagePrivate/PagePrivate2.
673  *
674  * Pages are locked upon entry and exit.
675  */
676 int migrate_page(struct address_space *mapping,
677                 struct page *newpage, struct page *page,
678                 enum migrate_mode mode)
679 {
680         int rc;
681
682         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
683
684         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
685
686         if (rc != MIGRATEPAGE_SUCCESS)
687                 return rc;
688
689         if (mode != MIGRATE_SYNC_NO_COPY)
690                 migrate_page_copy(newpage, page);
691         else
692                 migrate_page_states(newpage, page);
693         return MIGRATEPAGE_SUCCESS;
694 }
695 EXPORT_SYMBOL(migrate_page);
696
697 #ifdef CONFIG_BLOCK
698 /* Returns true if all buffers are successfully locked */
699 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
700                                                         enum migrate_mode mode)
701 {
702         struct buffer_head *bh = head;
703
704         /* Simple case, sync compaction */
705         if (mode != MIGRATE_ASYNC) {
706                 do {
707                         lock_buffer(bh);
708                         bh = bh->b_this_page;
709
710                 } while (bh != head);
711
712                 return true;
713         }
714
715         /* async case, we cannot block on lock_buffer so use trylock_buffer */
716         do {
717                 if (!trylock_buffer(bh)) {
718                         /*
719                          * We failed to lock the buffer and cannot stall in
720                          * async migration. Release the taken locks
721                          */
722                         struct buffer_head *failed_bh = bh;
723                         bh = head;
724                         while (bh != failed_bh) {
725                                 unlock_buffer(bh);
726                                 bh = bh->b_this_page;
727                         }
728                         return false;
729                 }
730
731                 bh = bh->b_this_page;
732         } while (bh != head);
733         return true;
734 }
735
736 static int __buffer_migrate_page(struct address_space *mapping,
737                 struct page *newpage, struct page *page, enum migrate_mode mode,
738                 bool check_refs)
739 {
740         struct buffer_head *bh, *head;
741         int rc;
742         int expected_count;
743
744         if (!page_has_buffers(page))
745                 return migrate_page(mapping, newpage, page, mode);
746
747         /* Check whether page does not have extra refs before we do more work */
748         expected_count = expected_page_refs(mapping, page);
749         if (page_count(page) != expected_count)
750                 return -EAGAIN;
751
752         head = page_buffers(page);
753         if (!buffer_migrate_lock_buffers(head, mode))
754                 return -EAGAIN;
755
756         if (check_refs) {
757                 bool busy;
758                 bool invalidated = false;
759
760 recheck_buffers:
761                 busy = false;
762                 spin_lock(&mapping->private_lock);
763                 bh = head;
764                 do {
765                         if (atomic_read(&bh->b_count)) {
766                                 busy = true;
767                                 break;
768                         }
769                         bh = bh->b_this_page;
770                 } while (bh != head);
771                 if (busy) {
772                         if (invalidated) {
773                                 rc = -EAGAIN;
774                                 goto unlock_buffers;
775                         }
776                         spin_unlock(&mapping->private_lock);
777                         invalidate_bh_lrus();
778                         invalidated = true;
779                         goto recheck_buffers;
780                 }
781         }
782
783         rc = migrate_page_move_mapping(mapping, newpage, page, 0);
784         if (rc != MIGRATEPAGE_SUCCESS)
785                 goto unlock_buffers;
786
787         ClearPagePrivate(page);
788         set_page_private(newpage, page_private(page));
789         set_page_private(page, 0);
790         put_page(page);
791         get_page(newpage);
792
793         bh = head;
794         do {
795                 set_bh_page(bh, newpage, bh_offset(bh));
796                 bh = bh->b_this_page;
797
798         } while (bh != head);
799
800         SetPagePrivate(newpage);
801
802         if (mode != MIGRATE_SYNC_NO_COPY)
803                 migrate_page_copy(newpage, page);
804         else
805                 migrate_page_states(newpage, page);
806
807         rc = MIGRATEPAGE_SUCCESS;
808 unlock_buffers:
809         if (check_refs)
810                 spin_unlock(&mapping->private_lock);
811         bh = head;
812         do {
813                 unlock_buffer(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return rc;
819 }
820
821 /*
822  * Migration function for pages with buffers. This function can only be used
823  * if the underlying filesystem guarantees that no other references to "page"
824  * exist. For example attached buffer heads are accessed only under page lock.
825  */
826 int buffer_migrate_page(struct address_space *mapping,
827                 struct page *newpage, struct page *page, enum migrate_mode mode)
828 {
829         return __buffer_migrate_page(mapping, newpage, page, mode, false);
830 }
831 EXPORT_SYMBOL(buffer_migrate_page);
832
833 /*
834  * Same as above except that this variant is more careful and checks that there
835  * are also no buffer head references. This function is the right one for
836  * mappings where buffer heads are directly looked up and referenced (such as
837  * block device mappings).
838  */
839 int buffer_migrate_page_norefs(struct address_space *mapping,
840                 struct page *newpage, struct page *page, enum migrate_mode mode)
841 {
842         return __buffer_migrate_page(mapping, newpage, page, mode, true);
843 }
844 #endif
845
846 /*
847  * Writeback a page to clean the dirty state
848  */
849 static int writeout(struct address_space *mapping, struct page *page)
850 {
851         struct writeback_control wbc = {
852                 .sync_mode = WB_SYNC_NONE,
853                 .nr_to_write = 1,
854                 .range_start = 0,
855                 .range_end = LLONG_MAX,
856                 .for_reclaim = 1
857         };
858         int rc;
859
860         if (!mapping->a_ops->writepage)
861                 /* No write method for the address space */
862                 return -EINVAL;
863
864         if (!clear_page_dirty_for_io(page))
865                 /* Someone else already triggered a write */
866                 return -EAGAIN;
867
868         /*
869          * A dirty page may imply that the underlying filesystem has
870          * the page on some queue. So the page must be clean for
871          * migration. Writeout may mean we loose the lock and the
872          * page state is no longer what we checked for earlier.
873          * At this point we know that the migration attempt cannot
874          * be successful.
875          */
876         remove_migration_ptes(page, page, false);
877
878         rc = mapping->a_ops->writepage(page, &wbc);
879
880         if (rc != AOP_WRITEPAGE_ACTIVATE)
881                 /* unlocked. Relock */
882                 lock_page(page);
883
884         return (rc < 0) ? -EIO : -EAGAIN;
885 }
886
887 /*
888  * Default handling if a filesystem does not provide a migration function.
889  */
890 static int fallback_migrate_page(struct address_space *mapping,
891         struct page *newpage, struct page *page, enum migrate_mode mode)
892 {
893         if (PageDirty(page)) {
894                 /* Only writeback pages in full synchronous migration */
895                 switch (mode) {
896                 case MIGRATE_SYNC:
897                 case MIGRATE_SYNC_NO_COPY:
898                         break;
899                 default:
900                         return -EBUSY;
901                 }
902                 return writeout(mapping, page);
903         }
904
905         /*
906          * Buffers may be managed in a filesystem specific way.
907          * We must have no buffers or drop them.
908          */
909         if (page_has_private(page) &&
910             !try_to_release_page(page, GFP_KERNEL))
911                 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
912
913         return migrate_page(mapping, newpage, page, mode);
914 }
915
916 /*
917  * Move a page to a newly allocated page
918  * The page is locked and all ptes have been successfully removed.
919  *
920  * The new page will have replaced the old page if this function
921  * is successful.
922  *
923  * Return value:
924  *   < 0 - error code
925  *  MIGRATEPAGE_SUCCESS - success
926  */
927 static int move_to_new_page(struct page *newpage, struct page *page,
928                                 enum migrate_mode mode)
929 {
930         struct address_space *mapping;
931         int rc = -EAGAIN;
932         bool is_lru = !__PageMovable(page);
933
934         VM_BUG_ON_PAGE(!PageLocked(page), page);
935         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
936
937         mapping = page_mapping(page);
938
939         if (likely(is_lru)) {
940                 if (!mapping)
941                         rc = migrate_page(mapping, newpage, page, mode);
942                 else if (mapping->a_ops->migratepage)
943                         /*
944                          * Most pages have a mapping and most filesystems
945                          * provide a migratepage callback. Anonymous pages
946                          * are part of swap space which also has its own
947                          * migratepage callback. This is the most common path
948                          * for page migration.
949                          */
950                         rc = mapping->a_ops->migratepage(mapping, newpage,
951                                                         page, mode);
952                 else
953                         rc = fallback_migrate_page(mapping, newpage,
954                                                         page, mode);
955         } else {
956                 /*
957                  * In case of non-lru page, it could be released after
958                  * isolation step. In that case, we shouldn't try migration.
959                  */
960                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
961                 if (!PageMovable(page)) {
962                         rc = MIGRATEPAGE_SUCCESS;
963                         __ClearPageIsolated(page);
964                         goto out;
965                 }
966
967                 rc = mapping->a_ops->migratepage(mapping, newpage,
968                                                 page, mode);
969                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
970                         !PageIsolated(page));
971         }
972
973         /*
974          * When successful, old pagecache page->mapping must be cleared before
975          * page is freed; but stats require that PageAnon be left as PageAnon.
976          */
977         if (rc == MIGRATEPAGE_SUCCESS) {
978                 if (__PageMovable(page)) {
979                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
980
981                         /*
982                          * We clear PG_movable under page_lock so any compactor
983                          * cannot try to migrate this page.
984                          */
985                         __ClearPageIsolated(page);
986                 }
987
988                 /*
989                  * Anonymous and movable page->mapping will be cleard by
990                  * free_pages_prepare so don't reset it here for keeping
991                  * the type to work PageAnon, for example.
992                  */
993                 if (!PageMappingFlags(page))
994                         page->mapping = NULL;
995
996                 if (likely(!is_zone_device_page(newpage)))
997                         flush_dcache_page(newpage);
998
999         }
1000 out:
1001         return rc;
1002 }
1003
1004 static int __unmap_and_move(struct page *page, struct page *newpage,
1005                                 int force, enum migrate_mode mode)
1006 {
1007         int rc = -EAGAIN;
1008         int page_was_mapped = 0;
1009         struct anon_vma *anon_vma = NULL;
1010         bool is_lru = !__PageMovable(page);
1011
1012         if (!trylock_page(page)) {
1013                 if (!force || mode == MIGRATE_ASYNC)
1014                         goto out;
1015
1016                 /*
1017                  * It's not safe for direct compaction to call lock_page.
1018                  * For example, during page readahead pages are added locked
1019                  * to the LRU. Later, when the IO completes the pages are
1020                  * marked uptodate and unlocked. However, the queueing
1021                  * could be merging multiple pages for one bio (e.g.
1022                  * mpage_readpages). If an allocation happens for the
1023                  * second or third page, the process can end up locking
1024                  * the same page twice and deadlocking. Rather than
1025                  * trying to be clever about what pages can be locked,
1026                  * avoid the use of lock_page for direct compaction
1027                  * altogether.
1028                  */
1029                 if (current->flags & PF_MEMALLOC)
1030                         goto out;
1031
1032                 lock_page(page);
1033         }
1034
1035         if (PageWriteback(page)) {
1036                 /*
1037                  * Only in the case of a full synchronous migration is it
1038                  * necessary to wait for PageWriteback. In the async case,
1039                  * the retry loop is too short and in the sync-light case,
1040                  * the overhead of stalling is too much
1041                  */
1042                 switch (mode) {
1043                 case MIGRATE_SYNC:
1044                 case MIGRATE_SYNC_NO_COPY:
1045                         break;
1046                 default:
1047                         rc = -EBUSY;
1048                         goto out_unlock;
1049                 }
1050                 if (!force)
1051                         goto out_unlock;
1052                 wait_on_page_writeback(page);
1053         }
1054
1055         /*
1056          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1057          * we cannot notice that anon_vma is freed while we migrates a page.
1058          * This get_anon_vma() delays freeing anon_vma pointer until the end
1059          * of migration. File cache pages are no problem because of page_lock()
1060          * File Caches may use write_page() or lock_page() in migration, then,
1061          * just care Anon page here.
1062          *
1063          * Only page_get_anon_vma() understands the subtleties of
1064          * getting a hold on an anon_vma from outside one of its mms.
1065          * But if we cannot get anon_vma, then we won't need it anyway,
1066          * because that implies that the anon page is no longer mapped
1067          * (and cannot be remapped so long as we hold the page lock).
1068          */
1069         if (PageAnon(page) && !PageKsm(page))
1070                 anon_vma = page_get_anon_vma(page);
1071
1072         /*
1073          * Block others from accessing the new page when we get around to
1074          * establishing additional references. We are usually the only one
1075          * holding a reference to newpage at this point. We used to have a BUG
1076          * here if trylock_page(newpage) fails, but would like to allow for
1077          * cases where there might be a race with the previous use of newpage.
1078          * This is much like races on refcount of oldpage: just don't BUG().
1079          */
1080         if (unlikely(!trylock_page(newpage)))
1081                 goto out_unlock;
1082
1083         if (unlikely(!is_lru)) {
1084                 rc = move_to_new_page(newpage, page, mode);
1085                 goto out_unlock_both;
1086         }
1087
1088         /*
1089          * Corner case handling:
1090          * 1. When a new swap-cache page is read into, it is added to the LRU
1091          * and treated as swapcache but it has no rmap yet.
1092          * Calling try_to_unmap() against a page->mapping==NULL page will
1093          * trigger a BUG.  So handle it here.
1094          * 2. An orphaned page (see truncate_complete_page) might have
1095          * fs-private metadata. The page can be picked up due to memory
1096          * offlining.  Everywhere else except page reclaim, the page is
1097          * invisible to the vm, so the page can not be migrated.  So try to
1098          * free the metadata, so the page can be freed.
1099          */
1100         if (!page->mapping) {
1101                 VM_BUG_ON_PAGE(PageAnon(page), page);
1102                 if (page_has_private(page)) {
1103                         try_to_free_buffers(page);
1104                         goto out_unlock_both;
1105                 }
1106         } else if (page_mapped(page)) {
1107                 /* Establish migration ptes */
1108                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1109                                 page);
1110                 try_to_unmap(page,
1111                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1112                 page_was_mapped = 1;
1113         }
1114
1115         if (!page_mapped(page))
1116                 rc = move_to_new_page(newpage, page, mode);
1117
1118         if (page_was_mapped)
1119                 remove_migration_ptes(page,
1120                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1121
1122 out_unlock_both:
1123         unlock_page(newpage);
1124 out_unlock:
1125         /* Drop an anon_vma reference if we took one */
1126         if (anon_vma)
1127                 put_anon_vma(anon_vma);
1128         unlock_page(page);
1129 out:
1130         /*
1131          * If migration is successful, decrease refcount of the newpage
1132          * which will not free the page because new page owner increased
1133          * refcounter. As well, if it is LRU page, add the page to LRU
1134          * list in here. Use the old state of the isolated source page to
1135          * determine if we migrated a LRU page. newpage was already unlocked
1136          * and possibly modified by its owner - don't rely on the page
1137          * state.
1138          */
1139         if (rc == MIGRATEPAGE_SUCCESS) {
1140                 if (unlikely(!is_lru))
1141                         put_page(newpage);
1142                 else
1143                         putback_lru_page(newpage);
1144         }
1145
1146         return rc;
1147 }
1148
1149 /*
1150  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1151  * around it.
1152  */
1153 #if defined(CONFIG_ARM) && \
1154         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1155 #define ICE_noinline noinline
1156 #else
1157 #define ICE_noinline
1158 #endif
1159
1160 /*
1161  * Obtain the lock on page, remove all ptes and migrate the page
1162  * to the newly allocated page in newpage.
1163  */
1164 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1165                                    free_page_t put_new_page,
1166                                    unsigned long private, struct page *page,
1167                                    int force, enum migrate_mode mode,
1168                                    enum migrate_reason reason)
1169 {
1170         int rc = MIGRATEPAGE_SUCCESS;
1171         struct page *newpage;
1172
1173         if (!thp_migration_supported() && PageTransHuge(page))
1174                 return -ENOMEM;
1175
1176         newpage = get_new_page(page, private);
1177         if (!newpage)
1178                 return -ENOMEM;
1179
1180         if (page_count(page) == 1) {
1181                 /* page was freed from under us. So we are done. */
1182                 ClearPageActive(page);
1183                 ClearPageUnevictable(page);
1184                 if (unlikely(__PageMovable(page))) {
1185                         lock_page(page);
1186                         if (!PageMovable(page))
1187                                 __ClearPageIsolated(page);
1188                         unlock_page(page);
1189                 }
1190                 if (put_new_page)
1191                         put_new_page(newpage, private);
1192                 else
1193                         put_page(newpage);
1194                 goto out;
1195         }
1196
1197         rc = __unmap_and_move(page, newpage, force, mode);
1198         if (rc == MIGRATEPAGE_SUCCESS)
1199                 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202         if (rc != -EAGAIN) {
1203                 /*
1204                  * A page that has been migrated has all references
1205                  * removed and will be freed. A page that has not been
1206                  * migrated will have kepts its references and be
1207                  * restored.
1208                  */
1209                 list_del(&page->lru);
1210
1211                 /*
1212                  * Compaction can migrate also non-LRU pages which are
1213                  * not accounted to NR_ISOLATED_*. They can be recognized
1214                  * as __PageMovable
1215                  */
1216                 if (likely(!__PageMovable(page)))
1217                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1218                                         page_is_file_cache(page), -hpage_nr_pages(page));
1219         }
1220
1221         /*
1222          * If migration is successful, releases reference grabbed during
1223          * isolation. Otherwise, restore the page to right list unless
1224          * we want to retry.
1225          */
1226         if (rc == MIGRATEPAGE_SUCCESS) {
1227                 put_page(page);
1228                 if (reason == MR_MEMORY_FAILURE) {
1229                         /*
1230                          * Set PG_HWPoison on just freed page
1231                          * intentionally. Although it's rather weird,
1232                          * it's how HWPoison flag works at the moment.
1233                          */
1234                         if (set_hwpoison_free_buddy_page(page))
1235                                 num_poisoned_pages_inc();
1236                 }
1237         } else {
1238                 if (rc != -EAGAIN) {
1239                         if (likely(!__PageMovable(page))) {
1240                                 putback_lru_page(page);
1241                                 goto put_new;
1242                         }
1243
1244                         lock_page(page);
1245                         if (PageMovable(page))
1246                                 putback_movable_page(page);
1247                         else
1248                                 __ClearPageIsolated(page);
1249                         unlock_page(page);
1250                         put_page(page);
1251                 }
1252 put_new:
1253                 if (put_new_page)
1254                         put_new_page(newpage, private);
1255                 else
1256                         put_page(newpage);
1257         }
1258
1259         return rc;
1260 }
1261
1262 /*
1263  * Counterpart of unmap_and_move_page() for hugepage migration.
1264  *
1265  * This function doesn't wait the completion of hugepage I/O
1266  * because there is no race between I/O and migration for hugepage.
1267  * Note that currently hugepage I/O occurs only in direct I/O
1268  * where no lock is held and PG_writeback is irrelevant,
1269  * and writeback status of all subpages are counted in the reference
1270  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1271  * under direct I/O, the reference of the head page is 512 and a bit more.)
1272  * This means that when we try to migrate hugepage whose subpages are
1273  * doing direct I/O, some references remain after try_to_unmap() and
1274  * hugepage migration fails without data corruption.
1275  *
1276  * There is also no race when direct I/O is issued on the page under migration,
1277  * because then pte is replaced with migration swap entry and direct I/O code
1278  * will wait in the page fault for migration to complete.
1279  */
1280 static int unmap_and_move_huge_page(new_page_t get_new_page,
1281                                 free_page_t put_new_page, unsigned long private,
1282                                 struct page *hpage, int force,
1283                                 enum migrate_mode mode, int reason)
1284 {
1285         int rc = -EAGAIN;
1286         int page_was_mapped = 0;
1287         struct page *new_hpage;
1288         struct anon_vma *anon_vma = NULL;
1289
1290         /*
1291          * Migratability of hugepages depends on architectures and their size.
1292          * This check is necessary because some callers of hugepage migration
1293          * like soft offline and memory hotremove don't walk through page
1294          * tables or check whether the hugepage is pmd-based or not before
1295          * kicking migration.
1296          */
1297         if (!hugepage_migration_supported(page_hstate(hpage))) {
1298                 putback_active_hugepage(hpage);
1299                 return -ENOSYS;
1300         }
1301
1302         new_hpage = get_new_page(hpage, private);
1303         if (!new_hpage)
1304                 return -ENOMEM;
1305
1306         if (!trylock_page(hpage)) {
1307                 if (!force)
1308                         goto out;
1309                 switch (mode) {
1310                 case MIGRATE_SYNC:
1311                 case MIGRATE_SYNC_NO_COPY:
1312                         break;
1313                 default:
1314                         goto out;
1315                 }
1316                 lock_page(hpage);
1317         }
1318
1319         /*
1320          * Check for pages which are in the process of being freed.  Without
1321          * page_mapping() set, hugetlbfs specific move page routine will not
1322          * be called and we could leak usage counts for subpools.
1323          */
1324         if (page_private(hpage) && !page_mapping(hpage)) {
1325                 rc = -EBUSY;
1326                 goto out_unlock;
1327         }
1328
1329         if (PageAnon(hpage))
1330                 anon_vma = page_get_anon_vma(hpage);
1331
1332         if (unlikely(!trylock_page(new_hpage)))
1333                 goto put_anon;
1334
1335         if (page_mapped(hpage)) {
1336                 try_to_unmap(hpage,
1337                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1338                 page_was_mapped = 1;
1339         }
1340
1341         if (!page_mapped(hpage))
1342                 rc = move_to_new_page(new_hpage, hpage, mode);
1343
1344         if (page_was_mapped)
1345                 remove_migration_ptes(hpage,
1346                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1347
1348         unlock_page(new_hpage);
1349
1350 put_anon:
1351         if (anon_vma)
1352                 put_anon_vma(anon_vma);
1353
1354         if (rc == MIGRATEPAGE_SUCCESS) {
1355                 move_hugetlb_state(hpage, new_hpage, reason);
1356                 put_new_page = NULL;
1357         }
1358
1359 out_unlock:
1360         unlock_page(hpage);
1361 out:
1362         if (rc != -EAGAIN)
1363                 putback_active_hugepage(hpage);
1364
1365         /*
1366          * If migration was not successful and there's a freeing callback, use
1367          * it.  Otherwise, put_page() will drop the reference grabbed during
1368          * isolation.
1369          */
1370         if (put_new_page)
1371                 put_new_page(new_hpage, private);
1372         else
1373                 putback_active_hugepage(new_hpage);
1374
1375         return rc;
1376 }
1377
1378 /*
1379  * migrate_pages - migrate the pages specified in a list, to the free pages
1380  *                 supplied as the target for the page migration
1381  *
1382  * @from:               The list of pages to be migrated.
1383  * @get_new_page:       The function used to allocate free pages to be used
1384  *                      as the target of the page migration.
1385  * @put_new_page:       The function used to free target pages if migration
1386  *                      fails, or NULL if no special handling is necessary.
1387  * @private:            Private data to be passed on to get_new_page()
1388  * @mode:               The migration mode that specifies the constraints for
1389  *                      page migration, if any.
1390  * @reason:             The reason for page migration.
1391  *
1392  * The function returns after 10 attempts or if no pages are movable any more
1393  * because the list has become empty or no retryable pages exist any more.
1394  * The caller should call putback_movable_pages() to return pages to the LRU
1395  * or free list only if ret != 0.
1396  *
1397  * Returns the number of pages that were not migrated, or an error code.
1398  */
1399 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1400                 free_page_t put_new_page, unsigned long private,
1401                 enum migrate_mode mode, int reason)
1402 {
1403         int retry = 1;
1404         int nr_failed = 0;
1405         int nr_succeeded = 0;
1406         int pass = 0;
1407         struct page *page;
1408         struct page *page2;
1409         int swapwrite = current->flags & PF_SWAPWRITE;
1410         int rc;
1411
1412         if (!swapwrite)
1413                 current->flags |= PF_SWAPWRITE;
1414
1415         for(pass = 0; pass < 10 && retry; pass++) {
1416                 retry = 0;
1417
1418                 list_for_each_entry_safe(page, page2, from, lru) {
1419 retry:
1420                         cond_resched();
1421
1422                         if (PageHuge(page))
1423                                 rc = unmap_and_move_huge_page(get_new_page,
1424                                                 put_new_page, private, page,
1425                                                 pass > 2, mode, reason);
1426                         else
1427                                 rc = unmap_and_move(get_new_page, put_new_page,
1428                                                 private, page, pass > 2, mode,
1429                                                 reason);
1430
1431                         switch(rc) {
1432                         case -ENOMEM:
1433                                 /*
1434                                  * THP migration might be unsupported or the
1435                                  * allocation could've failed so we should
1436                                  * retry on the same page with the THP split
1437                                  * to base pages.
1438                                  *
1439                                  * Head page is retried immediately and tail
1440                                  * pages are added to the tail of the list so
1441                                  * we encounter them after the rest of the list
1442                                  * is processed.
1443                                  */
1444                                 if (PageTransHuge(page) && !PageHuge(page)) {
1445                                         lock_page(page);
1446                                         rc = split_huge_page_to_list(page, from);
1447                                         unlock_page(page);
1448                                         if (!rc) {
1449                                                 list_safe_reset_next(page, page2, lru);
1450                                                 goto retry;
1451                                         }
1452                                 }
1453                                 nr_failed++;
1454                                 goto out;
1455                         case -EAGAIN:
1456                                 retry++;
1457                                 break;
1458                         case MIGRATEPAGE_SUCCESS:
1459                                 nr_succeeded++;
1460                                 break;
1461                         default:
1462                                 /*
1463                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1464                                  * unlike -EAGAIN case, the failed page is
1465                                  * removed from migration page list and not
1466                                  * retried in the next outer loop.
1467                                  */
1468                                 nr_failed++;
1469                                 break;
1470                         }
1471                 }
1472         }
1473         nr_failed += retry;
1474         rc = nr_failed;
1475 out:
1476         if (nr_succeeded)
1477                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1478         if (nr_failed)
1479                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1480         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1481
1482         if (!swapwrite)
1483                 current->flags &= ~PF_SWAPWRITE;
1484
1485         return rc;
1486 }
1487
1488 #ifdef CONFIG_NUMA
1489
1490 static int store_status(int __user *status, int start, int value, int nr)
1491 {
1492         while (nr-- > 0) {
1493                 if (put_user(value, status + start))
1494                         return -EFAULT;
1495                 start++;
1496         }
1497
1498         return 0;
1499 }
1500
1501 static int do_move_pages_to_node(struct mm_struct *mm,
1502                 struct list_head *pagelist, int node)
1503 {
1504         int err;
1505
1506         if (list_empty(pagelist))
1507                 return 0;
1508
1509         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1510                         MIGRATE_SYNC, MR_SYSCALL);
1511         if (err)
1512                 putback_movable_pages(pagelist);
1513         return err;
1514 }
1515
1516 /*
1517  * Resolves the given address to a struct page, isolates it from the LRU and
1518  * puts it to the given pagelist.
1519  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1520  * queued or the page doesn't need to be migrated because it is already on
1521  * the target node
1522  */
1523 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1524                 int node, struct list_head *pagelist, bool migrate_all)
1525 {
1526         struct vm_area_struct *vma;
1527         struct page *page;
1528         unsigned int follflags;
1529         int err;
1530
1531         down_read(&mm->mmap_sem);
1532         err = -EFAULT;
1533         vma = find_vma(mm, addr);
1534         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1535                 goto out;
1536
1537         /* FOLL_DUMP to ignore special (like zero) pages */
1538         follflags = FOLL_GET | FOLL_DUMP;
1539         page = follow_page(vma, addr, follflags);
1540
1541         err = PTR_ERR(page);
1542         if (IS_ERR(page))
1543                 goto out;
1544
1545         err = -ENOENT;
1546         if (!page)
1547                 goto out;
1548
1549         err = 0;
1550         if (page_to_nid(page) == node)
1551                 goto out_putpage;
1552
1553         err = -EACCES;
1554         if (page_mapcount(page) > 1 && !migrate_all)
1555                 goto out_putpage;
1556
1557         if (PageHuge(page)) {
1558                 if (PageHead(page)) {
1559                         isolate_huge_page(page, pagelist);
1560                         err = 0;
1561                 }
1562         } else {
1563                 struct page *head;
1564
1565                 head = compound_head(page);
1566                 err = isolate_lru_page(head);
1567                 if (err)
1568                         goto out_putpage;
1569
1570                 err = 0;
1571                 list_add_tail(&head->lru, pagelist);
1572                 mod_node_page_state(page_pgdat(head),
1573                         NR_ISOLATED_ANON + page_is_file_cache(head),
1574                         hpage_nr_pages(head));
1575         }
1576 out_putpage:
1577         /*
1578          * Either remove the duplicate refcount from
1579          * isolate_lru_page() or drop the page ref if it was
1580          * not isolated.
1581          */
1582         put_page(page);
1583 out:
1584         up_read(&mm->mmap_sem);
1585         return err;
1586 }
1587
1588 /*
1589  * Migrate an array of page address onto an array of nodes and fill
1590  * the corresponding array of status.
1591  */
1592 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1593                          unsigned long nr_pages,
1594                          const void __user * __user *pages,
1595                          const int __user *nodes,
1596                          int __user *status, int flags)
1597 {
1598         int current_node = NUMA_NO_NODE;
1599         LIST_HEAD(pagelist);
1600         int start, i;
1601         int err = 0, err1;
1602
1603         migrate_prep();
1604
1605         for (i = start = 0; i < nr_pages; i++) {
1606                 const void __user *p;
1607                 unsigned long addr;
1608                 int node;
1609
1610                 err = -EFAULT;
1611                 if (get_user(p, pages + i))
1612                         goto out_flush;
1613                 if (get_user(node, nodes + i))
1614                         goto out_flush;
1615                 addr = (unsigned long)untagged_addr(p);
1616
1617                 err = -ENODEV;
1618                 if (node < 0 || node >= MAX_NUMNODES)
1619                         goto out_flush;
1620                 if (!node_state(node, N_MEMORY))
1621                         goto out_flush;
1622
1623                 err = -EACCES;
1624                 if (!node_isset(node, task_nodes))
1625                         goto out_flush;
1626
1627                 if (current_node == NUMA_NO_NODE) {
1628                         current_node = node;
1629                         start = i;
1630                 } else if (node != current_node) {
1631                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1632                         if (err)
1633                                 goto out;
1634                         err = store_status(status, start, current_node, i - start);
1635                         if (err)
1636                                 goto out;
1637                         start = i;
1638                         current_node = node;
1639                 }
1640
1641                 /*
1642                  * Errors in the page lookup or isolation are not fatal and we simply
1643                  * report them via status
1644                  */
1645                 err = add_page_for_migration(mm, addr, current_node,
1646                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1647                 if (!err)
1648                         continue;
1649
1650                 err = store_status(status, i, err, 1);
1651                 if (err)
1652                         goto out_flush;
1653
1654                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1655                 if (err)
1656                         goto out;
1657                 if (i > start) {
1658                         err = store_status(status, start, current_node, i - start);
1659                         if (err)
1660                                 goto out;
1661                 }
1662                 current_node = NUMA_NO_NODE;
1663         }
1664 out_flush:
1665         if (list_empty(&pagelist))
1666                 return err;
1667
1668         /* Make sure we do not overwrite the existing error */
1669         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1670         if (!err1)
1671                 err1 = store_status(status, start, current_node, i - start);
1672         if (!err)
1673                 err = err1;
1674 out:
1675         return err;
1676 }
1677
1678 /*
1679  * Determine the nodes of an array of pages and store it in an array of status.
1680  */
1681 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1682                                 const void __user **pages, int *status)
1683 {
1684         unsigned long i;
1685
1686         down_read(&mm->mmap_sem);
1687
1688         for (i = 0; i < nr_pages; i++) {
1689                 unsigned long addr = (unsigned long)(*pages);
1690                 struct vm_area_struct *vma;
1691                 struct page *page;
1692                 int err = -EFAULT;
1693
1694                 vma = find_vma(mm, addr);
1695                 if (!vma || addr < vma->vm_start)
1696                         goto set_status;
1697
1698                 /* FOLL_DUMP to ignore special (like zero) pages */
1699                 page = follow_page(vma, addr, FOLL_DUMP);
1700
1701                 err = PTR_ERR(page);
1702                 if (IS_ERR(page))
1703                         goto set_status;
1704
1705                 err = page ? page_to_nid(page) : -ENOENT;
1706 set_status:
1707                 *status = err;
1708
1709                 pages++;
1710                 status++;
1711         }
1712
1713         up_read(&mm->mmap_sem);
1714 }
1715
1716 /*
1717  * Determine the nodes of a user array of pages and store it in
1718  * a user array of status.
1719  */
1720 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1721                          const void __user * __user *pages,
1722                          int __user *status)
1723 {
1724 #define DO_PAGES_STAT_CHUNK_NR 16
1725         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1726         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1727
1728         while (nr_pages) {
1729                 unsigned long chunk_nr;
1730
1731                 chunk_nr = nr_pages;
1732                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1733                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1734
1735                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1736                         break;
1737
1738                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1739
1740                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1741                         break;
1742
1743                 pages += chunk_nr;
1744                 status += chunk_nr;
1745                 nr_pages -= chunk_nr;
1746         }
1747         return nr_pages ? -EFAULT : 0;
1748 }
1749
1750 /*
1751  * Move a list of pages in the address space of the currently executing
1752  * process.
1753  */
1754 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1755                              const void __user * __user *pages,
1756                              const int __user *nodes,
1757                              int __user *status, int flags)
1758 {
1759         struct task_struct *task;
1760         struct mm_struct *mm;
1761         int err;
1762         nodemask_t task_nodes;
1763
1764         /* Check flags */
1765         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1766                 return -EINVAL;
1767
1768         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1769                 return -EPERM;
1770
1771         /* Find the mm_struct */
1772         rcu_read_lock();
1773         task = pid ? find_task_by_vpid(pid) : current;
1774         if (!task) {
1775                 rcu_read_unlock();
1776                 return -ESRCH;
1777         }
1778         get_task_struct(task);
1779
1780         /*
1781          * Check if this process has the right to modify the specified
1782          * process. Use the regular "ptrace_may_access()" checks.
1783          */
1784         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1785                 rcu_read_unlock();
1786                 err = -EPERM;
1787                 goto out;
1788         }
1789         rcu_read_unlock();
1790
1791         err = security_task_movememory(task);
1792         if (err)
1793                 goto out;
1794
1795         task_nodes = cpuset_mems_allowed(task);
1796         mm = get_task_mm(task);
1797         put_task_struct(task);
1798
1799         if (!mm)
1800                 return -EINVAL;
1801
1802         if (nodes)
1803                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1804                                     nodes, status, flags);
1805         else
1806                 err = do_pages_stat(mm, nr_pages, pages, status);
1807
1808         mmput(mm);
1809         return err;
1810
1811 out:
1812         put_task_struct(task);
1813         return err;
1814 }
1815
1816 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1817                 const void __user * __user *, pages,
1818                 const int __user *, nodes,
1819                 int __user *, status, int, flags)
1820 {
1821         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1822 }
1823
1824 #ifdef CONFIG_COMPAT
1825 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1826                        compat_uptr_t __user *, pages32,
1827                        const int __user *, nodes,
1828                        int __user *, status,
1829                        int, flags)
1830 {
1831         const void __user * __user *pages;
1832         int i;
1833
1834         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1835         for (i = 0; i < nr_pages; i++) {
1836                 compat_uptr_t p;
1837
1838                 if (get_user(p, pages32 + i) ||
1839                         put_user(compat_ptr(p), pages + i))
1840                         return -EFAULT;
1841         }
1842         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1843 }
1844 #endif /* CONFIG_COMPAT */
1845
1846 #ifdef CONFIG_NUMA_BALANCING
1847 /*
1848  * Returns true if this is a safe migration target node for misplaced NUMA
1849  * pages. Currently it only checks the watermarks which crude
1850  */
1851 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1852                                    unsigned long nr_migrate_pages)
1853 {
1854         int z;
1855
1856         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1857                 struct zone *zone = pgdat->node_zones + z;
1858
1859                 if (!populated_zone(zone))
1860                         continue;
1861
1862                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1863                 if (!zone_watermark_ok(zone, 0,
1864                                        high_wmark_pages(zone) +
1865                                        nr_migrate_pages,
1866                                        0, 0))
1867                         continue;
1868                 return true;
1869         }
1870         return false;
1871 }
1872
1873 static struct page *alloc_misplaced_dst_page(struct page *page,
1874                                            unsigned long data)
1875 {
1876         int nid = (int) data;
1877         struct page *newpage;
1878
1879         newpage = __alloc_pages_node(nid,
1880                                          (GFP_HIGHUSER_MOVABLE |
1881                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1882                                           __GFP_NORETRY | __GFP_NOWARN) &
1883                                          ~__GFP_RECLAIM, 0);
1884
1885         return newpage;
1886 }
1887
1888 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1889 {
1890         int page_lru;
1891
1892         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1893
1894         /* Avoid migrating to a node that is nearly full */
1895         if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1896                 return 0;
1897
1898         if (isolate_lru_page(page))
1899                 return 0;
1900
1901         /*
1902          * migrate_misplaced_transhuge_page() skips page migration's usual
1903          * check on page_count(), so we must do it here, now that the page
1904          * has been isolated: a GUP pin, or any other pin, prevents migration.
1905          * The expected page count is 3: 1 for page's mapcount and 1 for the
1906          * caller's pin and 1 for the reference taken by isolate_lru_page().
1907          */
1908         if (PageTransHuge(page) && page_count(page) != 3) {
1909                 putback_lru_page(page);
1910                 return 0;
1911         }
1912
1913         page_lru = page_is_file_cache(page);
1914         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1915                                 hpage_nr_pages(page));
1916
1917         /*
1918          * Isolating the page has taken another reference, so the
1919          * caller's reference can be safely dropped without the page
1920          * disappearing underneath us during migration.
1921          */
1922         put_page(page);
1923         return 1;
1924 }
1925
1926 bool pmd_trans_migrating(pmd_t pmd)
1927 {
1928         struct page *page = pmd_page(pmd);
1929         return PageLocked(page);
1930 }
1931
1932 /*
1933  * Attempt to migrate a misplaced page to the specified destination
1934  * node. Caller is expected to have an elevated reference count on
1935  * the page that will be dropped by this function before returning.
1936  */
1937 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1938                            int node)
1939 {
1940         pg_data_t *pgdat = NODE_DATA(node);
1941         int isolated;
1942         int nr_remaining;
1943         LIST_HEAD(migratepages);
1944
1945         /*
1946          * Don't migrate file pages that are mapped in multiple processes
1947          * with execute permissions as they are probably shared libraries.
1948          */
1949         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1950             (vma->vm_flags & VM_EXEC))
1951                 goto out;
1952
1953         /*
1954          * Also do not migrate dirty pages as not all filesystems can move
1955          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1956          */
1957         if (page_is_file_cache(page) && PageDirty(page))
1958                 goto out;
1959
1960         isolated = numamigrate_isolate_page(pgdat, page);
1961         if (!isolated)
1962                 goto out;
1963
1964         list_add(&page->lru, &migratepages);
1965         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1966                                      NULL, node, MIGRATE_ASYNC,
1967                                      MR_NUMA_MISPLACED);
1968         if (nr_remaining) {
1969                 if (!list_empty(&migratepages)) {
1970                         list_del(&page->lru);
1971                         dec_node_page_state(page, NR_ISOLATED_ANON +
1972                                         page_is_file_cache(page));
1973                         putback_lru_page(page);
1974                 }
1975                 isolated = 0;
1976         } else
1977                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1978         BUG_ON(!list_empty(&migratepages));
1979         return isolated;
1980
1981 out:
1982         put_page(page);
1983         return 0;
1984 }
1985 #endif /* CONFIG_NUMA_BALANCING */
1986
1987 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1988 /*
1989  * Migrates a THP to a given target node. page must be locked and is unlocked
1990  * before returning.
1991  */
1992 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1993                                 struct vm_area_struct *vma,
1994                                 pmd_t *pmd, pmd_t entry,
1995                                 unsigned long address,
1996                                 struct page *page, int node)
1997 {
1998         spinlock_t *ptl;
1999         pg_data_t *pgdat = NODE_DATA(node);
2000         int isolated = 0;
2001         struct page *new_page = NULL;
2002         int page_lru = page_is_file_cache(page);
2003         unsigned long start = address & HPAGE_PMD_MASK;
2004
2005         new_page = alloc_pages_node(node,
2006                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2007                 HPAGE_PMD_ORDER);
2008         if (!new_page)
2009                 goto out_fail;
2010         prep_transhuge_page(new_page);
2011
2012         isolated = numamigrate_isolate_page(pgdat, page);
2013         if (!isolated) {
2014                 put_page(new_page);
2015                 goto out_fail;
2016         }
2017
2018         /* Prepare a page as a migration target */
2019         __SetPageLocked(new_page);
2020         if (PageSwapBacked(page))
2021                 __SetPageSwapBacked(new_page);
2022
2023         /* anon mapping, we can simply copy page->mapping to the new page: */
2024         new_page->mapping = page->mapping;
2025         new_page->index = page->index;
2026         /* flush the cache before copying using the kernel virtual address */
2027         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2028         migrate_page_copy(new_page, page);
2029         WARN_ON(PageLRU(new_page));
2030
2031         /* Recheck the target PMD */
2032         ptl = pmd_lock(mm, pmd);
2033         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2034                 spin_unlock(ptl);
2035
2036                 /* Reverse changes made by migrate_page_copy() */
2037                 if (TestClearPageActive(new_page))
2038                         SetPageActive(page);
2039                 if (TestClearPageUnevictable(new_page))
2040                         SetPageUnevictable(page);
2041
2042                 unlock_page(new_page);
2043                 put_page(new_page);             /* Free it */
2044
2045                 /* Retake the callers reference and putback on LRU */
2046                 get_page(page);
2047                 putback_lru_page(page);
2048                 mod_node_page_state(page_pgdat(page),
2049                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2050
2051                 goto out_unlock;
2052         }
2053
2054         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2055         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2056
2057         /*
2058          * Overwrite the old entry under pagetable lock and establish
2059          * the new PTE. Any parallel GUP will either observe the old
2060          * page blocking on the page lock, block on the page table
2061          * lock or observe the new page. The SetPageUptodate on the
2062          * new page and page_add_new_anon_rmap guarantee the copy is
2063          * visible before the pagetable update.
2064          */
2065         page_add_anon_rmap(new_page, vma, start, true);
2066         /*
2067          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2068          * has already been flushed globally.  So no TLB can be currently
2069          * caching this non present pmd mapping.  There's no need to clear the
2070          * pmd before doing set_pmd_at(), nor to flush the TLB after
2071          * set_pmd_at().  Clearing the pmd here would introduce a race
2072          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2073          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2074          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2075          * pmd.
2076          */
2077         set_pmd_at(mm, start, pmd, entry);
2078         update_mmu_cache_pmd(vma, address, &entry);
2079
2080         page_ref_unfreeze(page, 2);
2081         mlock_migrate_page(new_page, page);
2082         page_remove_rmap(page, true);
2083         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2084
2085         spin_unlock(ptl);
2086
2087         /* Take an "isolate" reference and put new page on the LRU. */
2088         get_page(new_page);
2089         putback_lru_page(new_page);
2090
2091         unlock_page(new_page);
2092         unlock_page(page);
2093         put_page(page);                 /* Drop the rmap reference */
2094         put_page(page);                 /* Drop the LRU isolation reference */
2095
2096         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2097         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2098
2099         mod_node_page_state(page_pgdat(page),
2100                         NR_ISOLATED_ANON + page_lru,
2101                         -HPAGE_PMD_NR);
2102         return isolated;
2103
2104 out_fail:
2105         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2106         ptl = pmd_lock(mm, pmd);
2107         if (pmd_same(*pmd, entry)) {
2108                 entry = pmd_modify(entry, vma->vm_page_prot);
2109                 set_pmd_at(mm, start, pmd, entry);
2110                 update_mmu_cache_pmd(vma, address, &entry);
2111         }
2112         spin_unlock(ptl);
2113
2114 out_unlock:
2115         unlock_page(page);
2116         put_page(page);
2117         return 0;
2118 }
2119 #endif /* CONFIG_NUMA_BALANCING */
2120
2121 #endif /* CONFIG_NUMA */
2122
2123 #ifdef CONFIG_DEVICE_PRIVATE
2124 static int migrate_vma_collect_hole(unsigned long start,
2125                                     unsigned long end,
2126                                     struct mm_walk *walk)
2127 {
2128         struct migrate_vma *migrate = walk->private;
2129         unsigned long addr;
2130
2131         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2132                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2133                 migrate->dst[migrate->npages] = 0;
2134                 migrate->npages++;
2135                 migrate->cpages++;
2136         }
2137
2138         return 0;
2139 }
2140
2141 static int migrate_vma_collect_skip(unsigned long start,
2142                                     unsigned long end,
2143                                     struct mm_walk *walk)
2144 {
2145         struct migrate_vma *migrate = walk->private;
2146         unsigned long addr;
2147
2148         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149                 migrate->dst[migrate->npages] = 0;
2150                 migrate->src[migrate->npages++] = 0;
2151         }
2152
2153         return 0;
2154 }
2155
2156 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157                                    unsigned long start,
2158                                    unsigned long end,
2159                                    struct mm_walk *walk)
2160 {
2161         struct migrate_vma *migrate = walk->private;
2162         struct vm_area_struct *vma = walk->vma;
2163         struct mm_struct *mm = vma->vm_mm;
2164         unsigned long addr = start, unmapped = 0;
2165         spinlock_t *ptl;
2166         pte_t *ptep;
2167
2168 again:
2169         if (pmd_none(*pmdp))
2170                 return migrate_vma_collect_hole(start, end, walk);
2171
2172         if (pmd_trans_huge(*pmdp)) {
2173                 struct page *page;
2174
2175                 ptl = pmd_lock(mm, pmdp);
2176                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2177                         spin_unlock(ptl);
2178                         goto again;
2179                 }
2180
2181                 page = pmd_page(*pmdp);
2182                 if (is_huge_zero_page(page)) {
2183                         spin_unlock(ptl);
2184                         split_huge_pmd(vma, pmdp, addr);
2185                         if (pmd_trans_unstable(pmdp))
2186                                 return migrate_vma_collect_skip(start, end,
2187                                                                 walk);
2188                 } else {
2189                         int ret;
2190
2191                         get_page(page);
2192                         spin_unlock(ptl);
2193                         if (unlikely(!trylock_page(page)))
2194                                 return migrate_vma_collect_skip(start, end,
2195                                                                 walk);
2196                         ret = split_huge_page(page);
2197                         unlock_page(page);
2198                         put_page(page);
2199                         if (ret)
2200                                 return migrate_vma_collect_skip(start, end,
2201                                                                 walk);
2202                         if (pmd_none(*pmdp))
2203                                 return migrate_vma_collect_hole(start, end,
2204                                                                 walk);
2205                 }
2206         }
2207
2208         if (unlikely(pmd_bad(*pmdp)))
2209                 return migrate_vma_collect_skip(start, end, walk);
2210
2211         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2212         arch_enter_lazy_mmu_mode();
2213
2214         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215                 unsigned long mpfn, pfn;
2216                 struct page *page;
2217                 swp_entry_t entry;
2218                 pte_t pte;
2219
2220                 pte = *ptep;
2221
2222                 if (pte_none(pte)) {
2223                         mpfn = MIGRATE_PFN_MIGRATE;
2224                         migrate->cpages++;
2225                         goto next;
2226                 }
2227
2228                 if (!pte_present(pte)) {
2229                         mpfn = 0;
2230
2231                         /*
2232                          * Only care about unaddressable device page special
2233                          * page table entry. Other special swap entries are not
2234                          * migratable, and we ignore regular swapped page.
2235                          */
2236                         entry = pte_to_swp_entry(pte);
2237                         if (!is_device_private_entry(entry))
2238                                 goto next;
2239
2240                         page = device_private_entry_to_page(entry);
2241                         mpfn = migrate_pfn(page_to_pfn(page)) |
2242                                         MIGRATE_PFN_MIGRATE;
2243                         if (is_write_device_private_entry(entry))
2244                                 mpfn |= MIGRATE_PFN_WRITE;
2245                 } else {
2246                         pfn = pte_pfn(pte);
2247                         if (is_zero_pfn(pfn)) {
2248                                 mpfn = MIGRATE_PFN_MIGRATE;
2249                                 migrate->cpages++;
2250                                 goto next;
2251                         }
2252                         page = vm_normal_page(migrate->vma, addr, pte);
2253                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2254                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2255                 }
2256
2257                 /* FIXME support THP */
2258                 if (!page || !page->mapping || PageTransCompound(page)) {
2259                         mpfn = 0;
2260                         goto next;
2261                 }
2262
2263                 /*
2264                  * By getting a reference on the page we pin it and that blocks
2265                  * any kind of migration. Side effect is that it "freezes" the
2266                  * pte.
2267                  *
2268                  * We drop this reference after isolating the page from the lru
2269                  * for non device page (device page are not on the lru and thus
2270                  * can't be dropped from it).
2271                  */
2272                 get_page(page);
2273                 migrate->cpages++;
2274
2275                 /*
2276                  * Optimize for the common case where page is only mapped once
2277                  * in one process. If we can lock the page, then we can safely
2278                  * set up a special migration page table entry now.
2279                  */
2280                 if (trylock_page(page)) {
2281                         pte_t swp_pte;
2282
2283                         mpfn |= MIGRATE_PFN_LOCKED;
2284                         ptep_get_and_clear(mm, addr, ptep);
2285
2286                         /* Setup special migration page table entry */
2287                         entry = make_migration_entry(page, mpfn &
2288                                                      MIGRATE_PFN_WRITE);
2289                         swp_pte = swp_entry_to_pte(entry);
2290                         if (pte_soft_dirty(pte))
2291                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2292                         set_pte_at(mm, addr, ptep, swp_pte);
2293
2294                         /*
2295                          * This is like regular unmap: we remove the rmap and
2296                          * drop page refcount. Page won't be freed, as we took
2297                          * a reference just above.
2298                          */
2299                         page_remove_rmap(page, false);
2300                         put_page(page);
2301
2302                         if (pte_present(pte))
2303                                 unmapped++;
2304                 }
2305
2306 next:
2307                 migrate->dst[migrate->npages] = 0;
2308                 migrate->src[migrate->npages++] = mpfn;
2309         }
2310         arch_leave_lazy_mmu_mode();
2311         pte_unmap_unlock(ptep - 1, ptl);
2312
2313         /* Only flush the TLB if we actually modified any entries */
2314         if (unmapped)
2315                 flush_tlb_range(walk->vma, start, end);
2316
2317         return 0;
2318 }
2319
2320 static const struct mm_walk_ops migrate_vma_walk_ops = {
2321         .pmd_entry              = migrate_vma_collect_pmd,
2322         .pte_hole               = migrate_vma_collect_hole,
2323 };
2324
2325 /*
2326  * migrate_vma_collect() - collect pages over a range of virtual addresses
2327  * @migrate: migrate struct containing all migration information
2328  *
2329  * This will walk the CPU page table. For each virtual address backed by a
2330  * valid page, it updates the src array and takes a reference on the page, in
2331  * order to pin the page until we lock it and unmap it.
2332  */
2333 static void migrate_vma_collect(struct migrate_vma *migrate)
2334 {
2335         struct mmu_notifier_range range;
2336
2337         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2338                         migrate->vma->vm_mm, migrate->start, migrate->end);
2339         mmu_notifier_invalidate_range_start(&range);
2340
2341         walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2342                         &migrate_vma_walk_ops, migrate);
2343
2344         mmu_notifier_invalidate_range_end(&range);
2345         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2346 }
2347
2348 /*
2349  * migrate_vma_check_page() - check if page is pinned or not
2350  * @page: struct page to check
2351  *
2352  * Pinned pages cannot be migrated. This is the same test as in
2353  * migrate_page_move_mapping(), except that here we allow migration of a
2354  * ZONE_DEVICE page.
2355  */
2356 static bool migrate_vma_check_page(struct page *page)
2357 {
2358         /*
2359          * One extra ref because caller holds an extra reference, either from
2360          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2361          * a device page.
2362          */
2363         int extra = 1;
2364
2365         /*
2366          * FIXME support THP (transparent huge page), it is bit more complex to
2367          * check them than regular pages, because they can be mapped with a pmd
2368          * or with a pte (split pte mapping).
2369          */
2370         if (PageCompound(page))
2371                 return false;
2372
2373         /* Page from ZONE_DEVICE have one extra reference */
2374         if (is_zone_device_page(page)) {
2375                 /*
2376                  * Private page can never be pin as they have no valid pte and
2377                  * GUP will fail for those. Yet if there is a pending migration
2378                  * a thread might try to wait on the pte migration entry and
2379                  * will bump the page reference count. Sadly there is no way to
2380                  * differentiate a regular pin from migration wait. Hence to
2381                  * avoid 2 racing thread trying to migrate back to CPU to enter
2382                  * infinite loop (one stoping migration because the other is
2383                  * waiting on pte migration entry). We always return true here.
2384                  *
2385                  * FIXME proper solution is to rework migration_entry_wait() so
2386                  * it does not need to take a reference on page.
2387                  */
2388                 return is_device_private_page(page);
2389         }
2390
2391         /* For file back page */
2392         if (page_mapping(page))
2393                 extra += 1 + page_has_private(page);
2394
2395         if ((page_count(page) - extra) > page_mapcount(page))
2396                 return false;
2397
2398         return true;
2399 }
2400
2401 /*
2402  * migrate_vma_prepare() - lock pages and isolate them from the lru
2403  * @migrate: migrate struct containing all migration information
2404  *
2405  * This locks pages that have been collected by migrate_vma_collect(). Once each
2406  * page is locked it is isolated from the lru (for non-device pages). Finally,
2407  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2408  * migrated by concurrent kernel threads.
2409  */
2410 static void migrate_vma_prepare(struct migrate_vma *migrate)
2411 {
2412         const unsigned long npages = migrate->npages;
2413         const unsigned long start = migrate->start;
2414         unsigned long addr, i, restore = 0;
2415         bool allow_drain = true;
2416
2417         lru_add_drain();
2418
2419         for (i = 0; (i < npages) && migrate->cpages; i++) {
2420                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2421                 bool remap = true;
2422
2423                 if (!page)
2424                         continue;
2425
2426                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2427                         /*
2428                          * Because we are migrating several pages there can be
2429                          * a deadlock between 2 concurrent migration where each
2430                          * are waiting on each other page lock.
2431                          *
2432                          * Make migrate_vma() a best effort thing and backoff
2433                          * for any page we can not lock right away.
2434                          */
2435                         if (!trylock_page(page)) {
2436                                 migrate->src[i] = 0;
2437                                 migrate->cpages--;
2438                                 put_page(page);
2439                                 continue;
2440                         }
2441                         remap = false;
2442                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2443                 }
2444
2445                 /* ZONE_DEVICE pages are not on LRU */
2446                 if (!is_zone_device_page(page)) {
2447                         if (!PageLRU(page) && allow_drain) {
2448                                 /* Drain CPU's pagevec */
2449                                 lru_add_drain_all();
2450                                 allow_drain = false;
2451                         }
2452
2453                         if (isolate_lru_page(page)) {
2454                                 if (remap) {
2455                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2456                                         migrate->cpages--;
2457                                         restore++;
2458                                 } else {
2459                                         migrate->src[i] = 0;
2460                                         unlock_page(page);
2461                                         migrate->cpages--;
2462                                         put_page(page);
2463                                 }
2464                                 continue;
2465                         }
2466
2467                         /* Drop the reference we took in collect */
2468                         put_page(page);
2469                 }
2470
2471                 if (!migrate_vma_check_page(page)) {
2472                         if (remap) {
2473                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2474                                 migrate->cpages--;
2475                                 restore++;
2476
2477                                 if (!is_zone_device_page(page)) {
2478                                         get_page(page);
2479                                         putback_lru_page(page);
2480                                 }
2481                         } else {
2482                                 migrate->src[i] = 0;
2483                                 unlock_page(page);
2484                                 migrate->cpages--;
2485
2486                                 if (!is_zone_device_page(page))
2487                                         putback_lru_page(page);
2488                                 else
2489                                         put_page(page);
2490                         }
2491                 }
2492         }
2493
2494         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2495                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2496
2497                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2498                         continue;
2499
2500                 remove_migration_pte(page, migrate->vma, addr, page);
2501
2502                 migrate->src[i] = 0;
2503                 unlock_page(page);
2504                 put_page(page);
2505                 restore--;
2506         }
2507 }
2508
2509 /*
2510  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2511  * @migrate: migrate struct containing all migration information
2512  *
2513  * Replace page mapping (CPU page table pte) with a special migration pte entry
2514  * and check again if it has been pinned. Pinned pages are restored because we
2515  * cannot migrate them.
2516  *
2517  * This is the last step before we call the device driver callback to allocate
2518  * destination memory and copy contents of original page over to new page.
2519  */
2520 static void migrate_vma_unmap(struct migrate_vma *migrate)
2521 {
2522         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2523         const unsigned long npages = migrate->npages;
2524         const unsigned long start = migrate->start;
2525         unsigned long addr, i, restore = 0;
2526
2527         for (i = 0; i < npages; i++) {
2528                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2529
2530                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2531                         continue;
2532
2533                 if (page_mapped(page)) {
2534                         try_to_unmap(page, flags);
2535                         if (page_mapped(page))
2536                                 goto restore;
2537                 }
2538
2539                 if (migrate_vma_check_page(page))
2540                         continue;
2541
2542 restore:
2543                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2544                 migrate->cpages--;
2545                 restore++;
2546         }
2547
2548         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2549                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2550
2551                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2552                         continue;
2553
2554                 remove_migration_ptes(page, page, false);
2555
2556                 migrate->src[i] = 0;
2557                 unlock_page(page);
2558                 restore--;
2559
2560                 if (is_zone_device_page(page))
2561                         put_page(page);
2562                 else
2563                         putback_lru_page(page);
2564         }
2565 }
2566
2567 /**
2568  * migrate_vma_setup() - prepare to migrate a range of memory
2569  * @args: contains the vma, start, and and pfns arrays for the migration
2570  *
2571  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2572  * without an error.
2573  *
2574  * Prepare to migrate a range of memory virtual address range by collecting all
2575  * the pages backing each virtual address in the range, saving them inside the
2576  * src array.  Then lock those pages and unmap them. Once the pages are locked
2577  * and unmapped, check whether each page is pinned or not.  Pages that aren't
2578  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2579  * corresponding src array entry.  Then restores any pages that are pinned, by
2580  * remapping and unlocking those pages.
2581  *
2582  * The caller should then allocate destination memory and copy source memory to
2583  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2584  * flag set).  Once these are allocated and copied, the caller must update each
2585  * corresponding entry in the dst array with the pfn value of the destination
2586  * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2587  * (destination pages must have their struct pages locked, via lock_page()).
2588  *
2589  * Note that the caller does not have to migrate all the pages that are marked
2590  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2591  * device memory to system memory.  If the caller cannot migrate a device page
2592  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2593  * consequences for the userspace process, so it must be avoided if at all
2594  * possible.
2595  *
2596  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2597  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2598  * allowing the caller to allocate device memory for those unback virtual
2599  * address.  For this the caller simply has to allocate device memory and
2600  * properly set the destination entry like for regular migration.  Note that
2601  * this can still fails and thus inside the device driver must check if the
2602  * migration was successful for those entries after calling migrate_vma_pages()
2603  * just like for regular migration.
2604  *
2605  * After that, the callers must call migrate_vma_pages() to go over each entry
2606  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2607  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2608  * then migrate_vma_pages() to migrate struct page information from the source
2609  * struct page to the destination struct page.  If it fails to migrate the
2610  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2611  * src array.
2612  *
2613  * At this point all successfully migrated pages have an entry in the src
2614  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2615  * array entry with MIGRATE_PFN_VALID flag set.
2616  *
2617  * Once migrate_vma_pages() returns the caller may inspect which pages were
2618  * successfully migrated, and which were not.  Successfully migrated pages will
2619  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2620  *
2621  * It is safe to update device page table after migrate_vma_pages() because
2622  * both destination and source page are still locked, and the mmap_sem is held
2623  * in read mode (hence no one can unmap the range being migrated).
2624  *
2625  * Once the caller is done cleaning up things and updating its page table (if it
2626  * chose to do so, this is not an obligation) it finally calls
2627  * migrate_vma_finalize() to update the CPU page table to point to new pages
2628  * for successfully migrated pages or otherwise restore the CPU page table to
2629  * point to the original source pages.
2630  */
2631 int migrate_vma_setup(struct migrate_vma *args)
2632 {
2633         long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2634
2635         args->start &= PAGE_MASK;
2636         args->end &= PAGE_MASK;
2637         if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2638             (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2639                 return -EINVAL;
2640         if (nr_pages <= 0)
2641                 return -EINVAL;
2642         if (args->start < args->vma->vm_start ||
2643             args->start >= args->vma->vm_end)
2644                 return -EINVAL;
2645         if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2646                 return -EINVAL;
2647         if (!args->src || !args->dst)
2648                 return -EINVAL;
2649
2650         memset(args->src, 0, sizeof(*args->src) * nr_pages);
2651         args->cpages = 0;
2652         args->npages = 0;
2653
2654         migrate_vma_collect(args);
2655
2656         if (args->cpages)
2657                 migrate_vma_prepare(args);
2658         if (args->cpages)
2659                 migrate_vma_unmap(args);
2660
2661         /*
2662          * At this point pages are locked and unmapped, and thus they have
2663          * stable content and can safely be copied to destination memory that
2664          * is allocated by the drivers.
2665          */
2666         return 0;
2667
2668 }
2669 EXPORT_SYMBOL(migrate_vma_setup);
2670
2671 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2672                                     unsigned long addr,
2673                                     struct page *page,
2674                                     unsigned long *src,
2675                                     unsigned long *dst)
2676 {
2677         struct vm_area_struct *vma = migrate->vma;
2678         struct mm_struct *mm = vma->vm_mm;
2679         struct mem_cgroup *memcg;
2680         bool flush = false;
2681         spinlock_t *ptl;
2682         pte_t entry;
2683         pgd_t *pgdp;
2684         p4d_t *p4dp;
2685         pud_t *pudp;
2686         pmd_t *pmdp;
2687         pte_t *ptep;
2688
2689         /* Only allow populating anonymous memory */
2690         if (!vma_is_anonymous(vma))
2691                 goto abort;
2692
2693         pgdp = pgd_offset(mm, addr);
2694         p4dp = p4d_alloc(mm, pgdp, addr);
2695         if (!p4dp)
2696                 goto abort;
2697         pudp = pud_alloc(mm, p4dp, addr);
2698         if (!pudp)
2699                 goto abort;
2700         pmdp = pmd_alloc(mm, pudp, addr);
2701         if (!pmdp)
2702                 goto abort;
2703
2704         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2705                 goto abort;
2706
2707         /*
2708          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2709          * pte_offset_map() on pmds where a huge pmd might be created
2710          * from a different thread.
2711          *
2712          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2713          * parallel threads are excluded by other means.
2714          *
2715          * Here we only have down_read(mmap_sem).
2716          */
2717         if (pte_alloc(mm, pmdp))
2718                 goto abort;
2719
2720         /* See the comment in pte_alloc_one_map() */
2721         if (unlikely(pmd_trans_unstable(pmdp)))
2722                 goto abort;
2723
2724         if (unlikely(anon_vma_prepare(vma)))
2725                 goto abort;
2726         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2727                 goto abort;
2728
2729         /*
2730          * The memory barrier inside __SetPageUptodate makes sure that
2731          * preceding stores to the page contents become visible before
2732          * the set_pte_at() write.
2733          */
2734         __SetPageUptodate(page);
2735
2736         if (is_zone_device_page(page)) {
2737                 if (is_device_private_page(page)) {
2738                         swp_entry_t swp_entry;
2739
2740                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2741                         entry = swp_entry_to_pte(swp_entry);
2742                 }
2743         } else {
2744                 entry = mk_pte(page, vma->vm_page_prot);
2745                 if (vma->vm_flags & VM_WRITE)
2746                         entry = pte_mkwrite(pte_mkdirty(entry));
2747         }
2748
2749         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2750
2751         if (pte_present(*ptep)) {
2752                 unsigned long pfn = pte_pfn(*ptep);
2753
2754                 if (!is_zero_pfn(pfn)) {
2755                         pte_unmap_unlock(ptep, ptl);
2756                         mem_cgroup_cancel_charge(page, memcg, false);
2757                         goto abort;
2758                 }
2759                 flush = true;
2760         } else if (!pte_none(*ptep)) {
2761                 pte_unmap_unlock(ptep, ptl);
2762                 mem_cgroup_cancel_charge(page, memcg, false);
2763                 goto abort;
2764         }
2765
2766         /*
2767          * Check for usefaultfd but do not deliver the fault. Instead,
2768          * just back off.
2769          */
2770         if (userfaultfd_missing(vma)) {
2771                 pte_unmap_unlock(ptep, ptl);
2772                 mem_cgroup_cancel_charge(page, memcg, false);
2773                 goto abort;
2774         }
2775
2776         inc_mm_counter(mm, MM_ANONPAGES);
2777         page_add_new_anon_rmap(page, vma, addr, false);
2778         mem_cgroup_commit_charge(page, memcg, false, false);
2779         if (!is_zone_device_page(page))
2780                 lru_cache_add_active_or_unevictable(page, vma);
2781         get_page(page);
2782
2783         if (flush) {
2784                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2785                 ptep_clear_flush_notify(vma, addr, ptep);
2786                 set_pte_at_notify(mm, addr, ptep, entry);
2787                 update_mmu_cache(vma, addr, ptep);
2788         } else {
2789                 /* No need to invalidate - it was non-present before */
2790                 set_pte_at(mm, addr, ptep, entry);
2791                 update_mmu_cache(vma, addr, ptep);
2792         }
2793
2794         pte_unmap_unlock(ptep, ptl);
2795         *src = MIGRATE_PFN_MIGRATE;
2796         return;
2797
2798 abort:
2799         *src &= ~MIGRATE_PFN_MIGRATE;
2800 }
2801
2802 /**
2803  * migrate_vma_pages() - migrate meta-data from src page to dst page
2804  * @migrate: migrate struct containing all migration information
2805  *
2806  * This migrates struct page meta-data from source struct page to destination
2807  * struct page. This effectively finishes the migration from source page to the
2808  * destination page.
2809  */
2810 void migrate_vma_pages(struct migrate_vma *migrate)
2811 {
2812         const unsigned long npages = migrate->npages;
2813         const unsigned long start = migrate->start;
2814         struct mmu_notifier_range range;
2815         unsigned long addr, i;
2816         bool notified = false;
2817
2818         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2819                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2820                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2821                 struct address_space *mapping;
2822                 int r;
2823
2824                 if (!newpage) {
2825                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2826                         continue;
2827                 }
2828
2829                 if (!page) {
2830                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2831                                 continue;
2832                         }
2833                         if (!notified) {
2834                                 notified = true;
2835
2836                                 mmu_notifier_range_init(&range,
2837                                                         MMU_NOTIFY_CLEAR, 0,
2838                                                         NULL,
2839                                                         migrate->vma->vm_mm,
2840                                                         addr, migrate->end);
2841                                 mmu_notifier_invalidate_range_start(&range);
2842                         }
2843                         migrate_vma_insert_page(migrate, addr, newpage,
2844                                                 &migrate->src[i],
2845                                                 &migrate->dst[i]);
2846                         continue;
2847                 }
2848
2849                 mapping = page_mapping(page);
2850
2851                 if (is_zone_device_page(newpage)) {
2852                         if (is_device_private_page(newpage)) {
2853                                 /*
2854                                  * For now only support private anonymous when
2855                                  * migrating to un-addressable device memory.
2856                                  */
2857                                 if (mapping) {
2858                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2859                                         continue;
2860                                 }
2861                         } else {
2862                                 /*
2863                                  * Other types of ZONE_DEVICE page are not
2864                                  * supported.
2865                                  */
2866                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2867                                 continue;
2868                         }
2869                 }
2870
2871                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2872                 if (r != MIGRATEPAGE_SUCCESS)
2873                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2874         }
2875
2876         /*
2877          * No need to double call mmu_notifier->invalidate_range() callback as
2878          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2879          * did already call it.
2880          */
2881         if (notified)
2882                 mmu_notifier_invalidate_range_only_end(&range);
2883 }
2884 EXPORT_SYMBOL(migrate_vma_pages);
2885
2886 /**
2887  * migrate_vma_finalize() - restore CPU page table entry
2888  * @migrate: migrate struct containing all migration information
2889  *
2890  * This replaces the special migration pte entry with either a mapping to the
2891  * new page if migration was successful for that page, or to the original page
2892  * otherwise.
2893  *
2894  * This also unlocks the pages and puts them back on the lru, or drops the extra
2895  * refcount, for device pages.
2896  */
2897 void migrate_vma_finalize(struct migrate_vma *migrate)
2898 {
2899         const unsigned long npages = migrate->npages;
2900         unsigned long i;
2901
2902         for (i = 0; i < npages; i++) {
2903                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2904                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2905
2906                 if (!page) {
2907                         if (newpage) {
2908                                 unlock_page(newpage);
2909                                 put_page(newpage);
2910                         }
2911                         continue;
2912                 }
2913
2914                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2915                         if (newpage) {
2916                                 unlock_page(newpage);
2917                                 put_page(newpage);
2918                         }
2919                         newpage = page;
2920                 }
2921
2922                 remove_migration_ptes(page, newpage, false);
2923                 unlock_page(page);
2924                 migrate->cpages--;
2925
2926                 if (is_zone_device_page(page))
2927                         put_page(page);
2928                 else
2929                         putback_lru_page(page);
2930
2931                 if (newpage != page) {
2932                         unlock_page(newpage);
2933                         if (is_zone_device_page(newpage))
2934                                 put_page(newpage);
2935                         else
2936                                 putback_lru_page(newpage);
2937                 }
2938         }
2939 }
2940 EXPORT_SYMBOL(migrate_vma_finalize);
2941 #endif /* CONFIG_DEVICE_PRIVATE */