Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier...
[linux-2.6-block.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include <linux/cpu.h>
42 #include "internal.h"
43
44 #include <asm/uaccess.h>
45
46 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
47 #define MEM_CGROUP_RECLAIM_RETRIES      5
48 struct mem_cgroup *root_mem_cgroup __read_mostly;
49
50 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
51 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
52 int do_swap_account __read_mostly;
53 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
54 #else
55 #define do_swap_account         (0)
56 #endif
57
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59
60 /*
61  * Statistics for memory cgroup.
62  */
63 enum mem_cgroup_stat_index {
64         /*
65          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66          */
67         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
68         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
69         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
70         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
71         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
72         MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
73         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74
75         MEM_CGROUP_STAT_NSTATS,
76 };
77
78 struct mem_cgroup_stat_cpu {
79         s64 count[MEM_CGROUP_STAT_NSTATS];
80 } ____cacheline_aligned_in_smp;
81
82 struct mem_cgroup_stat {
83         struct mem_cgroup_stat_cpu cpustat[0];
84 };
85
86 static inline void
87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88                                 enum mem_cgroup_stat_index idx)
89 {
90         stat->count[idx] = 0;
91 }
92
93 static inline s64
94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95                                 enum mem_cgroup_stat_index idx)
96 {
97         return stat->count[idx];
98 }
99
100 /*
101  * For accounting under irq disable, no need for increment preempt count.
102  */
103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104                 enum mem_cgroup_stat_index idx, int val)
105 {
106         stat->count[idx] += val;
107 }
108
109 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110                 enum mem_cgroup_stat_index idx)
111 {
112         int cpu;
113         s64 ret = 0;
114         for_each_possible_cpu(cpu)
115                 ret += stat->cpustat[cpu].count[idx];
116         return ret;
117 }
118
119 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120 {
121         s64 ret;
122
123         ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124         ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125         return ret;
126 }
127
128 /*
129  * per-zone information in memory controller.
130  */
131 struct mem_cgroup_per_zone {
132         /*
133          * spin_lock to protect the per cgroup LRU
134          */
135         struct list_head        lists[NR_LRU_LISTS];
136         unsigned long           count[NR_LRU_LISTS];
137
138         struct zone_reclaim_stat reclaim_stat;
139         struct rb_node          tree_node;      /* RB tree node */
140         unsigned long long      usage_in_excess;/* Set to the value by which */
141                                                 /* the soft limit is exceeded*/
142         bool                    on_tree;
143         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
144                                                 /* use container_of        */
145 };
146 /* Macro for accessing counter */
147 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
148
149 struct mem_cgroup_per_node {
150         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152
153 struct mem_cgroup_lru_info {
154         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156
157 /*
158  * Cgroups above their limits are maintained in a RB-Tree, independent of
159  * their hierarchy representation
160  */
161
162 struct mem_cgroup_tree_per_zone {
163         struct rb_root rb_root;
164         spinlock_t lock;
165 };
166
167 struct mem_cgroup_tree_per_node {
168         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170
171 struct mem_cgroup_tree {
172         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  *
183  * TODO: Add a water mark for the memory controller. Reclaim will begin when
184  * we hit the water mark. May be even add a low water mark, such that
185  * no reclaim occurs from a cgroup at it's low water mark, this is
186  * a feature that will be implemented much later in the future.
187  */
188 struct mem_cgroup {
189         struct cgroup_subsys_state css;
190         /*
191          * the counter to account for memory usage
192          */
193         struct res_counter res;
194         /*
195          * the counter to account for mem+swap usage.
196          */
197         struct res_counter memsw;
198         /*
199          * Per cgroup active and inactive list, similar to the
200          * per zone LRU lists.
201          */
202         struct mem_cgroup_lru_info info;
203
204         /*
205           protect against reclaim related member.
206         */
207         spinlock_t reclaim_param_lock;
208
209         int     prev_priority;  /* for recording reclaim priority */
210
211         /*
212          * While reclaiming in a hierarchy, we cache the last child we
213          * reclaimed from.
214          */
215         int last_scanned_child;
216         /*
217          * Should the accounting and control be hierarchical, per subtree?
218          */
219         bool use_hierarchy;
220         unsigned long   last_oom_jiffies;
221         atomic_t        refcnt;
222
223         unsigned int    swappiness;
224
225         /* set when res.limit == memsw.limit */
226         bool            memsw_is_minimum;
227
228         /*
229          * statistics. This must be placed at the end of memcg.
230          */
231         struct mem_cgroup_stat stat;
232 };
233
234 /*
235  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236  * limit reclaim to prevent infinite loops, if they ever occur.
237  */
238 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
239 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
240
241 enum charge_type {
242         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243         MEM_CGROUP_CHARGE_TYPE_MAPPED,
244         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
245         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
246         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
247         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
248         NR_CHARGE_TYPE,
249 };
250
251 /* only for here (for easy reading.) */
252 #define PCGF_CACHE      (1UL << PCG_CACHE)
253 #define PCGF_USED       (1UL << PCG_USED)
254 #define PCGF_LOCK       (1UL << PCG_LOCK)
255 /* Not used, but added here for completeness */
256 #define PCGF_ACCT       (1UL << PCG_ACCT)
257
258 /* for encoding cft->private value on file */
259 #define _MEM                    (0)
260 #define _MEMSWAP                (1)
261 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
262 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
263 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
264
265 /*
266  * Reclaim flags for mem_cgroup_hierarchical_reclaim
267  */
268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
269 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
271 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
273 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274
275 static void mem_cgroup_get(struct mem_cgroup *mem);
276 static void mem_cgroup_put(struct mem_cgroup *mem);
277 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278 static void drain_all_stock_async(void);
279
280 static struct mem_cgroup_per_zone *
281 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
282 {
283         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
284 }
285
286 static struct mem_cgroup_per_zone *
287 page_cgroup_zoneinfo(struct page_cgroup *pc)
288 {
289         struct mem_cgroup *mem = pc->mem_cgroup;
290         int nid = page_cgroup_nid(pc);
291         int zid = page_cgroup_zid(pc);
292
293         if (!mem)
294                 return NULL;
295
296         return mem_cgroup_zoneinfo(mem, nid, zid);
297 }
298
299 static struct mem_cgroup_tree_per_zone *
300 soft_limit_tree_node_zone(int nid, int zid)
301 {
302         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
303 }
304
305 static struct mem_cgroup_tree_per_zone *
306 soft_limit_tree_from_page(struct page *page)
307 {
308         int nid = page_to_nid(page);
309         int zid = page_zonenum(page);
310
311         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
312 }
313
314 static void
315 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
316                                 struct mem_cgroup_per_zone *mz,
317                                 struct mem_cgroup_tree_per_zone *mctz,
318                                 unsigned long long new_usage_in_excess)
319 {
320         struct rb_node **p = &mctz->rb_root.rb_node;
321         struct rb_node *parent = NULL;
322         struct mem_cgroup_per_zone *mz_node;
323
324         if (mz->on_tree)
325                 return;
326
327         mz->usage_in_excess = new_usage_in_excess;
328         if (!mz->usage_in_excess)
329                 return;
330         while (*p) {
331                 parent = *p;
332                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
333                                         tree_node);
334                 if (mz->usage_in_excess < mz_node->usage_in_excess)
335                         p = &(*p)->rb_left;
336                 /*
337                  * We can't avoid mem cgroups that are over their soft
338                  * limit by the same amount
339                  */
340                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
341                         p = &(*p)->rb_right;
342         }
343         rb_link_node(&mz->tree_node, parent, p);
344         rb_insert_color(&mz->tree_node, &mctz->rb_root);
345         mz->on_tree = true;
346 }
347
348 static void
349 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
350                                 struct mem_cgroup_per_zone *mz,
351                                 struct mem_cgroup_tree_per_zone *mctz)
352 {
353         if (!mz->on_tree)
354                 return;
355         rb_erase(&mz->tree_node, &mctz->rb_root);
356         mz->on_tree = false;
357 }
358
359 static void
360 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
361                                 struct mem_cgroup_per_zone *mz,
362                                 struct mem_cgroup_tree_per_zone *mctz)
363 {
364         spin_lock(&mctz->lock);
365         __mem_cgroup_remove_exceeded(mem, mz, mctz);
366         spin_unlock(&mctz->lock);
367 }
368
369 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
370 {
371         bool ret = false;
372         int cpu;
373         s64 val;
374         struct mem_cgroup_stat_cpu *cpustat;
375
376         cpu = get_cpu();
377         cpustat = &mem->stat.cpustat[cpu];
378         val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
379         if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
380                 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
381                 ret = true;
382         }
383         put_cpu();
384         return ret;
385 }
386
387 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
388 {
389         unsigned long long excess;
390         struct mem_cgroup_per_zone *mz;
391         struct mem_cgroup_tree_per_zone *mctz;
392         int nid = page_to_nid(page);
393         int zid = page_zonenum(page);
394         mctz = soft_limit_tree_from_page(page);
395
396         /*
397          * Necessary to update all ancestors when hierarchy is used.
398          * because their event counter is not touched.
399          */
400         for (; mem; mem = parent_mem_cgroup(mem)) {
401                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
402                 excess = res_counter_soft_limit_excess(&mem->res);
403                 /*
404                  * We have to update the tree if mz is on RB-tree or
405                  * mem is over its softlimit.
406                  */
407                 if (excess || mz->on_tree) {
408                         spin_lock(&mctz->lock);
409                         /* if on-tree, remove it */
410                         if (mz->on_tree)
411                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
412                         /*
413                          * Insert again. mz->usage_in_excess will be updated.
414                          * If excess is 0, no tree ops.
415                          */
416                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
417                         spin_unlock(&mctz->lock);
418                 }
419         }
420 }
421
422 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
423 {
424         int node, zone;
425         struct mem_cgroup_per_zone *mz;
426         struct mem_cgroup_tree_per_zone *mctz;
427
428         for_each_node_state(node, N_POSSIBLE) {
429                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
430                         mz = mem_cgroup_zoneinfo(mem, node, zone);
431                         mctz = soft_limit_tree_node_zone(node, zone);
432                         mem_cgroup_remove_exceeded(mem, mz, mctz);
433                 }
434         }
435 }
436
437 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
438 {
439         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
440 }
441
442 static struct mem_cgroup_per_zone *
443 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
444 {
445         struct rb_node *rightmost = NULL;
446         struct mem_cgroup_per_zone *mz;
447
448 retry:
449         mz = NULL;
450         rightmost = rb_last(&mctz->rb_root);
451         if (!rightmost)
452                 goto done;              /* Nothing to reclaim from */
453
454         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
455         /*
456          * Remove the node now but someone else can add it back,
457          * we will to add it back at the end of reclaim to its correct
458          * position in the tree.
459          */
460         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
461         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
462                 !css_tryget(&mz->mem->css))
463                 goto retry;
464 done:
465         return mz;
466 }
467
468 static struct mem_cgroup_per_zone *
469 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
470 {
471         struct mem_cgroup_per_zone *mz;
472
473         spin_lock(&mctz->lock);
474         mz = __mem_cgroup_largest_soft_limit_node(mctz);
475         spin_unlock(&mctz->lock);
476         return mz;
477 }
478
479 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
480                                          bool charge)
481 {
482         int val = (charge) ? 1 : -1;
483         struct mem_cgroup_stat *stat = &mem->stat;
484         struct mem_cgroup_stat_cpu *cpustat;
485         int cpu = get_cpu();
486
487         cpustat = &stat->cpustat[cpu];
488         __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
489         put_cpu();
490 }
491
492 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
493                                          struct page_cgroup *pc,
494                                          bool charge)
495 {
496         int val = (charge) ? 1 : -1;
497         struct mem_cgroup_stat *stat = &mem->stat;
498         struct mem_cgroup_stat_cpu *cpustat;
499         int cpu = get_cpu();
500
501         cpustat = &stat->cpustat[cpu];
502         if (PageCgroupCache(pc))
503                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
504         else
505                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
506
507         if (charge)
508                 __mem_cgroup_stat_add_safe(cpustat,
509                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
510         else
511                 __mem_cgroup_stat_add_safe(cpustat,
512                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
513         __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
514         put_cpu();
515 }
516
517 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
518                                         enum lru_list idx)
519 {
520         int nid, zid;
521         struct mem_cgroup_per_zone *mz;
522         u64 total = 0;
523
524         for_each_online_node(nid)
525                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
526                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
527                         total += MEM_CGROUP_ZSTAT(mz, idx);
528                 }
529         return total;
530 }
531
532 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
533 {
534         return container_of(cgroup_subsys_state(cont,
535                                 mem_cgroup_subsys_id), struct mem_cgroup,
536                                 css);
537 }
538
539 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
540 {
541         /*
542          * mm_update_next_owner() may clear mm->owner to NULL
543          * if it races with swapoff, page migration, etc.
544          * So this can be called with p == NULL.
545          */
546         if (unlikely(!p))
547                 return NULL;
548
549         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
550                                 struct mem_cgroup, css);
551 }
552
553 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
554 {
555         struct mem_cgroup *mem = NULL;
556
557         if (!mm)
558                 return NULL;
559         /*
560          * Because we have no locks, mm->owner's may be being moved to other
561          * cgroup. We use css_tryget() here even if this looks
562          * pessimistic (rather than adding locks here).
563          */
564         rcu_read_lock();
565         do {
566                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
567                 if (unlikely(!mem))
568                         break;
569         } while (!css_tryget(&mem->css));
570         rcu_read_unlock();
571         return mem;
572 }
573
574 /*
575  * Call callback function against all cgroup under hierarchy tree.
576  */
577 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
578                           int (*func)(struct mem_cgroup *, void *))
579 {
580         int found, ret, nextid;
581         struct cgroup_subsys_state *css;
582         struct mem_cgroup *mem;
583
584         if (!root->use_hierarchy)
585                 return (*func)(root, data);
586
587         nextid = 1;
588         do {
589                 ret = 0;
590                 mem = NULL;
591
592                 rcu_read_lock();
593                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
594                                    &found);
595                 if (css && css_tryget(css))
596                         mem = container_of(css, struct mem_cgroup, css);
597                 rcu_read_unlock();
598
599                 if (mem) {
600                         ret = (*func)(mem, data);
601                         css_put(&mem->css);
602                 }
603                 nextid = found + 1;
604         } while (!ret && css);
605
606         return ret;
607 }
608
609 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
610 {
611         return (mem == root_mem_cgroup);
612 }
613
614 /*
615  * Following LRU functions are allowed to be used without PCG_LOCK.
616  * Operations are called by routine of global LRU independently from memcg.
617  * What we have to take care of here is validness of pc->mem_cgroup.
618  *
619  * Changes to pc->mem_cgroup happens when
620  * 1. charge
621  * 2. moving account
622  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
623  * It is added to LRU before charge.
624  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
625  * When moving account, the page is not on LRU. It's isolated.
626  */
627
628 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
629 {
630         struct page_cgroup *pc;
631         struct mem_cgroup_per_zone *mz;
632
633         if (mem_cgroup_disabled())
634                 return;
635         pc = lookup_page_cgroup(page);
636         /* can happen while we handle swapcache. */
637         if (!TestClearPageCgroupAcctLRU(pc))
638                 return;
639         VM_BUG_ON(!pc->mem_cgroup);
640         /*
641          * We don't check PCG_USED bit. It's cleared when the "page" is finally
642          * removed from global LRU.
643          */
644         mz = page_cgroup_zoneinfo(pc);
645         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
646         if (mem_cgroup_is_root(pc->mem_cgroup))
647                 return;
648         VM_BUG_ON(list_empty(&pc->lru));
649         list_del_init(&pc->lru);
650         return;
651 }
652
653 void mem_cgroup_del_lru(struct page *page)
654 {
655         mem_cgroup_del_lru_list(page, page_lru(page));
656 }
657
658 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
659 {
660         struct mem_cgroup_per_zone *mz;
661         struct page_cgroup *pc;
662
663         if (mem_cgroup_disabled())
664                 return;
665
666         pc = lookup_page_cgroup(page);
667         /*
668          * Used bit is set without atomic ops but after smp_wmb().
669          * For making pc->mem_cgroup visible, insert smp_rmb() here.
670          */
671         smp_rmb();
672         /* unused or root page is not rotated. */
673         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
674                 return;
675         mz = page_cgroup_zoneinfo(pc);
676         list_move(&pc->lru, &mz->lists[lru]);
677 }
678
679 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
680 {
681         struct page_cgroup *pc;
682         struct mem_cgroup_per_zone *mz;
683
684         if (mem_cgroup_disabled())
685                 return;
686         pc = lookup_page_cgroup(page);
687         VM_BUG_ON(PageCgroupAcctLRU(pc));
688         /*
689          * Used bit is set without atomic ops but after smp_wmb().
690          * For making pc->mem_cgroup visible, insert smp_rmb() here.
691          */
692         smp_rmb();
693         if (!PageCgroupUsed(pc))
694                 return;
695
696         mz = page_cgroup_zoneinfo(pc);
697         MEM_CGROUP_ZSTAT(mz, lru) += 1;
698         SetPageCgroupAcctLRU(pc);
699         if (mem_cgroup_is_root(pc->mem_cgroup))
700                 return;
701         list_add(&pc->lru, &mz->lists[lru]);
702 }
703
704 /*
705  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
706  * lru because the page may.be reused after it's fully uncharged (because of
707  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
708  * it again. This function is only used to charge SwapCache. It's done under
709  * lock_page and expected that zone->lru_lock is never held.
710  */
711 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
712 {
713         unsigned long flags;
714         struct zone *zone = page_zone(page);
715         struct page_cgroup *pc = lookup_page_cgroup(page);
716
717         spin_lock_irqsave(&zone->lru_lock, flags);
718         /*
719          * Forget old LRU when this page_cgroup is *not* used. This Used bit
720          * is guarded by lock_page() because the page is SwapCache.
721          */
722         if (!PageCgroupUsed(pc))
723                 mem_cgroup_del_lru_list(page, page_lru(page));
724         spin_unlock_irqrestore(&zone->lru_lock, flags);
725 }
726
727 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
728 {
729         unsigned long flags;
730         struct zone *zone = page_zone(page);
731         struct page_cgroup *pc = lookup_page_cgroup(page);
732
733         spin_lock_irqsave(&zone->lru_lock, flags);
734         /* link when the page is linked to LRU but page_cgroup isn't */
735         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
736                 mem_cgroup_add_lru_list(page, page_lru(page));
737         spin_unlock_irqrestore(&zone->lru_lock, flags);
738 }
739
740
741 void mem_cgroup_move_lists(struct page *page,
742                            enum lru_list from, enum lru_list to)
743 {
744         if (mem_cgroup_disabled())
745                 return;
746         mem_cgroup_del_lru_list(page, from);
747         mem_cgroup_add_lru_list(page, to);
748 }
749
750 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
751 {
752         int ret;
753         struct mem_cgroup *curr = NULL;
754
755         task_lock(task);
756         rcu_read_lock();
757         curr = try_get_mem_cgroup_from_mm(task->mm);
758         rcu_read_unlock();
759         task_unlock(task);
760         if (!curr)
761                 return 0;
762         /*
763          * We should check use_hierarchy of "mem" not "curr". Because checking
764          * use_hierarchy of "curr" here make this function true if hierarchy is
765          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
766          * hierarchy(even if use_hierarchy is disabled in "mem").
767          */
768         if (mem->use_hierarchy)
769                 ret = css_is_ancestor(&curr->css, &mem->css);
770         else
771                 ret = (curr == mem);
772         css_put(&curr->css);
773         return ret;
774 }
775
776 /*
777  * prev_priority control...this will be used in memory reclaim path.
778  */
779 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
780 {
781         int prev_priority;
782
783         spin_lock(&mem->reclaim_param_lock);
784         prev_priority = mem->prev_priority;
785         spin_unlock(&mem->reclaim_param_lock);
786
787         return prev_priority;
788 }
789
790 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
791 {
792         spin_lock(&mem->reclaim_param_lock);
793         if (priority < mem->prev_priority)
794                 mem->prev_priority = priority;
795         spin_unlock(&mem->reclaim_param_lock);
796 }
797
798 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
799 {
800         spin_lock(&mem->reclaim_param_lock);
801         mem->prev_priority = priority;
802         spin_unlock(&mem->reclaim_param_lock);
803 }
804
805 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
806 {
807         unsigned long active;
808         unsigned long inactive;
809         unsigned long gb;
810         unsigned long inactive_ratio;
811
812         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
813         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
814
815         gb = (inactive + active) >> (30 - PAGE_SHIFT);
816         if (gb)
817                 inactive_ratio = int_sqrt(10 * gb);
818         else
819                 inactive_ratio = 1;
820
821         if (present_pages) {
822                 present_pages[0] = inactive;
823                 present_pages[1] = active;
824         }
825
826         return inactive_ratio;
827 }
828
829 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
830 {
831         unsigned long active;
832         unsigned long inactive;
833         unsigned long present_pages[2];
834         unsigned long inactive_ratio;
835
836         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
837
838         inactive = present_pages[0];
839         active = present_pages[1];
840
841         if (inactive * inactive_ratio < active)
842                 return 1;
843
844         return 0;
845 }
846
847 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
848 {
849         unsigned long active;
850         unsigned long inactive;
851
852         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
853         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
854
855         return (active > inactive);
856 }
857
858 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
859                                        struct zone *zone,
860                                        enum lru_list lru)
861 {
862         int nid = zone->zone_pgdat->node_id;
863         int zid = zone_idx(zone);
864         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
865
866         return MEM_CGROUP_ZSTAT(mz, lru);
867 }
868
869 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
870                                                       struct zone *zone)
871 {
872         int nid = zone->zone_pgdat->node_id;
873         int zid = zone_idx(zone);
874         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
875
876         return &mz->reclaim_stat;
877 }
878
879 struct zone_reclaim_stat *
880 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
881 {
882         struct page_cgroup *pc;
883         struct mem_cgroup_per_zone *mz;
884
885         if (mem_cgroup_disabled())
886                 return NULL;
887
888         pc = lookup_page_cgroup(page);
889         /*
890          * Used bit is set without atomic ops but after smp_wmb().
891          * For making pc->mem_cgroup visible, insert smp_rmb() here.
892          */
893         smp_rmb();
894         if (!PageCgroupUsed(pc))
895                 return NULL;
896
897         mz = page_cgroup_zoneinfo(pc);
898         if (!mz)
899                 return NULL;
900
901         return &mz->reclaim_stat;
902 }
903
904 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
905                                         struct list_head *dst,
906                                         unsigned long *scanned, int order,
907                                         int mode, struct zone *z,
908                                         struct mem_cgroup *mem_cont,
909                                         int active, int file)
910 {
911         unsigned long nr_taken = 0;
912         struct page *page;
913         unsigned long scan;
914         LIST_HEAD(pc_list);
915         struct list_head *src;
916         struct page_cgroup *pc, *tmp;
917         int nid = z->zone_pgdat->node_id;
918         int zid = zone_idx(z);
919         struct mem_cgroup_per_zone *mz;
920         int lru = LRU_FILE * file + active;
921         int ret;
922
923         BUG_ON(!mem_cont);
924         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
925         src = &mz->lists[lru];
926
927         scan = 0;
928         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
929                 if (scan >= nr_to_scan)
930                         break;
931
932                 page = pc->page;
933                 if (unlikely(!PageCgroupUsed(pc)))
934                         continue;
935                 if (unlikely(!PageLRU(page)))
936                         continue;
937
938                 scan++;
939                 ret = __isolate_lru_page(page, mode, file);
940                 switch (ret) {
941                 case 0:
942                         list_move(&page->lru, dst);
943                         mem_cgroup_del_lru(page);
944                         nr_taken++;
945                         break;
946                 case -EBUSY:
947                         /* we don't affect global LRU but rotate in our LRU */
948                         mem_cgroup_rotate_lru_list(page, page_lru(page));
949                         break;
950                 default:
951                         break;
952                 }
953         }
954
955         *scanned = scan;
956         return nr_taken;
957 }
958
959 #define mem_cgroup_from_res_counter(counter, member)    \
960         container_of(counter, struct mem_cgroup, member)
961
962 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
963 {
964         if (do_swap_account) {
965                 if (res_counter_check_under_limit(&mem->res) &&
966                         res_counter_check_under_limit(&mem->memsw))
967                         return true;
968         } else
969                 if (res_counter_check_under_limit(&mem->res))
970                         return true;
971         return false;
972 }
973
974 static unsigned int get_swappiness(struct mem_cgroup *memcg)
975 {
976         struct cgroup *cgrp = memcg->css.cgroup;
977         unsigned int swappiness;
978
979         /* root ? */
980         if (cgrp->parent == NULL)
981                 return vm_swappiness;
982
983         spin_lock(&memcg->reclaim_param_lock);
984         swappiness = memcg->swappiness;
985         spin_unlock(&memcg->reclaim_param_lock);
986
987         return swappiness;
988 }
989
990 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
991 {
992         int *val = data;
993         (*val)++;
994         return 0;
995 }
996
997 /**
998  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
999  * @memcg: The memory cgroup that went over limit
1000  * @p: Task that is going to be killed
1001  *
1002  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1003  * enabled
1004  */
1005 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1006 {
1007         struct cgroup *task_cgrp;
1008         struct cgroup *mem_cgrp;
1009         /*
1010          * Need a buffer in BSS, can't rely on allocations. The code relies
1011          * on the assumption that OOM is serialized for memory controller.
1012          * If this assumption is broken, revisit this code.
1013          */
1014         static char memcg_name[PATH_MAX];
1015         int ret;
1016
1017         if (!memcg || !p)
1018                 return;
1019
1020
1021         rcu_read_lock();
1022
1023         mem_cgrp = memcg->css.cgroup;
1024         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1025
1026         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1027         if (ret < 0) {
1028                 /*
1029                  * Unfortunately, we are unable to convert to a useful name
1030                  * But we'll still print out the usage information
1031                  */
1032                 rcu_read_unlock();
1033                 goto done;
1034         }
1035         rcu_read_unlock();
1036
1037         printk(KERN_INFO "Task in %s killed", memcg_name);
1038
1039         rcu_read_lock();
1040         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1041         if (ret < 0) {
1042                 rcu_read_unlock();
1043                 goto done;
1044         }
1045         rcu_read_unlock();
1046
1047         /*
1048          * Continues from above, so we don't need an KERN_ level
1049          */
1050         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1051 done:
1052
1053         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1054                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1055                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1056                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1057         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1058                 "failcnt %llu\n",
1059                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1060                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1061                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1062 }
1063
1064 /*
1065  * This function returns the number of memcg under hierarchy tree. Returns
1066  * 1(self count) if no children.
1067  */
1068 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1069 {
1070         int num = 0;
1071         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1072         return num;
1073 }
1074
1075 /*
1076  * Visit the first child (need not be the first child as per the ordering
1077  * of the cgroup list, since we track last_scanned_child) of @mem and use
1078  * that to reclaim free pages from.
1079  */
1080 static struct mem_cgroup *
1081 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1082 {
1083         struct mem_cgroup *ret = NULL;
1084         struct cgroup_subsys_state *css;
1085         int nextid, found;
1086
1087         if (!root_mem->use_hierarchy) {
1088                 css_get(&root_mem->css);
1089                 ret = root_mem;
1090         }
1091
1092         while (!ret) {
1093                 rcu_read_lock();
1094                 nextid = root_mem->last_scanned_child + 1;
1095                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1096                                    &found);
1097                 if (css && css_tryget(css))
1098                         ret = container_of(css, struct mem_cgroup, css);
1099
1100                 rcu_read_unlock();
1101                 /* Updates scanning parameter */
1102                 spin_lock(&root_mem->reclaim_param_lock);
1103                 if (!css) {
1104                         /* this means start scan from ID:1 */
1105                         root_mem->last_scanned_child = 0;
1106                 } else
1107                         root_mem->last_scanned_child = found;
1108                 spin_unlock(&root_mem->reclaim_param_lock);
1109         }
1110
1111         return ret;
1112 }
1113
1114 /*
1115  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1116  * we reclaimed from, so that we don't end up penalizing one child extensively
1117  * based on its position in the children list.
1118  *
1119  * root_mem is the original ancestor that we've been reclaim from.
1120  *
1121  * We give up and return to the caller when we visit root_mem twice.
1122  * (other groups can be removed while we're walking....)
1123  *
1124  * If shrink==true, for avoiding to free too much, this returns immedieately.
1125  */
1126 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1127                                                 struct zone *zone,
1128                                                 gfp_t gfp_mask,
1129                                                 unsigned long reclaim_options)
1130 {
1131         struct mem_cgroup *victim;
1132         int ret, total = 0;
1133         int loop = 0;
1134         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1135         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1136         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1137         unsigned long excess = mem_cgroup_get_excess(root_mem);
1138
1139         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1140         if (root_mem->memsw_is_minimum)
1141                 noswap = true;
1142
1143         while (1) {
1144                 victim = mem_cgroup_select_victim(root_mem);
1145                 if (victim == root_mem) {
1146                         loop++;
1147                         if (loop >= 1)
1148                                 drain_all_stock_async();
1149                         if (loop >= 2) {
1150                                 /*
1151                                  * If we have not been able to reclaim
1152                                  * anything, it might because there are
1153                                  * no reclaimable pages under this hierarchy
1154                                  */
1155                                 if (!check_soft || !total) {
1156                                         css_put(&victim->css);
1157                                         break;
1158                                 }
1159                                 /*
1160                                  * We want to do more targetted reclaim.
1161                                  * excess >> 2 is not to excessive so as to
1162                                  * reclaim too much, nor too less that we keep
1163                                  * coming back to reclaim from this cgroup
1164                                  */
1165                                 if (total >= (excess >> 2) ||
1166                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1167                                         css_put(&victim->css);
1168                                         break;
1169                                 }
1170                         }
1171                 }
1172                 if (!mem_cgroup_local_usage(&victim->stat)) {
1173                         /* this cgroup's local usage == 0 */
1174                         css_put(&victim->css);
1175                         continue;
1176                 }
1177                 /* we use swappiness of local cgroup */
1178                 if (check_soft)
1179                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1180                                 noswap, get_swappiness(victim), zone,
1181                                 zone->zone_pgdat->node_id);
1182                 else
1183                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1184                                                 noswap, get_swappiness(victim));
1185                 css_put(&victim->css);
1186                 /*
1187                  * At shrinking usage, we can't check we should stop here or
1188                  * reclaim more. It's depends on callers. last_scanned_child
1189                  * will work enough for keeping fairness under tree.
1190                  */
1191                 if (shrink)
1192                         return ret;
1193                 total += ret;
1194                 if (check_soft) {
1195                         if (res_counter_check_under_soft_limit(&root_mem->res))
1196                                 return total;
1197                 } else if (mem_cgroup_check_under_limit(root_mem))
1198                         return 1 + total;
1199         }
1200         return total;
1201 }
1202
1203 bool mem_cgroup_oom_called(struct task_struct *task)
1204 {
1205         bool ret = false;
1206         struct mem_cgroup *mem;
1207         struct mm_struct *mm;
1208
1209         rcu_read_lock();
1210         mm = task->mm;
1211         if (!mm)
1212                 mm = &init_mm;
1213         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1214         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1215                 ret = true;
1216         rcu_read_unlock();
1217         return ret;
1218 }
1219
1220 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1221 {
1222         mem->last_oom_jiffies = jiffies;
1223         return 0;
1224 }
1225
1226 static void record_last_oom(struct mem_cgroup *mem)
1227 {
1228         mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1229 }
1230
1231 /*
1232  * Currently used to update mapped file statistics, but the routine can be
1233  * generalized to update other statistics as well.
1234  */
1235 void mem_cgroup_update_file_mapped(struct page *page, int val)
1236 {
1237         struct mem_cgroup *mem;
1238         struct mem_cgroup_stat *stat;
1239         struct mem_cgroup_stat_cpu *cpustat;
1240         int cpu;
1241         struct page_cgroup *pc;
1242
1243         pc = lookup_page_cgroup(page);
1244         if (unlikely(!pc))
1245                 return;
1246
1247         lock_page_cgroup(pc);
1248         mem = pc->mem_cgroup;
1249         if (!mem)
1250                 goto done;
1251
1252         if (!PageCgroupUsed(pc))
1253                 goto done;
1254
1255         /*
1256          * Preemption is already disabled, we don't need get_cpu()
1257          */
1258         cpu = smp_processor_id();
1259         stat = &mem->stat;
1260         cpustat = &stat->cpustat[cpu];
1261
1262         __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1263 done:
1264         unlock_page_cgroup(pc);
1265 }
1266
1267 /*
1268  * size of first charge trial. "32" comes from vmscan.c's magic value.
1269  * TODO: maybe necessary to use big numbers in big irons.
1270  */
1271 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1272 struct memcg_stock_pcp {
1273         struct mem_cgroup *cached; /* this never be root cgroup */
1274         int charge;
1275         struct work_struct work;
1276 };
1277 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1278 static atomic_t memcg_drain_count;
1279
1280 /*
1281  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1282  * from local stock and true is returned. If the stock is 0 or charges from a
1283  * cgroup which is not current target, returns false. This stock will be
1284  * refilled.
1285  */
1286 static bool consume_stock(struct mem_cgroup *mem)
1287 {
1288         struct memcg_stock_pcp *stock;
1289         bool ret = true;
1290
1291         stock = &get_cpu_var(memcg_stock);
1292         if (mem == stock->cached && stock->charge)
1293                 stock->charge -= PAGE_SIZE;
1294         else /* need to call res_counter_charge */
1295                 ret = false;
1296         put_cpu_var(memcg_stock);
1297         return ret;
1298 }
1299
1300 /*
1301  * Returns stocks cached in percpu to res_counter and reset cached information.
1302  */
1303 static void drain_stock(struct memcg_stock_pcp *stock)
1304 {
1305         struct mem_cgroup *old = stock->cached;
1306
1307         if (stock->charge) {
1308                 res_counter_uncharge(&old->res, stock->charge);
1309                 if (do_swap_account)
1310                         res_counter_uncharge(&old->memsw, stock->charge);
1311         }
1312         stock->cached = NULL;
1313         stock->charge = 0;
1314 }
1315
1316 /*
1317  * This must be called under preempt disabled or must be called by
1318  * a thread which is pinned to local cpu.
1319  */
1320 static void drain_local_stock(struct work_struct *dummy)
1321 {
1322         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1323         drain_stock(stock);
1324 }
1325
1326 /*
1327  * Cache charges(val) which is from res_counter, to local per_cpu area.
1328  * This will be consumed by consumt_stock() function, later.
1329  */
1330 static void refill_stock(struct mem_cgroup *mem, int val)
1331 {
1332         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1333
1334         if (stock->cached != mem) { /* reset if necessary */
1335                 drain_stock(stock);
1336                 stock->cached = mem;
1337         }
1338         stock->charge += val;
1339         put_cpu_var(memcg_stock);
1340 }
1341
1342 /*
1343  * Tries to drain stocked charges in other cpus. This function is asynchronous
1344  * and just put a work per cpu for draining localy on each cpu. Caller can
1345  * expects some charges will be back to res_counter later but cannot wait for
1346  * it.
1347  */
1348 static void drain_all_stock_async(void)
1349 {
1350         int cpu;
1351         /* This function is for scheduling "drain" in asynchronous way.
1352          * The result of "drain" is not directly handled by callers. Then,
1353          * if someone is calling drain, we don't have to call drain more.
1354          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1355          * there is a race. We just do loose check here.
1356          */
1357         if (atomic_read(&memcg_drain_count))
1358                 return;
1359         /* Notify other cpus that system-wide "drain" is running */
1360         atomic_inc(&memcg_drain_count);
1361         get_online_cpus();
1362         for_each_online_cpu(cpu) {
1363                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1364                 schedule_work_on(cpu, &stock->work);
1365         }
1366         put_online_cpus();
1367         atomic_dec(&memcg_drain_count);
1368         /* We don't wait for flush_work */
1369 }
1370
1371 /* This is a synchronous drain interface. */
1372 static void drain_all_stock_sync(void)
1373 {
1374         /* called when force_empty is called */
1375         atomic_inc(&memcg_drain_count);
1376         schedule_on_each_cpu(drain_local_stock);
1377         atomic_dec(&memcg_drain_count);
1378 }
1379
1380 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1381                                         unsigned long action,
1382                                         void *hcpu)
1383 {
1384         int cpu = (unsigned long)hcpu;
1385         struct memcg_stock_pcp *stock;
1386
1387         if (action != CPU_DEAD)
1388                 return NOTIFY_OK;
1389         stock = &per_cpu(memcg_stock, cpu);
1390         drain_stock(stock);
1391         return NOTIFY_OK;
1392 }
1393
1394 /*
1395  * Unlike exported interface, "oom" parameter is added. if oom==true,
1396  * oom-killer can be invoked.
1397  */
1398 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1399                         gfp_t gfp_mask, struct mem_cgroup **memcg,
1400                         bool oom, struct page *page)
1401 {
1402         struct mem_cgroup *mem, *mem_over_limit;
1403         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1404         struct res_counter *fail_res;
1405         int csize = CHARGE_SIZE;
1406
1407         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1408                 /* Don't account this! */
1409                 *memcg = NULL;
1410                 return 0;
1411         }
1412
1413         /*
1414          * We always charge the cgroup the mm_struct belongs to.
1415          * The mm_struct's mem_cgroup changes on task migration if the
1416          * thread group leader migrates. It's possible that mm is not
1417          * set, if so charge the init_mm (happens for pagecache usage).
1418          */
1419         mem = *memcg;
1420         if (likely(!mem)) {
1421                 mem = try_get_mem_cgroup_from_mm(mm);
1422                 *memcg = mem;
1423         } else {
1424                 css_get(&mem->css);
1425         }
1426         if (unlikely(!mem))
1427                 return 0;
1428
1429         VM_BUG_ON(css_is_removed(&mem->css));
1430         if (mem_cgroup_is_root(mem))
1431                 goto done;
1432
1433         while (1) {
1434                 int ret = 0;
1435                 unsigned long flags = 0;
1436
1437                 if (consume_stock(mem))
1438                         goto charged;
1439
1440                 ret = res_counter_charge(&mem->res, csize, &fail_res);
1441                 if (likely(!ret)) {
1442                         if (!do_swap_account)
1443                                 break;
1444                         ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1445                         if (likely(!ret))
1446                                 break;
1447                         /* mem+swap counter fails */
1448                         res_counter_uncharge(&mem->res, csize);
1449                         flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1450                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1451                                                                         memsw);
1452                 } else
1453                         /* mem counter fails */
1454                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1455                                                                         res);
1456
1457                 /* reduce request size and retry */
1458                 if (csize > PAGE_SIZE) {
1459                         csize = PAGE_SIZE;
1460                         continue;
1461                 }
1462                 if (!(gfp_mask & __GFP_WAIT))
1463                         goto nomem;
1464
1465                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1466                                                 gfp_mask, flags);
1467                 if (ret)
1468                         continue;
1469
1470                 /*
1471                  * try_to_free_mem_cgroup_pages() might not give us a full
1472                  * picture of reclaim. Some pages are reclaimed and might be
1473                  * moved to swap cache or just unmapped from the cgroup.
1474                  * Check the limit again to see if the reclaim reduced the
1475                  * current usage of the cgroup before giving up
1476                  *
1477                  */
1478                 if (mem_cgroup_check_under_limit(mem_over_limit))
1479                         continue;
1480
1481                 if (!nr_retries--) {
1482                         if (oom) {
1483                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1484                                 record_last_oom(mem_over_limit);
1485                         }
1486                         goto nomem;
1487                 }
1488         }
1489         if (csize > PAGE_SIZE)
1490                 refill_stock(mem, csize - PAGE_SIZE);
1491 charged:
1492         /*
1493          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1494          * if they exceeds softlimit.
1495          */
1496         if (mem_cgroup_soft_limit_check(mem))
1497                 mem_cgroup_update_tree(mem, page);
1498 done:
1499         return 0;
1500 nomem:
1501         css_put(&mem->css);
1502         return -ENOMEM;
1503 }
1504
1505 /*
1506  * Somemtimes we have to undo a charge we got by try_charge().
1507  * This function is for that and do uncharge, put css's refcnt.
1508  * gotten by try_charge().
1509  */
1510 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1511 {
1512         if (!mem_cgroup_is_root(mem)) {
1513                 res_counter_uncharge(&mem->res, PAGE_SIZE);
1514                 if (do_swap_account)
1515                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1516         }
1517         css_put(&mem->css);
1518 }
1519
1520 /*
1521  * A helper function to get mem_cgroup from ID. must be called under
1522  * rcu_read_lock(). The caller must check css_is_removed() or some if
1523  * it's concern. (dropping refcnt from swap can be called against removed
1524  * memcg.)
1525  */
1526 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1527 {
1528         struct cgroup_subsys_state *css;
1529
1530         /* ID 0 is unused ID */
1531         if (!id)
1532                 return NULL;
1533         css = css_lookup(&mem_cgroup_subsys, id);
1534         if (!css)
1535                 return NULL;
1536         return container_of(css, struct mem_cgroup, css);
1537 }
1538
1539 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1540 {
1541         struct mem_cgroup *mem;
1542         struct page_cgroup *pc;
1543         unsigned short id;
1544         swp_entry_t ent;
1545
1546         VM_BUG_ON(!PageLocked(page));
1547
1548         if (!PageSwapCache(page))
1549                 return NULL;
1550
1551         pc = lookup_page_cgroup(page);
1552         lock_page_cgroup(pc);
1553         if (PageCgroupUsed(pc)) {
1554                 mem = pc->mem_cgroup;
1555                 if (mem && !css_tryget(&mem->css))
1556                         mem = NULL;
1557         } else {
1558                 ent.val = page_private(page);
1559                 id = lookup_swap_cgroup(ent);
1560                 rcu_read_lock();
1561                 mem = mem_cgroup_lookup(id);
1562                 if (mem && !css_tryget(&mem->css))
1563                         mem = NULL;
1564                 rcu_read_unlock();
1565         }
1566         unlock_page_cgroup(pc);
1567         return mem;
1568 }
1569
1570 /*
1571  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1572  * USED state. If already USED, uncharge and return.
1573  */
1574
1575 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1576                                      struct page_cgroup *pc,
1577                                      enum charge_type ctype)
1578 {
1579         /* try_charge() can return NULL to *memcg, taking care of it. */
1580         if (!mem)
1581                 return;
1582
1583         lock_page_cgroup(pc);
1584         if (unlikely(PageCgroupUsed(pc))) {
1585                 unlock_page_cgroup(pc);
1586                 mem_cgroup_cancel_charge(mem);
1587                 return;
1588         }
1589
1590         pc->mem_cgroup = mem;
1591         /*
1592          * We access a page_cgroup asynchronously without lock_page_cgroup().
1593          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1594          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1595          * before USED bit, we need memory barrier here.
1596          * See mem_cgroup_add_lru_list(), etc.
1597          */
1598         smp_wmb();
1599         switch (ctype) {
1600         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1601         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1602                 SetPageCgroupCache(pc);
1603                 SetPageCgroupUsed(pc);
1604                 break;
1605         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1606                 ClearPageCgroupCache(pc);
1607                 SetPageCgroupUsed(pc);
1608                 break;
1609         default:
1610                 break;
1611         }
1612
1613         mem_cgroup_charge_statistics(mem, pc, true);
1614
1615         unlock_page_cgroup(pc);
1616 }
1617
1618 /**
1619  * __mem_cgroup_move_account - move account of the page
1620  * @pc: page_cgroup of the page.
1621  * @from: mem_cgroup which the page is moved from.
1622  * @to: mem_cgroup which the page is moved to. @from != @to.
1623  *
1624  * The caller must confirm following.
1625  * - page is not on LRU (isolate_page() is useful.)
1626  * - the pc is locked, used, and ->mem_cgroup points to @from.
1627  *
1628  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1629  * new cgroup. It should be done by a caller.
1630  */
1631
1632 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1633         struct mem_cgroup *from, struct mem_cgroup *to)
1634 {
1635         struct page *page;
1636         int cpu;
1637         struct mem_cgroup_stat *stat;
1638         struct mem_cgroup_stat_cpu *cpustat;
1639
1640         VM_BUG_ON(from == to);
1641         VM_BUG_ON(PageLRU(pc->page));
1642         VM_BUG_ON(!PageCgroupLocked(pc));
1643         VM_BUG_ON(!PageCgroupUsed(pc));
1644         VM_BUG_ON(pc->mem_cgroup != from);
1645
1646         if (!mem_cgroup_is_root(from))
1647                 res_counter_uncharge(&from->res, PAGE_SIZE);
1648         mem_cgroup_charge_statistics(from, pc, false);
1649
1650         page = pc->page;
1651         if (page_mapped(page) && !PageAnon(page)) {
1652                 cpu = smp_processor_id();
1653                 /* Update mapped_file data for mem_cgroup "from" */
1654                 stat = &from->stat;
1655                 cpustat = &stat->cpustat[cpu];
1656                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1657                                                 -1);
1658
1659                 /* Update mapped_file data for mem_cgroup "to" */
1660                 stat = &to->stat;
1661                 cpustat = &stat->cpustat[cpu];
1662                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1663                                                 1);
1664         }
1665
1666         if (do_swap_account && !mem_cgroup_is_root(from))
1667                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1668         css_put(&from->css);
1669
1670         css_get(&to->css);
1671         pc->mem_cgroup = to;
1672         mem_cgroup_charge_statistics(to, pc, true);
1673         /*
1674          * We charges against "to" which may not have any tasks. Then, "to"
1675          * can be under rmdir(). But in current implementation, caller of
1676          * this function is just force_empty() and it's garanteed that
1677          * "to" is never removed. So, we don't check rmdir status here.
1678          */
1679 }
1680
1681 /*
1682  * check whether the @pc is valid for moving account and call
1683  * __mem_cgroup_move_account()
1684  */
1685 static int mem_cgroup_move_account(struct page_cgroup *pc,
1686                                 struct mem_cgroup *from, struct mem_cgroup *to)
1687 {
1688         int ret = -EINVAL;
1689         lock_page_cgroup(pc);
1690         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1691                 __mem_cgroup_move_account(pc, from, to);
1692                 ret = 0;
1693         }
1694         unlock_page_cgroup(pc);
1695         return ret;
1696 }
1697
1698 /*
1699  * move charges to its parent.
1700  */
1701
1702 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1703                                   struct mem_cgroup *child,
1704                                   gfp_t gfp_mask)
1705 {
1706         struct page *page = pc->page;
1707         struct cgroup *cg = child->css.cgroup;
1708         struct cgroup *pcg = cg->parent;
1709         struct mem_cgroup *parent;
1710         int ret;
1711
1712         /* Is ROOT ? */
1713         if (!pcg)
1714                 return -EINVAL;
1715
1716         ret = -EBUSY;
1717         if (!get_page_unless_zero(page))
1718                 goto out;
1719         if (isolate_lru_page(page))
1720                 goto put;
1721
1722         parent = mem_cgroup_from_cont(pcg);
1723         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1724         if (ret || !parent)
1725                 goto put_back;
1726
1727         ret = mem_cgroup_move_account(pc, child, parent);
1728         if (!ret)
1729                 css_put(&parent->css);  /* drop extra refcnt by try_charge() */
1730         else
1731                 mem_cgroup_cancel_charge(parent);       /* does css_put */
1732 put_back:
1733         putback_lru_page(page);
1734 put:
1735         put_page(page);
1736 out:
1737         return ret;
1738 }
1739
1740 /*
1741  * Charge the memory controller for page usage.
1742  * Return
1743  * 0 if the charge was successful
1744  * < 0 if the cgroup is over its limit
1745  */
1746 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1747                                 gfp_t gfp_mask, enum charge_type ctype,
1748                                 struct mem_cgroup *memcg)
1749 {
1750         struct mem_cgroup *mem;
1751         struct page_cgroup *pc;
1752         int ret;
1753
1754         pc = lookup_page_cgroup(page);
1755         /* can happen at boot */
1756         if (unlikely(!pc))
1757                 return 0;
1758         prefetchw(pc);
1759
1760         mem = memcg;
1761         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1762         if (ret || !mem)
1763                 return ret;
1764
1765         __mem_cgroup_commit_charge(mem, pc, ctype);
1766         return 0;
1767 }
1768
1769 int mem_cgroup_newpage_charge(struct page *page,
1770                               struct mm_struct *mm, gfp_t gfp_mask)
1771 {
1772         if (mem_cgroup_disabled())
1773                 return 0;
1774         if (PageCompound(page))
1775                 return 0;
1776         /*
1777          * If already mapped, we don't have to account.
1778          * If page cache, page->mapping has address_space.
1779          * But page->mapping may have out-of-use anon_vma pointer,
1780          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1781          * is NULL.
1782          */
1783         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1784                 return 0;
1785         if (unlikely(!mm))
1786                 mm = &init_mm;
1787         return mem_cgroup_charge_common(page, mm, gfp_mask,
1788                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1789 }
1790
1791 static void
1792 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1793                                         enum charge_type ctype);
1794
1795 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1796                                 gfp_t gfp_mask)
1797 {
1798         struct mem_cgroup *mem = NULL;
1799         int ret;
1800
1801         if (mem_cgroup_disabled())
1802                 return 0;
1803         if (PageCompound(page))
1804                 return 0;
1805         /*
1806          * Corner case handling. This is called from add_to_page_cache()
1807          * in usual. But some FS (shmem) precharges this page before calling it
1808          * and call add_to_page_cache() with GFP_NOWAIT.
1809          *
1810          * For GFP_NOWAIT case, the page may be pre-charged before calling
1811          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1812          * charge twice. (It works but has to pay a bit larger cost.)
1813          * And when the page is SwapCache, it should take swap information
1814          * into account. This is under lock_page() now.
1815          */
1816         if (!(gfp_mask & __GFP_WAIT)) {
1817                 struct page_cgroup *pc;
1818
1819
1820                 pc = lookup_page_cgroup(page);
1821                 if (!pc)
1822                         return 0;
1823                 lock_page_cgroup(pc);
1824                 if (PageCgroupUsed(pc)) {
1825                         unlock_page_cgroup(pc);
1826                         return 0;
1827                 }
1828                 unlock_page_cgroup(pc);
1829         }
1830
1831         if (unlikely(!mm && !mem))
1832                 mm = &init_mm;
1833
1834         if (page_is_file_cache(page))
1835                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1836                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1837
1838         /* shmem */
1839         if (PageSwapCache(page)) {
1840                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1841                 if (!ret)
1842                         __mem_cgroup_commit_charge_swapin(page, mem,
1843                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
1844         } else
1845                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1846                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1847
1848         return ret;
1849 }
1850
1851 /*
1852  * While swap-in, try_charge -> commit or cancel, the page is locked.
1853  * And when try_charge() successfully returns, one refcnt to memcg without
1854  * struct page_cgroup is acquired. This refcnt will be consumed by
1855  * "commit()" or removed by "cancel()"
1856  */
1857 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1858                                  struct page *page,
1859                                  gfp_t mask, struct mem_cgroup **ptr)
1860 {
1861         struct mem_cgroup *mem;
1862         int ret;
1863
1864         if (mem_cgroup_disabled())
1865                 return 0;
1866
1867         if (!do_swap_account)
1868                 goto charge_cur_mm;
1869         /*
1870          * A racing thread's fault, or swapoff, may have already updated
1871          * the pte, and even removed page from swap cache: in those cases
1872          * do_swap_page()'s pte_same() test will fail; but there's also a
1873          * KSM case which does need to charge the page.
1874          */
1875         if (!PageSwapCache(page))
1876                 goto charge_cur_mm;
1877         mem = try_get_mem_cgroup_from_swapcache(page);
1878         if (!mem)
1879                 goto charge_cur_mm;
1880         *ptr = mem;
1881         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1882         /* drop extra refcnt from tryget */
1883         css_put(&mem->css);
1884         return ret;
1885 charge_cur_mm:
1886         if (unlikely(!mm))
1887                 mm = &init_mm;
1888         return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1889 }
1890
1891 static void
1892 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1893                                         enum charge_type ctype)
1894 {
1895         struct page_cgroup *pc;
1896
1897         if (mem_cgroup_disabled())
1898                 return;
1899         if (!ptr)
1900                 return;
1901         cgroup_exclude_rmdir(&ptr->css);
1902         pc = lookup_page_cgroup(page);
1903         mem_cgroup_lru_del_before_commit_swapcache(page);
1904         __mem_cgroup_commit_charge(ptr, pc, ctype);
1905         mem_cgroup_lru_add_after_commit_swapcache(page);
1906         /*
1907          * Now swap is on-memory. This means this page may be
1908          * counted both as mem and swap....double count.
1909          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1910          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1911          * may call delete_from_swap_cache() before reach here.
1912          */
1913         if (do_swap_account && PageSwapCache(page)) {
1914                 swp_entry_t ent = {.val = page_private(page)};
1915                 unsigned short id;
1916                 struct mem_cgroup *memcg;
1917
1918                 id = swap_cgroup_record(ent, 0);
1919                 rcu_read_lock();
1920                 memcg = mem_cgroup_lookup(id);
1921                 if (memcg) {
1922                         /*
1923                          * This recorded memcg can be obsolete one. So, avoid
1924                          * calling css_tryget
1925                          */
1926                         if (!mem_cgroup_is_root(memcg))
1927                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1928                         mem_cgroup_swap_statistics(memcg, false);
1929                         mem_cgroup_put(memcg);
1930                 }
1931                 rcu_read_unlock();
1932         }
1933         /*
1934          * At swapin, we may charge account against cgroup which has no tasks.
1935          * So, rmdir()->pre_destroy() can be called while we do this charge.
1936          * In that case, we need to call pre_destroy() again. check it here.
1937          */
1938         cgroup_release_and_wakeup_rmdir(&ptr->css);
1939 }
1940
1941 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1942 {
1943         __mem_cgroup_commit_charge_swapin(page, ptr,
1944                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
1945 }
1946
1947 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1948 {
1949         if (mem_cgroup_disabled())
1950                 return;
1951         if (!mem)
1952                 return;
1953         mem_cgroup_cancel_charge(mem);
1954 }
1955
1956 static void
1957 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1958 {
1959         struct memcg_batch_info *batch = NULL;
1960         bool uncharge_memsw = true;
1961         /* If swapout, usage of swap doesn't decrease */
1962         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1963                 uncharge_memsw = false;
1964         /*
1965          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1966          * In those cases, all pages freed continously can be expected to be in
1967          * the same cgroup and we have chance to coalesce uncharges.
1968          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1969          * because we want to do uncharge as soon as possible.
1970          */
1971         if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
1972                 goto direct_uncharge;
1973
1974         batch = &current->memcg_batch;
1975         /*
1976          * In usual, we do css_get() when we remember memcg pointer.
1977          * But in this case, we keep res->usage until end of a series of
1978          * uncharges. Then, it's ok to ignore memcg's refcnt.
1979          */
1980         if (!batch->memcg)
1981                 batch->memcg = mem;
1982         /*
1983          * In typical case, batch->memcg == mem. This means we can
1984          * merge a series of uncharges to an uncharge of res_counter.
1985          * If not, we uncharge res_counter ony by one.
1986          */
1987         if (batch->memcg != mem)
1988                 goto direct_uncharge;
1989         /* remember freed charge and uncharge it later */
1990         batch->bytes += PAGE_SIZE;
1991         if (uncharge_memsw)
1992                 batch->memsw_bytes += PAGE_SIZE;
1993         return;
1994 direct_uncharge:
1995         res_counter_uncharge(&mem->res, PAGE_SIZE);
1996         if (uncharge_memsw)
1997                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1998         return;
1999 }
2000
2001 /*
2002  * uncharge if !page_mapped(page)
2003  */
2004 static struct mem_cgroup *
2005 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2006 {
2007         struct page_cgroup *pc;
2008         struct mem_cgroup *mem = NULL;
2009         struct mem_cgroup_per_zone *mz;
2010
2011         if (mem_cgroup_disabled())
2012                 return NULL;
2013
2014         if (PageSwapCache(page))
2015                 return NULL;
2016
2017         /*
2018          * Check if our page_cgroup is valid
2019          */
2020         pc = lookup_page_cgroup(page);
2021         if (unlikely(!pc || !PageCgroupUsed(pc)))
2022                 return NULL;
2023
2024         lock_page_cgroup(pc);
2025
2026         mem = pc->mem_cgroup;
2027
2028         if (!PageCgroupUsed(pc))
2029                 goto unlock_out;
2030
2031         switch (ctype) {
2032         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2033         case MEM_CGROUP_CHARGE_TYPE_DROP:
2034                 if (page_mapped(page))
2035                         goto unlock_out;
2036                 break;
2037         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2038                 if (!PageAnon(page)) {  /* Shared memory */
2039                         if (page->mapping && !page_is_file_cache(page))
2040                                 goto unlock_out;
2041                 } else if (page_mapped(page)) /* Anon */
2042                                 goto unlock_out;
2043                 break;
2044         default:
2045                 break;
2046         }
2047
2048         if (!mem_cgroup_is_root(mem))
2049                 __do_uncharge(mem, ctype);
2050         if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2051                 mem_cgroup_swap_statistics(mem, true);
2052         mem_cgroup_charge_statistics(mem, pc, false);
2053
2054         ClearPageCgroupUsed(pc);
2055         /*
2056          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2057          * freed from LRU. This is safe because uncharged page is expected not
2058          * to be reused (freed soon). Exception is SwapCache, it's handled by
2059          * special functions.
2060          */
2061
2062         mz = page_cgroup_zoneinfo(pc);
2063         unlock_page_cgroup(pc);
2064
2065         if (mem_cgroup_soft_limit_check(mem))
2066                 mem_cgroup_update_tree(mem, page);
2067         /* at swapout, this memcg will be accessed to record to swap */
2068         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2069                 css_put(&mem->css);
2070
2071         return mem;
2072
2073 unlock_out:
2074         unlock_page_cgroup(pc);
2075         return NULL;
2076 }
2077
2078 void mem_cgroup_uncharge_page(struct page *page)
2079 {
2080         /* early check. */
2081         if (page_mapped(page))
2082                 return;
2083         if (page->mapping && !PageAnon(page))
2084                 return;
2085         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2086 }
2087
2088 void mem_cgroup_uncharge_cache_page(struct page *page)
2089 {
2090         VM_BUG_ON(page_mapped(page));
2091         VM_BUG_ON(page->mapping);
2092         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2093 }
2094
2095 /*
2096  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2097  * In that cases, pages are freed continuously and we can expect pages
2098  * are in the same memcg. All these calls itself limits the number of
2099  * pages freed at once, then uncharge_start/end() is called properly.
2100  * This may be called prural(2) times in a context,
2101  */
2102
2103 void mem_cgroup_uncharge_start(void)
2104 {
2105         current->memcg_batch.do_batch++;
2106         /* We can do nest. */
2107         if (current->memcg_batch.do_batch == 1) {
2108                 current->memcg_batch.memcg = NULL;
2109                 current->memcg_batch.bytes = 0;
2110                 current->memcg_batch.memsw_bytes = 0;
2111         }
2112 }
2113
2114 void mem_cgroup_uncharge_end(void)
2115 {
2116         struct memcg_batch_info *batch = &current->memcg_batch;
2117
2118         if (!batch->do_batch)
2119                 return;
2120
2121         batch->do_batch--;
2122         if (batch->do_batch) /* If stacked, do nothing. */
2123                 return;
2124
2125         if (!batch->memcg)
2126                 return;
2127         /*
2128          * This "batch->memcg" is valid without any css_get/put etc...
2129          * bacause we hide charges behind us.
2130          */
2131         if (batch->bytes)
2132                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2133         if (batch->memsw_bytes)
2134                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2135         /* forget this pointer (for sanity check) */
2136         batch->memcg = NULL;
2137 }
2138
2139 #ifdef CONFIG_SWAP
2140 /*
2141  * called after __delete_from_swap_cache() and drop "page" account.
2142  * memcg information is recorded to swap_cgroup of "ent"
2143  */
2144 void
2145 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2146 {
2147         struct mem_cgroup *memcg;
2148         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2149
2150         if (!swapout) /* this was a swap cache but the swap is unused ! */
2151                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2152
2153         memcg = __mem_cgroup_uncharge_common(page, ctype);
2154
2155         /* record memcg information */
2156         if (do_swap_account && swapout && memcg) {
2157                 swap_cgroup_record(ent, css_id(&memcg->css));
2158                 mem_cgroup_get(memcg);
2159         }
2160         if (swapout && memcg)
2161                 css_put(&memcg->css);
2162 }
2163 #endif
2164
2165 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2166 /*
2167  * called from swap_entry_free(). remove record in swap_cgroup and
2168  * uncharge "memsw" account.
2169  */
2170 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2171 {
2172         struct mem_cgroup *memcg;
2173         unsigned short id;
2174
2175         if (!do_swap_account)
2176                 return;
2177
2178         id = swap_cgroup_record(ent, 0);
2179         rcu_read_lock();
2180         memcg = mem_cgroup_lookup(id);
2181         if (memcg) {
2182                 /*
2183                  * We uncharge this because swap is freed.
2184                  * This memcg can be obsolete one. We avoid calling css_tryget
2185                  */
2186                 if (!mem_cgroup_is_root(memcg))
2187                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2188                 mem_cgroup_swap_statistics(memcg, false);
2189                 mem_cgroup_put(memcg);
2190         }
2191         rcu_read_unlock();
2192 }
2193 #endif
2194
2195 /*
2196  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2197  * page belongs to.
2198  */
2199 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2200 {
2201         struct page_cgroup *pc;
2202         struct mem_cgroup *mem = NULL;
2203         int ret = 0;
2204
2205         if (mem_cgroup_disabled())
2206                 return 0;
2207
2208         pc = lookup_page_cgroup(page);
2209         lock_page_cgroup(pc);
2210         if (PageCgroupUsed(pc)) {
2211                 mem = pc->mem_cgroup;
2212                 css_get(&mem->css);
2213         }
2214         unlock_page_cgroup(pc);
2215
2216         if (mem) {
2217                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2218                                                 page);
2219                 css_put(&mem->css);
2220         }
2221         *ptr = mem;
2222         return ret;
2223 }
2224
2225 /* remove redundant charge if migration failed*/
2226 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2227                 struct page *oldpage, struct page *newpage)
2228 {
2229         struct page *target, *unused;
2230         struct page_cgroup *pc;
2231         enum charge_type ctype;
2232
2233         if (!mem)
2234                 return;
2235         cgroup_exclude_rmdir(&mem->css);
2236         /* at migration success, oldpage->mapping is NULL. */
2237         if (oldpage->mapping) {
2238                 target = oldpage;
2239                 unused = NULL;
2240         } else {
2241                 target = newpage;
2242                 unused = oldpage;
2243         }
2244
2245         if (PageAnon(target))
2246                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2247         else if (page_is_file_cache(target))
2248                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2249         else
2250                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2251
2252         /* unused page is not on radix-tree now. */
2253         if (unused)
2254                 __mem_cgroup_uncharge_common(unused, ctype);
2255
2256         pc = lookup_page_cgroup(target);
2257         /*
2258          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2259          * So, double-counting is effectively avoided.
2260          */
2261         __mem_cgroup_commit_charge(mem, pc, ctype);
2262
2263         /*
2264          * Both of oldpage and newpage are still under lock_page().
2265          * Then, we don't have to care about race in radix-tree.
2266          * But we have to be careful that this page is unmapped or not.
2267          *
2268          * There is a case for !page_mapped(). At the start of
2269          * migration, oldpage was mapped. But now, it's zapped.
2270          * But we know *target* page is not freed/reused under us.
2271          * mem_cgroup_uncharge_page() does all necessary checks.
2272          */
2273         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2274                 mem_cgroup_uncharge_page(target);
2275         /*
2276          * At migration, we may charge account against cgroup which has no tasks
2277          * So, rmdir()->pre_destroy() can be called while we do this charge.
2278          * In that case, we need to call pre_destroy() again. check it here.
2279          */
2280         cgroup_release_and_wakeup_rmdir(&mem->css);
2281 }
2282
2283 /*
2284  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2285  * Calling hierarchical_reclaim is not enough because we should update
2286  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2287  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2288  * not from the memcg which this page would be charged to.
2289  * try_charge_swapin does all of these works properly.
2290  */
2291 int mem_cgroup_shmem_charge_fallback(struct page *page,
2292                             struct mm_struct *mm,
2293                             gfp_t gfp_mask)
2294 {
2295         struct mem_cgroup *mem = NULL;
2296         int ret;
2297
2298         if (mem_cgroup_disabled())
2299                 return 0;
2300
2301         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2302         if (!ret)
2303                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2304
2305         return ret;
2306 }
2307
2308 static DEFINE_MUTEX(set_limit_mutex);
2309
2310 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2311                                 unsigned long long val)
2312 {
2313         int retry_count;
2314         u64 memswlimit;
2315         int ret = 0;
2316         int children = mem_cgroup_count_children(memcg);
2317         u64 curusage, oldusage;
2318
2319         /*
2320          * For keeping hierarchical_reclaim simple, how long we should retry
2321          * is depends on callers. We set our retry-count to be function
2322          * of # of children which we should visit in this loop.
2323          */
2324         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2325
2326         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2327
2328         while (retry_count) {
2329                 if (signal_pending(current)) {
2330                         ret = -EINTR;
2331                         break;
2332                 }
2333                 /*
2334                  * Rather than hide all in some function, I do this in
2335                  * open coded manner. You see what this really does.
2336                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2337                  */
2338                 mutex_lock(&set_limit_mutex);
2339                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2340                 if (memswlimit < val) {
2341                         ret = -EINVAL;
2342                         mutex_unlock(&set_limit_mutex);
2343                         break;
2344                 }
2345                 ret = res_counter_set_limit(&memcg->res, val);
2346                 if (!ret) {
2347                         if (memswlimit == val)
2348                                 memcg->memsw_is_minimum = true;
2349                         else
2350                                 memcg->memsw_is_minimum = false;
2351                 }
2352                 mutex_unlock(&set_limit_mutex);
2353
2354                 if (!ret)
2355                         break;
2356
2357                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2358                                                 MEM_CGROUP_RECLAIM_SHRINK);
2359                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2360                 /* Usage is reduced ? */
2361                 if (curusage >= oldusage)
2362                         retry_count--;
2363                 else
2364                         oldusage = curusage;
2365         }
2366
2367         return ret;
2368 }
2369
2370 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2371                                         unsigned long long val)
2372 {
2373         int retry_count;
2374         u64 memlimit, oldusage, curusage;
2375         int children = mem_cgroup_count_children(memcg);
2376         int ret = -EBUSY;
2377
2378         /* see mem_cgroup_resize_res_limit */
2379         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2380         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2381         while (retry_count) {
2382                 if (signal_pending(current)) {
2383                         ret = -EINTR;
2384                         break;
2385                 }
2386                 /*
2387                  * Rather than hide all in some function, I do this in
2388                  * open coded manner. You see what this really does.
2389                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2390                  */
2391                 mutex_lock(&set_limit_mutex);
2392                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2393                 if (memlimit > val) {
2394                         ret = -EINVAL;
2395                         mutex_unlock(&set_limit_mutex);
2396                         break;
2397                 }
2398                 ret = res_counter_set_limit(&memcg->memsw, val);
2399                 if (!ret) {
2400                         if (memlimit == val)
2401                                 memcg->memsw_is_minimum = true;
2402                         else
2403                                 memcg->memsw_is_minimum = false;
2404                 }
2405                 mutex_unlock(&set_limit_mutex);
2406
2407                 if (!ret)
2408                         break;
2409
2410                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2411                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2412                                                 MEM_CGROUP_RECLAIM_SHRINK);
2413                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2414                 /* Usage is reduced ? */
2415                 if (curusage >= oldusage)
2416                         retry_count--;
2417                 else
2418                         oldusage = curusage;
2419         }
2420         return ret;
2421 }
2422
2423 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2424                                                 gfp_t gfp_mask, int nid,
2425                                                 int zid)
2426 {
2427         unsigned long nr_reclaimed = 0;
2428         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2429         unsigned long reclaimed;
2430         int loop = 0;
2431         struct mem_cgroup_tree_per_zone *mctz;
2432         unsigned long long excess;
2433
2434         if (order > 0)
2435                 return 0;
2436
2437         mctz = soft_limit_tree_node_zone(nid, zid);
2438         /*
2439          * This loop can run a while, specially if mem_cgroup's continuously
2440          * keep exceeding their soft limit and putting the system under
2441          * pressure
2442          */
2443         do {
2444                 if (next_mz)
2445                         mz = next_mz;
2446                 else
2447                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2448                 if (!mz)
2449                         break;
2450
2451                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2452                                                 gfp_mask,
2453                                                 MEM_CGROUP_RECLAIM_SOFT);
2454                 nr_reclaimed += reclaimed;
2455                 spin_lock(&mctz->lock);
2456
2457                 /*
2458                  * If we failed to reclaim anything from this memory cgroup
2459                  * it is time to move on to the next cgroup
2460                  */
2461                 next_mz = NULL;
2462                 if (!reclaimed) {
2463                         do {
2464                                 /*
2465                                  * Loop until we find yet another one.
2466                                  *
2467                                  * By the time we get the soft_limit lock
2468                                  * again, someone might have aded the
2469                                  * group back on the RB tree. Iterate to
2470                                  * make sure we get a different mem.
2471                                  * mem_cgroup_largest_soft_limit_node returns
2472                                  * NULL if no other cgroup is present on
2473                                  * the tree
2474                                  */
2475                                 next_mz =
2476                                 __mem_cgroup_largest_soft_limit_node(mctz);
2477                                 if (next_mz == mz) {
2478                                         css_put(&next_mz->mem->css);
2479                                         next_mz = NULL;
2480                                 } else /* next_mz == NULL or other memcg */
2481                                         break;
2482                         } while (1);
2483                 }
2484                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2485                 excess = res_counter_soft_limit_excess(&mz->mem->res);
2486                 /*
2487                  * One school of thought says that we should not add
2488                  * back the node to the tree if reclaim returns 0.
2489                  * But our reclaim could return 0, simply because due
2490                  * to priority we are exposing a smaller subset of
2491                  * memory to reclaim from. Consider this as a longer
2492                  * term TODO.
2493                  */
2494                 /* If excess == 0, no tree ops */
2495                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2496                 spin_unlock(&mctz->lock);
2497                 css_put(&mz->mem->css);
2498                 loop++;
2499                 /*
2500                  * Could not reclaim anything and there are no more
2501                  * mem cgroups to try or we seem to be looping without
2502                  * reclaiming anything.
2503                  */
2504                 if (!nr_reclaimed &&
2505                         (next_mz == NULL ||
2506                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2507                         break;
2508         } while (!nr_reclaimed);
2509         if (next_mz)
2510                 css_put(&next_mz->mem->css);
2511         return nr_reclaimed;
2512 }
2513
2514 /*
2515  * This routine traverse page_cgroup in given list and drop them all.
2516  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2517  */
2518 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2519                                 int node, int zid, enum lru_list lru)
2520 {
2521         struct zone *zone;
2522         struct mem_cgroup_per_zone *mz;
2523         struct page_cgroup *pc, *busy;
2524         unsigned long flags, loop;
2525         struct list_head *list;
2526         int ret = 0;
2527
2528         zone = &NODE_DATA(node)->node_zones[zid];
2529         mz = mem_cgroup_zoneinfo(mem, node, zid);
2530         list = &mz->lists[lru];
2531
2532         loop = MEM_CGROUP_ZSTAT(mz, lru);
2533         /* give some margin against EBUSY etc...*/
2534         loop += 256;
2535         busy = NULL;
2536         while (loop--) {
2537                 ret = 0;
2538                 spin_lock_irqsave(&zone->lru_lock, flags);
2539                 if (list_empty(list)) {
2540                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2541                         break;
2542                 }
2543                 pc = list_entry(list->prev, struct page_cgroup, lru);
2544                 if (busy == pc) {
2545                         list_move(&pc->lru, list);
2546                         busy = 0;
2547                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2548                         continue;
2549                 }
2550                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2551
2552                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2553                 if (ret == -ENOMEM)
2554                         break;
2555
2556                 if (ret == -EBUSY || ret == -EINVAL) {
2557                         /* found lock contention or "pc" is obsolete. */
2558                         busy = pc;
2559                         cond_resched();
2560                 } else
2561                         busy = NULL;
2562         }
2563
2564         if (!ret && !list_empty(list))
2565                 return -EBUSY;
2566         return ret;
2567 }
2568
2569 /*
2570  * make mem_cgroup's charge to be 0 if there is no task.
2571  * This enables deleting this mem_cgroup.
2572  */
2573 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2574 {
2575         int ret;
2576         int node, zid, shrink;
2577         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2578         struct cgroup *cgrp = mem->css.cgroup;
2579
2580         css_get(&mem->css);
2581
2582         shrink = 0;
2583         /* should free all ? */
2584         if (free_all)
2585                 goto try_to_free;
2586 move_account:
2587         while (mem->res.usage > 0) {
2588                 ret = -EBUSY;
2589                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2590                         goto out;
2591                 ret = -EINTR;
2592                 if (signal_pending(current))
2593                         goto out;
2594                 /* This is for making all *used* pages to be on LRU. */
2595                 lru_add_drain_all();
2596                 drain_all_stock_sync();
2597                 ret = 0;
2598                 for_each_node_state(node, N_HIGH_MEMORY) {
2599                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2600                                 enum lru_list l;
2601                                 for_each_lru(l) {
2602                                         ret = mem_cgroup_force_empty_list(mem,
2603                                                         node, zid, l);
2604                                         if (ret)
2605                                                 break;
2606                                 }
2607                         }
2608                         if (ret)
2609                                 break;
2610                 }
2611                 /* it seems parent cgroup doesn't have enough mem */
2612                 if (ret == -ENOMEM)
2613                         goto try_to_free;
2614                 cond_resched();
2615         }
2616         ret = 0;
2617 out:
2618         css_put(&mem->css);
2619         return ret;
2620
2621 try_to_free:
2622         /* returns EBUSY if there is a task or if we come here twice. */
2623         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2624                 ret = -EBUSY;
2625                 goto out;
2626         }
2627         /* we call try-to-free pages for make this cgroup empty */
2628         lru_add_drain_all();
2629         /* try to free all pages in this cgroup */
2630         shrink = 1;
2631         while (nr_retries && mem->res.usage > 0) {
2632                 int progress;
2633
2634                 if (signal_pending(current)) {
2635                         ret = -EINTR;
2636                         goto out;
2637                 }
2638                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2639                                                 false, get_swappiness(mem));
2640                 if (!progress) {
2641                         nr_retries--;
2642                         /* maybe some writeback is necessary */
2643                         congestion_wait(BLK_RW_ASYNC, HZ/10);
2644                 }
2645
2646         }
2647         lru_add_drain();
2648         /* try move_account...there may be some *locked* pages. */
2649         if (mem->res.usage)
2650                 goto move_account;
2651         ret = 0;
2652         goto out;
2653 }
2654
2655 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2656 {
2657         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2658 }
2659
2660
2661 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2662 {
2663         return mem_cgroup_from_cont(cont)->use_hierarchy;
2664 }
2665
2666 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2667                                         u64 val)
2668 {
2669         int retval = 0;
2670         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2671         struct cgroup *parent = cont->parent;
2672         struct mem_cgroup *parent_mem = NULL;
2673
2674         if (parent)
2675                 parent_mem = mem_cgroup_from_cont(parent);
2676
2677         cgroup_lock();
2678         /*
2679          * If parent's use_hierarchy is set, we can't make any modifications
2680          * in the child subtrees. If it is unset, then the change can
2681          * occur, provided the current cgroup has no children.
2682          *
2683          * For the root cgroup, parent_mem is NULL, we allow value to be
2684          * set if there are no children.
2685          */
2686         if ((!parent_mem || !parent_mem->use_hierarchy) &&
2687                                 (val == 1 || val == 0)) {
2688                 if (list_empty(&cont->children))
2689                         mem->use_hierarchy = val;
2690                 else
2691                         retval = -EBUSY;
2692         } else
2693                 retval = -EINVAL;
2694         cgroup_unlock();
2695
2696         return retval;
2697 }
2698
2699 struct mem_cgroup_idx_data {
2700         s64 val;
2701         enum mem_cgroup_stat_index idx;
2702 };
2703
2704 static int
2705 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2706 {
2707         struct mem_cgroup_idx_data *d = data;
2708         d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2709         return 0;
2710 }
2711
2712 static void
2713 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2714                                 enum mem_cgroup_stat_index idx, s64 *val)
2715 {
2716         struct mem_cgroup_idx_data d;
2717         d.idx = idx;
2718         d.val = 0;
2719         mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2720         *val = d.val;
2721 }
2722
2723 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2724 {
2725         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2726         u64 idx_val, val;
2727         int type, name;
2728
2729         type = MEMFILE_TYPE(cft->private);
2730         name = MEMFILE_ATTR(cft->private);
2731         switch (type) {
2732         case _MEM:
2733                 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2734                         mem_cgroup_get_recursive_idx_stat(mem,
2735                                 MEM_CGROUP_STAT_CACHE, &idx_val);
2736                         val = idx_val;
2737                         mem_cgroup_get_recursive_idx_stat(mem,
2738                                 MEM_CGROUP_STAT_RSS, &idx_val);
2739                         val += idx_val;
2740                         val <<= PAGE_SHIFT;
2741                 } else
2742                         val = res_counter_read_u64(&mem->res, name);
2743                 break;
2744         case _MEMSWAP:
2745                 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2746                         mem_cgroup_get_recursive_idx_stat(mem,
2747                                 MEM_CGROUP_STAT_CACHE, &idx_val);
2748                         val = idx_val;
2749                         mem_cgroup_get_recursive_idx_stat(mem,
2750                                 MEM_CGROUP_STAT_RSS, &idx_val);
2751                         val += idx_val;
2752                         mem_cgroup_get_recursive_idx_stat(mem,
2753                                 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2754                         val += idx_val;
2755                         val <<= PAGE_SHIFT;
2756                 } else
2757                         val = res_counter_read_u64(&mem->memsw, name);
2758                 break;
2759         default:
2760                 BUG();
2761                 break;
2762         }
2763         return val;
2764 }
2765 /*
2766  * The user of this function is...
2767  * RES_LIMIT.
2768  */
2769 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2770                             const char *buffer)
2771 {
2772         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2773         int type, name;
2774         unsigned long long val;
2775         int ret;
2776
2777         type = MEMFILE_TYPE(cft->private);
2778         name = MEMFILE_ATTR(cft->private);
2779         switch (name) {
2780         case RES_LIMIT:
2781                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2782                         ret = -EINVAL;
2783                         break;
2784                 }
2785                 /* This function does all necessary parse...reuse it */
2786                 ret = res_counter_memparse_write_strategy(buffer, &val);
2787                 if (ret)
2788                         break;
2789                 if (type == _MEM)
2790                         ret = mem_cgroup_resize_limit(memcg, val);
2791                 else
2792                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
2793                 break;
2794         case RES_SOFT_LIMIT:
2795                 ret = res_counter_memparse_write_strategy(buffer, &val);
2796                 if (ret)
2797                         break;
2798                 /*
2799                  * For memsw, soft limits are hard to implement in terms
2800                  * of semantics, for now, we support soft limits for
2801                  * control without swap
2802                  */
2803                 if (type == _MEM)
2804                         ret = res_counter_set_soft_limit(&memcg->res, val);
2805                 else
2806                         ret = -EINVAL;
2807                 break;
2808         default:
2809                 ret = -EINVAL; /* should be BUG() ? */
2810                 break;
2811         }
2812         return ret;
2813 }
2814
2815 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2816                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2817 {
2818         struct cgroup *cgroup;
2819         unsigned long long min_limit, min_memsw_limit, tmp;
2820
2821         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2822         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2823         cgroup = memcg->css.cgroup;
2824         if (!memcg->use_hierarchy)
2825                 goto out;
2826
2827         while (cgroup->parent) {
2828                 cgroup = cgroup->parent;
2829                 memcg = mem_cgroup_from_cont(cgroup);
2830                 if (!memcg->use_hierarchy)
2831                         break;
2832                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2833                 min_limit = min(min_limit, tmp);
2834                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2835                 min_memsw_limit = min(min_memsw_limit, tmp);
2836         }
2837 out:
2838         *mem_limit = min_limit;
2839         *memsw_limit = min_memsw_limit;
2840         return;
2841 }
2842
2843 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2844 {
2845         struct mem_cgroup *mem;
2846         int type, name;
2847
2848         mem = mem_cgroup_from_cont(cont);
2849         type = MEMFILE_TYPE(event);
2850         name = MEMFILE_ATTR(event);
2851         switch (name) {
2852         case RES_MAX_USAGE:
2853                 if (type == _MEM)
2854                         res_counter_reset_max(&mem->res);
2855                 else
2856                         res_counter_reset_max(&mem->memsw);
2857                 break;
2858         case RES_FAILCNT:
2859                 if (type == _MEM)
2860                         res_counter_reset_failcnt(&mem->res);
2861                 else
2862                         res_counter_reset_failcnt(&mem->memsw);
2863                 break;
2864         }
2865
2866         return 0;
2867 }
2868
2869
2870 /* For read statistics */
2871 enum {
2872         MCS_CACHE,
2873         MCS_RSS,
2874         MCS_FILE_MAPPED,
2875         MCS_PGPGIN,
2876         MCS_PGPGOUT,
2877         MCS_SWAP,
2878         MCS_INACTIVE_ANON,
2879         MCS_ACTIVE_ANON,
2880         MCS_INACTIVE_FILE,
2881         MCS_ACTIVE_FILE,
2882         MCS_UNEVICTABLE,
2883         NR_MCS_STAT,
2884 };
2885
2886 struct mcs_total_stat {
2887         s64 stat[NR_MCS_STAT];
2888 };
2889
2890 struct {
2891         char *local_name;
2892         char *total_name;
2893 } memcg_stat_strings[NR_MCS_STAT] = {
2894         {"cache", "total_cache"},
2895         {"rss", "total_rss"},
2896         {"mapped_file", "total_mapped_file"},
2897         {"pgpgin", "total_pgpgin"},
2898         {"pgpgout", "total_pgpgout"},
2899         {"swap", "total_swap"},
2900         {"inactive_anon", "total_inactive_anon"},
2901         {"active_anon", "total_active_anon"},
2902         {"inactive_file", "total_inactive_file"},
2903         {"active_file", "total_active_file"},
2904         {"unevictable", "total_unevictable"}
2905 };
2906
2907
2908 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2909 {
2910         struct mcs_total_stat *s = data;
2911         s64 val;
2912
2913         /* per cpu stat */
2914         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2915         s->stat[MCS_CACHE] += val * PAGE_SIZE;
2916         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2917         s->stat[MCS_RSS] += val * PAGE_SIZE;
2918         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2919         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
2920         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2921         s->stat[MCS_PGPGIN] += val;
2922         val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2923         s->stat[MCS_PGPGOUT] += val;
2924         if (do_swap_account) {
2925                 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2926                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2927         }
2928
2929         /* per zone stat */
2930         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2931         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2932         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2933         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2934         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2935         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2936         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2937         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2938         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2939         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2940         return 0;
2941 }
2942
2943 static void
2944 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2945 {
2946         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2947 }
2948
2949 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2950                                  struct cgroup_map_cb *cb)
2951 {
2952         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2953         struct mcs_total_stat mystat;
2954         int i;
2955
2956         memset(&mystat, 0, sizeof(mystat));
2957         mem_cgroup_get_local_stat(mem_cont, &mystat);
2958
2959         for (i = 0; i < NR_MCS_STAT; i++) {
2960                 if (i == MCS_SWAP && !do_swap_account)
2961                         continue;
2962                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2963         }
2964
2965         /* Hierarchical information */
2966         {
2967                 unsigned long long limit, memsw_limit;
2968                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2969                 cb->fill(cb, "hierarchical_memory_limit", limit);
2970                 if (do_swap_account)
2971                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2972         }
2973
2974         memset(&mystat, 0, sizeof(mystat));
2975         mem_cgroup_get_total_stat(mem_cont, &mystat);
2976         for (i = 0; i < NR_MCS_STAT; i++) {
2977                 if (i == MCS_SWAP && !do_swap_account)
2978                         continue;
2979                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2980         }
2981
2982 #ifdef CONFIG_DEBUG_VM
2983         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2984
2985         {
2986                 int nid, zid;
2987                 struct mem_cgroup_per_zone *mz;
2988                 unsigned long recent_rotated[2] = {0, 0};
2989                 unsigned long recent_scanned[2] = {0, 0};
2990
2991                 for_each_online_node(nid)
2992                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2993                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2994
2995                                 recent_rotated[0] +=
2996                                         mz->reclaim_stat.recent_rotated[0];
2997                                 recent_rotated[1] +=
2998                                         mz->reclaim_stat.recent_rotated[1];
2999                                 recent_scanned[0] +=
3000                                         mz->reclaim_stat.recent_scanned[0];
3001                                 recent_scanned[1] +=
3002                                         mz->reclaim_stat.recent_scanned[1];
3003                         }
3004                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3005                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3006                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3007                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3008         }
3009 #endif
3010
3011         return 0;
3012 }
3013
3014 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3015 {
3016         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3017
3018         return get_swappiness(memcg);
3019 }
3020
3021 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3022                                        u64 val)
3023 {
3024         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3025         struct mem_cgroup *parent;
3026
3027         if (val > 100)
3028                 return -EINVAL;
3029
3030         if (cgrp->parent == NULL)
3031                 return -EINVAL;
3032
3033         parent = mem_cgroup_from_cont(cgrp->parent);
3034
3035         cgroup_lock();
3036
3037         /* If under hierarchy, only empty-root can set this value */
3038         if ((parent->use_hierarchy) ||
3039             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3040                 cgroup_unlock();
3041                 return -EINVAL;
3042         }
3043
3044         spin_lock(&memcg->reclaim_param_lock);
3045         memcg->swappiness = val;
3046         spin_unlock(&memcg->reclaim_param_lock);
3047
3048         cgroup_unlock();
3049
3050         return 0;
3051 }
3052
3053
3054 static struct cftype mem_cgroup_files[] = {
3055         {
3056                 .name = "usage_in_bytes",
3057                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3058                 .read_u64 = mem_cgroup_read,
3059         },
3060         {
3061                 .name = "max_usage_in_bytes",
3062                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3063                 .trigger = mem_cgroup_reset,
3064                 .read_u64 = mem_cgroup_read,
3065         },
3066         {
3067                 .name = "limit_in_bytes",
3068                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3069                 .write_string = mem_cgroup_write,
3070                 .read_u64 = mem_cgroup_read,
3071         },
3072         {
3073                 .name = "soft_limit_in_bytes",
3074                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3075                 .write_string = mem_cgroup_write,
3076                 .read_u64 = mem_cgroup_read,
3077         },
3078         {
3079                 .name = "failcnt",
3080                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3081                 .trigger = mem_cgroup_reset,
3082                 .read_u64 = mem_cgroup_read,
3083         },
3084         {
3085                 .name = "stat",
3086                 .read_map = mem_control_stat_show,
3087         },
3088         {
3089                 .name = "force_empty",
3090                 .trigger = mem_cgroup_force_empty_write,
3091         },
3092         {
3093                 .name = "use_hierarchy",
3094                 .write_u64 = mem_cgroup_hierarchy_write,
3095                 .read_u64 = mem_cgroup_hierarchy_read,
3096         },
3097         {
3098                 .name = "swappiness",
3099                 .read_u64 = mem_cgroup_swappiness_read,
3100                 .write_u64 = mem_cgroup_swappiness_write,
3101         },
3102 };
3103
3104 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3105 static struct cftype memsw_cgroup_files[] = {
3106         {
3107                 .name = "memsw.usage_in_bytes",
3108                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3109                 .read_u64 = mem_cgroup_read,
3110         },
3111         {
3112                 .name = "memsw.max_usage_in_bytes",
3113                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3114                 .trigger = mem_cgroup_reset,
3115                 .read_u64 = mem_cgroup_read,
3116         },
3117         {
3118                 .name = "memsw.limit_in_bytes",
3119                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3120                 .write_string = mem_cgroup_write,
3121                 .read_u64 = mem_cgroup_read,
3122         },
3123         {
3124                 .name = "memsw.failcnt",
3125                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3126                 .trigger = mem_cgroup_reset,
3127                 .read_u64 = mem_cgroup_read,
3128         },
3129 };
3130
3131 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3132 {
3133         if (!do_swap_account)
3134                 return 0;
3135         return cgroup_add_files(cont, ss, memsw_cgroup_files,
3136                                 ARRAY_SIZE(memsw_cgroup_files));
3137 };
3138 #else
3139 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3140 {
3141         return 0;
3142 }
3143 #endif
3144
3145 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3146 {
3147         struct mem_cgroup_per_node *pn;
3148         struct mem_cgroup_per_zone *mz;
3149         enum lru_list l;
3150         int zone, tmp = node;
3151         /*
3152          * This routine is called against possible nodes.
3153          * But it's BUG to call kmalloc() against offline node.
3154          *
3155          * TODO: this routine can waste much memory for nodes which will
3156          *       never be onlined. It's better to use memory hotplug callback
3157          *       function.
3158          */
3159         if (!node_state(node, N_NORMAL_MEMORY))
3160                 tmp = -1;
3161         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3162         if (!pn)
3163                 return 1;
3164
3165         mem->info.nodeinfo[node] = pn;
3166         memset(pn, 0, sizeof(*pn));
3167
3168         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3169                 mz = &pn->zoneinfo[zone];
3170                 for_each_lru(l)
3171                         INIT_LIST_HEAD(&mz->lists[l]);
3172                 mz->usage_in_excess = 0;
3173                 mz->on_tree = false;
3174                 mz->mem = mem;
3175         }
3176         return 0;
3177 }
3178
3179 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3180 {
3181         kfree(mem->info.nodeinfo[node]);
3182 }
3183
3184 static int mem_cgroup_size(void)
3185 {
3186         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3187         return sizeof(struct mem_cgroup) + cpustat_size;
3188 }
3189
3190 static struct mem_cgroup *mem_cgroup_alloc(void)
3191 {
3192         struct mem_cgroup *mem;
3193         int size = mem_cgroup_size();
3194
3195         if (size < PAGE_SIZE)
3196                 mem = kmalloc(size, GFP_KERNEL);
3197         else
3198                 mem = vmalloc(size);
3199
3200         if (mem)
3201                 memset(mem, 0, size);
3202         return mem;
3203 }
3204
3205 /*
3206  * At destroying mem_cgroup, references from swap_cgroup can remain.
3207  * (scanning all at force_empty is too costly...)
3208  *
3209  * Instead of clearing all references at force_empty, we remember
3210  * the number of reference from swap_cgroup and free mem_cgroup when
3211  * it goes down to 0.
3212  *
3213  * Removal of cgroup itself succeeds regardless of refs from swap.
3214  */
3215
3216 static void __mem_cgroup_free(struct mem_cgroup *mem)
3217 {
3218         int node;
3219
3220         mem_cgroup_remove_from_trees(mem);
3221         free_css_id(&mem_cgroup_subsys, &mem->css);
3222
3223         for_each_node_state(node, N_POSSIBLE)
3224                 free_mem_cgroup_per_zone_info(mem, node);
3225
3226         if (mem_cgroup_size() < PAGE_SIZE)
3227                 kfree(mem);
3228         else
3229                 vfree(mem);
3230 }
3231
3232 static void mem_cgroup_get(struct mem_cgroup *mem)
3233 {
3234         atomic_inc(&mem->refcnt);
3235 }
3236
3237 static void mem_cgroup_put(struct mem_cgroup *mem)
3238 {
3239         if (atomic_dec_and_test(&mem->refcnt)) {
3240                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3241                 __mem_cgroup_free(mem);
3242                 if (parent)
3243                         mem_cgroup_put(parent);
3244         }
3245 }
3246
3247 /*
3248  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3249  */
3250 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3251 {
3252         if (!mem->res.parent)
3253                 return NULL;
3254         return mem_cgroup_from_res_counter(mem->res.parent, res);
3255 }
3256
3257 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3258 static void __init enable_swap_cgroup(void)
3259 {
3260         if (!mem_cgroup_disabled() && really_do_swap_account)
3261                 do_swap_account = 1;
3262 }
3263 #else
3264 static void __init enable_swap_cgroup(void)
3265 {
3266 }
3267 #endif
3268
3269 static int mem_cgroup_soft_limit_tree_init(void)
3270 {
3271         struct mem_cgroup_tree_per_node *rtpn;
3272         struct mem_cgroup_tree_per_zone *rtpz;
3273         int tmp, node, zone;
3274
3275         for_each_node_state(node, N_POSSIBLE) {
3276                 tmp = node;
3277                 if (!node_state(node, N_NORMAL_MEMORY))
3278                         tmp = -1;
3279                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3280                 if (!rtpn)
3281                         return 1;
3282
3283                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3284
3285                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3286                         rtpz = &rtpn->rb_tree_per_zone[zone];
3287                         rtpz->rb_root = RB_ROOT;
3288                         spin_lock_init(&rtpz->lock);
3289                 }
3290         }
3291         return 0;
3292 }
3293
3294 static struct cgroup_subsys_state * __ref
3295 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3296 {
3297         struct mem_cgroup *mem, *parent;
3298         long error = -ENOMEM;
3299         int node;
3300
3301         mem = mem_cgroup_alloc();
3302         if (!mem)
3303                 return ERR_PTR(error);
3304
3305         for_each_node_state(node, N_POSSIBLE)
3306                 if (alloc_mem_cgroup_per_zone_info(mem, node))
3307                         goto free_out;
3308
3309         /* root ? */
3310         if (cont->parent == NULL) {
3311                 int cpu;
3312                 enable_swap_cgroup();
3313                 parent = NULL;
3314                 root_mem_cgroup = mem;
3315                 if (mem_cgroup_soft_limit_tree_init())
3316                         goto free_out;
3317                 for_each_possible_cpu(cpu) {
3318                         struct memcg_stock_pcp *stock =
3319                                                 &per_cpu(memcg_stock, cpu);
3320                         INIT_WORK(&stock->work, drain_local_stock);
3321                 }
3322                 hotcpu_notifier(memcg_stock_cpu_callback, 0);
3323
3324         } else {
3325                 parent = mem_cgroup_from_cont(cont->parent);
3326                 mem->use_hierarchy = parent->use_hierarchy;
3327         }
3328
3329         if (parent && parent->use_hierarchy) {
3330                 res_counter_init(&mem->res, &parent->res);
3331                 res_counter_init(&mem->memsw, &parent->memsw);
3332                 /*
3333                  * We increment refcnt of the parent to ensure that we can
3334                  * safely access it on res_counter_charge/uncharge.
3335                  * This refcnt will be decremented when freeing this
3336                  * mem_cgroup(see mem_cgroup_put).
3337                  */
3338                 mem_cgroup_get(parent);
3339         } else {
3340                 res_counter_init(&mem->res, NULL);
3341                 res_counter_init(&mem->memsw, NULL);
3342         }
3343         mem->last_scanned_child = 0;
3344         spin_lock_init(&mem->reclaim_param_lock);
3345
3346         if (parent)
3347                 mem->swappiness = get_swappiness(parent);
3348         atomic_set(&mem->refcnt, 1);
3349         return &mem->css;
3350 free_out:
3351         __mem_cgroup_free(mem);
3352         root_mem_cgroup = NULL;
3353         return ERR_PTR(error);
3354 }
3355
3356 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3357                                         struct cgroup *cont)
3358 {
3359         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3360
3361         return mem_cgroup_force_empty(mem, false);
3362 }
3363
3364 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3365                                 struct cgroup *cont)
3366 {
3367         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3368
3369         mem_cgroup_put(mem);
3370 }
3371
3372 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3373                                 struct cgroup *cont)
3374 {
3375         int ret;
3376
3377         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3378                                 ARRAY_SIZE(mem_cgroup_files));
3379
3380         if (!ret)
3381                 ret = register_memsw_files(cont, ss);
3382         return ret;
3383 }
3384
3385 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3386                                 struct cgroup *cont,
3387                                 struct cgroup *old_cont,
3388                                 struct task_struct *p,
3389                                 bool threadgroup)
3390 {
3391         /*
3392          * FIXME: It's better to move charges of this process from old
3393          * memcg to new memcg. But it's just on TODO-List now.
3394          */
3395 }
3396
3397 struct cgroup_subsys mem_cgroup_subsys = {
3398         .name = "memory",
3399         .subsys_id = mem_cgroup_subsys_id,
3400         .create = mem_cgroup_create,
3401         .pre_destroy = mem_cgroup_pre_destroy,
3402         .destroy = mem_cgroup_destroy,
3403         .populate = mem_cgroup_populate,
3404         .attach = mem_cgroup_move_task,
3405         .early_init = 0,
3406         .use_id = 1,
3407 };
3408
3409 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3410
3411 static int __init disable_swap_account(char *s)
3412 {
3413         really_do_swap_account = 0;
3414         return 1;
3415 }
3416 __setup("noswapaccount", disable_swap_account);
3417 #endif