Merge tag 'media/v4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[linux-2.6-block.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115                                         1;
116 #else
117                                         2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122         randomize_va_space = 0;
123         return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137         zero_pfn = page_to_pfn(ZERO_PAGE(0));
138         return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147         int i;
148
149         for (i = 0; i < NR_MM_COUNTERS; i++) {
150                 if (current->rss_stat.count[i]) {
151                         add_mm_counter(mm, i, current->rss_stat.count[i]);
152                         current->rss_stat.count[i] = 0;
153                 }
154         }
155         current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160         struct task_struct *task = current;
161
162         if (likely(task->mm == mm))
163                 task->rss_stat.count[member] += val;
164         else
165                 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH  (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174         if (unlikely(task != current))
175                 return;
176         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177                 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194         struct mmu_gather_batch *batch;
195
196         batch = tlb->active;
197         if (batch->next) {
198                 tlb->active = batch->next;
199                 return true;
200         }
201
202         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203                 return false;
204
205         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206         if (!batch)
207                 return false;
208
209         tlb->batch_count++;
210         batch->next = NULL;
211         batch->nr   = 0;
212         batch->max  = MAX_GATHER_BATCH;
213
214         tlb->active->next = batch;
215         tlb->active = batch;
216
217         return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221                                 unsigned long start, unsigned long end)
222 {
223         tlb->mm = mm;
224
225         /* Is it from 0 to ~0? */
226         tlb->fullmm     = !(start | (end+1));
227         tlb->need_flush_all = 0;
228         tlb->local.next = NULL;
229         tlb->local.nr   = 0;
230         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231         tlb->active     = &tlb->local;
232         tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235         tlb->batch = NULL;
236 #endif
237         tlb->page_size = 0;
238
239         __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244         if (!tlb->end)
245                 return;
246
247         tlb_flush(tlb);
248         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250         tlb_table_flush(tlb);
251 #endif
252         __tlb_reset_range(tlb);
253 }
254
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257         struct mmu_gather_batch *batch;
258
259         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260                 free_pages_and_swap_cache(batch->pages, batch->nr);
261                 batch->nr = 0;
262         }
263         tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268         tlb_flush_mmu_tlbonly(tlb);
269         tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273  *      Called at the end of the shootdown operation to free up any resources
274  *      that were required.
275  */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277                 unsigned long start, unsigned long end, bool force)
278 {
279         struct mmu_gather_batch *batch, *next;
280
281         if (force)
282                 __tlb_adjust_range(tlb, start, end - start);
283
284         tlb_flush_mmu(tlb);
285
286         /* keep the page table cache within bounds */
287         check_pgt_cache();
288
289         for (batch = tlb->local.next; batch; batch = next) {
290                 next = batch->next;
291                 free_pages((unsigned long)batch, 0);
292         }
293         tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298  *      handling the additional races in SMP caused by other CPUs caching valid
299  *      mappings in their TLBs. Returns the number of free page slots left.
300  *      When out of page slots we must call tlb_flush_mmu().
301  *returns true if the caller should flush.
302  */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305         struct mmu_gather_batch *batch;
306
307         VM_BUG_ON(!tlb->end);
308         VM_WARN_ON(tlb->page_size != page_size);
309
310         batch = tlb->active;
311         /*
312          * Add the page and check if we are full. If so
313          * force a flush.
314          */
315         batch->pages[batch->nr++] = page;
316         if (batch->nr == batch->max) {
317                 if (!tlb_next_batch(tlb))
318                         return true;
319                 batch = tlb->active;
320         }
321         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323         return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331  * See the comment near struct mmu_table_batch.
332  */
333
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336         /* Simply deliver the interrupt */
337 }
338
339 static void tlb_remove_table_one(void *table)
340 {
341         /*
342          * This isn't an RCU grace period and hence the page-tables cannot be
343          * assumed to be actually RCU-freed.
344          *
345          * It is however sufficient for software page-table walkers that rely on
346          * IRQ disabling. See the comment near struct mmu_table_batch.
347          */
348         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349         __tlb_remove_table(table);
350 }
351
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354         struct mmu_table_batch *batch;
355         int i;
356
357         batch = container_of(head, struct mmu_table_batch, rcu);
358
359         for (i = 0; i < batch->nr; i++)
360                 __tlb_remove_table(batch->tables[i]);
361
362         free_page((unsigned long)batch);
363 }
364
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367         struct mmu_table_batch **batch = &tlb->batch;
368
369         if (*batch) {
370                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371                 *batch = NULL;
372         }
373 }
374
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377         struct mmu_table_batch **batch = &tlb->batch;
378
379         /*
380          * When there's less then two users of this mm there cannot be a
381          * concurrent page-table walk.
382          */
383         if (atomic_read(&tlb->mm->mm_users) < 2) {
384                 __tlb_remove_table(table);
385                 return;
386         }
387
388         if (*batch == NULL) {
389                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390                 if (*batch == NULL) {
391                         tlb_remove_table_one(table);
392                         return;
393                 }
394                 (*batch)->nr = 0;
395         }
396         (*batch)->tables[(*batch)->nr++] = table;
397         if ((*batch)->nr == MAX_TABLE_BATCH)
398                 tlb_table_flush(tlb);
399 }
400
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402
403 /**
404  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
405  * @tlb: the mmu_gather structure to initialize
406  * @mm: the mm_struct of the target address space
407  * @start: start of the region that will be removed from the page-table
408  * @end: end of the region that will be removed from the page-table
409  *
410  * Called to initialize an (on-stack) mmu_gather structure for page-table
411  * tear-down from @mm. The @start and @end are set to 0 and -1
412  * respectively when @mm is without users and we're going to destroy
413  * the full address space (exit/execve).
414  */
415 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
416                         unsigned long start, unsigned long end)
417 {
418         arch_tlb_gather_mmu(tlb, mm, start, end);
419         inc_tlb_flush_pending(tlb->mm);
420 }
421
422 void tlb_finish_mmu(struct mmu_gather *tlb,
423                 unsigned long start, unsigned long end)
424 {
425         /*
426          * If there are parallel threads are doing PTE changes on same range
427          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
428          * flush by batching, a thread has stable TLB entry can fail to flush
429          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
430          * forcefully if we detect parallel PTE batching threads.
431          */
432         bool force = mm_tlb_flush_nested(tlb->mm);
433
434         arch_tlb_finish_mmu(tlb, start, end, force);
435         dec_tlb_flush_pending(tlb->mm);
436 }
437
438 /*
439  * Note: this doesn't free the actual pages themselves. That
440  * has been handled earlier when unmapping all the memory regions.
441  */
442 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
443                            unsigned long addr)
444 {
445         pgtable_t token = pmd_pgtable(*pmd);
446         pmd_clear(pmd);
447         pte_free_tlb(tlb, token, addr);
448         mm_dec_nr_ptes(tlb->mm);
449 }
450
451 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
452                                 unsigned long addr, unsigned long end,
453                                 unsigned long floor, unsigned long ceiling)
454 {
455         pmd_t *pmd;
456         unsigned long next;
457         unsigned long start;
458
459         start = addr;
460         pmd = pmd_offset(pud, addr);
461         do {
462                 next = pmd_addr_end(addr, end);
463                 if (pmd_none_or_clear_bad(pmd))
464                         continue;
465                 free_pte_range(tlb, pmd, addr);
466         } while (pmd++, addr = next, addr != end);
467
468         start &= PUD_MASK;
469         if (start < floor)
470                 return;
471         if (ceiling) {
472                 ceiling &= PUD_MASK;
473                 if (!ceiling)
474                         return;
475         }
476         if (end - 1 > ceiling - 1)
477                 return;
478
479         pmd = pmd_offset(pud, start);
480         pud_clear(pud);
481         pmd_free_tlb(tlb, pmd, start);
482         mm_dec_nr_pmds(tlb->mm);
483 }
484
485 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
486                                 unsigned long addr, unsigned long end,
487                                 unsigned long floor, unsigned long ceiling)
488 {
489         pud_t *pud;
490         unsigned long next;
491         unsigned long start;
492
493         start = addr;
494         pud = pud_offset(p4d, addr);
495         do {
496                 next = pud_addr_end(addr, end);
497                 if (pud_none_or_clear_bad(pud))
498                         continue;
499                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
500         } while (pud++, addr = next, addr != end);
501
502         start &= P4D_MASK;
503         if (start < floor)
504                 return;
505         if (ceiling) {
506                 ceiling &= P4D_MASK;
507                 if (!ceiling)
508                         return;
509         }
510         if (end - 1 > ceiling - 1)
511                 return;
512
513         pud = pud_offset(p4d, start);
514         p4d_clear(p4d);
515         pud_free_tlb(tlb, pud, start);
516         mm_dec_nr_puds(tlb->mm);
517 }
518
519 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
520                                 unsigned long addr, unsigned long end,
521                                 unsigned long floor, unsigned long ceiling)
522 {
523         p4d_t *p4d;
524         unsigned long next;
525         unsigned long start;
526
527         start = addr;
528         p4d = p4d_offset(pgd, addr);
529         do {
530                 next = p4d_addr_end(addr, end);
531                 if (p4d_none_or_clear_bad(p4d))
532                         continue;
533                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
534         } while (p4d++, addr = next, addr != end);
535
536         start &= PGDIR_MASK;
537         if (start < floor)
538                 return;
539         if (ceiling) {
540                 ceiling &= PGDIR_MASK;
541                 if (!ceiling)
542                         return;
543         }
544         if (end - 1 > ceiling - 1)
545                 return;
546
547         p4d = p4d_offset(pgd, start);
548         pgd_clear(pgd);
549         p4d_free_tlb(tlb, p4d, start);
550 }
551
552 /*
553  * This function frees user-level page tables of a process.
554  */
555 void free_pgd_range(struct mmu_gather *tlb,
556                         unsigned long addr, unsigned long end,
557                         unsigned long floor, unsigned long ceiling)
558 {
559         pgd_t *pgd;
560         unsigned long next;
561
562         /*
563          * The next few lines have given us lots of grief...
564          *
565          * Why are we testing PMD* at this top level?  Because often
566          * there will be no work to do at all, and we'd prefer not to
567          * go all the way down to the bottom just to discover that.
568          *
569          * Why all these "- 1"s?  Because 0 represents both the bottom
570          * of the address space and the top of it (using -1 for the
571          * top wouldn't help much: the masks would do the wrong thing).
572          * The rule is that addr 0 and floor 0 refer to the bottom of
573          * the address space, but end 0 and ceiling 0 refer to the top
574          * Comparisons need to use "end - 1" and "ceiling - 1" (though
575          * that end 0 case should be mythical).
576          *
577          * Wherever addr is brought up or ceiling brought down, we must
578          * be careful to reject "the opposite 0" before it confuses the
579          * subsequent tests.  But what about where end is brought down
580          * by PMD_SIZE below? no, end can't go down to 0 there.
581          *
582          * Whereas we round start (addr) and ceiling down, by different
583          * masks at different levels, in order to test whether a table
584          * now has no other vmas using it, so can be freed, we don't
585          * bother to round floor or end up - the tests don't need that.
586          */
587
588         addr &= PMD_MASK;
589         if (addr < floor) {
590                 addr += PMD_SIZE;
591                 if (!addr)
592                         return;
593         }
594         if (ceiling) {
595                 ceiling &= PMD_MASK;
596                 if (!ceiling)
597                         return;
598         }
599         if (end - 1 > ceiling - 1)
600                 end -= PMD_SIZE;
601         if (addr > end - 1)
602                 return;
603         /*
604          * We add page table cache pages with PAGE_SIZE,
605          * (see pte_free_tlb()), flush the tlb if we need
606          */
607         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
608         pgd = pgd_offset(tlb->mm, addr);
609         do {
610                 next = pgd_addr_end(addr, end);
611                 if (pgd_none_or_clear_bad(pgd))
612                         continue;
613                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
614         } while (pgd++, addr = next, addr != end);
615 }
616
617 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
618                 unsigned long floor, unsigned long ceiling)
619 {
620         while (vma) {
621                 struct vm_area_struct *next = vma->vm_next;
622                 unsigned long addr = vma->vm_start;
623
624                 /*
625                  * Hide vma from rmap and truncate_pagecache before freeing
626                  * pgtables
627                  */
628                 unlink_anon_vmas(vma);
629                 unlink_file_vma(vma);
630
631                 if (is_vm_hugetlb_page(vma)) {
632                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
633                                 floor, next ? next->vm_start : ceiling);
634                 } else {
635                         /*
636                          * Optimization: gather nearby vmas into one call down
637                          */
638                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
639                                && !is_vm_hugetlb_page(next)) {
640                                 vma = next;
641                                 next = vma->vm_next;
642                                 unlink_anon_vmas(vma);
643                                 unlink_file_vma(vma);
644                         }
645                         free_pgd_range(tlb, addr, vma->vm_end,
646                                 floor, next ? next->vm_start : ceiling);
647                 }
648                 vma = next;
649         }
650 }
651
652 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
653 {
654         spinlock_t *ptl;
655         pgtable_t new = pte_alloc_one(mm, address);
656         if (!new)
657                 return -ENOMEM;
658
659         /*
660          * Ensure all pte setup (eg. pte page lock and page clearing) are
661          * visible before the pte is made visible to other CPUs by being
662          * put into page tables.
663          *
664          * The other side of the story is the pointer chasing in the page
665          * table walking code (when walking the page table without locking;
666          * ie. most of the time). Fortunately, these data accesses consist
667          * of a chain of data-dependent loads, meaning most CPUs (alpha
668          * being the notable exception) will already guarantee loads are
669          * seen in-order. See the alpha page table accessors for the
670          * smp_read_barrier_depends() barriers in page table walking code.
671          */
672         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
673
674         ptl = pmd_lock(mm, pmd);
675         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
676                 mm_inc_nr_ptes(mm);
677                 pmd_populate(mm, pmd, new);
678                 new = NULL;
679         }
680         spin_unlock(ptl);
681         if (new)
682                 pte_free(mm, new);
683         return 0;
684 }
685
686 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
687 {
688         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
689         if (!new)
690                 return -ENOMEM;
691
692         smp_wmb(); /* See comment in __pte_alloc */
693
694         spin_lock(&init_mm.page_table_lock);
695         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
696                 pmd_populate_kernel(&init_mm, pmd, new);
697                 new = NULL;
698         }
699         spin_unlock(&init_mm.page_table_lock);
700         if (new)
701                 pte_free_kernel(&init_mm, new);
702         return 0;
703 }
704
705 static inline void init_rss_vec(int *rss)
706 {
707         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
708 }
709
710 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
711 {
712         int i;
713
714         if (current->mm == mm)
715                 sync_mm_rss(mm);
716         for (i = 0; i < NR_MM_COUNTERS; i++)
717                 if (rss[i])
718                         add_mm_counter(mm, i, rss[i]);
719 }
720
721 /*
722  * This function is called to print an error when a bad pte
723  * is found. For example, we might have a PFN-mapped pte in
724  * a region that doesn't allow it.
725  *
726  * The calling function must still handle the error.
727  */
728 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
729                           pte_t pte, struct page *page)
730 {
731         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
732         p4d_t *p4d = p4d_offset(pgd, addr);
733         pud_t *pud = pud_offset(p4d, addr);
734         pmd_t *pmd = pmd_offset(pud, addr);
735         struct address_space *mapping;
736         pgoff_t index;
737         static unsigned long resume;
738         static unsigned long nr_shown;
739         static unsigned long nr_unshown;
740
741         /*
742          * Allow a burst of 60 reports, then keep quiet for that minute;
743          * or allow a steady drip of one report per second.
744          */
745         if (nr_shown == 60) {
746                 if (time_before(jiffies, resume)) {
747                         nr_unshown++;
748                         return;
749                 }
750                 if (nr_unshown) {
751                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
752                                  nr_unshown);
753                         nr_unshown = 0;
754                 }
755                 nr_shown = 0;
756         }
757         if (nr_shown++ == 0)
758                 resume = jiffies + 60 * HZ;
759
760         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
761         index = linear_page_index(vma, addr);
762
763         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
764                  current->comm,
765                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
766         if (page)
767                 dump_page(page, "bad pte");
768         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
769                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
770         /*
771          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
772          */
773         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
774                  vma->vm_file,
775                  vma->vm_ops ? vma->vm_ops->fault : NULL,
776                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
777                  mapping ? mapping->a_ops->readpage : NULL);
778         dump_stack();
779         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
780 }
781
782 /*
783  * vm_normal_page -- This function gets the "struct page" associated with a pte.
784  *
785  * "Special" mappings do not wish to be associated with a "struct page" (either
786  * it doesn't exist, or it exists but they don't want to touch it). In this
787  * case, NULL is returned here. "Normal" mappings do have a struct page.
788  *
789  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
790  * pte bit, in which case this function is trivial. Secondly, an architecture
791  * may not have a spare pte bit, which requires a more complicated scheme,
792  * described below.
793  *
794  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
795  * special mapping (even if there are underlying and valid "struct pages").
796  * COWed pages of a VM_PFNMAP are always normal.
797  *
798  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
799  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
800  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
801  * mapping will always honor the rule
802  *
803  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
804  *
805  * And for normal mappings this is false.
806  *
807  * This restricts such mappings to be a linear translation from virtual address
808  * to pfn. To get around this restriction, we allow arbitrary mappings so long
809  * as the vma is not a COW mapping; in that case, we know that all ptes are
810  * special (because none can have been COWed).
811  *
812  *
813  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
814  *
815  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
816  * page" backing, however the difference is that _all_ pages with a struct
817  * page (that is, those where pfn_valid is true) are refcounted and considered
818  * normal pages by the VM. The disadvantage is that pages are refcounted
819  * (which can be slower and simply not an option for some PFNMAP users). The
820  * advantage is that we don't have to follow the strict linearity rule of
821  * PFNMAP mappings in order to support COWable mappings.
822  *
823  */
824 #ifdef __HAVE_ARCH_PTE_SPECIAL
825 # define HAVE_PTE_SPECIAL 1
826 #else
827 # define HAVE_PTE_SPECIAL 0
828 #endif
829 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
830                              pte_t pte, bool with_public_device)
831 {
832         unsigned long pfn = pte_pfn(pte);
833
834         if (HAVE_PTE_SPECIAL) {
835                 if (likely(!pte_special(pte)))
836                         goto check_pfn;
837                 if (vma->vm_ops && vma->vm_ops->find_special_page)
838                         return vma->vm_ops->find_special_page(vma, addr);
839                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
840                         return NULL;
841                 if (is_zero_pfn(pfn))
842                         return NULL;
843
844                 /*
845                  * Device public pages are special pages (they are ZONE_DEVICE
846                  * pages but different from persistent memory). They behave
847                  * allmost like normal pages. The difference is that they are
848                  * not on the lru and thus should never be involve with any-
849                  * thing that involve lru manipulation (mlock, numa balancing,
850                  * ...).
851                  *
852                  * This is why we still want to return NULL for such page from
853                  * vm_normal_page() so that we do not have to special case all
854                  * call site of vm_normal_page().
855                  */
856                 if (likely(pfn <= highest_memmap_pfn)) {
857                         struct page *page = pfn_to_page(pfn);
858
859                         if (is_device_public_page(page)) {
860                                 if (with_public_device)
861                                         return page;
862                                 return NULL;
863                         }
864                 }
865                 print_bad_pte(vma, addr, pte, NULL);
866                 return NULL;
867         }
868
869         /* !HAVE_PTE_SPECIAL case follows: */
870
871         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
872                 if (vma->vm_flags & VM_MIXEDMAP) {
873                         if (!pfn_valid(pfn))
874                                 return NULL;
875                         goto out;
876                 } else {
877                         unsigned long off;
878                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
879                         if (pfn == vma->vm_pgoff + off)
880                                 return NULL;
881                         if (!is_cow_mapping(vma->vm_flags))
882                                 return NULL;
883                 }
884         }
885
886         if (is_zero_pfn(pfn))
887                 return NULL;
888 check_pfn:
889         if (unlikely(pfn > highest_memmap_pfn)) {
890                 print_bad_pte(vma, addr, pte, NULL);
891                 return NULL;
892         }
893
894         /*
895          * NOTE! We still have PageReserved() pages in the page tables.
896          * eg. VDSO mappings can cause them to exist.
897          */
898 out:
899         return pfn_to_page(pfn);
900 }
901
902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
903 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
904                                 pmd_t pmd)
905 {
906         unsigned long pfn = pmd_pfn(pmd);
907
908         /*
909          * There is no pmd_special() but there may be special pmds, e.g.
910          * in a direct-access (dax) mapping, so let's just replicate the
911          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
912          */
913         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
914                 if (vma->vm_flags & VM_MIXEDMAP) {
915                         if (!pfn_valid(pfn))
916                                 return NULL;
917                         goto out;
918                 } else {
919                         unsigned long off;
920                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
921                         if (pfn == vma->vm_pgoff + off)
922                                 return NULL;
923                         if (!is_cow_mapping(vma->vm_flags))
924                                 return NULL;
925                 }
926         }
927
928         if (is_zero_pfn(pfn))
929                 return NULL;
930         if (unlikely(pfn > highest_memmap_pfn))
931                 return NULL;
932
933         /*
934          * NOTE! We still have PageReserved() pages in the page tables.
935          * eg. VDSO mappings can cause them to exist.
936          */
937 out:
938         return pfn_to_page(pfn);
939 }
940 #endif
941
942 /*
943  * copy one vm_area from one task to the other. Assumes the page tables
944  * already present in the new task to be cleared in the whole range
945  * covered by this vma.
946  */
947
948 static inline unsigned long
949 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
951                 unsigned long addr, int *rss)
952 {
953         unsigned long vm_flags = vma->vm_flags;
954         pte_t pte = *src_pte;
955         struct page *page;
956
957         /* pte contains position in swap or file, so copy. */
958         if (unlikely(!pte_present(pte))) {
959                 swp_entry_t entry = pte_to_swp_entry(pte);
960
961                 if (likely(!non_swap_entry(entry))) {
962                         if (swap_duplicate(entry) < 0)
963                                 return entry.val;
964
965                         /* make sure dst_mm is on swapoff's mmlist. */
966                         if (unlikely(list_empty(&dst_mm->mmlist))) {
967                                 spin_lock(&mmlist_lock);
968                                 if (list_empty(&dst_mm->mmlist))
969                                         list_add(&dst_mm->mmlist,
970                                                         &src_mm->mmlist);
971                                 spin_unlock(&mmlist_lock);
972                         }
973                         rss[MM_SWAPENTS]++;
974                 } else if (is_migration_entry(entry)) {
975                         page = migration_entry_to_page(entry);
976
977                         rss[mm_counter(page)]++;
978
979                         if (is_write_migration_entry(entry) &&
980                                         is_cow_mapping(vm_flags)) {
981                                 /*
982                                  * COW mappings require pages in both
983                                  * parent and child to be set to read.
984                                  */
985                                 make_migration_entry_read(&entry);
986                                 pte = swp_entry_to_pte(entry);
987                                 if (pte_swp_soft_dirty(*src_pte))
988                                         pte = pte_swp_mksoft_dirty(pte);
989                                 set_pte_at(src_mm, addr, src_pte, pte);
990                         }
991                 } else if (is_device_private_entry(entry)) {
992                         page = device_private_entry_to_page(entry);
993
994                         /*
995                          * Update rss count even for unaddressable pages, as
996                          * they should treated just like normal pages in this
997                          * respect.
998                          *
999                          * We will likely want to have some new rss counters
1000                          * for unaddressable pages, at some point. But for now
1001                          * keep things as they are.
1002                          */
1003                         get_page(page);
1004                         rss[mm_counter(page)]++;
1005                         page_dup_rmap(page, false);
1006
1007                         /*
1008                          * We do not preserve soft-dirty information, because so
1009                          * far, checkpoint/restore is the only feature that
1010                          * requires that. And checkpoint/restore does not work
1011                          * when a device driver is involved (you cannot easily
1012                          * save and restore device driver state).
1013                          */
1014                         if (is_write_device_private_entry(entry) &&
1015                             is_cow_mapping(vm_flags)) {
1016                                 make_device_private_entry_read(&entry);
1017                                 pte = swp_entry_to_pte(entry);
1018                                 set_pte_at(src_mm, addr, src_pte, pte);
1019                         }
1020                 }
1021                 goto out_set_pte;
1022         }
1023
1024         /*
1025          * If it's a COW mapping, write protect it both
1026          * in the parent and the child
1027          */
1028         if (is_cow_mapping(vm_flags)) {
1029                 ptep_set_wrprotect(src_mm, addr, src_pte);
1030                 pte = pte_wrprotect(pte);
1031         }
1032
1033         /*
1034          * If it's a shared mapping, mark it clean in
1035          * the child
1036          */
1037         if (vm_flags & VM_SHARED)
1038                 pte = pte_mkclean(pte);
1039         pte = pte_mkold(pte);
1040
1041         page = vm_normal_page(vma, addr, pte);
1042         if (page) {
1043                 get_page(page);
1044                 page_dup_rmap(page, false);
1045                 rss[mm_counter(page)]++;
1046         } else if (pte_devmap(pte)) {
1047                 page = pte_page(pte);
1048
1049                 /*
1050                  * Cache coherent device memory behave like regular page and
1051                  * not like persistent memory page. For more informations see
1052                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1053                  */
1054                 if (is_device_public_page(page)) {
1055                         get_page(page);
1056                         page_dup_rmap(page, false);
1057                         rss[mm_counter(page)]++;
1058                 }
1059         }
1060
1061 out_set_pte:
1062         set_pte_at(dst_mm, addr, dst_pte, pte);
1063         return 0;
1064 }
1065
1066 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1068                    unsigned long addr, unsigned long end)
1069 {
1070         pte_t *orig_src_pte, *orig_dst_pte;
1071         pte_t *src_pte, *dst_pte;
1072         spinlock_t *src_ptl, *dst_ptl;
1073         int progress = 0;
1074         int rss[NR_MM_COUNTERS];
1075         swp_entry_t entry = (swp_entry_t){0};
1076
1077 again:
1078         init_rss_vec(rss);
1079
1080         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1081         if (!dst_pte)
1082                 return -ENOMEM;
1083         src_pte = pte_offset_map(src_pmd, addr);
1084         src_ptl = pte_lockptr(src_mm, src_pmd);
1085         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1086         orig_src_pte = src_pte;
1087         orig_dst_pte = dst_pte;
1088         arch_enter_lazy_mmu_mode();
1089
1090         do {
1091                 /*
1092                  * We are holding two locks at this point - either of them
1093                  * could generate latencies in another task on another CPU.
1094                  */
1095                 if (progress >= 32) {
1096                         progress = 0;
1097                         if (need_resched() ||
1098                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1099                                 break;
1100                 }
1101                 if (pte_none(*src_pte)) {
1102                         progress++;
1103                         continue;
1104                 }
1105                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1106                                                         vma, addr, rss);
1107                 if (entry.val)
1108                         break;
1109                 progress += 8;
1110         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1111
1112         arch_leave_lazy_mmu_mode();
1113         spin_unlock(src_ptl);
1114         pte_unmap(orig_src_pte);
1115         add_mm_rss_vec(dst_mm, rss);
1116         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1117         cond_resched();
1118
1119         if (entry.val) {
1120                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1121                         return -ENOMEM;
1122                 progress = 0;
1123         }
1124         if (addr != end)
1125                 goto again;
1126         return 0;
1127 }
1128
1129 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1130                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1131                 unsigned long addr, unsigned long end)
1132 {
1133         pmd_t *src_pmd, *dst_pmd;
1134         unsigned long next;
1135
1136         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137         if (!dst_pmd)
1138                 return -ENOMEM;
1139         src_pmd = pmd_offset(src_pud, addr);
1140         do {
1141                 next = pmd_addr_end(addr, end);
1142                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143                         || pmd_devmap(*src_pmd)) {
1144                         int err;
1145                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1146                         err = copy_huge_pmd(dst_mm, src_mm,
1147                                             dst_pmd, src_pmd, addr, vma);
1148                         if (err == -ENOMEM)
1149                                 return -ENOMEM;
1150                         if (!err)
1151                                 continue;
1152                         /* fall through */
1153                 }
1154                 if (pmd_none_or_clear_bad(src_pmd))
1155                         continue;
1156                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1157                                                 vma, addr, next))
1158                         return -ENOMEM;
1159         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160         return 0;
1161 }
1162
1163 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1164                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1165                 unsigned long addr, unsigned long end)
1166 {
1167         pud_t *src_pud, *dst_pud;
1168         unsigned long next;
1169
1170         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1171         if (!dst_pud)
1172                 return -ENOMEM;
1173         src_pud = pud_offset(src_p4d, addr);
1174         do {
1175                 next = pud_addr_end(addr, end);
1176                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1177                         int err;
1178
1179                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1180                         err = copy_huge_pud(dst_mm, src_mm,
1181                                             dst_pud, src_pud, addr, vma);
1182                         if (err == -ENOMEM)
1183                                 return -ENOMEM;
1184                         if (!err)
1185                                 continue;
1186                         /* fall through */
1187                 }
1188                 if (pud_none_or_clear_bad(src_pud))
1189                         continue;
1190                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1191                                                 vma, addr, next))
1192                         return -ENOMEM;
1193         } while (dst_pud++, src_pud++, addr = next, addr != end);
1194         return 0;
1195 }
1196
1197 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1198                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1199                 unsigned long addr, unsigned long end)
1200 {
1201         p4d_t *src_p4d, *dst_p4d;
1202         unsigned long next;
1203
1204         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1205         if (!dst_p4d)
1206                 return -ENOMEM;
1207         src_p4d = p4d_offset(src_pgd, addr);
1208         do {
1209                 next = p4d_addr_end(addr, end);
1210                 if (p4d_none_or_clear_bad(src_p4d))
1211                         continue;
1212                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1213                                                 vma, addr, next))
1214                         return -ENOMEM;
1215         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1216         return 0;
1217 }
1218
1219 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1220                 struct vm_area_struct *vma)
1221 {
1222         pgd_t *src_pgd, *dst_pgd;
1223         unsigned long next;
1224         unsigned long addr = vma->vm_start;
1225         unsigned long end = vma->vm_end;
1226         unsigned long mmun_start;       /* For mmu_notifiers */
1227         unsigned long mmun_end;         /* For mmu_notifiers */
1228         bool is_cow;
1229         int ret;
1230
1231         /*
1232          * Don't copy ptes where a page fault will fill them correctly.
1233          * Fork becomes much lighter when there are big shared or private
1234          * readonly mappings. The tradeoff is that copy_page_range is more
1235          * efficient than faulting.
1236          */
1237         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1238                         !vma->anon_vma)
1239                 return 0;
1240
1241         if (is_vm_hugetlb_page(vma))
1242                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1243
1244         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1245                 /*
1246                  * We do not free on error cases below as remove_vma
1247                  * gets called on error from higher level routine
1248                  */
1249                 ret = track_pfn_copy(vma);
1250                 if (ret)
1251                         return ret;
1252         }
1253
1254         /*
1255          * We need to invalidate the secondary MMU mappings only when
1256          * there could be a permission downgrade on the ptes of the
1257          * parent mm. And a permission downgrade will only happen if
1258          * is_cow_mapping() returns true.
1259          */
1260         is_cow = is_cow_mapping(vma->vm_flags);
1261         mmun_start = addr;
1262         mmun_end   = end;
1263         if (is_cow)
1264                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1265                                                     mmun_end);
1266
1267         ret = 0;
1268         dst_pgd = pgd_offset(dst_mm, addr);
1269         src_pgd = pgd_offset(src_mm, addr);
1270         do {
1271                 next = pgd_addr_end(addr, end);
1272                 if (pgd_none_or_clear_bad(src_pgd))
1273                         continue;
1274                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1275                                             vma, addr, next))) {
1276                         ret = -ENOMEM;
1277                         break;
1278                 }
1279         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1280
1281         if (is_cow)
1282                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1283         return ret;
1284 }
1285
1286 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1287                                 struct vm_area_struct *vma, pmd_t *pmd,
1288                                 unsigned long addr, unsigned long end,
1289                                 struct zap_details *details)
1290 {
1291         struct mm_struct *mm = tlb->mm;
1292         int force_flush = 0;
1293         int rss[NR_MM_COUNTERS];
1294         spinlock_t *ptl;
1295         pte_t *start_pte;
1296         pte_t *pte;
1297         swp_entry_t entry;
1298
1299         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1300 again:
1301         init_rss_vec(rss);
1302         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1303         pte = start_pte;
1304         flush_tlb_batched_pending(mm);
1305         arch_enter_lazy_mmu_mode();
1306         do {
1307                 pte_t ptent = *pte;
1308                 if (pte_none(ptent))
1309                         continue;
1310
1311                 if (pte_present(ptent)) {
1312                         struct page *page;
1313
1314                         page = _vm_normal_page(vma, addr, ptent, true);
1315                         if (unlikely(details) && page) {
1316                                 /*
1317                                  * unmap_shared_mapping_pages() wants to
1318                                  * invalidate cache without truncating:
1319                                  * unmap shared but keep private pages.
1320                                  */
1321                                 if (details->check_mapping &&
1322                                     details->check_mapping != page_rmapping(page))
1323                                         continue;
1324                         }
1325                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1326                                                         tlb->fullmm);
1327                         tlb_remove_tlb_entry(tlb, pte, addr);
1328                         if (unlikely(!page))
1329                                 continue;
1330
1331                         if (!PageAnon(page)) {
1332                                 if (pte_dirty(ptent)) {
1333                                         force_flush = 1;
1334                                         set_page_dirty(page);
1335                                 }
1336                                 if (pte_young(ptent) &&
1337                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1338                                         mark_page_accessed(page);
1339                         }
1340                         rss[mm_counter(page)]--;
1341                         page_remove_rmap(page, false);
1342                         if (unlikely(page_mapcount(page) < 0))
1343                                 print_bad_pte(vma, addr, ptent, page);
1344                         if (unlikely(__tlb_remove_page(tlb, page))) {
1345                                 force_flush = 1;
1346                                 addr += PAGE_SIZE;
1347                                 break;
1348                         }
1349                         continue;
1350                 }
1351
1352                 entry = pte_to_swp_entry(ptent);
1353                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1354                         struct page *page = device_private_entry_to_page(entry);
1355
1356                         if (unlikely(details && details->check_mapping)) {
1357                                 /*
1358                                  * unmap_shared_mapping_pages() wants to
1359                                  * invalidate cache without truncating:
1360                                  * unmap shared but keep private pages.
1361                                  */
1362                                 if (details->check_mapping !=
1363                                     page_rmapping(page))
1364                                         continue;
1365                         }
1366
1367                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1368                         rss[mm_counter(page)]--;
1369                         page_remove_rmap(page, false);
1370                         put_page(page);
1371                         continue;
1372                 }
1373
1374                 /* If details->check_mapping, we leave swap entries. */
1375                 if (unlikely(details))
1376                         continue;
1377
1378                 entry = pte_to_swp_entry(ptent);
1379                 if (!non_swap_entry(entry))
1380                         rss[MM_SWAPENTS]--;
1381                 else if (is_migration_entry(entry)) {
1382                         struct page *page;
1383
1384                         page = migration_entry_to_page(entry);
1385                         rss[mm_counter(page)]--;
1386                 }
1387                 if (unlikely(!free_swap_and_cache(entry)))
1388                         print_bad_pte(vma, addr, ptent, NULL);
1389                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390         } while (pte++, addr += PAGE_SIZE, addr != end);
1391
1392         add_mm_rss_vec(mm, rss);
1393         arch_leave_lazy_mmu_mode();
1394
1395         /* Do the actual TLB flush before dropping ptl */
1396         if (force_flush)
1397                 tlb_flush_mmu_tlbonly(tlb);
1398         pte_unmap_unlock(start_pte, ptl);
1399
1400         /*
1401          * If we forced a TLB flush (either due to running out of
1402          * batch buffers or because we needed to flush dirty TLB
1403          * entries before releasing the ptl), free the batched
1404          * memory too. Restart if we didn't do everything.
1405          */
1406         if (force_flush) {
1407                 force_flush = 0;
1408                 tlb_flush_mmu_free(tlb);
1409                 if (addr != end)
1410                         goto again;
1411         }
1412
1413         return addr;
1414 }
1415
1416 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1417                                 struct vm_area_struct *vma, pud_t *pud,
1418                                 unsigned long addr, unsigned long end,
1419                                 struct zap_details *details)
1420 {
1421         pmd_t *pmd;
1422         unsigned long next;
1423
1424         pmd = pmd_offset(pud, addr);
1425         do {
1426                 next = pmd_addr_end(addr, end);
1427                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1428                         if (next - addr != HPAGE_PMD_SIZE) {
1429                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1430                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1431                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1432                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1433                                 goto next;
1434                         /* fall through */
1435                 }
1436                 /*
1437                  * Here there can be other concurrent MADV_DONTNEED or
1438                  * trans huge page faults running, and if the pmd is
1439                  * none or trans huge it can change under us. This is
1440                  * because MADV_DONTNEED holds the mmap_sem in read
1441                  * mode.
1442                  */
1443                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1444                         goto next;
1445                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1446 next:
1447                 cond_resched();
1448         } while (pmd++, addr = next, addr != end);
1449
1450         return addr;
1451 }
1452
1453 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1454                                 struct vm_area_struct *vma, p4d_t *p4d,
1455                                 unsigned long addr, unsigned long end,
1456                                 struct zap_details *details)
1457 {
1458         pud_t *pud;
1459         unsigned long next;
1460
1461         pud = pud_offset(p4d, addr);
1462         do {
1463                 next = pud_addr_end(addr, end);
1464                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1465                         if (next - addr != HPAGE_PUD_SIZE) {
1466                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1467                                 split_huge_pud(vma, pud, addr);
1468                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1469                                 goto next;
1470                         /* fall through */
1471                 }
1472                 if (pud_none_or_clear_bad(pud))
1473                         continue;
1474                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1475 next:
1476                 cond_resched();
1477         } while (pud++, addr = next, addr != end);
1478
1479         return addr;
1480 }
1481
1482 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1483                                 struct vm_area_struct *vma, pgd_t *pgd,
1484                                 unsigned long addr, unsigned long end,
1485                                 struct zap_details *details)
1486 {
1487         p4d_t *p4d;
1488         unsigned long next;
1489
1490         p4d = p4d_offset(pgd, addr);
1491         do {
1492                 next = p4d_addr_end(addr, end);
1493                 if (p4d_none_or_clear_bad(p4d))
1494                         continue;
1495                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1496         } while (p4d++, addr = next, addr != end);
1497
1498         return addr;
1499 }
1500
1501 void unmap_page_range(struct mmu_gather *tlb,
1502                              struct vm_area_struct *vma,
1503                              unsigned long addr, unsigned long end,
1504                              struct zap_details *details)
1505 {
1506         pgd_t *pgd;
1507         unsigned long next;
1508
1509         BUG_ON(addr >= end);
1510         tlb_start_vma(tlb, vma);
1511         pgd = pgd_offset(vma->vm_mm, addr);
1512         do {
1513                 next = pgd_addr_end(addr, end);
1514                 if (pgd_none_or_clear_bad(pgd))
1515                         continue;
1516                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1517         } while (pgd++, addr = next, addr != end);
1518         tlb_end_vma(tlb, vma);
1519 }
1520
1521
1522 static void unmap_single_vma(struct mmu_gather *tlb,
1523                 struct vm_area_struct *vma, unsigned long start_addr,
1524                 unsigned long end_addr,
1525                 struct zap_details *details)
1526 {
1527         unsigned long start = max(vma->vm_start, start_addr);
1528         unsigned long end;
1529
1530         if (start >= vma->vm_end)
1531                 return;
1532         end = min(vma->vm_end, end_addr);
1533         if (end <= vma->vm_start)
1534                 return;
1535
1536         if (vma->vm_file)
1537                 uprobe_munmap(vma, start, end);
1538
1539         if (unlikely(vma->vm_flags & VM_PFNMAP))
1540                 untrack_pfn(vma, 0, 0);
1541
1542         if (start != end) {
1543                 if (unlikely(is_vm_hugetlb_page(vma))) {
1544                         /*
1545                          * It is undesirable to test vma->vm_file as it
1546                          * should be non-null for valid hugetlb area.
1547                          * However, vm_file will be NULL in the error
1548                          * cleanup path of mmap_region. When
1549                          * hugetlbfs ->mmap method fails,
1550                          * mmap_region() nullifies vma->vm_file
1551                          * before calling this function to clean up.
1552                          * Since no pte has actually been setup, it is
1553                          * safe to do nothing in this case.
1554                          */
1555                         if (vma->vm_file) {
1556                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1557                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1558                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1559                         }
1560                 } else
1561                         unmap_page_range(tlb, vma, start, end, details);
1562         }
1563 }
1564
1565 /**
1566  * unmap_vmas - unmap a range of memory covered by a list of vma's
1567  * @tlb: address of the caller's struct mmu_gather
1568  * @vma: the starting vma
1569  * @start_addr: virtual address at which to start unmapping
1570  * @end_addr: virtual address at which to end unmapping
1571  *
1572  * Unmap all pages in the vma list.
1573  *
1574  * Only addresses between `start' and `end' will be unmapped.
1575  *
1576  * The VMA list must be sorted in ascending virtual address order.
1577  *
1578  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1579  * range after unmap_vmas() returns.  So the only responsibility here is to
1580  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1581  * drops the lock and schedules.
1582  */
1583 void unmap_vmas(struct mmu_gather *tlb,
1584                 struct vm_area_struct *vma, unsigned long start_addr,
1585                 unsigned long end_addr)
1586 {
1587         struct mm_struct *mm = vma->vm_mm;
1588
1589         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1590         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1591                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1592         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1593 }
1594
1595 /**
1596  * zap_page_range - remove user pages in a given range
1597  * @vma: vm_area_struct holding the applicable pages
1598  * @start: starting address of pages to zap
1599  * @size: number of bytes to zap
1600  *
1601  * Caller must protect the VMA list
1602  */
1603 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1604                 unsigned long size)
1605 {
1606         struct mm_struct *mm = vma->vm_mm;
1607         struct mmu_gather tlb;
1608         unsigned long end = start + size;
1609
1610         lru_add_drain();
1611         tlb_gather_mmu(&tlb, mm, start, end);
1612         update_hiwater_rss(mm);
1613         mmu_notifier_invalidate_range_start(mm, start, end);
1614         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1615                 unmap_single_vma(&tlb, vma, start, end, NULL);
1616
1617                 /*
1618                  * zap_page_range does not specify whether mmap_sem should be
1619                  * held for read or write. That allows parallel zap_page_range
1620                  * operations to unmap a PTE and defer a flush meaning that
1621                  * this call observes pte_none and fails to flush the TLB.
1622                  * Rather than adding a complex API, ensure that no stale
1623                  * TLB entries exist when this call returns.
1624                  */
1625                 flush_tlb_range(vma, start, end);
1626         }
1627
1628         mmu_notifier_invalidate_range_end(mm, start, end);
1629         tlb_finish_mmu(&tlb, start, end);
1630 }
1631
1632 /**
1633  * zap_page_range_single - remove user pages in a given range
1634  * @vma: vm_area_struct holding the applicable pages
1635  * @address: starting address of pages to zap
1636  * @size: number of bytes to zap
1637  * @details: details of shared cache invalidation
1638  *
1639  * The range must fit into one VMA.
1640  */
1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1642                 unsigned long size, struct zap_details *details)
1643 {
1644         struct mm_struct *mm = vma->vm_mm;
1645         struct mmu_gather tlb;
1646         unsigned long end = address + size;
1647
1648         lru_add_drain();
1649         tlb_gather_mmu(&tlb, mm, address, end);
1650         update_hiwater_rss(mm);
1651         mmu_notifier_invalidate_range_start(mm, address, end);
1652         unmap_single_vma(&tlb, vma, address, end, details);
1653         mmu_notifier_invalidate_range_end(mm, address, end);
1654         tlb_finish_mmu(&tlb, address, end);
1655 }
1656
1657 /**
1658  * zap_vma_ptes - remove ptes mapping the vma
1659  * @vma: vm_area_struct holding ptes to be zapped
1660  * @address: starting address of pages to zap
1661  * @size: number of bytes to zap
1662  *
1663  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664  *
1665  * The entire address range must be fully contained within the vma.
1666  *
1667  * Returns 0 if successful.
1668  */
1669 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670                 unsigned long size)
1671 {
1672         if (address < vma->vm_start || address + size > vma->vm_end ||
1673                         !(vma->vm_flags & VM_PFNMAP))
1674                 return -1;
1675         zap_page_range_single(vma, address, size, NULL);
1676         return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679
1680 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1681                         spinlock_t **ptl)
1682 {
1683         pgd_t *pgd;
1684         p4d_t *p4d;
1685         pud_t *pud;
1686         pmd_t *pmd;
1687
1688         pgd = pgd_offset(mm, addr);
1689         p4d = p4d_alloc(mm, pgd, addr);
1690         if (!p4d)
1691                 return NULL;
1692         pud = pud_alloc(mm, p4d, addr);
1693         if (!pud)
1694                 return NULL;
1695         pmd = pmd_alloc(mm, pud, addr);
1696         if (!pmd)
1697                 return NULL;
1698
1699         VM_BUG_ON(pmd_trans_huge(*pmd));
1700         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1701 }
1702
1703 /*
1704  * This is the old fallback for page remapping.
1705  *
1706  * For historical reasons, it only allows reserved pages. Only
1707  * old drivers should use this, and they needed to mark their
1708  * pages reserved for the old functions anyway.
1709  */
1710 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1711                         struct page *page, pgprot_t prot)
1712 {
1713         struct mm_struct *mm = vma->vm_mm;
1714         int retval;
1715         pte_t *pte;
1716         spinlock_t *ptl;
1717
1718         retval = -EINVAL;
1719         if (PageAnon(page))
1720                 goto out;
1721         retval = -ENOMEM;
1722         flush_dcache_page(page);
1723         pte = get_locked_pte(mm, addr, &ptl);
1724         if (!pte)
1725                 goto out;
1726         retval = -EBUSY;
1727         if (!pte_none(*pte))
1728                 goto out_unlock;
1729
1730         /* Ok, finally just insert the thing.. */
1731         get_page(page);
1732         inc_mm_counter_fast(mm, mm_counter_file(page));
1733         page_add_file_rmap(page, false);
1734         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735
1736         retval = 0;
1737         pte_unmap_unlock(pte, ptl);
1738         return retval;
1739 out_unlock:
1740         pte_unmap_unlock(pte, ptl);
1741 out:
1742         return retval;
1743 }
1744
1745 /**
1746  * vm_insert_page - insert single page into user vma
1747  * @vma: user vma to map to
1748  * @addr: target user address of this page
1749  * @page: source kernel page
1750  *
1751  * This allows drivers to insert individual pages they've allocated
1752  * into a user vma.
1753  *
1754  * The page has to be a nice clean _individual_ kernel allocation.
1755  * If you allocate a compound page, you need to have marked it as
1756  * such (__GFP_COMP), or manually just split the page up yourself
1757  * (see split_page()).
1758  *
1759  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1760  * took an arbitrary page protection parameter. This doesn't allow
1761  * that. Your vma protection will have to be set up correctly, which
1762  * means that if you want a shared writable mapping, you'd better
1763  * ask for a shared writable mapping!
1764  *
1765  * The page does not need to be reserved.
1766  *
1767  * Usually this function is called from f_op->mmap() handler
1768  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1769  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1770  * function from other places, for example from page-fault handler.
1771  */
1772 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1773                         struct page *page)
1774 {
1775         if (addr < vma->vm_start || addr >= vma->vm_end)
1776                 return -EFAULT;
1777         if (!page_count(page))
1778                 return -EINVAL;
1779         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1780                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1781                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1782                 vma->vm_flags |= VM_MIXEDMAP;
1783         }
1784         return insert_page(vma, addr, page, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_insert_page);
1787
1788 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1789                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1790 {
1791         struct mm_struct *mm = vma->vm_mm;
1792         int retval;
1793         pte_t *pte, entry;
1794         spinlock_t *ptl;
1795
1796         retval = -ENOMEM;
1797         pte = get_locked_pte(mm, addr, &ptl);
1798         if (!pte)
1799                 goto out;
1800         retval = -EBUSY;
1801         if (!pte_none(*pte)) {
1802                 if (mkwrite) {
1803                         /*
1804                          * For read faults on private mappings the PFN passed
1805                          * in may not match the PFN we have mapped if the
1806                          * mapped PFN is a writeable COW page.  In the mkwrite
1807                          * case we are creating a writable PTE for a shared
1808                          * mapping and we expect the PFNs to match.
1809                          */
1810                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1811                                 goto out_unlock;
1812                         entry = *pte;
1813                         goto out_mkwrite;
1814                 } else
1815                         goto out_unlock;
1816         }
1817
1818         /* Ok, finally just insert the thing.. */
1819         if (pfn_t_devmap(pfn))
1820                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1821         else
1822                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1823
1824 out_mkwrite:
1825         if (mkwrite) {
1826                 entry = pte_mkyoung(entry);
1827                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828         }
1829
1830         set_pte_at(mm, addr, pte, entry);
1831         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1832
1833         retval = 0;
1834 out_unlock:
1835         pte_unmap_unlock(pte, ptl);
1836 out:
1837         return retval;
1838 }
1839
1840 /**
1841  * vm_insert_pfn - insert single pfn into user vma
1842  * @vma: user vma to map to
1843  * @addr: target user address of this page
1844  * @pfn: source kernel pfn
1845  *
1846  * Similar to vm_insert_page, this allows drivers to insert individual pages
1847  * they've allocated into a user vma. Same comments apply.
1848  *
1849  * This function should only be called from a vm_ops->fault handler, and
1850  * in that case the handler should return NULL.
1851  *
1852  * vma cannot be a COW mapping.
1853  *
1854  * As this is called only for pages that do not currently exist, we
1855  * do not need to flush old virtual caches or the TLB.
1856  */
1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1858                         unsigned long pfn)
1859 {
1860         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1861 }
1862 EXPORT_SYMBOL(vm_insert_pfn);
1863
1864 /**
1865  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866  * @vma: user vma to map to
1867  * @addr: target user address of this page
1868  * @pfn: source kernel pfn
1869  * @pgprot: pgprot flags for the inserted page
1870  *
1871  * This is exactly like vm_insert_pfn, except that it allows drivers to
1872  * to override pgprot on a per-page basis.
1873  *
1874  * This only makes sense for IO mappings, and it makes no sense for
1875  * cow mappings.  In general, using multiple vmas is preferable;
1876  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1877  * impractical.
1878  */
1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1880                         unsigned long pfn, pgprot_t pgprot)
1881 {
1882         int ret;
1883         /*
1884          * Technically, architectures with pte_special can avoid all these
1885          * restrictions (same for remap_pfn_range).  However we would like
1886          * consistency in testing and feature parity among all, so we should
1887          * try to keep these invariants in place for everybody.
1888          */
1889         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1890         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1891                                                 (VM_PFNMAP|VM_MIXEDMAP));
1892         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1893         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1894
1895         if (addr < vma->vm_start || addr >= vma->vm_end)
1896                 return -EFAULT;
1897
1898         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1899
1900         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1901                         false);
1902
1903         return ret;
1904 }
1905 EXPORT_SYMBOL(vm_insert_pfn_prot);
1906
1907 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1908 {
1909         /* these checks mirror the abort conditions in vm_normal_page */
1910         if (vma->vm_flags & VM_MIXEDMAP)
1911                 return true;
1912         if (pfn_t_devmap(pfn))
1913                 return true;
1914         if (pfn_t_special(pfn))
1915                 return true;
1916         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1917                 return true;
1918         return false;
1919 }
1920
1921 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1922                         pfn_t pfn, bool mkwrite)
1923 {
1924         pgprot_t pgprot = vma->vm_page_prot;
1925
1926         BUG_ON(!vm_mixed_ok(vma, pfn));
1927
1928         if (addr < vma->vm_start || addr >= vma->vm_end)
1929                 return -EFAULT;
1930
1931         track_pfn_insert(vma, &pgprot, pfn);
1932
1933         /*
1934          * If we don't have pte special, then we have to use the pfn_valid()
1935          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1936          * refcount the page if pfn_valid is true (hence insert_page rather
1937          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1938          * without pte special, it would there be refcounted as a normal page.
1939          */
1940         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1941                 struct page *page;
1942
1943                 /*
1944                  * At this point we are committed to insert_page()
1945                  * regardless of whether the caller specified flags that
1946                  * result in pfn_t_has_page() == false.
1947                  */
1948                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1949                 return insert_page(vma, addr, page, pgprot);
1950         }
1951         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1952 }
1953
1954 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1955                         pfn_t pfn)
1956 {
1957         return __vm_insert_mixed(vma, addr, pfn, false);
1958
1959 }
1960 EXPORT_SYMBOL(vm_insert_mixed);
1961
1962 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1963                         pfn_t pfn)
1964 {
1965         return __vm_insert_mixed(vma, addr, pfn, true);
1966 }
1967 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1968
1969 /*
1970  * maps a range of physical memory into the requested pages. the old
1971  * mappings are removed. any references to nonexistent pages results
1972  * in null mappings (currently treated as "copy-on-access")
1973  */
1974 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1975                         unsigned long addr, unsigned long end,
1976                         unsigned long pfn, pgprot_t prot)
1977 {
1978         pte_t *pte;
1979         spinlock_t *ptl;
1980
1981         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1982         if (!pte)
1983                 return -ENOMEM;
1984         arch_enter_lazy_mmu_mode();
1985         do {
1986                 BUG_ON(!pte_none(*pte));
1987                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1988                 pfn++;
1989         } while (pte++, addr += PAGE_SIZE, addr != end);
1990         arch_leave_lazy_mmu_mode();
1991         pte_unmap_unlock(pte - 1, ptl);
1992         return 0;
1993 }
1994
1995 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1996                         unsigned long addr, unsigned long end,
1997                         unsigned long pfn, pgprot_t prot)
1998 {
1999         pmd_t *pmd;
2000         unsigned long next;
2001
2002         pfn -= addr >> PAGE_SHIFT;
2003         pmd = pmd_alloc(mm, pud, addr);
2004         if (!pmd)
2005                 return -ENOMEM;
2006         VM_BUG_ON(pmd_trans_huge(*pmd));
2007         do {
2008                 next = pmd_addr_end(addr, end);
2009                 if (remap_pte_range(mm, pmd, addr, next,
2010                                 pfn + (addr >> PAGE_SHIFT), prot))
2011                         return -ENOMEM;
2012         } while (pmd++, addr = next, addr != end);
2013         return 0;
2014 }
2015
2016 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2017                         unsigned long addr, unsigned long end,
2018                         unsigned long pfn, pgprot_t prot)
2019 {
2020         pud_t *pud;
2021         unsigned long next;
2022
2023         pfn -= addr >> PAGE_SHIFT;
2024         pud = pud_alloc(mm, p4d, addr);
2025         if (!pud)
2026                 return -ENOMEM;
2027         do {
2028                 next = pud_addr_end(addr, end);
2029                 if (remap_pmd_range(mm, pud, addr, next,
2030                                 pfn + (addr >> PAGE_SHIFT), prot))
2031                         return -ENOMEM;
2032         } while (pud++, addr = next, addr != end);
2033         return 0;
2034 }
2035
2036 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2037                         unsigned long addr, unsigned long end,
2038                         unsigned long pfn, pgprot_t prot)
2039 {
2040         p4d_t *p4d;
2041         unsigned long next;
2042
2043         pfn -= addr >> PAGE_SHIFT;
2044         p4d = p4d_alloc(mm, pgd, addr);
2045         if (!p4d)
2046                 return -ENOMEM;
2047         do {
2048                 next = p4d_addr_end(addr, end);
2049                 if (remap_pud_range(mm, p4d, addr, next,
2050                                 pfn + (addr >> PAGE_SHIFT), prot))
2051                         return -ENOMEM;
2052         } while (p4d++, addr = next, addr != end);
2053         return 0;
2054 }
2055
2056 /**
2057  * remap_pfn_range - remap kernel memory to userspace
2058  * @vma: user vma to map to
2059  * @addr: target user address to start at
2060  * @pfn: physical address of kernel memory
2061  * @size: size of map area
2062  * @prot: page protection flags for this mapping
2063  *
2064  *  Note: this is only safe if the mm semaphore is held when called.
2065  */
2066 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2067                     unsigned long pfn, unsigned long size, pgprot_t prot)
2068 {
2069         pgd_t *pgd;
2070         unsigned long next;
2071         unsigned long end = addr + PAGE_ALIGN(size);
2072         struct mm_struct *mm = vma->vm_mm;
2073         unsigned long remap_pfn = pfn;
2074         int err;
2075
2076         /*
2077          * Physically remapped pages are special. Tell the
2078          * rest of the world about it:
2079          *   VM_IO tells people not to look at these pages
2080          *      (accesses can have side effects).
2081          *   VM_PFNMAP tells the core MM that the base pages are just
2082          *      raw PFN mappings, and do not have a "struct page" associated
2083          *      with them.
2084          *   VM_DONTEXPAND
2085          *      Disable vma merging and expanding with mremap().
2086          *   VM_DONTDUMP
2087          *      Omit vma from core dump, even when VM_IO turned off.
2088          *
2089          * There's a horrible special case to handle copy-on-write
2090          * behaviour that some programs depend on. We mark the "original"
2091          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2092          * See vm_normal_page() for details.
2093          */
2094         if (is_cow_mapping(vma->vm_flags)) {
2095                 if (addr != vma->vm_start || end != vma->vm_end)
2096                         return -EINVAL;
2097                 vma->vm_pgoff = pfn;
2098         }
2099
2100         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2101         if (err)
2102                 return -EINVAL;
2103
2104         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2105
2106         BUG_ON(addr >= end);
2107         pfn -= addr >> PAGE_SHIFT;
2108         pgd = pgd_offset(mm, addr);
2109         flush_cache_range(vma, addr, end);
2110         do {
2111                 next = pgd_addr_end(addr, end);
2112                 err = remap_p4d_range(mm, pgd, addr, next,
2113                                 pfn + (addr >> PAGE_SHIFT), prot);
2114                 if (err)
2115                         break;
2116         } while (pgd++, addr = next, addr != end);
2117
2118         if (err)
2119                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2120
2121         return err;
2122 }
2123 EXPORT_SYMBOL(remap_pfn_range);
2124
2125 /**
2126  * vm_iomap_memory - remap memory to userspace
2127  * @vma: user vma to map to
2128  * @start: start of area
2129  * @len: size of area
2130  *
2131  * This is a simplified io_remap_pfn_range() for common driver use. The
2132  * driver just needs to give us the physical memory range to be mapped,
2133  * we'll figure out the rest from the vma information.
2134  *
2135  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2136  * whatever write-combining details or similar.
2137  */
2138 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2139 {
2140         unsigned long vm_len, pfn, pages;
2141
2142         /* Check that the physical memory area passed in looks valid */
2143         if (start + len < start)
2144                 return -EINVAL;
2145         /*
2146          * You *really* shouldn't map things that aren't page-aligned,
2147          * but we've historically allowed it because IO memory might
2148          * just have smaller alignment.
2149          */
2150         len += start & ~PAGE_MASK;
2151         pfn = start >> PAGE_SHIFT;
2152         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2153         if (pfn + pages < pfn)
2154                 return -EINVAL;
2155
2156         /* We start the mapping 'vm_pgoff' pages into the area */
2157         if (vma->vm_pgoff > pages)
2158                 return -EINVAL;
2159         pfn += vma->vm_pgoff;
2160         pages -= vma->vm_pgoff;
2161
2162         /* Can we fit all of the mapping? */
2163         vm_len = vma->vm_end - vma->vm_start;
2164         if (vm_len >> PAGE_SHIFT > pages)
2165                 return -EINVAL;
2166
2167         /* Ok, let it rip */
2168         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2169 }
2170 EXPORT_SYMBOL(vm_iomap_memory);
2171
2172 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2173                                      unsigned long addr, unsigned long end,
2174                                      pte_fn_t fn, void *data)
2175 {
2176         pte_t *pte;
2177         int err;
2178         pgtable_t token;
2179         spinlock_t *uninitialized_var(ptl);
2180
2181         pte = (mm == &init_mm) ?
2182                 pte_alloc_kernel(pmd, addr) :
2183                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2184         if (!pte)
2185                 return -ENOMEM;
2186
2187         BUG_ON(pmd_huge(*pmd));
2188
2189         arch_enter_lazy_mmu_mode();
2190
2191         token = pmd_pgtable(*pmd);
2192
2193         do {
2194                 err = fn(pte++, token, addr, data);
2195                 if (err)
2196                         break;
2197         } while (addr += PAGE_SIZE, addr != end);
2198
2199         arch_leave_lazy_mmu_mode();
2200
2201         if (mm != &init_mm)
2202                 pte_unmap_unlock(pte-1, ptl);
2203         return err;
2204 }
2205
2206 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2207                                      unsigned long addr, unsigned long end,
2208                                      pte_fn_t fn, void *data)
2209 {
2210         pmd_t *pmd;
2211         unsigned long next;
2212         int err;
2213
2214         BUG_ON(pud_huge(*pud));
2215
2216         pmd = pmd_alloc(mm, pud, addr);
2217         if (!pmd)
2218                 return -ENOMEM;
2219         do {
2220                 next = pmd_addr_end(addr, end);
2221                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2222                 if (err)
2223                         break;
2224         } while (pmd++, addr = next, addr != end);
2225         return err;
2226 }
2227
2228 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2229                                      unsigned long addr, unsigned long end,
2230                                      pte_fn_t fn, void *data)
2231 {
2232         pud_t *pud;
2233         unsigned long next;
2234         int err;
2235
2236         pud = pud_alloc(mm, p4d, addr);
2237         if (!pud)
2238                 return -ENOMEM;
2239         do {
2240                 next = pud_addr_end(addr, end);
2241                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2242                 if (err)
2243                         break;
2244         } while (pud++, addr = next, addr != end);
2245         return err;
2246 }
2247
2248 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2249                                      unsigned long addr, unsigned long end,
2250                                      pte_fn_t fn, void *data)
2251 {
2252         p4d_t *p4d;
2253         unsigned long next;
2254         int err;
2255
2256         p4d = p4d_alloc(mm, pgd, addr);
2257         if (!p4d)
2258                 return -ENOMEM;
2259         do {
2260                 next = p4d_addr_end(addr, end);
2261                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2262                 if (err)
2263                         break;
2264         } while (p4d++, addr = next, addr != end);
2265         return err;
2266 }
2267
2268 /*
2269  * Scan a region of virtual memory, filling in page tables as necessary
2270  * and calling a provided function on each leaf page table.
2271  */
2272 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2273                         unsigned long size, pte_fn_t fn, void *data)
2274 {
2275         pgd_t *pgd;
2276         unsigned long next;
2277         unsigned long end = addr + size;
2278         int err;
2279
2280         if (WARN_ON(addr >= end))
2281                 return -EINVAL;
2282
2283         pgd = pgd_offset(mm, addr);
2284         do {
2285                 next = pgd_addr_end(addr, end);
2286                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2287                 if (err)
2288                         break;
2289         } while (pgd++, addr = next, addr != end);
2290
2291         return err;
2292 }
2293 EXPORT_SYMBOL_GPL(apply_to_page_range);
2294
2295 /*
2296  * handle_pte_fault chooses page fault handler according to an entry which was
2297  * read non-atomically.  Before making any commitment, on those architectures
2298  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2299  * parts, do_swap_page must check under lock before unmapping the pte and
2300  * proceeding (but do_wp_page is only called after already making such a check;
2301  * and do_anonymous_page can safely check later on).
2302  */
2303 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2304                                 pte_t *page_table, pte_t orig_pte)
2305 {
2306         int same = 1;
2307 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2308         if (sizeof(pte_t) > sizeof(unsigned long)) {
2309                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2310                 spin_lock(ptl);
2311                 same = pte_same(*page_table, orig_pte);
2312                 spin_unlock(ptl);
2313         }
2314 #endif
2315         pte_unmap(page_table);
2316         return same;
2317 }
2318
2319 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2320 {
2321         debug_dma_assert_idle(src);
2322
2323         /*
2324          * If the source page was a PFN mapping, we don't have
2325          * a "struct page" for it. We do a best-effort copy by
2326          * just copying from the original user address. If that
2327          * fails, we just zero-fill it. Live with it.
2328          */
2329         if (unlikely(!src)) {
2330                 void *kaddr = kmap_atomic(dst);
2331                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2332
2333                 /*
2334                  * This really shouldn't fail, because the page is there
2335                  * in the page tables. But it might just be unreadable,
2336                  * in which case we just give up and fill the result with
2337                  * zeroes.
2338                  */
2339                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2340                         clear_page(kaddr);
2341                 kunmap_atomic(kaddr);
2342                 flush_dcache_page(dst);
2343         } else
2344                 copy_user_highpage(dst, src, va, vma);
2345 }
2346
2347 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2348 {
2349         struct file *vm_file = vma->vm_file;
2350
2351         if (vm_file)
2352                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2353
2354         /*
2355          * Special mappings (e.g. VDSO) do not have any file so fake
2356          * a default GFP_KERNEL for them.
2357          */
2358         return GFP_KERNEL;
2359 }
2360
2361 /*
2362  * Notify the address space that the page is about to become writable so that
2363  * it can prohibit this or wait for the page to get into an appropriate state.
2364  *
2365  * We do this without the lock held, so that it can sleep if it needs to.
2366  */
2367 static int do_page_mkwrite(struct vm_fault *vmf)
2368 {
2369         int ret;
2370         struct page *page = vmf->page;
2371         unsigned int old_flags = vmf->flags;
2372
2373         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2374
2375         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2376         /* Restore original flags so that caller is not surprised */
2377         vmf->flags = old_flags;
2378         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2379                 return ret;
2380         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2381                 lock_page(page);
2382                 if (!page->mapping) {
2383                         unlock_page(page);
2384                         return 0; /* retry */
2385                 }
2386                 ret |= VM_FAULT_LOCKED;
2387         } else
2388                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2389         return ret;
2390 }
2391
2392 /*
2393  * Handle dirtying of a page in shared file mapping on a write fault.
2394  *
2395  * The function expects the page to be locked and unlocks it.
2396  */
2397 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2398                                     struct page *page)
2399 {
2400         struct address_space *mapping;
2401         bool dirtied;
2402         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2403
2404         dirtied = set_page_dirty(page);
2405         VM_BUG_ON_PAGE(PageAnon(page), page);
2406         /*
2407          * Take a local copy of the address_space - page.mapping may be zeroed
2408          * by truncate after unlock_page().   The address_space itself remains
2409          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2410          * release semantics to prevent the compiler from undoing this copying.
2411          */
2412         mapping = page_rmapping(page);
2413         unlock_page(page);
2414
2415         if ((dirtied || page_mkwrite) && mapping) {
2416                 /*
2417                  * Some device drivers do not set page.mapping
2418                  * but still dirty their pages
2419                  */
2420                 balance_dirty_pages_ratelimited(mapping);
2421         }
2422
2423         if (!page_mkwrite)
2424                 file_update_time(vma->vm_file);
2425 }
2426
2427 /*
2428  * Handle write page faults for pages that can be reused in the current vma
2429  *
2430  * This can happen either due to the mapping being with the VM_SHARED flag,
2431  * or due to us being the last reference standing to the page. In either
2432  * case, all we need to do here is to mark the page as writable and update
2433  * any related book-keeping.
2434  */
2435 static inline void wp_page_reuse(struct vm_fault *vmf)
2436         __releases(vmf->ptl)
2437 {
2438         struct vm_area_struct *vma = vmf->vma;
2439         struct page *page = vmf->page;
2440         pte_t entry;
2441         /*
2442          * Clear the pages cpupid information as the existing
2443          * information potentially belongs to a now completely
2444          * unrelated process.
2445          */
2446         if (page)
2447                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2448
2449         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2450         entry = pte_mkyoung(vmf->orig_pte);
2451         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2452         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2453                 update_mmu_cache(vma, vmf->address, vmf->pte);
2454         pte_unmap_unlock(vmf->pte, vmf->ptl);
2455 }
2456
2457 /*
2458  * Handle the case of a page which we actually need to copy to a new page.
2459  *
2460  * Called with mmap_sem locked and the old page referenced, but
2461  * without the ptl held.
2462  *
2463  * High level logic flow:
2464  *
2465  * - Allocate a page, copy the content of the old page to the new one.
2466  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2467  * - Take the PTL. If the pte changed, bail out and release the allocated page
2468  * - If the pte is still the way we remember it, update the page table and all
2469  *   relevant references. This includes dropping the reference the page-table
2470  *   held to the old page, as well as updating the rmap.
2471  * - In any case, unlock the PTL and drop the reference we took to the old page.
2472  */
2473 static int wp_page_copy(struct vm_fault *vmf)
2474 {
2475         struct vm_area_struct *vma = vmf->vma;
2476         struct mm_struct *mm = vma->vm_mm;
2477         struct page *old_page = vmf->page;
2478         struct page *new_page = NULL;
2479         pte_t entry;
2480         int page_copied = 0;
2481         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2482         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2483         struct mem_cgroup *memcg;
2484
2485         if (unlikely(anon_vma_prepare(vma)))
2486                 goto oom;
2487
2488         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2489                 new_page = alloc_zeroed_user_highpage_movable(vma,
2490                                                               vmf->address);
2491                 if (!new_page)
2492                         goto oom;
2493         } else {
2494                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2495                                 vmf->address);
2496                 if (!new_page)
2497                         goto oom;
2498                 cow_user_page(new_page, old_page, vmf->address, vma);
2499         }
2500
2501         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2502                 goto oom_free_new;
2503
2504         __SetPageUptodate(new_page);
2505
2506         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2507
2508         /*
2509          * Re-check the pte - we dropped the lock
2510          */
2511         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2512         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2513                 if (old_page) {
2514                         if (!PageAnon(old_page)) {
2515                                 dec_mm_counter_fast(mm,
2516                                                 mm_counter_file(old_page));
2517                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2518                         }
2519                 } else {
2520                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2521                 }
2522                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2523                 entry = mk_pte(new_page, vma->vm_page_prot);
2524                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2525                 /*
2526                  * Clear the pte entry and flush it first, before updating the
2527                  * pte with the new entry. This will avoid a race condition
2528                  * seen in the presence of one thread doing SMC and another
2529                  * thread doing COW.
2530                  */
2531                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2532                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2533                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2534                 lru_cache_add_active_or_unevictable(new_page, vma);
2535                 /*
2536                  * We call the notify macro here because, when using secondary
2537                  * mmu page tables (such as kvm shadow page tables), we want the
2538                  * new page to be mapped directly into the secondary page table.
2539                  */
2540                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2541                 update_mmu_cache(vma, vmf->address, vmf->pte);
2542                 if (old_page) {
2543                         /*
2544                          * Only after switching the pte to the new page may
2545                          * we remove the mapcount here. Otherwise another
2546                          * process may come and find the rmap count decremented
2547                          * before the pte is switched to the new page, and
2548                          * "reuse" the old page writing into it while our pte
2549                          * here still points into it and can be read by other
2550                          * threads.
2551                          *
2552                          * The critical issue is to order this
2553                          * page_remove_rmap with the ptp_clear_flush above.
2554                          * Those stores are ordered by (if nothing else,)
2555                          * the barrier present in the atomic_add_negative
2556                          * in page_remove_rmap.
2557                          *
2558                          * Then the TLB flush in ptep_clear_flush ensures that
2559                          * no process can access the old page before the
2560                          * decremented mapcount is visible. And the old page
2561                          * cannot be reused until after the decremented
2562                          * mapcount is visible. So transitively, TLBs to
2563                          * old page will be flushed before it can be reused.
2564                          */
2565                         page_remove_rmap(old_page, false);
2566                 }
2567
2568                 /* Free the old page.. */
2569                 new_page = old_page;
2570                 page_copied = 1;
2571         } else {
2572                 mem_cgroup_cancel_charge(new_page, memcg, false);
2573         }
2574
2575         if (new_page)
2576                 put_page(new_page);
2577
2578         pte_unmap_unlock(vmf->pte, vmf->ptl);
2579         /*
2580          * No need to double call mmu_notifier->invalidate_range() callback as
2581          * the above ptep_clear_flush_notify() did already call it.
2582          */
2583         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2584         if (old_page) {
2585                 /*
2586                  * Don't let another task, with possibly unlocked vma,
2587                  * keep the mlocked page.
2588                  */
2589                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2590                         lock_page(old_page);    /* LRU manipulation */
2591                         if (PageMlocked(old_page))
2592                                 munlock_vma_page(old_page);
2593                         unlock_page(old_page);
2594                 }
2595                 put_page(old_page);
2596         }
2597         return page_copied ? VM_FAULT_WRITE : 0;
2598 oom_free_new:
2599         put_page(new_page);
2600 oom:
2601         if (old_page)
2602                 put_page(old_page);
2603         return VM_FAULT_OOM;
2604 }
2605
2606 /**
2607  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2608  *                        writeable once the page is prepared
2609  *
2610  * @vmf: structure describing the fault
2611  *
2612  * This function handles all that is needed to finish a write page fault in a
2613  * shared mapping due to PTE being read-only once the mapped page is prepared.
2614  * It handles locking of PTE and modifying it. The function returns
2615  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2616  * lock.
2617  *
2618  * The function expects the page to be locked or other protection against
2619  * concurrent faults / writeback (such as DAX radix tree locks).
2620  */
2621 int finish_mkwrite_fault(struct vm_fault *vmf)
2622 {
2623         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2624         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2625                                        &vmf->ptl);
2626         /*
2627          * We might have raced with another page fault while we released the
2628          * pte_offset_map_lock.
2629          */
2630         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2631                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2632                 return VM_FAULT_NOPAGE;
2633         }
2634         wp_page_reuse(vmf);
2635         return 0;
2636 }
2637
2638 /*
2639  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2640  * mapping
2641  */
2642 static int wp_pfn_shared(struct vm_fault *vmf)
2643 {
2644         struct vm_area_struct *vma = vmf->vma;
2645
2646         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2647                 int ret;
2648
2649                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2650                 vmf->flags |= FAULT_FLAG_MKWRITE;
2651                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2652                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2653                         return ret;
2654                 return finish_mkwrite_fault(vmf);
2655         }
2656         wp_page_reuse(vmf);
2657         return VM_FAULT_WRITE;
2658 }
2659
2660 static int wp_page_shared(struct vm_fault *vmf)
2661         __releases(vmf->ptl)
2662 {
2663         struct vm_area_struct *vma = vmf->vma;
2664
2665         get_page(vmf->page);
2666
2667         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2668                 int tmp;
2669
2670                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2671                 tmp = do_page_mkwrite(vmf);
2672                 if (unlikely(!tmp || (tmp &
2673                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2674                         put_page(vmf->page);
2675                         return tmp;
2676                 }
2677                 tmp = finish_mkwrite_fault(vmf);
2678                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2679                         unlock_page(vmf->page);
2680                         put_page(vmf->page);
2681                         return tmp;
2682                 }
2683         } else {
2684                 wp_page_reuse(vmf);
2685                 lock_page(vmf->page);
2686         }
2687         fault_dirty_shared_page(vma, vmf->page);
2688         put_page(vmf->page);
2689
2690         return VM_FAULT_WRITE;
2691 }
2692
2693 /*
2694  * This routine handles present pages, when users try to write
2695  * to a shared page. It is done by copying the page to a new address
2696  * and decrementing the shared-page counter for the old page.
2697  *
2698  * Note that this routine assumes that the protection checks have been
2699  * done by the caller (the low-level page fault routine in most cases).
2700  * Thus we can safely just mark it writable once we've done any necessary
2701  * COW.
2702  *
2703  * We also mark the page dirty at this point even though the page will
2704  * change only once the write actually happens. This avoids a few races,
2705  * and potentially makes it more efficient.
2706  *
2707  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2708  * but allow concurrent faults), with pte both mapped and locked.
2709  * We return with mmap_sem still held, but pte unmapped and unlocked.
2710  */
2711 static int do_wp_page(struct vm_fault *vmf)
2712         __releases(vmf->ptl)
2713 {
2714         struct vm_area_struct *vma = vmf->vma;
2715
2716         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2717         if (!vmf->page) {
2718                 /*
2719                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2720                  * VM_PFNMAP VMA.
2721                  *
2722                  * We should not cow pages in a shared writeable mapping.
2723                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2724                  */
2725                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2726                                      (VM_WRITE|VM_SHARED))
2727                         return wp_pfn_shared(vmf);
2728
2729                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2730                 return wp_page_copy(vmf);
2731         }
2732
2733         /*
2734          * Take out anonymous pages first, anonymous shared vmas are
2735          * not dirty accountable.
2736          */
2737         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2738                 int total_map_swapcount;
2739                 if (!trylock_page(vmf->page)) {
2740                         get_page(vmf->page);
2741                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2742                         lock_page(vmf->page);
2743                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2744                                         vmf->address, &vmf->ptl);
2745                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2746                                 unlock_page(vmf->page);
2747                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2748                                 put_page(vmf->page);
2749                                 return 0;
2750                         }
2751                         put_page(vmf->page);
2752                 }
2753                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2754                         if (total_map_swapcount == 1) {
2755                                 /*
2756                                  * The page is all ours. Move it to
2757                                  * our anon_vma so the rmap code will
2758                                  * not search our parent or siblings.
2759                                  * Protected against the rmap code by
2760                                  * the page lock.
2761                                  */
2762                                 page_move_anon_rmap(vmf->page, vma);
2763                         }
2764                         unlock_page(vmf->page);
2765                         wp_page_reuse(vmf);
2766                         return VM_FAULT_WRITE;
2767                 }
2768                 unlock_page(vmf->page);
2769         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2770                                         (VM_WRITE|VM_SHARED))) {
2771                 return wp_page_shared(vmf);
2772         }
2773
2774         /*
2775          * Ok, we need to copy. Oh, well..
2776          */
2777         get_page(vmf->page);
2778
2779         pte_unmap_unlock(vmf->pte, vmf->ptl);
2780         return wp_page_copy(vmf);
2781 }
2782
2783 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2784                 unsigned long start_addr, unsigned long end_addr,
2785                 struct zap_details *details)
2786 {
2787         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2788 }
2789
2790 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2791                                             struct zap_details *details)
2792 {
2793         struct vm_area_struct *vma;
2794         pgoff_t vba, vea, zba, zea;
2795
2796         vma_interval_tree_foreach(vma, root,
2797                         details->first_index, details->last_index) {
2798
2799                 vba = vma->vm_pgoff;
2800                 vea = vba + vma_pages(vma) - 1;
2801                 zba = details->first_index;
2802                 if (zba < vba)
2803                         zba = vba;
2804                 zea = details->last_index;
2805                 if (zea > vea)
2806                         zea = vea;
2807
2808                 unmap_mapping_range_vma(vma,
2809                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2810                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2811                                 details);
2812         }
2813 }
2814
2815 /**
2816  * unmap_mapping_pages() - Unmap pages from processes.
2817  * @mapping: The address space containing pages to be unmapped.
2818  * @start: Index of first page to be unmapped.
2819  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2820  * @even_cows: Whether to unmap even private COWed pages.
2821  *
2822  * Unmap the pages in this address space from any userspace process which
2823  * has them mmaped.  Generally, you want to remove COWed pages as well when
2824  * a file is being truncated, but not when invalidating pages from the page
2825  * cache.
2826  */
2827 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2828                 pgoff_t nr, bool even_cows)
2829 {
2830         struct zap_details details = { };
2831
2832         details.check_mapping = even_cows ? NULL : mapping;
2833         details.first_index = start;
2834         details.last_index = start + nr - 1;
2835         if (details.last_index < details.first_index)
2836                 details.last_index = ULONG_MAX;
2837
2838         i_mmap_lock_write(mapping);
2839         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2840                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2841         i_mmap_unlock_write(mapping);
2842 }
2843
2844 /**
2845  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2846  * address_space corresponding to the specified byte range in the underlying
2847  * file.
2848  *
2849  * @mapping: the address space containing mmaps to be unmapped.
2850  * @holebegin: byte in first page to unmap, relative to the start of
2851  * the underlying file.  This will be rounded down to a PAGE_SIZE
2852  * boundary.  Note that this is different from truncate_pagecache(), which
2853  * must keep the partial page.  In contrast, we must get rid of
2854  * partial pages.
2855  * @holelen: size of prospective hole in bytes.  This will be rounded
2856  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2857  * end of the file.
2858  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2859  * but 0 when invalidating pagecache, don't throw away private data.
2860  */
2861 void unmap_mapping_range(struct address_space *mapping,
2862                 loff_t const holebegin, loff_t const holelen, int even_cows)
2863 {
2864         pgoff_t hba = holebegin >> PAGE_SHIFT;
2865         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2866
2867         /* Check for overflow. */
2868         if (sizeof(holelen) > sizeof(hlen)) {
2869                 long long holeend =
2870                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2871                 if (holeend & ~(long long)ULONG_MAX)
2872                         hlen = ULONG_MAX - hba + 1;
2873         }
2874
2875         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2876 }
2877 EXPORT_SYMBOL(unmap_mapping_range);
2878
2879 /*
2880  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2881  * but allow concurrent faults), and pte mapped but not yet locked.
2882  * We return with pte unmapped and unlocked.
2883  *
2884  * We return with the mmap_sem locked or unlocked in the same cases
2885  * as does filemap_fault().
2886  */
2887 int do_swap_page(struct vm_fault *vmf)
2888 {
2889         struct vm_area_struct *vma = vmf->vma;
2890         struct page *page = NULL, *swapcache = NULL;
2891         struct mem_cgroup *memcg;
2892         struct vma_swap_readahead swap_ra;
2893         swp_entry_t entry;
2894         pte_t pte;
2895         int locked;
2896         int exclusive = 0;
2897         int ret = 0;
2898         bool vma_readahead = swap_use_vma_readahead();
2899
2900         if (vma_readahead) {
2901                 page = swap_readahead_detect(vmf, &swap_ra);
2902                 swapcache = page;
2903         }
2904
2905         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2906                 if (page)
2907                         put_page(page);
2908                 goto out;
2909         }
2910
2911         entry = pte_to_swp_entry(vmf->orig_pte);
2912         if (unlikely(non_swap_entry(entry))) {
2913                 if (is_migration_entry(entry)) {
2914                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2915                                              vmf->address);
2916                 } else if (is_device_private_entry(entry)) {
2917                         /*
2918                          * For un-addressable device memory we call the pgmap
2919                          * fault handler callback. The callback must migrate
2920                          * the page back to some CPU accessible page.
2921                          */
2922                         ret = device_private_entry_fault(vma, vmf->address, entry,
2923                                                  vmf->flags, vmf->pmd);
2924                 } else if (is_hwpoison_entry(entry)) {
2925                         ret = VM_FAULT_HWPOISON;
2926                 } else {
2927                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2928                         ret = VM_FAULT_SIGBUS;
2929                 }
2930                 goto out;
2931         }
2932
2933
2934         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2935         if (!page) {
2936                 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2937                                          vmf->address);
2938                 swapcache = page;
2939         }
2940
2941         if (!page) {
2942                 struct swap_info_struct *si = swp_swap_info(entry);
2943
2944                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2945                                 __swap_count(si, entry) == 1) {
2946                         /* skip swapcache */
2947                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2948                         if (page) {
2949                                 __SetPageLocked(page);
2950                                 __SetPageSwapBacked(page);
2951                                 set_page_private(page, entry.val);
2952                                 lru_cache_add_anon(page);
2953                                 swap_readpage(page, true);
2954                         }
2955                 } else {
2956                         if (vma_readahead)
2957                                 page = do_swap_page_readahead(entry,
2958                                         GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2959                         else
2960                                 page = swapin_readahead(entry,
2961                                        GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2962                         swapcache = page;
2963                 }
2964
2965                 if (!page) {
2966                         /*
2967                          * Back out if somebody else faulted in this pte
2968                          * while we released the pte lock.
2969                          */
2970                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2971                                         vmf->address, &vmf->ptl);
2972                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2973                                 ret = VM_FAULT_OOM;
2974                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975                         goto unlock;
2976                 }
2977
2978                 /* Had to read the page from swap area: Major fault */
2979                 ret = VM_FAULT_MAJOR;
2980                 count_vm_event(PGMAJFAULT);
2981                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2982         } else if (PageHWPoison(page)) {
2983                 /*
2984                  * hwpoisoned dirty swapcache pages are kept for killing
2985                  * owner processes (which may be unknown at hwpoison time)
2986                  */
2987                 ret = VM_FAULT_HWPOISON;
2988                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2989                 swapcache = page;
2990                 goto out_release;
2991         }
2992
2993         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2994
2995         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2996         if (!locked) {
2997                 ret |= VM_FAULT_RETRY;
2998                 goto out_release;
2999         }
3000
3001         /*
3002          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3003          * release the swapcache from under us.  The page pin, and pte_same
3004          * test below, are not enough to exclude that.  Even if it is still
3005          * swapcache, we need to check that the page's swap has not changed.
3006          */
3007         if (unlikely((!PageSwapCache(page) ||
3008                         page_private(page) != entry.val)) && swapcache)
3009                 goto out_page;
3010
3011         page = ksm_might_need_to_copy(page, vma, vmf->address);
3012         if (unlikely(!page)) {
3013                 ret = VM_FAULT_OOM;
3014                 page = swapcache;
3015                 goto out_page;
3016         }
3017
3018         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3019                                 &memcg, false)) {
3020                 ret = VM_FAULT_OOM;
3021                 goto out_page;
3022         }
3023
3024         /*
3025          * Back out if somebody else already faulted in this pte.
3026          */
3027         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3028                         &vmf->ptl);
3029         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3030                 goto out_nomap;
3031
3032         if (unlikely(!PageUptodate(page))) {
3033                 ret = VM_FAULT_SIGBUS;
3034                 goto out_nomap;
3035         }
3036
3037         /*
3038          * The page isn't present yet, go ahead with the fault.
3039          *
3040          * Be careful about the sequence of operations here.
3041          * To get its accounting right, reuse_swap_page() must be called
3042          * while the page is counted on swap but not yet in mapcount i.e.
3043          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3044          * must be called after the swap_free(), or it will never succeed.
3045          */
3046
3047         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3048         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3049         pte = mk_pte(page, vma->vm_page_prot);
3050         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3051                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3052                 vmf->flags &= ~FAULT_FLAG_WRITE;
3053                 ret |= VM_FAULT_WRITE;
3054                 exclusive = RMAP_EXCLUSIVE;
3055         }
3056         flush_icache_page(vma, page);
3057         if (pte_swp_soft_dirty(vmf->orig_pte))
3058                 pte = pte_mksoft_dirty(pte);
3059         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3060         vmf->orig_pte = pte;
3061
3062         /* ksm created a completely new copy */
3063         if (unlikely(page != swapcache && swapcache)) {
3064                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3065                 mem_cgroup_commit_charge(page, memcg, false, false);
3066                 lru_cache_add_active_or_unevictable(page, vma);
3067         } else {
3068                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3069                 mem_cgroup_commit_charge(page, memcg, true, false);
3070                 activate_page(page);
3071         }
3072
3073         swap_free(entry);
3074         if (mem_cgroup_swap_full(page) ||
3075             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3076                 try_to_free_swap(page);
3077         unlock_page(page);
3078         if (page != swapcache && swapcache) {
3079                 /*
3080                  * Hold the lock to avoid the swap entry to be reused
3081                  * until we take the PT lock for the pte_same() check
3082                  * (to avoid false positives from pte_same). For
3083                  * further safety release the lock after the swap_free
3084                  * so that the swap count won't change under a
3085                  * parallel locked swapcache.
3086                  */
3087                 unlock_page(swapcache);
3088                 put_page(swapcache);
3089         }
3090
3091         if (vmf->flags & FAULT_FLAG_WRITE) {
3092                 ret |= do_wp_page(vmf);
3093                 if (ret & VM_FAULT_ERROR)
3094                         ret &= VM_FAULT_ERROR;
3095                 goto out;
3096         }
3097
3098         /* No need to invalidate - it was non-present before */
3099         update_mmu_cache(vma, vmf->address, vmf->pte);
3100 unlock:
3101         pte_unmap_unlock(vmf->pte, vmf->ptl);
3102 out:
3103         return ret;
3104 out_nomap:
3105         mem_cgroup_cancel_charge(page, memcg, false);
3106         pte_unmap_unlock(vmf->pte, vmf->ptl);
3107 out_page:
3108         unlock_page(page);
3109 out_release:
3110         put_page(page);
3111         if (page != swapcache && swapcache) {
3112                 unlock_page(swapcache);
3113                 put_page(swapcache);
3114         }
3115         return ret;
3116 }
3117
3118 /*
3119  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3120  * but allow concurrent faults), and pte mapped but not yet locked.
3121  * We return with mmap_sem still held, but pte unmapped and unlocked.
3122  */
3123 static int do_anonymous_page(struct vm_fault *vmf)
3124 {
3125         struct vm_area_struct *vma = vmf->vma;
3126         struct mem_cgroup *memcg;
3127         struct page *page;
3128         int ret = 0;
3129         pte_t entry;
3130
3131         /* File mapping without ->vm_ops ? */
3132         if (vma->vm_flags & VM_SHARED)
3133                 return VM_FAULT_SIGBUS;
3134
3135         /*
3136          * Use pte_alloc() instead of pte_alloc_map().  We can't run
3137          * pte_offset_map() on pmds where a huge pmd might be created
3138          * from a different thread.
3139          *
3140          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3141          * parallel threads are excluded by other means.
3142          *
3143          * Here we only have down_read(mmap_sem).
3144          */
3145         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3146                 return VM_FAULT_OOM;
3147
3148         /* See the comment in pte_alloc_one_map() */
3149         if (unlikely(pmd_trans_unstable(vmf->pmd)))
3150                 return 0;
3151
3152         /* Use the zero-page for reads */
3153         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3154                         !mm_forbids_zeropage(vma->vm_mm)) {
3155                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3156                                                 vma->vm_page_prot));
3157                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3158                                 vmf->address, &vmf->ptl);
3159                 if (!pte_none(*vmf->pte))
3160                         goto unlock;
3161                 ret = check_stable_address_space(vma->vm_mm);
3162                 if (ret)
3163                         goto unlock;
3164                 /* Deliver the page fault to userland, check inside PT lock */
3165                 if (userfaultfd_missing(vma)) {
3166                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3167                         return handle_userfault(vmf, VM_UFFD_MISSING);
3168                 }
3169                 goto setpte;
3170         }
3171
3172         /* Allocate our own private page. */
3173         if (unlikely(anon_vma_prepare(vma)))
3174                 goto oom;
3175         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3176         if (!page)
3177                 goto oom;
3178
3179         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3180                 goto oom_free_page;
3181
3182         /*
3183          * The memory barrier inside __SetPageUptodate makes sure that
3184          * preceeding stores to the page contents become visible before
3185          * the set_pte_at() write.
3186          */
3187         __SetPageUptodate(page);
3188
3189         entry = mk_pte(page, vma->vm_page_prot);
3190         if (vma->vm_flags & VM_WRITE)
3191                 entry = pte_mkwrite(pte_mkdirty(entry));
3192
3193         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3194                         &vmf->ptl);
3195         if (!pte_none(*vmf->pte))
3196                 goto release;
3197
3198         ret = check_stable_address_space(vma->vm_mm);
3199         if (ret)
3200                 goto release;
3201
3202         /* Deliver the page fault to userland, check inside PT lock */
3203         if (userfaultfd_missing(vma)) {
3204                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3205                 mem_cgroup_cancel_charge(page, memcg, false);
3206                 put_page(page);
3207                 return handle_userfault(vmf, VM_UFFD_MISSING);
3208         }
3209
3210         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3211         page_add_new_anon_rmap(page, vma, vmf->address, false);
3212         mem_cgroup_commit_charge(page, memcg, false, false);
3213         lru_cache_add_active_or_unevictable(page, vma);
3214 setpte:
3215         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3216
3217         /* No need to invalidate - it was non-present before */
3218         update_mmu_cache(vma, vmf->address, vmf->pte);
3219 unlock:
3220         pte_unmap_unlock(vmf->pte, vmf->ptl);
3221         return ret;
3222 release:
3223         mem_cgroup_cancel_charge(page, memcg, false);
3224         put_page(page);
3225         goto unlock;
3226 oom_free_page:
3227         put_page(page);
3228 oom:
3229         return VM_FAULT_OOM;
3230 }
3231
3232 /*
3233  * The mmap_sem must have been held on entry, and may have been
3234  * released depending on flags and vma->vm_ops->fault() return value.
3235  * See filemap_fault() and __lock_page_retry().
3236  */
3237 static int __do_fault(struct vm_fault *vmf)
3238 {
3239         struct vm_area_struct *vma = vmf->vma;
3240         int ret;
3241
3242         ret = vma->vm_ops->fault(vmf);
3243         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3244                             VM_FAULT_DONE_COW)))
3245                 return ret;
3246
3247         if (unlikely(PageHWPoison(vmf->page))) {
3248                 if (ret & VM_FAULT_LOCKED)
3249                         unlock_page(vmf->page);
3250                 put_page(vmf->page);
3251                 vmf->page = NULL;
3252                 return VM_FAULT_HWPOISON;
3253         }
3254
3255         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3256                 lock_page(vmf->page);
3257         else
3258                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3259
3260         return ret;
3261 }
3262
3263 /*
3264  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3265  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3266  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3267  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3268  */
3269 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3270 {
3271         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3272 }
3273
3274 static int pte_alloc_one_map(struct vm_fault *vmf)
3275 {
3276         struct vm_area_struct *vma = vmf->vma;
3277
3278         if (!pmd_none(*vmf->pmd))
3279                 goto map_pte;
3280         if (vmf->prealloc_pte) {
3281                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3282                 if (unlikely(!pmd_none(*vmf->pmd))) {
3283                         spin_unlock(vmf->ptl);
3284                         goto map_pte;
3285                 }
3286
3287                 mm_inc_nr_ptes(vma->vm_mm);
3288                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3289                 spin_unlock(vmf->ptl);
3290                 vmf->prealloc_pte = NULL;
3291         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3292                 return VM_FAULT_OOM;
3293         }
3294 map_pte:
3295         /*
3296          * If a huge pmd materialized under us just retry later.  Use
3297          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3298          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3299          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3300          * running immediately after a huge pmd fault in a different thread of
3301          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3302          * All we have to ensure is that it is a regular pmd that we can walk
3303          * with pte_offset_map() and we can do that through an atomic read in
3304          * C, which is what pmd_trans_unstable() provides.
3305          */
3306         if (pmd_devmap_trans_unstable(vmf->pmd))
3307                 return VM_FAULT_NOPAGE;
3308
3309         /*
3310          * At this point we know that our vmf->pmd points to a page of ptes
3311          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3312          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3313          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3314          * be valid and we will re-check to make sure the vmf->pte isn't
3315          * pte_none() under vmf->ptl protection when we return to
3316          * alloc_set_pte().
3317          */
3318         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3319                         &vmf->ptl);
3320         return 0;
3321 }
3322
3323 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3324
3325 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3326 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3327                 unsigned long haddr)
3328 {
3329         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3330                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3331                 return false;
3332         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3333                 return false;
3334         return true;
3335 }
3336
3337 static void deposit_prealloc_pte(struct vm_fault *vmf)
3338 {
3339         struct vm_area_struct *vma = vmf->vma;
3340
3341         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342         /*
3343          * We are going to consume the prealloc table,
3344          * count that as nr_ptes.
3345          */
3346         mm_inc_nr_ptes(vma->vm_mm);
3347         vmf->prealloc_pte = NULL;
3348 }
3349
3350 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3351 {
3352         struct vm_area_struct *vma = vmf->vma;
3353         bool write = vmf->flags & FAULT_FLAG_WRITE;
3354         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3355         pmd_t entry;
3356         int i, ret;
3357
3358         if (!transhuge_vma_suitable(vma, haddr))
3359                 return VM_FAULT_FALLBACK;
3360
3361         ret = VM_FAULT_FALLBACK;
3362         page = compound_head(page);
3363
3364         /*
3365          * Archs like ppc64 need additonal space to store information
3366          * related to pte entry. Use the preallocated table for that.
3367          */
3368         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3369                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3370                 if (!vmf->prealloc_pte)
3371                         return VM_FAULT_OOM;
3372                 smp_wmb(); /* See comment in __pte_alloc() */
3373         }
3374
3375         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3376         if (unlikely(!pmd_none(*vmf->pmd)))
3377                 goto out;
3378
3379         for (i = 0; i < HPAGE_PMD_NR; i++)
3380                 flush_icache_page(vma, page + i);
3381
3382         entry = mk_huge_pmd(page, vma->vm_page_prot);
3383         if (write)
3384                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3385
3386         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3387         page_add_file_rmap(page, true);
3388         /*
3389          * deposit and withdraw with pmd lock held
3390          */
3391         if (arch_needs_pgtable_deposit())
3392                 deposit_prealloc_pte(vmf);
3393
3394         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3395
3396         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3397
3398         /* fault is handled */
3399         ret = 0;
3400         count_vm_event(THP_FILE_MAPPED);
3401 out:
3402         spin_unlock(vmf->ptl);
3403         return ret;
3404 }
3405 #else
3406 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3407 {
3408         BUILD_BUG();
3409         return 0;
3410 }
3411 #endif
3412
3413 /**
3414  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3415  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3416  *
3417  * @vmf: fault environment
3418  * @memcg: memcg to charge page (only for private mappings)
3419  * @page: page to map
3420  *
3421  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3422  * return.
3423  *
3424  * Target users are page handler itself and implementations of
3425  * vm_ops->map_pages.
3426  */
3427 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3428                 struct page *page)
3429 {
3430         struct vm_area_struct *vma = vmf->vma;
3431         bool write = vmf->flags & FAULT_FLAG_WRITE;
3432         pte_t entry;
3433         int ret;
3434
3435         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3436                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3437                 /* THP on COW? */
3438                 VM_BUG_ON_PAGE(memcg, page);
3439
3440                 ret = do_set_pmd(vmf, page);
3441                 if (ret != VM_FAULT_FALLBACK)
3442                         return ret;
3443         }
3444
3445         if (!vmf->pte) {
3446                 ret = pte_alloc_one_map(vmf);
3447                 if (ret)
3448                         return ret;
3449         }
3450
3451         /* Re-check under ptl */
3452         if (unlikely(!pte_none(*vmf->pte)))
3453                 return VM_FAULT_NOPAGE;
3454
3455         flush_icache_page(vma, page);
3456         entry = mk_pte(page, vma->vm_page_prot);
3457         if (write)
3458                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3459         /* copy-on-write page */
3460         if (write && !(vma->vm_flags & VM_SHARED)) {
3461                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3462                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3463                 mem_cgroup_commit_charge(page, memcg, false, false);
3464                 lru_cache_add_active_or_unevictable(page, vma);
3465         } else {
3466                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3467                 page_add_file_rmap(page, false);
3468         }
3469         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3470
3471         /* no need to invalidate: a not-present page won't be cached */
3472         update_mmu_cache(vma, vmf->address, vmf->pte);
3473
3474         return 0;
3475 }
3476
3477
3478 /**
3479  * finish_fault - finish page fault once we have prepared the page to fault
3480  *
3481  * @vmf: structure describing the fault
3482  *
3483  * This function handles all that is needed to finish a page fault once the
3484  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3485  * given page, adds reverse page mapping, handles memcg charges and LRU
3486  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3487  * error.
3488  *
3489  * The function expects the page to be locked and on success it consumes a
3490  * reference of a page being mapped (for the PTE which maps it).
3491  */
3492 int finish_fault(struct vm_fault *vmf)
3493 {
3494         struct page *page;
3495         int ret = 0;
3496
3497         /* Did we COW the page? */
3498         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3499             !(vmf->vma->vm_flags & VM_SHARED))
3500                 page = vmf->cow_page;
3501         else
3502                 page = vmf->page;
3503
3504         /*
3505          * check even for read faults because we might have lost our CoWed
3506          * page
3507          */
3508         if (!(vmf->vma->vm_flags & VM_SHARED))
3509                 ret = check_stable_address_space(vmf->vma->vm_mm);
3510         if (!ret)
3511                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3512         if (vmf->pte)
3513                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3514         return ret;
3515 }
3516
3517 static unsigned long fault_around_bytes __read_mostly =
3518         rounddown_pow_of_two(65536);
3519
3520 #ifdef CONFIG_DEBUG_FS
3521 static int fault_around_bytes_get(void *data, u64 *val)
3522 {
3523         *val = fault_around_bytes;
3524         return 0;
3525 }
3526
3527 /*
3528  * fault_around_bytes must be rounded down to the nearest page order as it's
3529  * what do_fault_around() expects to see.
3530  */
3531 static int fault_around_bytes_set(void *data, u64 val)
3532 {
3533         if (val / PAGE_SIZE > PTRS_PER_PTE)
3534                 return -EINVAL;
3535         if (val > PAGE_SIZE)
3536                 fault_around_bytes = rounddown_pow_of_two(val);
3537         else
3538                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3539         return 0;
3540 }
3541 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3542                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3543
3544 static int __init fault_around_debugfs(void)
3545 {
3546         void *ret;
3547
3548         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3549                         &fault_around_bytes_fops);
3550         if (!ret)
3551                 pr_warn("Failed to create fault_around_bytes in debugfs");
3552         return 0;
3553 }
3554 late_initcall(fault_around_debugfs);
3555 #endif
3556
3557 /*
3558  * do_fault_around() tries to map few pages around the fault address. The hope
3559  * is that the pages will be needed soon and this will lower the number of
3560  * faults to handle.
3561  *
3562  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3563  * not ready to be mapped: not up-to-date, locked, etc.
3564  *
3565  * This function is called with the page table lock taken. In the split ptlock
3566  * case the page table lock only protects only those entries which belong to
3567  * the page table corresponding to the fault address.
3568  *
3569  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3570  * only once.
3571  *
3572  * fault_around_bytes defines how many bytes we'll try to map.
3573  * do_fault_around() expects it to be set to a power of two less than or equal
3574  * to PTRS_PER_PTE.
3575  *
3576  * The virtual address of the area that we map is naturally aligned to
3577  * fault_around_bytes rounded down to the machine page size
3578  * (and therefore to page order).  This way it's easier to guarantee
3579  * that we don't cross page table boundaries.
3580  */
3581 static int do_fault_around(struct vm_fault *vmf)
3582 {
3583         unsigned long address = vmf->address, nr_pages, mask;
3584         pgoff_t start_pgoff = vmf->pgoff;
3585         pgoff_t end_pgoff;
3586         int off, ret = 0;
3587
3588         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3590
3591         vmf->address = max(address & mask, vmf->vma->vm_start);
3592         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593         start_pgoff -= off;
3594
3595         /*
3596          *  end_pgoff is either the end of the page table, the end of
3597          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3598          */
3599         end_pgoff = start_pgoff -
3600                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601                 PTRS_PER_PTE - 1;
3602         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603                         start_pgoff + nr_pages - 1);
3604
3605         if (pmd_none(*vmf->pmd)) {
3606                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607                                                   vmf->address);
3608                 if (!vmf->prealloc_pte)
3609                         goto out;
3610                 smp_wmb(); /* See comment in __pte_alloc() */
3611         }
3612
3613         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3614
3615         /* Huge page is mapped? Page fault is solved */
3616         if (pmd_trans_huge(*vmf->pmd)) {
3617                 ret = VM_FAULT_NOPAGE;
3618                 goto out;
3619         }
3620
3621         /* ->map_pages() haven't done anything useful. Cold page cache? */
3622         if (!vmf->pte)
3623                 goto out;
3624
3625         /* check if the page fault is solved */
3626         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627         if (!pte_none(*vmf->pte))
3628                 ret = VM_FAULT_NOPAGE;
3629         pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 out:
3631         vmf->address = address;
3632         vmf->pte = NULL;
3633         return ret;
3634 }
3635
3636 static int do_read_fault(struct vm_fault *vmf)
3637 {
3638         struct vm_area_struct *vma = vmf->vma;
3639         int ret = 0;
3640
3641         /*
3642          * Let's call ->map_pages() first and use ->fault() as fallback
3643          * if page by the offset is not ready to be mapped (cold cache or
3644          * something).
3645          */
3646         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647                 ret = do_fault_around(vmf);
3648                 if (ret)
3649                         return ret;
3650         }
3651
3652         ret = __do_fault(vmf);
3653         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654                 return ret;
3655
3656         ret |= finish_fault(vmf);
3657         unlock_page(vmf->page);
3658         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659                 put_page(vmf->page);
3660         return ret;
3661 }
3662
3663 static int do_cow_fault(struct vm_fault *vmf)
3664 {
3665         struct vm_area_struct *vma = vmf->vma;
3666         int ret;
3667
3668         if (unlikely(anon_vma_prepare(vma)))
3669                 return VM_FAULT_OOM;
3670
3671         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672         if (!vmf->cow_page)
3673                 return VM_FAULT_OOM;
3674
3675         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676                                 &vmf->memcg, false)) {
3677                 put_page(vmf->cow_page);
3678                 return VM_FAULT_OOM;
3679         }
3680
3681         ret = __do_fault(vmf);
3682         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683                 goto uncharge_out;
3684         if (ret & VM_FAULT_DONE_COW)
3685                 return ret;
3686
3687         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688         __SetPageUptodate(vmf->cow_page);
3689
3690         ret |= finish_fault(vmf);
3691         unlock_page(vmf->page);
3692         put_page(vmf->page);
3693         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694                 goto uncharge_out;
3695         return ret;
3696 uncharge_out:
3697         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698         put_page(vmf->cow_page);
3699         return ret;
3700 }
3701
3702 static int do_shared_fault(struct vm_fault *vmf)
3703 {
3704         struct vm_area_struct *vma = vmf->vma;
3705         int ret, tmp;
3706
3707         ret = __do_fault(vmf);
3708         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709                 return ret;
3710
3711         /*
3712          * Check if the backing address space wants to know that the page is
3713          * about to become writable
3714          */
3715         if (vma->vm_ops->page_mkwrite) {
3716                 unlock_page(vmf->page);
3717                 tmp = do_page_mkwrite(vmf);
3718                 if (unlikely(!tmp ||
3719                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720                         put_page(vmf->page);
3721                         return tmp;
3722                 }
3723         }
3724
3725         ret |= finish_fault(vmf);
3726         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727                                         VM_FAULT_RETRY))) {
3728                 unlock_page(vmf->page);
3729                 put_page(vmf->page);
3730                 return ret;
3731         }
3732
3733         fault_dirty_shared_page(vma, vmf->page);
3734         return ret;
3735 }
3736
3737 /*
3738  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739  * but allow concurrent faults).
3740  * The mmap_sem may have been released depending on flags and our
3741  * return value.  See filemap_fault() and __lock_page_or_retry().
3742  */
3743 static int do_fault(struct vm_fault *vmf)
3744 {
3745         struct vm_area_struct *vma = vmf->vma;
3746         int ret;
3747
3748         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749         if (!vma->vm_ops->fault)
3750                 ret = VM_FAULT_SIGBUS;
3751         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752                 ret = do_read_fault(vmf);
3753         else if (!(vma->vm_flags & VM_SHARED))
3754                 ret = do_cow_fault(vmf);
3755         else
3756                 ret = do_shared_fault(vmf);
3757
3758         /* preallocated pagetable is unused: free it */
3759         if (vmf->prealloc_pte) {
3760                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3761                 vmf->prealloc_pte = NULL;
3762         }
3763         return ret;
3764 }
3765
3766 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767                                 unsigned long addr, int page_nid,
3768                                 int *flags)
3769 {
3770         get_page(page);
3771
3772         count_vm_numa_event(NUMA_HINT_FAULTS);
3773         if (page_nid == numa_node_id()) {
3774                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775                 *flags |= TNF_FAULT_LOCAL;
3776         }
3777
3778         return mpol_misplaced(page, vma, addr);
3779 }
3780
3781 static int do_numa_page(struct vm_fault *vmf)
3782 {
3783         struct vm_area_struct *vma = vmf->vma;
3784         struct page *page = NULL;
3785         int page_nid = -1;
3786         int last_cpupid;
3787         int target_nid;
3788         bool migrated = false;
3789         pte_t pte;
3790         bool was_writable = pte_savedwrite(vmf->orig_pte);
3791         int flags = 0;
3792
3793         /*
3794          * The "pte" at this point cannot be used safely without
3795          * validation through pte_unmap_same(). It's of NUMA type but
3796          * the pfn may be screwed if the read is non atomic.
3797          */
3798         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799         spin_lock(vmf->ptl);
3800         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3802                 goto out;
3803         }
3804
3805         /*
3806          * Make it present again, Depending on how arch implementes non
3807          * accessible ptes, some can allow access by kernel mode.
3808          */
3809         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810         pte = pte_modify(pte, vma->vm_page_prot);
3811         pte = pte_mkyoung(pte);
3812         if (was_writable)
3813                 pte = pte_mkwrite(pte);
3814         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815         update_mmu_cache(vma, vmf->address, vmf->pte);
3816
3817         page = vm_normal_page(vma, vmf->address, pte);
3818         if (!page) {
3819                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3820                 return 0;
3821         }
3822
3823         /* TODO: handle PTE-mapped THP */
3824         if (PageCompound(page)) {
3825                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3826                 return 0;
3827         }
3828
3829         /*
3830          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831          * much anyway since they can be in shared cache state. This misses
3832          * the case where a mapping is writable but the process never writes
3833          * to it but pte_write gets cleared during protection updates and
3834          * pte_dirty has unpredictable behaviour between PTE scan updates,
3835          * background writeback, dirty balancing and application behaviour.
3836          */
3837         if (!pte_write(pte))
3838                 flags |= TNF_NO_GROUP;
3839
3840         /*
3841          * Flag if the page is shared between multiple address spaces. This
3842          * is later used when determining whether to group tasks together
3843          */
3844         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845                 flags |= TNF_SHARED;
3846
3847         last_cpupid = page_cpupid_last(page);
3848         page_nid = page_to_nid(page);
3849         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850                         &flags);
3851         pte_unmap_unlock(vmf->pte, vmf->ptl);
3852         if (target_nid == -1) {
3853                 put_page(page);
3854                 goto out;
3855         }
3856
3857         /* Migrate to the requested node */
3858         migrated = migrate_misplaced_page(page, vma, target_nid);
3859         if (migrated) {
3860                 page_nid = target_nid;
3861                 flags |= TNF_MIGRATED;
3862         } else
3863                 flags |= TNF_MIGRATE_FAIL;
3864
3865 out:
3866         if (page_nid != -1)
3867                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3868         return 0;
3869 }
3870
3871 static inline int create_huge_pmd(struct vm_fault *vmf)
3872 {
3873         if (vma_is_anonymous(vmf->vma))
3874                 return do_huge_pmd_anonymous_page(vmf);
3875         if (vmf->vma->vm_ops->huge_fault)
3876                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877         return VM_FAULT_FALLBACK;
3878 }
3879
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3882 {
3883         if (vma_is_anonymous(vmf->vma))
3884                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3885         if (vmf->vma->vm_ops->huge_fault)
3886                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3887
3888         /* COW handled on pte level: split pmd */
3889         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3891
3892         return VM_FAULT_FALLBACK;
3893 }
3894
3895 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3896 {
3897         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3898 }
3899
3900 static int create_huge_pud(struct vm_fault *vmf)
3901 {
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903         /* No support for anonymous transparent PUD pages yet */
3904         if (vma_is_anonymous(vmf->vma))
3905                 return VM_FAULT_FALLBACK;
3906         if (vmf->vma->vm_ops->huge_fault)
3907                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909         return VM_FAULT_FALLBACK;
3910 }
3911
3912 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3913 {
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915         /* No support for anonymous transparent PUD pages yet */
3916         if (vma_is_anonymous(vmf->vma))
3917                 return VM_FAULT_FALLBACK;
3918         if (vmf->vma->vm_ops->huge_fault)
3919                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921         return VM_FAULT_FALLBACK;
3922 }
3923
3924 /*
3925  * These routines also need to handle stuff like marking pages dirty
3926  * and/or accessed for architectures that don't do it in hardware (most
3927  * RISC architectures).  The early dirtying is also good on the i386.
3928  *
3929  * There is also a hook called "update_mmu_cache()" that architectures
3930  * with external mmu caches can use to update those (ie the Sparc or
3931  * PowerPC hashed page tables that act as extended TLBs).
3932  *
3933  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934  * concurrent faults).
3935  *
3936  * The mmap_sem may have been released depending on flags and our return value.
3937  * See filemap_fault() and __lock_page_or_retry().
3938  */
3939 static int handle_pte_fault(struct vm_fault *vmf)
3940 {
3941         pte_t entry;
3942
3943         if (unlikely(pmd_none(*vmf->pmd))) {
3944                 /*
3945                  * Leave __pte_alloc() until later: because vm_ops->fault may
3946                  * want to allocate huge page, and if we expose page table
3947                  * for an instant, it will be difficult to retract from
3948                  * concurrent faults and from rmap lookups.
3949                  */
3950                 vmf->pte = NULL;
3951         } else {
3952                 /* See comment in pte_alloc_one_map() */
3953                 if (pmd_devmap_trans_unstable(vmf->pmd))
3954                         return 0;
3955                 /*
3956                  * A regular pmd is established and it can't morph into a huge
3957                  * pmd from under us anymore at this point because we hold the
3958                  * mmap_sem read mode and khugepaged takes it in write mode.
3959                  * So now it's safe to run pte_offset_map().
3960                  */
3961                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962                 vmf->orig_pte = *vmf->pte;
3963
3964                 /*
3965                  * some architectures can have larger ptes than wordsize,
3966                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968                  * accesses.  The code below just needs a consistent view
3969                  * for the ifs and we later double check anyway with the
3970                  * ptl lock held. So here a barrier will do.
3971                  */
3972                 barrier();
3973                 if (pte_none(vmf->orig_pte)) {
3974                         pte_unmap(vmf->pte);
3975                         vmf->pte = NULL;
3976                 }
3977         }
3978
3979         if (!vmf->pte) {
3980                 if (vma_is_anonymous(vmf->vma))
3981                         return do_anonymous_page(vmf);
3982                 else
3983                         return do_fault(vmf);
3984         }
3985
3986         if (!pte_present(vmf->orig_pte))
3987                 return do_swap_page(vmf);
3988
3989         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990                 return do_numa_page(vmf);
3991
3992         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993         spin_lock(vmf->ptl);
3994         entry = vmf->orig_pte;
3995         if (unlikely(!pte_same(*vmf->pte, entry)))
3996                 goto unlock;
3997         if (vmf->flags & FAULT_FLAG_WRITE) {
3998                 if (!pte_write(entry))
3999                         return do_wp_page(vmf);
4000                 entry = pte_mkdirty(entry);
4001         }
4002         entry = pte_mkyoung(entry);
4003         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004                                 vmf->flags & FAULT_FLAG_WRITE)) {
4005                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006         } else {
4007                 /*
4008                  * This is needed only for protection faults but the arch code
4009                  * is not yet telling us if this is a protection fault or not.
4010                  * This still avoids useless tlb flushes for .text page faults
4011                  * with threads.
4012                  */
4013                 if (vmf->flags & FAULT_FLAG_WRITE)
4014                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4015         }
4016 unlock:
4017         pte_unmap_unlock(vmf->pte, vmf->ptl);
4018         return 0;
4019 }
4020
4021 /*
4022  * By the time we get here, we already hold the mm semaphore
4023  *
4024  * The mmap_sem may have been released depending on flags and our
4025  * return value.  See filemap_fault() and __lock_page_or_retry().
4026  */
4027 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4028                 unsigned int flags)
4029 {
4030         struct vm_fault vmf = {
4031                 .vma = vma,
4032                 .address = address & PAGE_MASK,
4033                 .flags = flags,
4034                 .pgoff = linear_page_index(vma, address),
4035                 .gfp_mask = __get_fault_gfp_mask(vma),
4036         };
4037         unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038         struct mm_struct *mm = vma->vm_mm;
4039         pgd_t *pgd;
4040         p4d_t *p4d;
4041         int ret;
4042
4043         pgd = pgd_offset(mm, address);
4044         p4d = p4d_alloc(mm, pgd, address);
4045         if (!p4d)
4046                 return VM_FAULT_OOM;
4047
4048         vmf.pud = pud_alloc(mm, p4d, address);
4049         if (!vmf.pud)
4050                 return VM_FAULT_OOM;
4051         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052                 ret = create_huge_pud(&vmf);
4053                 if (!(ret & VM_FAULT_FALLBACK))
4054                         return ret;
4055         } else {
4056                 pud_t orig_pud = *vmf.pud;
4057
4058                 barrier();
4059                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4060
4061                         /* NUMA case for anonymous PUDs would go here */
4062
4063                         if (dirty && !pud_write(orig_pud)) {
4064                                 ret = wp_huge_pud(&vmf, orig_pud);
4065                                 if (!(ret & VM_FAULT_FALLBACK))
4066                                         return ret;
4067                         } else {
4068                                 huge_pud_set_accessed(&vmf, orig_pud);
4069                                 return 0;
4070                         }
4071                 }
4072         }
4073
4074         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075         if (!vmf.pmd)
4076                 return VM_FAULT_OOM;
4077         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078                 ret = create_huge_pmd(&vmf);
4079                 if (!(ret & VM_FAULT_FALLBACK))
4080                         return ret;
4081         } else {
4082                 pmd_t orig_pmd = *vmf.pmd;
4083
4084                 barrier();
4085                 if (unlikely(is_swap_pmd(orig_pmd))) {
4086                         VM_BUG_ON(thp_migration_supported() &&
4087                                           !is_pmd_migration_entry(orig_pmd));
4088                         if (is_pmd_migration_entry(orig_pmd))
4089                                 pmd_migration_entry_wait(mm, vmf.pmd);
4090                         return 0;
4091                 }
4092                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4095
4096                         if (dirty && !pmd_write(orig_pmd)) {
4097                                 ret = wp_huge_pmd(&vmf, orig_pmd);
4098                                 if (!(ret & VM_FAULT_FALLBACK))
4099                                         return ret;
4100                         } else {
4101                                 huge_pmd_set_accessed(&vmf, orig_pmd);
4102                                 return 0;
4103                         }
4104                 }
4105         }
4106
4107         return handle_pte_fault(&vmf);
4108 }
4109
4110 /*
4111  * By the time we get here, we already hold the mm semaphore
4112  *
4113  * The mmap_sem may have been released depending on flags and our
4114  * return value.  See filemap_fault() and __lock_page_or_retry().
4115  */
4116 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117                 unsigned int flags)
4118 {
4119         int ret;
4120
4121         __set_current_state(TASK_RUNNING);
4122
4123         count_vm_event(PGFAULT);
4124         count_memcg_event_mm(vma->vm_mm, PGFAULT);
4125
4126         /* do counter updates before entering really critical section. */
4127         check_sync_rss_stat(current);
4128
4129         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130                                             flags & FAULT_FLAG_INSTRUCTION,
4131                                             flags & FAULT_FLAG_REMOTE))
4132                 return VM_FAULT_SIGSEGV;
4133
4134         /*
4135          * Enable the memcg OOM handling for faults triggered in user
4136          * space.  Kernel faults are handled more gracefully.
4137          */
4138         if (flags & FAULT_FLAG_USER)
4139                 mem_cgroup_oom_enable();
4140
4141         if (unlikely(is_vm_hugetlb_page(vma)))
4142                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143         else
4144                 ret = __handle_mm_fault(vma, address, flags);
4145
4146         if (flags & FAULT_FLAG_USER) {
4147                 mem_cgroup_oom_disable();
4148                 /*
4149                  * The task may have entered a memcg OOM situation but
4150                  * if the allocation error was handled gracefully (no
4151                  * VM_FAULT_OOM), there is no need to kill anything.
4152                  * Just clean up the OOM state peacefully.
4153                  */
4154                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155                         mem_cgroup_oom_synchronize(false);
4156         }
4157
4158         return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(handle_mm_fault);
4161
4162 #ifndef __PAGETABLE_P4D_FOLDED
4163 /*
4164  * Allocate p4d page table.
4165  * We've already handled the fast-path in-line.
4166  */
4167 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4168 {
4169         p4d_t *new = p4d_alloc_one(mm, address);
4170         if (!new)
4171                 return -ENOMEM;
4172
4173         smp_wmb(); /* See comment in __pte_alloc */
4174
4175         spin_lock(&mm->page_table_lock);
4176         if (pgd_present(*pgd))          /* Another has populated it */
4177                 p4d_free(mm, new);
4178         else
4179                 pgd_populate(mm, pgd, new);
4180         spin_unlock(&mm->page_table_lock);
4181         return 0;
4182 }
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4184
4185 #ifndef __PAGETABLE_PUD_FOLDED
4186 /*
4187  * Allocate page upper directory.
4188  * We've already handled the fast-path in-line.
4189  */
4190 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4191 {
4192         pud_t *new = pud_alloc_one(mm, address);
4193         if (!new)
4194                 return -ENOMEM;
4195
4196         smp_wmb(); /* See comment in __pte_alloc */
4197
4198         spin_lock(&mm->page_table_lock);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200         if (!p4d_present(*p4d)) {
4201                 mm_inc_nr_puds(mm);
4202                 p4d_populate(mm, p4d, new);
4203         } else  /* Another has populated it */
4204                 pud_free(mm, new);
4205 #else
4206         if (!pgd_present(*p4d)) {
4207                 mm_inc_nr_puds(mm);
4208                 pgd_populate(mm, p4d, new);
4209         } else  /* Another has populated it */
4210                 pud_free(mm, new);
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212         spin_unlock(&mm->page_table_lock);
4213         return 0;
4214 }
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4216
4217 #ifndef __PAGETABLE_PMD_FOLDED
4218 /*
4219  * Allocate page middle directory.
4220  * We've already handled the fast-path in-line.
4221  */
4222 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4223 {
4224         spinlock_t *ptl;
4225         pmd_t *new = pmd_alloc_one(mm, address);
4226         if (!new)
4227                 return -ENOMEM;
4228
4229         smp_wmb(); /* See comment in __pte_alloc */
4230
4231         ptl = pud_lock(mm, pud);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233         if (!pud_present(*pud)) {
4234                 mm_inc_nr_pmds(mm);
4235                 pud_populate(mm, pud, new);
4236         } else  /* Another has populated it */
4237                 pmd_free(mm, new);
4238 #else
4239         if (!pgd_present(*pud)) {
4240                 mm_inc_nr_pmds(mm);
4241                 pgd_populate(mm, pud, new);
4242         } else /* Another has populated it */
4243                 pmd_free(mm, new);
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4245         spin_unlock(ptl);
4246         return 0;
4247 }
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4249
4250 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251                             unsigned long *start, unsigned long *end,
4252                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4253 {
4254         pgd_t *pgd;
4255         p4d_t *p4d;
4256         pud_t *pud;
4257         pmd_t *pmd;
4258         pte_t *ptep;
4259
4260         pgd = pgd_offset(mm, address);
4261         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262                 goto out;
4263
4264         p4d = p4d_offset(pgd, address);
4265         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266                 goto out;
4267
4268         pud = pud_offset(p4d, address);
4269         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270                 goto out;
4271
4272         pmd = pmd_offset(pud, address);
4273         VM_BUG_ON(pmd_trans_huge(*pmd));
4274
4275         if (pmd_huge(*pmd)) {
4276                 if (!pmdpp)
4277                         goto out;
4278
4279                 if (start && end) {
4280                         *start = address & PMD_MASK;
4281                         *end = *start + PMD_SIZE;
4282                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4283                 }
4284                 *ptlp = pmd_lock(mm, pmd);
4285                 if (pmd_huge(*pmd)) {
4286                         *pmdpp = pmd;
4287                         return 0;
4288                 }
4289                 spin_unlock(*ptlp);
4290                 if (start && end)
4291                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4292         }
4293
4294         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295                 goto out;
4296
4297         if (start && end) {
4298                 *start = address & PAGE_MASK;
4299                 *end = *start + PAGE_SIZE;
4300                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4301         }
4302         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303         if (!pte_present(*ptep))
4304                 goto unlock;
4305         *ptepp = ptep;
4306         return 0;
4307 unlock:
4308         pte_unmap_unlock(ptep, *ptlp);
4309         if (start && end)
4310                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4311 out:
4312         return -EINVAL;
4313 }
4314
4315 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316                              pte_t **ptepp, spinlock_t **ptlp)
4317 {
4318         int res;
4319
4320         /* (void) is needed to make gcc happy */
4321         (void) __cond_lock(*ptlp,
4322                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323                                                     ptepp, NULL, ptlp)));
4324         return res;
4325 }
4326
4327 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328                              unsigned long *start, unsigned long *end,
4329                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4330 {
4331         int res;
4332
4333         /* (void) is needed to make gcc happy */
4334         (void) __cond_lock(*ptlp,
4335                            !(res = __follow_pte_pmd(mm, address, start, end,
4336                                                     ptepp, pmdpp, ptlp)));
4337         return res;
4338 }
4339 EXPORT_SYMBOL(follow_pte_pmd);
4340
4341 /**
4342  * follow_pfn - look up PFN at a user virtual address
4343  * @vma: memory mapping
4344  * @address: user virtual address
4345  * @pfn: location to store found PFN
4346  *
4347  * Only IO mappings and raw PFN mappings are allowed.
4348  *
4349  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4350  */
4351 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352         unsigned long *pfn)
4353 {
4354         int ret = -EINVAL;
4355         spinlock_t *ptl;
4356         pte_t *ptep;
4357
4358         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359                 return ret;
4360
4361         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362         if (ret)
4363                 return ret;
4364         *pfn = pte_pfn(*ptep);
4365         pte_unmap_unlock(ptep, ptl);
4366         return 0;
4367 }
4368 EXPORT_SYMBOL(follow_pfn);
4369
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct *vma,
4372                 unsigned long address, unsigned int flags,
4373                 unsigned long *prot, resource_size_t *phys)
4374 {
4375         int ret = -EINVAL;
4376         pte_t *ptep, pte;
4377         spinlock_t *ptl;
4378
4379         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380                 goto out;
4381
4382         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383                 goto out;
4384         pte = *ptep;
4385
4386         if ((flags & FOLL_WRITE) && !pte_write(pte))
4387                 goto unlock;
4388
4389         *prot = pgprot_val(pte_pgprot(pte));
4390         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4391
4392         ret = 0;
4393 unlock:
4394         pte_unmap_unlock(ptep, ptl);
4395 out:
4396         return ret;
4397 }
4398
4399 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400                         void *buf, int len, int write)
4401 {
4402         resource_size_t phys_addr;
4403         unsigned long prot = 0;
4404         void __iomem *maddr;
4405         int offset = addr & (PAGE_SIZE-1);
4406
4407         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408                 return -EINVAL;
4409
4410         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411         if (write)
4412                 memcpy_toio(maddr + offset, buf, len);
4413         else
4414                 memcpy_fromio(buf, maddr + offset, len);
4415         iounmap(maddr);
4416
4417         return len;
4418 }
4419 EXPORT_SYMBOL_GPL(generic_access_phys);
4420 #endif
4421
4422 /*
4423  * Access another process' address space as given in mm.  If non-NULL, use the
4424  * given task for page fault accounting.
4425  */
4426 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4427                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4428 {
4429         struct vm_area_struct *vma;
4430         void *old_buf = buf;
4431         int write = gup_flags & FOLL_WRITE;
4432
4433         down_read(&mm->mmap_sem);
4434         /* ignore errors, just check how much was successfully transferred */
4435         while (len) {
4436                 int bytes, ret, offset;
4437                 void *maddr;
4438                 struct page *page = NULL;
4439
4440                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4441                                 gup_flags, &page, &vma, NULL);
4442                 if (ret <= 0) {
4443 #ifndef CONFIG_HAVE_IOREMAP_PROT
4444                         break;
4445 #else
4446                         /*
4447                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4448                          * we can access using slightly different code.
4449                          */
4450                         vma = find_vma(mm, addr);
4451                         if (!vma || vma->vm_start > addr)
4452                                 break;
4453                         if (vma->vm_ops && vma->vm_ops->access)
4454                                 ret = vma->vm_ops->access(vma, addr, buf,
4455                                                           len, write);
4456                         if (ret <= 0)
4457                                 break;
4458                         bytes = ret;
4459 #endif
4460                 } else {
4461                         bytes = len;
4462                         offset = addr & (PAGE_SIZE-1);
4463                         if (bytes > PAGE_SIZE-offset)
4464                                 bytes = PAGE_SIZE-offset;
4465
4466                         maddr = kmap(page);
4467                         if (write) {
4468                                 copy_to_user_page(vma, page, addr,
4469                                                   maddr + offset, buf, bytes);
4470                                 set_page_dirty_lock(page);
4471                         } else {
4472                                 copy_from_user_page(vma, page, addr,
4473                                                     buf, maddr + offset, bytes);
4474                         }
4475                         kunmap(page);
4476                         put_page(page);
4477                 }
4478                 len -= bytes;
4479                 buf += bytes;
4480                 addr += bytes;
4481         }
4482         up_read(&mm->mmap_sem);
4483
4484         return buf - old_buf;
4485 }
4486
4487 /**
4488  * access_remote_vm - access another process' address space
4489  * @mm:         the mm_struct of the target address space
4490  * @addr:       start address to access
4491  * @buf:        source or destination buffer
4492  * @len:        number of bytes to transfer
4493  * @gup_flags:  flags modifying lookup behaviour
4494  *
4495  * The caller must hold a reference on @mm.
4496  */
4497 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4498                 void *buf, int len, unsigned int gup_flags)
4499 {
4500         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4501 }
4502
4503 /*
4504  * Access another process' address space.
4505  * Source/target buffer must be kernel space,
4506  * Do not walk the page table directly, use get_user_pages
4507  */
4508 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4509                 void *buf, int len, unsigned int gup_flags)
4510 {
4511         struct mm_struct *mm;
4512         int ret;
4513
4514         mm = get_task_mm(tsk);
4515         if (!mm)
4516                 return 0;
4517
4518         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4519
4520         mmput(mm);
4521
4522         return ret;
4523 }
4524 EXPORT_SYMBOL_GPL(access_process_vm);
4525
4526 /*
4527  * Print the name of a VMA.
4528  */
4529 void print_vma_addr(char *prefix, unsigned long ip)
4530 {
4531         struct mm_struct *mm = current->mm;
4532         struct vm_area_struct *vma;
4533
4534         /*
4535          * we might be running from an atomic context so we cannot sleep
4536          */
4537         if (!down_read_trylock(&mm->mmap_sem))
4538                 return;
4539
4540         vma = find_vma(mm, ip);
4541         if (vma && vma->vm_file) {
4542                 struct file *f = vma->vm_file;
4543                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4544                 if (buf) {
4545                         char *p;
4546
4547                         p = file_path(f, buf, PAGE_SIZE);
4548                         if (IS_ERR(p))
4549                                 p = "?";
4550                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4551                                         vma->vm_start,
4552                                         vma->vm_end - vma->vm_start);
4553                         free_page((unsigned long)buf);
4554                 }
4555         }
4556         up_read(&mm->mmap_sem);
4557 }
4558
4559 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4560 void __might_fault(const char *file, int line)
4561 {
4562         /*
4563          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4564          * holding the mmap_sem, this is safe because kernel memory doesn't
4565          * get paged out, therefore we'll never actually fault, and the
4566          * below annotations will generate false positives.
4567          */
4568         if (uaccess_kernel())
4569                 return;
4570         if (pagefault_disabled())
4571                 return;
4572         __might_sleep(file, line, 0);
4573 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4574         if (current->mm)
4575                 might_lock_read(&current->mm->mmap_sem);
4576 #endif
4577 }
4578 EXPORT_SYMBOL(__might_fault);
4579 #endif
4580
4581 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4582 static void clear_gigantic_page(struct page *page,
4583                                 unsigned long addr,
4584                                 unsigned int pages_per_huge_page)
4585 {
4586         int i;
4587         struct page *p = page;
4588
4589         might_sleep();
4590         for (i = 0; i < pages_per_huge_page;
4591              i++, p = mem_map_next(p, page, i)) {
4592                 cond_resched();
4593                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4594         }
4595 }
4596 void clear_huge_page(struct page *page,
4597                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4598 {
4599         int i, n, base, l;
4600         unsigned long addr = addr_hint &
4601                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4602
4603         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4604                 clear_gigantic_page(page, addr, pages_per_huge_page);
4605                 return;
4606         }
4607
4608         /* Clear sub-page to access last to keep its cache lines hot */
4609         might_sleep();
4610         n = (addr_hint - addr) / PAGE_SIZE;
4611         if (2 * n <= pages_per_huge_page) {
4612                 /* If sub-page to access in first half of huge page */
4613                 base = 0;
4614                 l = n;
4615                 /* Clear sub-pages at the end of huge page */
4616                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4617                         cond_resched();
4618                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4619                 }
4620         } else {
4621                 /* If sub-page to access in second half of huge page */
4622                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4623                 l = pages_per_huge_page - n;
4624                 /* Clear sub-pages at the begin of huge page */
4625                 for (i = 0; i < base; i++) {
4626                         cond_resched();
4627                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4628                 }
4629         }
4630         /*
4631          * Clear remaining sub-pages in left-right-left-right pattern
4632          * towards the sub-page to access
4633          */
4634         for (i = 0; i < l; i++) {
4635                 int left_idx = base + i;
4636                 int right_idx = base + 2 * l - 1 - i;
4637
4638                 cond_resched();
4639                 clear_user_highpage(page + left_idx,
4640                                     addr + left_idx * PAGE_SIZE);
4641                 cond_resched();
4642                 clear_user_highpage(page + right_idx,
4643                                     addr + right_idx * PAGE_SIZE);
4644         }
4645 }
4646
4647 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4648                                     unsigned long addr,
4649                                     struct vm_area_struct *vma,
4650                                     unsigned int pages_per_huge_page)
4651 {
4652         int i;
4653         struct page *dst_base = dst;
4654         struct page *src_base = src;
4655
4656         for (i = 0; i < pages_per_huge_page; ) {
4657                 cond_resched();
4658                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4659
4660                 i++;
4661                 dst = mem_map_next(dst, dst_base, i);
4662                 src = mem_map_next(src, src_base, i);
4663         }
4664 }
4665
4666 void copy_user_huge_page(struct page *dst, struct page *src,
4667                          unsigned long addr, struct vm_area_struct *vma,
4668                          unsigned int pages_per_huge_page)
4669 {
4670         int i;
4671
4672         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4673                 copy_user_gigantic_page(dst, src, addr, vma,
4674                                         pages_per_huge_page);
4675                 return;
4676         }
4677
4678         might_sleep();
4679         for (i = 0; i < pages_per_huge_page; i++) {
4680                 cond_resched();
4681                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4682         }
4683 }
4684
4685 long copy_huge_page_from_user(struct page *dst_page,
4686                                 const void __user *usr_src,
4687                                 unsigned int pages_per_huge_page,
4688                                 bool allow_pagefault)
4689 {
4690         void *src = (void *)usr_src;
4691         void *page_kaddr;
4692         unsigned long i, rc = 0;
4693         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4694
4695         for (i = 0; i < pages_per_huge_page; i++) {
4696                 if (allow_pagefault)
4697                         page_kaddr = kmap(dst_page + i);
4698                 else
4699                         page_kaddr = kmap_atomic(dst_page + i);
4700                 rc = copy_from_user(page_kaddr,
4701                                 (const void __user *)(src + i * PAGE_SIZE),
4702                                 PAGE_SIZE);
4703                 if (allow_pagefault)
4704                         kunmap(dst_page + i);
4705                 else
4706                         kunmap_atomic(page_kaddr);
4707
4708                 ret_val -= (PAGE_SIZE - rc);
4709                 if (rc)
4710                         break;
4711
4712                 cond_resched();
4713         }
4714         return ret_val;
4715 }
4716 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4717
4718 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4719
4720 static struct kmem_cache *page_ptl_cachep;
4721
4722 void __init ptlock_cache_init(void)
4723 {
4724         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4725                         SLAB_PANIC, NULL);
4726 }
4727
4728 bool ptlock_alloc(struct page *page)
4729 {
4730         spinlock_t *ptl;
4731
4732         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4733         if (!ptl)
4734                 return false;
4735         page->ptl = ptl;
4736         return true;
4737 }
4738
4739 void ptlock_free(struct page *page)
4740 {
4741         kmem_cache_free(page_ptl_cachep, page->ptl);
4742 }
4743 #endif