mm: remove pages_to_free argument of move_active_pages_to_lru()
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = NUMA_NO_NODE;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_movable_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 static int __alloc_gigantic_page(unsigned long start_pfn,
1063                                 unsigned long nr_pages, gfp_t gfp_mask)
1064 {
1065         unsigned long end_pfn = start_pfn + nr_pages;
1066         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1067                                   gfp_mask);
1068 }
1069
1070 static bool pfn_range_valid_gigantic(struct zone *z,
1071                         unsigned long start_pfn, unsigned long nr_pages)
1072 {
1073         unsigned long i, end_pfn = start_pfn + nr_pages;
1074         struct page *page;
1075
1076         for (i = start_pfn; i < end_pfn; i++) {
1077                 if (!pfn_valid(i))
1078                         return false;
1079
1080                 page = pfn_to_page(i);
1081
1082                 if (page_zone(page) != z)
1083                         return false;
1084
1085                 if (PageReserved(page))
1086                         return false;
1087
1088                 if (page_count(page) > 0)
1089                         return false;
1090
1091                 if (PageHuge(page))
1092                         return false;
1093         }
1094
1095         return true;
1096 }
1097
1098 static bool zone_spans_last_pfn(const struct zone *zone,
1099                         unsigned long start_pfn, unsigned long nr_pages)
1100 {
1101         unsigned long last_pfn = start_pfn + nr_pages - 1;
1102         return zone_spans_pfn(zone, last_pfn);
1103 }
1104
1105 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1106                 int nid, nodemask_t *nodemask)
1107 {
1108         unsigned int order = huge_page_order(h);
1109         unsigned long nr_pages = 1 << order;
1110         unsigned long ret, pfn, flags;
1111         struct zonelist *zonelist;
1112         struct zone *zone;
1113         struct zoneref *z;
1114
1115         zonelist = node_zonelist(nid, gfp_mask);
1116         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1117                 spin_lock_irqsave(&zone->lock, flags);
1118
1119                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1120                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1121                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1122                                 /*
1123                                  * We release the zone lock here because
1124                                  * alloc_contig_range() will also lock the zone
1125                                  * at some point. If there's an allocation
1126                                  * spinning on this lock, it may win the race
1127                                  * and cause alloc_contig_range() to fail...
1128                                  */
1129                                 spin_unlock_irqrestore(&zone->lock, flags);
1130                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1131                                 if (!ret)
1132                                         return pfn_to_page(pfn);
1133                                 spin_lock_irqsave(&zone->lock, flags);
1134                         }
1135                         pfn += nr_pages;
1136                 }
1137
1138                 spin_unlock_irqrestore(&zone->lock, flags);
1139         }
1140
1141         return NULL;
1142 }
1143
1144 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1145 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1146
1147 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1148 static inline bool gigantic_page_supported(void) { return false; }
1149 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1150                 int nid, nodemask_t *nodemask) { return NULL; }
1151 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1152 static inline void destroy_compound_gigantic_page(struct page *page,
1153                                                 unsigned int order) { }
1154 #endif
1155
1156 static void update_and_free_page(struct hstate *h, struct page *page)
1157 {
1158         int i;
1159
1160         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1161                 return;
1162
1163         h->nr_huge_pages--;
1164         h->nr_huge_pages_node[page_to_nid(page)]--;
1165         for (i = 0; i < pages_per_huge_page(h); i++) {
1166                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1167                                 1 << PG_referenced | 1 << PG_dirty |
1168                                 1 << PG_active | 1 << PG_private |
1169                                 1 << PG_writeback);
1170         }
1171         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1172         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1173         set_page_refcounted(page);
1174         if (hstate_is_gigantic(h)) {
1175                 destroy_compound_gigantic_page(page, huge_page_order(h));
1176                 free_gigantic_page(page, huge_page_order(h));
1177         } else {
1178                 __free_pages(page, huge_page_order(h));
1179         }
1180 }
1181
1182 struct hstate *size_to_hstate(unsigned long size)
1183 {
1184         struct hstate *h;
1185
1186         for_each_hstate(h) {
1187                 if (huge_page_size(h) == size)
1188                         return h;
1189         }
1190         return NULL;
1191 }
1192
1193 /*
1194  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1195  * to hstate->hugepage_activelist.)
1196  *
1197  * This function can be called for tail pages, but never returns true for them.
1198  */
1199 bool page_huge_active(struct page *page)
1200 {
1201         VM_BUG_ON_PAGE(!PageHuge(page), page);
1202         return PageHead(page) && PagePrivate(&page[1]);
1203 }
1204
1205 /* never called for tail page */
1206 static void set_page_huge_active(struct page *page)
1207 {
1208         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1209         SetPagePrivate(&page[1]);
1210 }
1211
1212 static void clear_page_huge_active(struct page *page)
1213 {
1214         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1215         ClearPagePrivate(&page[1]);
1216 }
1217
1218 /*
1219  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1220  * code
1221  */
1222 static inline bool PageHugeTemporary(struct page *page)
1223 {
1224         if (!PageHuge(page))
1225                 return false;
1226
1227         return (unsigned long)page[2].mapping == -1U;
1228 }
1229
1230 static inline void SetPageHugeTemporary(struct page *page)
1231 {
1232         page[2].mapping = (void *)-1U;
1233 }
1234
1235 static inline void ClearPageHugeTemporary(struct page *page)
1236 {
1237         page[2].mapping = NULL;
1238 }
1239
1240 void free_huge_page(struct page *page)
1241 {
1242         /*
1243          * Can't pass hstate in here because it is called from the
1244          * compound page destructor.
1245          */
1246         struct hstate *h = page_hstate(page);
1247         int nid = page_to_nid(page);
1248         struct hugepage_subpool *spool =
1249                 (struct hugepage_subpool *)page_private(page);
1250         bool restore_reserve;
1251
1252         VM_BUG_ON_PAGE(page_count(page), page);
1253         VM_BUG_ON_PAGE(page_mapcount(page), page);
1254
1255         set_page_private(page, 0);
1256         page->mapping = NULL;
1257         restore_reserve = PagePrivate(page);
1258         ClearPagePrivate(page);
1259
1260         /*
1261          * A return code of zero implies that the subpool will be under its
1262          * minimum size if the reservation is not restored after page is free.
1263          * Therefore, force restore_reserve operation.
1264          */
1265         if (hugepage_subpool_put_pages(spool, 1) == 0)
1266                 restore_reserve = true;
1267
1268         spin_lock(&hugetlb_lock);
1269         clear_page_huge_active(page);
1270         hugetlb_cgroup_uncharge_page(hstate_index(h),
1271                                      pages_per_huge_page(h), page);
1272         if (restore_reserve)
1273                 h->resv_huge_pages++;
1274
1275         if (PageHugeTemporary(page)) {
1276                 list_del(&page->lru);
1277                 ClearPageHugeTemporary(page);
1278                 update_and_free_page(h, page);
1279         } else if (h->surplus_huge_pages_node[nid]) {
1280                 /* remove the page from active list */
1281                 list_del(&page->lru);
1282                 update_and_free_page(h, page);
1283                 h->surplus_huge_pages--;
1284                 h->surplus_huge_pages_node[nid]--;
1285         } else {
1286                 arch_clear_hugepage_flags(page);
1287                 enqueue_huge_page(h, page);
1288         }
1289         spin_unlock(&hugetlb_lock);
1290 }
1291
1292 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1293 {
1294         INIT_LIST_HEAD(&page->lru);
1295         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1296         spin_lock(&hugetlb_lock);
1297         set_hugetlb_cgroup(page, NULL);
1298         h->nr_huge_pages++;
1299         h->nr_huge_pages_node[nid]++;
1300         spin_unlock(&hugetlb_lock);
1301 }
1302
1303 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1304 {
1305         int i;
1306         int nr_pages = 1 << order;
1307         struct page *p = page + 1;
1308
1309         /* we rely on prep_new_huge_page to set the destructor */
1310         set_compound_order(page, order);
1311         __ClearPageReserved(page);
1312         __SetPageHead(page);
1313         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1314                 /*
1315                  * For gigantic hugepages allocated through bootmem at
1316                  * boot, it's safer to be consistent with the not-gigantic
1317                  * hugepages and clear the PG_reserved bit from all tail pages
1318                  * too.  Otherwse drivers using get_user_pages() to access tail
1319                  * pages may get the reference counting wrong if they see
1320                  * PG_reserved set on a tail page (despite the head page not
1321                  * having PG_reserved set).  Enforcing this consistency between
1322                  * head and tail pages allows drivers to optimize away a check
1323                  * on the head page when they need know if put_page() is needed
1324                  * after get_user_pages().
1325                  */
1326                 __ClearPageReserved(p);
1327                 set_page_count(p, 0);
1328                 set_compound_head(p, page);
1329         }
1330         atomic_set(compound_mapcount_ptr(page), -1);
1331 }
1332
1333 /*
1334  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1335  * transparent huge pages.  See the PageTransHuge() documentation for more
1336  * details.
1337  */
1338 int PageHuge(struct page *page)
1339 {
1340         if (!PageCompound(page))
1341                 return 0;
1342
1343         page = compound_head(page);
1344         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1345 }
1346 EXPORT_SYMBOL_GPL(PageHuge);
1347
1348 /*
1349  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1350  * normal or transparent huge pages.
1351  */
1352 int PageHeadHuge(struct page *page_head)
1353 {
1354         if (!PageHead(page_head))
1355                 return 0;
1356
1357         return get_compound_page_dtor(page_head) == free_huge_page;
1358 }
1359
1360 pgoff_t __basepage_index(struct page *page)
1361 {
1362         struct page *page_head = compound_head(page);
1363         pgoff_t index = page_index(page_head);
1364         unsigned long compound_idx;
1365
1366         if (!PageHuge(page_head))
1367                 return page_index(page);
1368
1369         if (compound_order(page_head) >= MAX_ORDER)
1370                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1371         else
1372                 compound_idx = page - page_head;
1373
1374         return (index << compound_order(page_head)) + compound_idx;
1375 }
1376
1377 static struct page *alloc_buddy_huge_page(struct hstate *h,
1378                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1379 {
1380         int order = huge_page_order(h);
1381         struct page *page;
1382
1383         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1384         if (nid == NUMA_NO_NODE)
1385                 nid = numa_mem_id();
1386         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1387         if (page)
1388                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1389         else
1390                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1391
1392         return page;
1393 }
1394
1395 /*
1396  * Common helper to allocate a fresh hugetlb page. All specific allocators
1397  * should use this function to get new hugetlb pages
1398  */
1399 static struct page *alloc_fresh_huge_page(struct hstate *h,
1400                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1401 {
1402         struct page *page;
1403
1404         if (hstate_is_gigantic(h))
1405                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1406         else
1407                 page = alloc_buddy_huge_page(h, gfp_mask,
1408                                 nid, nmask);
1409         if (!page)
1410                 return NULL;
1411
1412         if (hstate_is_gigantic(h))
1413                 prep_compound_gigantic_page(page, huge_page_order(h));
1414         prep_new_huge_page(h, page, page_to_nid(page));
1415
1416         return page;
1417 }
1418
1419 /*
1420  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1421  * manner.
1422  */
1423 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1424 {
1425         struct page *page;
1426         int nr_nodes, node;
1427         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1428
1429         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1430                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1431                 if (page)
1432                         break;
1433         }
1434
1435         if (!page)
1436                 return 0;
1437
1438         put_page(page); /* free it into the hugepage allocator */
1439
1440         return 1;
1441 }
1442
1443 /*
1444  * Free huge page from pool from next node to free.
1445  * Attempt to keep persistent huge pages more or less
1446  * balanced over allowed nodes.
1447  * Called with hugetlb_lock locked.
1448  */
1449 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1450                                                          bool acct_surplus)
1451 {
1452         int nr_nodes, node;
1453         int ret = 0;
1454
1455         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1456                 /*
1457                  * If we're returning unused surplus pages, only examine
1458                  * nodes with surplus pages.
1459                  */
1460                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1461                     !list_empty(&h->hugepage_freelists[node])) {
1462                         struct page *page =
1463                                 list_entry(h->hugepage_freelists[node].next,
1464                                           struct page, lru);
1465                         list_del(&page->lru);
1466                         h->free_huge_pages--;
1467                         h->free_huge_pages_node[node]--;
1468                         if (acct_surplus) {
1469                                 h->surplus_huge_pages--;
1470                                 h->surplus_huge_pages_node[node]--;
1471                         }
1472                         update_and_free_page(h, page);
1473                         ret = 1;
1474                         break;
1475                 }
1476         }
1477
1478         return ret;
1479 }
1480
1481 /*
1482  * Dissolve a given free hugepage into free buddy pages. This function does
1483  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1484  * dissolution fails because a give page is not a free hugepage, or because
1485  * free hugepages are fully reserved.
1486  */
1487 int dissolve_free_huge_page(struct page *page)
1488 {
1489         int rc = -EBUSY;
1490
1491         spin_lock(&hugetlb_lock);
1492         if (PageHuge(page) && !page_count(page)) {
1493                 struct page *head = compound_head(page);
1494                 struct hstate *h = page_hstate(head);
1495                 int nid = page_to_nid(head);
1496                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1497                         goto out;
1498                 /*
1499                  * Move PageHWPoison flag from head page to the raw error page,
1500                  * which makes any subpages rather than the error page reusable.
1501                  */
1502                 if (PageHWPoison(head) && page != head) {
1503                         SetPageHWPoison(page);
1504                         ClearPageHWPoison(head);
1505                 }
1506                 list_del(&head->lru);
1507                 h->free_huge_pages--;
1508                 h->free_huge_pages_node[nid]--;
1509                 h->max_huge_pages--;
1510                 update_and_free_page(h, head);
1511                 rc = 0;
1512         }
1513 out:
1514         spin_unlock(&hugetlb_lock);
1515         return rc;
1516 }
1517
1518 /*
1519  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1520  * make specified memory blocks removable from the system.
1521  * Note that this will dissolve a free gigantic hugepage completely, if any
1522  * part of it lies within the given range.
1523  * Also note that if dissolve_free_huge_page() returns with an error, all
1524  * free hugepages that were dissolved before that error are lost.
1525  */
1526 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1527 {
1528         unsigned long pfn;
1529         struct page *page;
1530         int rc = 0;
1531
1532         if (!hugepages_supported())
1533                 return rc;
1534
1535         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1536                 page = pfn_to_page(pfn);
1537                 if (PageHuge(page) && !page_count(page)) {
1538                         rc = dissolve_free_huge_page(page);
1539                         if (rc)
1540                                 break;
1541                 }
1542         }
1543
1544         return rc;
1545 }
1546
1547 /*
1548  * Allocates a fresh surplus page from the page allocator.
1549  */
1550 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1551                 int nid, nodemask_t *nmask)
1552 {
1553         struct page *page = NULL;
1554
1555         if (hstate_is_gigantic(h))
1556                 return NULL;
1557
1558         spin_lock(&hugetlb_lock);
1559         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1560                 goto out_unlock;
1561         spin_unlock(&hugetlb_lock);
1562
1563         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1564         if (!page)
1565                 return NULL;
1566
1567         spin_lock(&hugetlb_lock);
1568         /*
1569          * We could have raced with the pool size change.
1570          * Double check that and simply deallocate the new page
1571          * if we would end up overcommiting the surpluses. Abuse
1572          * temporary page to workaround the nasty free_huge_page
1573          * codeflow
1574          */
1575         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1576                 SetPageHugeTemporary(page);
1577                 spin_unlock(&hugetlb_lock);
1578                 put_page(page);
1579                 return NULL;
1580         } else {
1581                 h->surplus_huge_pages++;
1582                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1583         }
1584
1585 out_unlock:
1586         spin_unlock(&hugetlb_lock);
1587
1588         return page;
1589 }
1590
1591 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1592                                      int nid, nodemask_t *nmask)
1593 {
1594         struct page *page;
1595
1596         if (hstate_is_gigantic(h))
1597                 return NULL;
1598
1599         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1600         if (!page)
1601                 return NULL;
1602
1603         /*
1604          * We do not account these pages as surplus because they are only
1605          * temporary and will be released properly on the last reference
1606          */
1607         SetPageHugeTemporary(page);
1608
1609         return page;
1610 }
1611
1612 /*
1613  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1614  */
1615 static
1616 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1617                 struct vm_area_struct *vma, unsigned long addr)
1618 {
1619         struct page *page;
1620         struct mempolicy *mpol;
1621         gfp_t gfp_mask = htlb_alloc_mask(h);
1622         int nid;
1623         nodemask_t *nodemask;
1624
1625         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1626         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1627         mpol_cond_put(mpol);
1628
1629         return page;
1630 }
1631
1632 /* page migration callback function */
1633 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1634 {
1635         gfp_t gfp_mask = htlb_alloc_mask(h);
1636         struct page *page = NULL;
1637
1638         if (nid != NUMA_NO_NODE)
1639                 gfp_mask |= __GFP_THISNODE;
1640
1641         spin_lock(&hugetlb_lock);
1642         if (h->free_huge_pages - h->resv_huge_pages > 0)
1643                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1644         spin_unlock(&hugetlb_lock);
1645
1646         if (!page)
1647                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1648
1649         return page;
1650 }
1651
1652 /* page migration callback function */
1653 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1654                 nodemask_t *nmask)
1655 {
1656         gfp_t gfp_mask = htlb_alloc_mask(h);
1657
1658         spin_lock(&hugetlb_lock);
1659         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1660                 struct page *page;
1661
1662                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1663                 if (page) {
1664                         spin_unlock(&hugetlb_lock);
1665                         return page;
1666                 }
1667         }
1668         spin_unlock(&hugetlb_lock);
1669
1670         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1671 }
1672
1673 /* mempolicy aware migration callback */
1674 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1675                 unsigned long address)
1676 {
1677         struct mempolicy *mpol;
1678         nodemask_t *nodemask;
1679         struct page *page;
1680         gfp_t gfp_mask;
1681         int node;
1682
1683         gfp_mask = htlb_alloc_mask(h);
1684         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1685         page = alloc_huge_page_nodemask(h, node, nodemask);
1686         mpol_cond_put(mpol);
1687
1688         return page;
1689 }
1690
1691 /*
1692  * Increase the hugetlb pool such that it can accommodate a reservation
1693  * of size 'delta'.
1694  */
1695 static int gather_surplus_pages(struct hstate *h, int delta)
1696 {
1697         struct list_head surplus_list;
1698         struct page *page, *tmp;
1699         int ret, i;
1700         int needed, allocated;
1701         bool alloc_ok = true;
1702
1703         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1704         if (needed <= 0) {
1705                 h->resv_huge_pages += delta;
1706                 return 0;
1707         }
1708
1709         allocated = 0;
1710         INIT_LIST_HEAD(&surplus_list);
1711
1712         ret = -ENOMEM;
1713 retry:
1714         spin_unlock(&hugetlb_lock);
1715         for (i = 0; i < needed; i++) {
1716                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1717                                 NUMA_NO_NODE, NULL);
1718                 if (!page) {
1719                         alloc_ok = false;
1720                         break;
1721                 }
1722                 list_add(&page->lru, &surplus_list);
1723                 cond_resched();
1724         }
1725         allocated += i;
1726
1727         /*
1728          * After retaking hugetlb_lock, we need to recalculate 'needed'
1729          * because either resv_huge_pages or free_huge_pages may have changed.
1730          */
1731         spin_lock(&hugetlb_lock);
1732         needed = (h->resv_huge_pages + delta) -
1733                         (h->free_huge_pages + allocated);
1734         if (needed > 0) {
1735                 if (alloc_ok)
1736                         goto retry;
1737                 /*
1738                  * We were not able to allocate enough pages to
1739                  * satisfy the entire reservation so we free what
1740                  * we've allocated so far.
1741                  */
1742                 goto free;
1743         }
1744         /*
1745          * The surplus_list now contains _at_least_ the number of extra pages
1746          * needed to accommodate the reservation.  Add the appropriate number
1747          * of pages to the hugetlb pool and free the extras back to the buddy
1748          * allocator.  Commit the entire reservation here to prevent another
1749          * process from stealing the pages as they are added to the pool but
1750          * before they are reserved.
1751          */
1752         needed += allocated;
1753         h->resv_huge_pages += delta;
1754         ret = 0;
1755
1756         /* Free the needed pages to the hugetlb pool */
1757         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1758                 if ((--needed) < 0)
1759                         break;
1760                 /*
1761                  * This page is now managed by the hugetlb allocator and has
1762                  * no users -- drop the buddy allocator's reference.
1763                  */
1764                 put_page_testzero(page);
1765                 VM_BUG_ON_PAGE(page_count(page), page);
1766                 enqueue_huge_page(h, page);
1767         }
1768 free:
1769         spin_unlock(&hugetlb_lock);
1770
1771         /* Free unnecessary surplus pages to the buddy allocator */
1772         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1773                 put_page(page);
1774         spin_lock(&hugetlb_lock);
1775
1776         return ret;
1777 }
1778
1779 /*
1780  * This routine has two main purposes:
1781  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1782  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1783  *    to the associated reservation map.
1784  * 2) Free any unused surplus pages that may have been allocated to satisfy
1785  *    the reservation.  As many as unused_resv_pages may be freed.
1786  *
1787  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1788  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1789  * we must make sure nobody else can claim pages we are in the process of
1790  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1791  * number of huge pages we plan to free when dropping the lock.
1792  */
1793 static void return_unused_surplus_pages(struct hstate *h,
1794                                         unsigned long unused_resv_pages)
1795 {
1796         unsigned long nr_pages;
1797
1798         /* Cannot return gigantic pages currently */
1799         if (hstate_is_gigantic(h))
1800                 goto out;
1801
1802         /*
1803          * Part (or even all) of the reservation could have been backed
1804          * by pre-allocated pages. Only free surplus pages.
1805          */
1806         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1807
1808         /*
1809          * We want to release as many surplus pages as possible, spread
1810          * evenly across all nodes with memory. Iterate across these nodes
1811          * until we can no longer free unreserved surplus pages. This occurs
1812          * when the nodes with surplus pages have no free pages.
1813          * free_pool_huge_page() will balance the the freed pages across the
1814          * on-line nodes with memory and will handle the hstate accounting.
1815          *
1816          * Note that we decrement resv_huge_pages as we free the pages.  If
1817          * we drop the lock, resv_huge_pages will still be sufficiently large
1818          * to cover subsequent pages we may free.
1819          */
1820         while (nr_pages--) {
1821                 h->resv_huge_pages--;
1822                 unused_resv_pages--;
1823                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1824                         goto out;
1825                 cond_resched_lock(&hugetlb_lock);
1826         }
1827
1828 out:
1829         /* Fully uncommit the reservation */
1830         h->resv_huge_pages -= unused_resv_pages;
1831 }
1832
1833
1834 /*
1835  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1836  * are used by the huge page allocation routines to manage reservations.
1837  *
1838  * vma_needs_reservation is called to determine if the huge page at addr
1839  * within the vma has an associated reservation.  If a reservation is
1840  * needed, the value 1 is returned.  The caller is then responsible for
1841  * managing the global reservation and subpool usage counts.  After
1842  * the huge page has been allocated, vma_commit_reservation is called
1843  * to add the page to the reservation map.  If the page allocation fails,
1844  * the reservation must be ended instead of committed.  vma_end_reservation
1845  * is called in such cases.
1846  *
1847  * In the normal case, vma_commit_reservation returns the same value
1848  * as the preceding vma_needs_reservation call.  The only time this
1849  * is not the case is if a reserve map was changed between calls.  It
1850  * is the responsibility of the caller to notice the difference and
1851  * take appropriate action.
1852  *
1853  * vma_add_reservation is used in error paths where a reservation must
1854  * be restored when a newly allocated huge page must be freed.  It is
1855  * to be called after calling vma_needs_reservation to determine if a
1856  * reservation exists.
1857  */
1858 enum vma_resv_mode {
1859         VMA_NEEDS_RESV,
1860         VMA_COMMIT_RESV,
1861         VMA_END_RESV,
1862         VMA_ADD_RESV,
1863 };
1864 static long __vma_reservation_common(struct hstate *h,
1865                                 struct vm_area_struct *vma, unsigned long addr,
1866                                 enum vma_resv_mode mode)
1867 {
1868         struct resv_map *resv;
1869         pgoff_t idx;
1870         long ret;
1871
1872         resv = vma_resv_map(vma);
1873         if (!resv)
1874                 return 1;
1875
1876         idx = vma_hugecache_offset(h, vma, addr);
1877         switch (mode) {
1878         case VMA_NEEDS_RESV:
1879                 ret = region_chg(resv, idx, idx + 1);
1880                 break;
1881         case VMA_COMMIT_RESV:
1882                 ret = region_add(resv, idx, idx + 1);
1883                 break;
1884         case VMA_END_RESV:
1885                 region_abort(resv, idx, idx + 1);
1886                 ret = 0;
1887                 break;
1888         case VMA_ADD_RESV:
1889                 if (vma->vm_flags & VM_MAYSHARE)
1890                         ret = region_add(resv, idx, idx + 1);
1891                 else {
1892                         region_abort(resv, idx, idx + 1);
1893                         ret = region_del(resv, idx, idx + 1);
1894                 }
1895                 break;
1896         default:
1897                 BUG();
1898         }
1899
1900         if (vma->vm_flags & VM_MAYSHARE)
1901                 return ret;
1902         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1903                 /*
1904                  * In most cases, reserves always exist for private mappings.
1905                  * However, a file associated with mapping could have been
1906                  * hole punched or truncated after reserves were consumed.
1907                  * As subsequent fault on such a range will not use reserves.
1908                  * Subtle - The reserve map for private mappings has the
1909                  * opposite meaning than that of shared mappings.  If NO
1910                  * entry is in the reserve map, it means a reservation exists.
1911                  * If an entry exists in the reserve map, it means the
1912                  * reservation has already been consumed.  As a result, the
1913                  * return value of this routine is the opposite of the
1914                  * value returned from reserve map manipulation routines above.
1915                  */
1916                 if (ret)
1917                         return 0;
1918                 else
1919                         return 1;
1920         }
1921         else
1922                 return ret < 0 ? ret : 0;
1923 }
1924
1925 static long vma_needs_reservation(struct hstate *h,
1926                         struct vm_area_struct *vma, unsigned long addr)
1927 {
1928         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1929 }
1930
1931 static long vma_commit_reservation(struct hstate *h,
1932                         struct vm_area_struct *vma, unsigned long addr)
1933 {
1934         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1935 }
1936
1937 static void vma_end_reservation(struct hstate *h,
1938                         struct vm_area_struct *vma, unsigned long addr)
1939 {
1940         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1941 }
1942
1943 static long vma_add_reservation(struct hstate *h,
1944                         struct vm_area_struct *vma, unsigned long addr)
1945 {
1946         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1947 }
1948
1949 /*
1950  * This routine is called to restore a reservation on error paths.  In the
1951  * specific error paths, a huge page was allocated (via alloc_huge_page)
1952  * and is about to be freed.  If a reservation for the page existed,
1953  * alloc_huge_page would have consumed the reservation and set PagePrivate
1954  * in the newly allocated page.  When the page is freed via free_huge_page,
1955  * the global reservation count will be incremented if PagePrivate is set.
1956  * However, free_huge_page can not adjust the reserve map.  Adjust the
1957  * reserve map here to be consistent with global reserve count adjustments
1958  * to be made by free_huge_page.
1959  */
1960 static void restore_reserve_on_error(struct hstate *h,
1961                         struct vm_area_struct *vma, unsigned long address,
1962                         struct page *page)
1963 {
1964         if (unlikely(PagePrivate(page))) {
1965                 long rc = vma_needs_reservation(h, vma, address);
1966
1967                 if (unlikely(rc < 0)) {
1968                         /*
1969                          * Rare out of memory condition in reserve map
1970                          * manipulation.  Clear PagePrivate so that
1971                          * global reserve count will not be incremented
1972                          * by free_huge_page.  This will make it appear
1973                          * as though the reservation for this page was
1974                          * consumed.  This may prevent the task from
1975                          * faulting in the page at a later time.  This
1976                          * is better than inconsistent global huge page
1977                          * accounting of reserve counts.
1978                          */
1979                         ClearPagePrivate(page);
1980                 } else if (rc) {
1981                         rc = vma_add_reservation(h, vma, address);
1982                         if (unlikely(rc < 0))
1983                                 /*
1984                                  * See above comment about rare out of
1985                                  * memory condition.
1986                                  */
1987                                 ClearPagePrivate(page);
1988                 } else
1989                         vma_end_reservation(h, vma, address);
1990         }
1991 }
1992
1993 struct page *alloc_huge_page(struct vm_area_struct *vma,
1994                                     unsigned long addr, int avoid_reserve)
1995 {
1996         struct hugepage_subpool *spool = subpool_vma(vma);
1997         struct hstate *h = hstate_vma(vma);
1998         struct page *page;
1999         long map_chg, map_commit;
2000         long gbl_chg;
2001         int ret, idx;
2002         struct hugetlb_cgroup *h_cg;
2003
2004         idx = hstate_index(h);
2005         /*
2006          * Examine the region/reserve map to determine if the process
2007          * has a reservation for the page to be allocated.  A return
2008          * code of zero indicates a reservation exists (no change).
2009          */
2010         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2011         if (map_chg < 0)
2012                 return ERR_PTR(-ENOMEM);
2013
2014         /*
2015          * Processes that did not create the mapping will have no
2016          * reserves as indicated by the region/reserve map. Check
2017          * that the allocation will not exceed the subpool limit.
2018          * Allocations for MAP_NORESERVE mappings also need to be
2019          * checked against any subpool limit.
2020          */
2021         if (map_chg || avoid_reserve) {
2022                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2023                 if (gbl_chg < 0) {
2024                         vma_end_reservation(h, vma, addr);
2025                         return ERR_PTR(-ENOSPC);
2026                 }
2027
2028                 /*
2029                  * Even though there was no reservation in the region/reserve
2030                  * map, there could be reservations associated with the
2031                  * subpool that can be used.  This would be indicated if the
2032                  * return value of hugepage_subpool_get_pages() is zero.
2033                  * However, if avoid_reserve is specified we still avoid even
2034                  * the subpool reservations.
2035                  */
2036                 if (avoid_reserve)
2037                         gbl_chg = 1;
2038         }
2039
2040         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2041         if (ret)
2042                 goto out_subpool_put;
2043
2044         spin_lock(&hugetlb_lock);
2045         /*
2046          * glb_chg is passed to indicate whether or not a page must be taken
2047          * from the global free pool (global change).  gbl_chg == 0 indicates
2048          * a reservation exists for the allocation.
2049          */
2050         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2051         if (!page) {
2052                 spin_unlock(&hugetlb_lock);
2053                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2054                 if (!page)
2055                         goto out_uncharge_cgroup;
2056                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2057                         SetPagePrivate(page);
2058                         h->resv_huge_pages--;
2059                 }
2060                 spin_lock(&hugetlb_lock);
2061                 list_move(&page->lru, &h->hugepage_activelist);
2062                 /* Fall through */
2063         }
2064         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2065         spin_unlock(&hugetlb_lock);
2066
2067         set_page_private(page, (unsigned long)spool);
2068
2069         map_commit = vma_commit_reservation(h, vma, addr);
2070         if (unlikely(map_chg > map_commit)) {
2071                 /*
2072                  * The page was added to the reservation map between
2073                  * vma_needs_reservation and vma_commit_reservation.
2074                  * This indicates a race with hugetlb_reserve_pages.
2075                  * Adjust for the subpool count incremented above AND
2076                  * in hugetlb_reserve_pages for the same page.  Also,
2077                  * the reservation count added in hugetlb_reserve_pages
2078                  * no longer applies.
2079                  */
2080                 long rsv_adjust;
2081
2082                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2083                 hugetlb_acct_memory(h, -rsv_adjust);
2084         }
2085         return page;
2086
2087 out_uncharge_cgroup:
2088         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2089 out_subpool_put:
2090         if (map_chg || avoid_reserve)
2091                 hugepage_subpool_put_pages(spool, 1);
2092         vma_end_reservation(h, vma, addr);
2093         return ERR_PTR(-ENOSPC);
2094 }
2095
2096 int alloc_bootmem_huge_page(struct hstate *h)
2097         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2098 int __alloc_bootmem_huge_page(struct hstate *h)
2099 {
2100         struct huge_bootmem_page *m;
2101         int nr_nodes, node;
2102
2103         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2104                 void *addr;
2105
2106                 addr = memblock_alloc_try_nid_raw(
2107                                 huge_page_size(h), huge_page_size(h),
2108                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2109                 if (addr) {
2110                         /*
2111                          * Use the beginning of the huge page to store the
2112                          * huge_bootmem_page struct (until gather_bootmem
2113                          * puts them into the mem_map).
2114                          */
2115                         m = addr;
2116                         goto found;
2117                 }
2118         }
2119         return 0;
2120
2121 found:
2122         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2123         /* Put them into a private list first because mem_map is not up yet */
2124         INIT_LIST_HEAD(&m->list);
2125         list_add(&m->list, &huge_boot_pages);
2126         m->hstate = h;
2127         return 1;
2128 }
2129
2130 static void __init prep_compound_huge_page(struct page *page,
2131                 unsigned int order)
2132 {
2133         if (unlikely(order > (MAX_ORDER - 1)))
2134                 prep_compound_gigantic_page(page, order);
2135         else
2136                 prep_compound_page(page, order);
2137 }
2138
2139 /* Put bootmem huge pages into the standard lists after mem_map is up */
2140 static void __init gather_bootmem_prealloc(void)
2141 {
2142         struct huge_bootmem_page *m;
2143
2144         list_for_each_entry(m, &huge_boot_pages, list) {
2145                 struct page *page = virt_to_page(m);
2146                 struct hstate *h = m->hstate;
2147
2148                 WARN_ON(page_count(page) != 1);
2149                 prep_compound_huge_page(page, h->order);
2150                 WARN_ON(PageReserved(page));
2151                 prep_new_huge_page(h, page, page_to_nid(page));
2152                 put_page(page); /* free it into the hugepage allocator */
2153
2154                 /*
2155                  * If we had gigantic hugepages allocated at boot time, we need
2156                  * to restore the 'stolen' pages to totalram_pages in order to
2157                  * fix confusing memory reports from free(1) and another
2158                  * side-effects, like CommitLimit going negative.
2159                  */
2160                 if (hstate_is_gigantic(h))
2161                         adjust_managed_page_count(page, 1 << h->order);
2162                 cond_resched();
2163         }
2164 }
2165
2166 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2167 {
2168         unsigned long i;
2169
2170         for (i = 0; i < h->max_huge_pages; ++i) {
2171                 if (hstate_is_gigantic(h)) {
2172                         if (!alloc_bootmem_huge_page(h))
2173                                 break;
2174                 } else if (!alloc_pool_huge_page(h,
2175                                          &node_states[N_MEMORY]))
2176                         break;
2177                 cond_resched();
2178         }
2179         if (i < h->max_huge_pages) {
2180                 char buf[32];
2181
2182                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2183                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2184                         h->max_huge_pages, buf, i);
2185                 h->max_huge_pages = i;
2186         }
2187 }
2188
2189 static void __init hugetlb_init_hstates(void)
2190 {
2191         struct hstate *h;
2192
2193         for_each_hstate(h) {
2194                 if (minimum_order > huge_page_order(h))
2195                         minimum_order = huge_page_order(h);
2196
2197                 /* oversize hugepages were init'ed in early boot */
2198                 if (!hstate_is_gigantic(h))
2199                         hugetlb_hstate_alloc_pages(h);
2200         }
2201         VM_BUG_ON(minimum_order == UINT_MAX);
2202 }
2203
2204 static void __init report_hugepages(void)
2205 {
2206         struct hstate *h;
2207
2208         for_each_hstate(h) {
2209                 char buf[32];
2210
2211                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2212                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2213                         buf, h->free_huge_pages);
2214         }
2215 }
2216
2217 #ifdef CONFIG_HIGHMEM
2218 static void try_to_free_low(struct hstate *h, unsigned long count,
2219                                                 nodemask_t *nodes_allowed)
2220 {
2221         int i;
2222
2223         if (hstate_is_gigantic(h))
2224                 return;
2225
2226         for_each_node_mask(i, *nodes_allowed) {
2227                 struct page *page, *next;
2228                 struct list_head *freel = &h->hugepage_freelists[i];
2229                 list_for_each_entry_safe(page, next, freel, lru) {
2230                         if (count >= h->nr_huge_pages)
2231                                 return;
2232                         if (PageHighMem(page))
2233                                 continue;
2234                         list_del(&page->lru);
2235                         update_and_free_page(h, page);
2236                         h->free_huge_pages--;
2237                         h->free_huge_pages_node[page_to_nid(page)]--;
2238                 }
2239         }
2240 }
2241 #else
2242 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2243                                                 nodemask_t *nodes_allowed)
2244 {
2245 }
2246 #endif
2247
2248 /*
2249  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2250  * balanced by operating on them in a round-robin fashion.
2251  * Returns 1 if an adjustment was made.
2252  */
2253 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2254                                 int delta)
2255 {
2256         int nr_nodes, node;
2257
2258         VM_BUG_ON(delta != -1 && delta != 1);
2259
2260         if (delta < 0) {
2261                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2262                         if (h->surplus_huge_pages_node[node])
2263                                 goto found;
2264                 }
2265         } else {
2266                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2267                         if (h->surplus_huge_pages_node[node] <
2268                                         h->nr_huge_pages_node[node])
2269                                 goto found;
2270                 }
2271         }
2272         return 0;
2273
2274 found:
2275         h->surplus_huge_pages += delta;
2276         h->surplus_huge_pages_node[node] += delta;
2277         return 1;
2278 }
2279
2280 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2281 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2282                                                 nodemask_t *nodes_allowed)
2283 {
2284         unsigned long min_count, ret;
2285
2286         if (hstate_is_gigantic(h) && !gigantic_page_supported())
2287                 return h->max_huge_pages;
2288
2289         /*
2290          * Increase the pool size
2291          * First take pages out of surplus state.  Then make up the
2292          * remaining difference by allocating fresh huge pages.
2293          *
2294          * We might race with alloc_surplus_huge_page() here and be unable
2295          * to convert a surplus huge page to a normal huge page. That is
2296          * not critical, though, it just means the overall size of the
2297          * pool might be one hugepage larger than it needs to be, but
2298          * within all the constraints specified by the sysctls.
2299          */
2300         spin_lock(&hugetlb_lock);
2301         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2302                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2303                         break;
2304         }
2305
2306         while (count > persistent_huge_pages(h)) {
2307                 /*
2308                  * If this allocation races such that we no longer need the
2309                  * page, free_huge_page will handle it by freeing the page
2310                  * and reducing the surplus.
2311                  */
2312                 spin_unlock(&hugetlb_lock);
2313
2314                 /* yield cpu to avoid soft lockup */
2315                 cond_resched();
2316
2317                 ret = alloc_pool_huge_page(h, nodes_allowed);
2318                 spin_lock(&hugetlb_lock);
2319                 if (!ret)
2320                         goto out;
2321
2322                 /* Bail for signals. Probably ctrl-c from user */
2323                 if (signal_pending(current))
2324                         goto out;
2325         }
2326
2327         /*
2328          * Decrease the pool size
2329          * First return free pages to the buddy allocator (being careful
2330          * to keep enough around to satisfy reservations).  Then place
2331          * pages into surplus state as needed so the pool will shrink
2332          * to the desired size as pages become free.
2333          *
2334          * By placing pages into the surplus state independent of the
2335          * overcommit value, we are allowing the surplus pool size to
2336          * exceed overcommit. There are few sane options here. Since
2337          * alloc_surplus_huge_page() is checking the global counter,
2338          * though, we'll note that we're not allowed to exceed surplus
2339          * and won't grow the pool anywhere else. Not until one of the
2340          * sysctls are changed, or the surplus pages go out of use.
2341          */
2342         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2343         min_count = max(count, min_count);
2344         try_to_free_low(h, min_count, nodes_allowed);
2345         while (min_count < persistent_huge_pages(h)) {
2346                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2347                         break;
2348                 cond_resched_lock(&hugetlb_lock);
2349         }
2350         while (count < persistent_huge_pages(h)) {
2351                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2352                         break;
2353         }
2354 out:
2355         ret = persistent_huge_pages(h);
2356         spin_unlock(&hugetlb_lock);
2357         return ret;
2358 }
2359
2360 #define HSTATE_ATTR_RO(_name) \
2361         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2362
2363 #define HSTATE_ATTR(_name) \
2364         static struct kobj_attribute _name##_attr = \
2365                 __ATTR(_name, 0644, _name##_show, _name##_store)
2366
2367 static struct kobject *hugepages_kobj;
2368 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2369
2370 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2371
2372 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2373 {
2374         int i;
2375
2376         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2377                 if (hstate_kobjs[i] == kobj) {
2378                         if (nidp)
2379                                 *nidp = NUMA_NO_NODE;
2380                         return &hstates[i];
2381                 }
2382
2383         return kobj_to_node_hstate(kobj, nidp);
2384 }
2385
2386 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2387                                         struct kobj_attribute *attr, char *buf)
2388 {
2389         struct hstate *h;
2390         unsigned long nr_huge_pages;
2391         int nid;
2392
2393         h = kobj_to_hstate(kobj, &nid);
2394         if (nid == NUMA_NO_NODE)
2395                 nr_huge_pages = h->nr_huge_pages;
2396         else
2397                 nr_huge_pages = h->nr_huge_pages_node[nid];
2398
2399         return sprintf(buf, "%lu\n", nr_huge_pages);
2400 }
2401
2402 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2403                                            struct hstate *h, int nid,
2404                                            unsigned long count, size_t len)
2405 {
2406         int err;
2407         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2408
2409         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2410                 err = -EINVAL;
2411                 goto out;
2412         }
2413
2414         if (nid == NUMA_NO_NODE) {
2415                 /*
2416                  * global hstate attribute
2417                  */
2418                 if (!(obey_mempolicy &&
2419                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2420                         NODEMASK_FREE(nodes_allowed);
2421                         nodes_allowed = &node_states[N_MEMORY];
2422                 }
2423         } else if (nodes_allowed) {
2424                 /*
2425                  * per node hstate attribute: adjust count to global,
2426                  * but restrict alloc/free to the specified node.
2427                  */
2428                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2429                 init_nodemask_of_node(nodes_allowed, nid);
2430         } else
2431                 nodes_allowed = &node_states[N_MEMORY];
2432
2433         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2434
2435         if (nodes_allowed != &node_states[N_MEMORY])
2436                 NODEMASK_FREE(nodes_allowed);
2437
2438         return len;
2439 out:
2440         NODEMASK_FREE(nodes_allowed);
2441         return err;
2442 }
2443
2444 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2445                                          struct kobject *kobj, const char *buf,
2446                                          size_t len)
2447 {
2448         struct hstate *h;
2449         unsigned long count;
2450         int nid;
2451         int err;
2452
2453         err = kstrtoul(buf, 10, &count);
2454         if (err)
2455                 return err;
2456
2457         h = kobj_to_hstate(kobj, &nid);
2458         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2459 }
2460
2461 static ssize_t nr_hugepages_show(struct kobject *kobj,
2462                                        struct kobj_attribute *attr, char *buf)
2463 {
2464         return nr_hugepages_show_common(kobj, attr, buf);
2465 }
2466
2467 static ssize_t nr_hugepages_store(struct kobject *kobj,
2468                struct kobj_attribute *attr, const char *buf, size_t len)
2469 {
2470         return nr_hugepages_store_common(false, kobj, buf, len);
2471 }
2472 HSTATE_ATTR(nr_hugepages);
2473
2474 #ifdef CONFIG_NUMA
2475
2476 /*
2477  * hstate attribute for optionally mempolicy-based constraint on persistent
2478  * huge page alloc/free.
2479  */
2480 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2481                                        struct kobj_attribute *attr, char *buf)
2482 {
2483         return nr_hugepages_show_common(kobj, attr, buf);
2484 }
2485
2486 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2487                struct kobj_attribute *attr, const char *buf, size_t len)
2488 {
2489         return nr_hugepages_store_common(true, kobj, buf, len);
2490 }
2491 HSTATE_ATTR(nr_hugepages_mempolicy);
2492 #endif
2493
2494
2495 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2496                                         struct kobj_attribute *attr, char *buf)
2497 {
2498         struct hstate *h = kobj_to_hstate(kobj, NULL);
2499         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2500 }
2501
2502 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2503                 struct kobj_attribute *attr, const char *buf, size_t count)
2504 {
2505         int err;
2506         unsigned long input;
2507         struct hstate *h = kobj_to_hstate(kobj, NULL);
2508
2509         if (hstate_is_gigantic(h))
2510                 return -EINVAL;
2511
2512         err = kstrtoul(buf, 10, &input);
2513         if (err)
2514                 return err;
2515
2516         spin_lock(&hugetlb_lock);
2517         h->nr_overcommit_huge_pages = input;
2518         spin_unlock(&hugetlb_lock);
2519
2520         return count;
2521 }
2522 HSTATE_ATTR(nr_overcommit_hugepages);
2523
2524 static ssize_t free_hugepages_show(struct kobject *kobj,
2525                                         struct kobj_attribute *attr, char *buf)
2526 {
2527         struct hstate *h;
2528         unsigned long free_huge_pages;
2529         int nid;
2530
2531         h = kobj_to_hstate(kobj, &nid);
2532         if (nid == NUMA_NO_NODE)
2533                 free_huge_pages = h->free_huge_pages;
2534         else
2535                 free_huge_pages = h->free_huge_pages_node[nid];
2536
2537         return sprintf(buf, "%lu\n", free_huge_pages);
2538 }
2539 HSTATE_ATTR_RO(free_hugepages);
2540
2541 static ssize_t resv_hugepages_show(struct kobject *kobj,
2542                                         struct kobj_attribute *attr, char *buf)
2543 {
2544         struct hstate *h = kobj_to_hstate(kobj, NULL);
2545         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2546 }
2547 HSTATE_ATTR_RO(resv_hugepages);
2548
2549 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2550                                         struct kobj_attribute *attr, char *buf)
2551 {
2552         struct hstate *h;
2553         unsigned long surplus_huge_pages;
2554         int nid;
2555
2556         h = kobj_to_hstate(kobj, &nid);
2557         if (nid == NUMA_NO_NODE)
2558                 surplus_huge_pages = h->surplus_huge_pages;
2559         else
2560                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2561
2562         return sprintf(buf, "%lu\n", surplus_huge_pages);
2563 }
2564 HSTATE_ATTR_RO(surplus_hugepages);
2565
2566 static struct attribute *hstate_attrs[] = {
2567         &nr_hugepages_attr.attr,
2568         &nr_overcommit_hugepages_attr.attr,
2569         &free_hugepages_attr.attr,
2570         &resv_hugepages_attr.attr,
2571         &surplus_hugepages_attr.attr,
2572 #ifdef CONFIG_NUMA
2573         &nr_hugepages_mempolicy_attr.attr,
2574 #endif
2575         NULL,
2576 };
2577
2578 static const struct attribute_group hstate_attr_group = {
2579         .attrs = hstate_attrs,
2580 };
2581
2582 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2583                                     struct kobject **hstate_kobjs,
2584                                     const struct attribute_group *hstate_attr_group)
2585 {
2586         int retval;
2587         int hi = hstate_index(h);
2588
2589         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2590         if (!hstate_kobjs[hi])
2591                 return -ENOMEM;
2592
2593         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2594         if (retval)
2595                 kobject_put(hstate_kobjs[hi]);
2596
2597         return retval;
2598 }
2599
2600 static void __init hugetlb_sysfs_init(void)
2601 {
2602         struct hstate *h;
2603         int err;
2604
2605         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2606         if (!hugepages_kobj)
2607                 return;
2608
2609         for_each_hstate(h) {
2610                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2611                                          hstate_kobjs, &hstate_attr_group);
2612                 if (err)
2613                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2614         }
2615 }
2616
2617 #ifdef CONFIG_NUMA
2618
2619 /*
2620  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2621  * with node devices in node_devices[] using a parallel array.  The array
2622  * index of a node device or _hstate == node id.
2623  * This is here to avoid any static dependency of the node device driver, in
2624  * the base kernel, on the hugetlb module.
2625  */
2626 struct node_hstate {
2627         struct kobject          *hugepages_kobj;
2628         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2629 };
2630 static struct node_hstate node_hstates[MAX_NUMNODES];
2631
2632 /*
2633  * A subset of global hstate attributes for node devices
2634  */
2635 static struct attribute *per_node_hstate_attrs[] = {
2636         &nr_hugepages_attr.attr,
2637         &free_hugepages_attr.attr,
2638         &surplus_hugepages_attr.attr,
2639         NULL,
2640 };
2641
2642 static const struct attribute_group per_node_hstate_attr_group = {
2643         .attrs = per_node_hstate_attrs,
2644 };
2645
2646 /*
2647  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2648  * Returns node id via non-NULL nidp.
2649  */
2650 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2651 {
2652         int nid;
2653
2654         for (nid = 0; nid < nr_node_ids; nid++) {
2655                 struct node_hstate *nhs = &node_hstates[nid];
2656                 int i;
2657                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2658                         if (nhs->hstate_kobjs[i] == kobj) {
2659                                 if (nidp)
2660                                         *nidp = nid;
2661                                 return &hstates[i];
2662                         }
2663         }
2664
2665         BUG();
2666         return NULL;
2667 }
2668
2669 /*
2670  * Unregister hstate attributes from a single node device.
2671  * No-op if no hstate attributes attached.
2672  */
2673 static void hugetlb_unregister_node(struct node *node)
2674 {
2675         struct hstate *h;
2676         struct node_hstate *nhs = &node_hstates[node->dev.id];
2677
2678         if (!nhs->hugepages_kobj)
2679                 return;         /* no hstate attributes */
2680
2681         for_each_hstate(h) {
2682                 int idx = hstate_index(h);
2683                 if (nhs->hstate_kobjs[idx]) {
2684                         kobject_put(nhs->hstate_kobjs[idx]);
2685                         nhs->hstate_kobjs[idx] = NULL;
2686                 }
2687         }
2688
2689         kobject_put(nhs->hugepages_kobj);
2690         nhs->hugepages_kobj = NULL;
2691 }
2692
2693
2694 /*
2695  * Register hstate attributes for a single node device.
2696  * No-op if attributes already registered.
2697  */
2698 static void hugetlb_register_node(struct node *node)
2699 {
2700         struct hstate *h;
2701         struct node_hstate *nhs = &node_hstates[node->dev.id];
2702         int err;
2703
2704         if (nhs->hugepages_kobj)
2705                 return;         /* already allocated */
2706
2707         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2708                                                         &node->dev.kobj);
2709         if (!nhs->hugepages_kobj)
2710                 return;
2711
2712         for_each_hstate(h) {
2713                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2714                                                 nhs->hstate_kobjs,
2715                                                 &per_node_hstate_attr_group);
2716                 if (err) {
2717                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2718                                 h->name, node->dev.id);
2719                         hugetlb_unregister_node(node);
2720                         break;
2721                 }
2722         }
2723 }
2724
2725 /*
2726  * hugetlb init time:  register hstate attributes for all registered node
2727  * devices of nodes that have memory.  All on-line nodes should have
2728  * registered their associated device by this time.
2729  */
2730 static void __init hugetlb_register_all_nodes(void)
2731 {
2732         int nid;
2733
2734         for_each_node_state(nid, N_MEMORY) {
2735                 struct node *node = node_devices[nid];
2736                 if (node->dev.id == nid)
2737                         hugetlb_register_node(node);
2738         }
2739
2740         /*
2741          * Let the node device driver know we're here so it can
2742          * [un]register hstate attributes on node hotplug.
2743          */
2744         register_hugetlbfs_with_node(hugetlb_register_node,
2745                                      hugetlb_unregister_node);
2746 }
2747 #else   /* !CONFIG_NUMA */
2748
2749 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2750 {
2751         BUG();
2752         if (nidp)
2753                 *nidp = -1;
2754         return NULL;
2755 }
2756
2757 static void hugetlb_register_all_nodes(void) { }
2758
2759 #endif
2760
2761 static int __init hugetlb_init(void)
2762 {
2763         int i;
2764
2765         if (!hugepages_supported())
2766                 return 0;
2767
2768         if (!size_to_hstate(default_hstate_size)) {
2769                 if (default_hstate_size != 0) {
2770                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2771                                default_hstate_size, HPAGE_SIZE);
2772                 }
2773
2774                 default_hstate_size = HPAGE_SIZE;
2775                 if (!size_to_hstate(default_hstate_size))
2776                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2777         }
2778         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2779         if (default_hstate_max_huge_pages) {
2780                 if (!default_hstate.max_huge_pages)
2781                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2782         }
2783
2784         hugetlb_init_hstates();
2785         gather_bootmem_prealloc();
2786         report_hugepages();
2787
2788         hugetlb_sysfs_init();
2789         hugetlb_register_all_nodes();
2790         hugetlb_cgroup_file_init();
2791
2792 #ifdef CONFIG_SMP
2793         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2794 #else
2795         num_fault_mutexes = 1;
2796 #endif
2797         hugetlb_fault_mutex_table =
2798                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2799                               GFP_KERNEL);
2800         BUG_ON(!hugetlb_fault_mutex_table);
2801
2802         for (i = 0; i < num_fault_mutexes; i++)
2803                 mutex_init(&hugetlb_fault_mutex_table[i]);
2804         return 0;
2805 }
2806 subsys_initcall(hugetlb_init);
2807
2808 /* Should be called on processing a hugepagesz=... option */
2809 void __init hugetlb_bad_size(void)
2810 {
2811         parsed_valid_hugepagesz = false;
2812 }
2813
2814 void __init hugetlb_add_hstate(unsigned int order)
2815 {
2816         struct hstate *h;
2817         unsigned long i;
2818
2819         if (size_to_hstate(PAGE_SIZE << order)) {
2820                 pr_warn("hugepagesz= specified twice, ignoring\n");
2821                 return;
2822         }
2823         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2824         BUG_ON(order == 0);
2825         h = &hstates[hugetlb_max_hstate++];
2826         h->order = order;
2827         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2828         h->nr_huge_pages = 0;
2829         h->free_huge_pages = 0;
2830         for (i = 0; i < MAX_NUMNODES; ++i)
2831                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2832         INIT_LIST_HEAD(&h->hugepage_activelist);
2833         h->next_nid_to_alloc = first_memory_node;
2834         h->next_nid_to_free = first_memory_node;
2835         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2836                                         huge_page_size(h)/1024);
2837
2838         parsed_hstate = h;
2839 }
2840
2841 static int __init hugetlb_nrpages_setup(char *s)
2842 {
2843         unsigned long *mhp;
2844         static unsigned long *last_mhp;
2845
2846         if (!parsed_valid_hugepagesz) {
2847                 pr_warn("hugepages = %s preceded by "
2848                         "an unsupported hugepagesz, ignoring\n", s);
2849                 parsed_valid_hugepagesz = true;
2850                 return 1;
2851         }
2852         /*
2853          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2854          * so this hugepages= parameter goes to the "default hstate".
2855          */
2856         else if (!hugetlb_max_hstate)
2857                 mhp = &default_hstate_max_huge_pages;
2858         else
2859                 mhp = &parsed_hstate->max_huge_pages;
2860
2861         if (mhp == last_mhp) {
2862                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2863                 return 1;
2864         }
2865
2866         if (sscanf(s, "%lu", mhp) <= 0)
2867                 *mhp = 0;
2868
2869         /*
2870          * Global state is always initialized later in hugetlb_init.
2871          * But we need to allocate >= MAX_ORDER hstates here early to still
2872          * use the bootmem allocator.
2873          */
2874         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2875                 hugetlb_hstate_alloc_pages(parsed_hstate);
2876
2877         last_mhp = mhp;
2878
2879         return 1;
2880 }
2881 __setup("hugepages=", hugetlb_nrpages_setup);
2882
2883 static int __init hugetlb_default_setup(char *s)
2884 {
2885         default_hstate_size = memparse(s, &s);
2886         return 1;
2887 }
2888 __setup("default_hugepagesz=", hugetlb_default_setup);
2889
2890 static unsigned int cpuset_mems_nr(unsigned int *array)
2891 {
2892         int node;
2893         unsigned int nr = 0;
2894
2895         for_each_node_mask(node, cpuset_current_mems_allowed)
2896                 nr += array[node];
2897
2898         return nr;
2899 }
2900
2901 #ifdef CONFIG_SYSCTL
2902 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2903                          struct ctl_table *table, int write,
2904                          void __user *buffer, size_t *length, loff_t *ppos)
2905 {
2906         struct hstate *h = &default_hstate;
2907         unsigned long tmp = h->max_huge_pages;
2908         int ret;
2909
2910         if (!hugepages_supported())
2911                 return -EOPNOTSUPP;
2912
2913         table->data = &tmp;
2914         table->maxlen = sizeof(unsigned long);
2915         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2916         if (ret)
2917                 goto out;
2918
2919         if (write)
2920                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2921                                                   NUMA_NO_NODE, tmp, *length);
2922 out:
2923         return ret;
2924 }
2925
2926 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2927                           void __user *buffer, size_t *length, loff_t *ppos)
2928 {
2929
2930         return hugetlb_sysctl_handler_common(false, table, write,
2931                                                         buffer, length, ppos);
2932 }
2933
2934 #ifdef CONFIG_NUMA
2935 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2936                           void __user *buffer, size_t *length, loff_t *ppos)
2937 {
2938         return hugetlb_sysctl_handler_common(true, table, write,
2939                                                         buffer, length, ppos);
2940 }
2941 #endif /* CONFIG_NUMA */
2942
2943 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2944                         void __user *buffer,
2945                         size_t *length, loff_t *ppos)
2946 {
2947         struct hstate *h = &default_hstate;
2948         unsigned long tmp;
2949         int ret;
2950
2951         if (!hugepages_supported())
2952                 return -EOPNOTSUPP;
2953
2954         tmp = h->nr_overcommit_huge_pages;
2955
2956         if (write && hstate_is_gigantic(h))
2957                 return -EINVAL;
2958
2959         table->data = &tmp;
2960         table->maxlen = sizeof(unsigned long);
2961         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2962         if (ret)
2963                 goto out;
2964
2965         if (write) {
2966                 spin_lock(&hugetlb_lock);
2967                 h->nr_overcommit_huge_pages = tmp;
2968                 spin_unlock(&hugetlb_lock);
2969         }
2970 out:
2971         return ret;
2972 }
2973
2974 #endif /* CONFIG_SYSCTL */
2975
2976 void hugetlb_report_meminfo(struct seq_file *m)
2977 {
2978         struct hstate *h;
2979         unsigned long total = 0;
2980
2981         if (!hugepages_supported())
2982                 return;
2983
2984         for_each_hstate(h) {
2985                 unsigned long count = h->nr_huge_pages;
2986
2987                 total += (PAGE_SIZE << huge_page_order(h)) * count;
2988
2989                 if (h == &default_hstate)
2990                         seq_printf(m,
2991                                    "HugePages_Total:   %5lu\n"
2992                                    "HugePages_Free:    %5lu\n"
2993                                    "HugePages_Rsvd:    %5lu\n"
2994                                    "HugePages_Surp:    %5lu\n"
2995                                    "Hugepagesize:   %8lu kB\n",
2996                                    count,
2997                                    h->free_huge_pages,
2998                                    h->resv_huge_pages,
2999                                    h->surplus_huge_pages,
3000                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3001         }
3002
3003         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3004 }
3005
3006 int hugetlb_report_node_meminfo(int nid, char *buf)
3007 {
3008         struct hstate *h = &default_hstate;
3009         if (!hugepages_supported())
3010                 return 0;
3011         return sprintf(buf,
3012                 "Node %d HugePages_Total: %5u\n"
3013                 "Node %d HugePages_Free:  %5u\n"
3014                 "Node %d HugePages_Surp:  %5u\n",
3015                 nid, h->nr_huge_pages_node[nid],
3016                 nid, h->free_huge_pages_node[nid],
3017                 nid, h->surplus_huge_pages_node[nid]);
3018 }
3019
3020 void hugetlb_show_meminfo(void)
3021 {
3022         struct hstate *h;
3023         int nid;
3024
3025         if (!hugepages_supported())
3026                 return;
3027
3028         for_each_node_state(nid, N_MEMORY)
3029                 for_each_hstate(h)
3030                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031                                 nid,
3032                                 h->nr_huge_pages_node[nid],
3033                                 h->free_huge_pages_node[nid],
3034                                 h->surplus_huge_pages_node[nid],
3035                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036 }
3037
3038 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039 {
3040         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042 }
3043
3044 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045 unsigned long hugetlb_total_pages(void)
3046 {
3047         struct hstate *h;
3048         unsigned long nr_total_pages = 0;
3049
3050         for_each_hstate(h)
3051                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052         return nr_total_pages;
3053 }
3054
3055 static int hugetlb_acct_memory(struct hstate *h, long delta)
3056 {
3057         int ret = -ENOMEM;
3058
3059         spin_lock(&hugetlb_lock);
3060         /*
3061          * When cpuset is configured, it breaks the strict hugetlb page
3062          * reservation as the accounting is done on a global variable. Such
3063          * reservation is completely rubbish in the presence of cpuset because
3064          * the reservation is not checked against page availability for the
3065          * current cpuset. Application can still potentially OOM'ed by kernel
3066          * with lack of free htlb page in cpuset that the task is in.
3067          * Attempt to enforce strict accounting with cpuset is almost
3068          * impossible (or too ugly) because cpuset is too fluid that
3069          * task or memory node can be dynamically moved between cpusets.
3070          *
3071          * The change of semantics for shared hugetlb mapping with cpuset is
3072          * undesirable. However, in order to preserve some of the semantics,
3073          * we fall back to check against current free page availability as
3074          * a best attempt and hopefully to minimize the impact of changing
3075          * semantics that cpuset has.
3076          */
3077         if (delta > 0) {
3078                 if (gather_surplus_pages(h, delta) < 0)
3079                         goto out;
3080
3081                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082                         return_unused_surplus_pages(h, delta);
3083                         goto out;
3084                 }
3085         }
3086
3087         ret = 0;
3088         if (delta < 0)
3089                 return_unused_surplus_pages(h, (unsigned long) -delta);
3090
3091 out:
3092         spin_unlock(&hugetlb_lock);
3093         return ret;
3094 }
3095
3096 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097 {
3098         struct resv_map *resv = vma_resv_map(vma);
3099
3100         /*
3101          * This new VMA should share its siblings reservation map if present.
3102          * The VMA will only ever have a valid reservation map pointer where
3103          * it is being copied for another still existing VMA.  As that VMA
3104          * has a reference to the reservation map it cannot disappear until
3105          * after this open call completes.  It is therefore safe to take a
3106          * new reference here without additional locking.
3107          */
3108         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3109                 kref_get(&resv->refs);
3110 }
3111
3112 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113 {
3114         struct hstate *h = hstate_vma(vma);
3115         struct resv_map *resv = vma_resv_map(vma);
3116         struct hugepage_subpool *spool = subpool_vma(vma);
3117         unsigned long reserve, start, end;
3118         long gbl_reserve;
3119
3120         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121                 return;
3122
3123         start = vma_hugecache_offset(h, vma, vma->vm_start);
3124         end = vma_hugecache_offset(h, vma, vma->vm_end);
3125
3126         reserve = (end - start) - region_count(resv, start, end);
3127
3128         kref_put(&resv->refs, resv_map_release);
3129
3130         if (reserve) {
3131                 /*
3132                  * Decrement reserve counts.  The global reserve count may be
3133                  * adjusted if the subpool has a minimum size.
3134                  */
3135                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136                 hugetlb_acct_memory(h, -gbl_reserve);
3137         }
3138 }
3139
3140 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3141 {
3142         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3143                 return -EINVAL;
3144         return 0;
3145 }
3146
3147 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3148 {
3149         struct hstate *hstate = hstate_vma(vma);
3150
3151         return 1UL << huge_page_shift(hstate);
3152 }
3153
3154 /*
3155  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3156  * handle_mm_fault() to try to instantiate regular-sized pages in the
3157  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3158  * this far.
3159  */
3160 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3161 {
3162         BUG();
3163         return 0;
3164 }
3165
3166 /*
3167  * When a new function is introduced to vm_operations_struct and added
3168  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3169  * This is because under System V memory model, mappings created via
3170  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3171  * their original vm_ops are overwritten with shm_vm_ops.
3172  */
3173 const struct vm_operations_struct hugetlb_vm_ops = {
3174         .fault = hugetlb_vm_op_fault,
3175         .open = hugetlb_vm_op_open,
3176         .close = hugetlb_vm_op_close,
3177         .split = hugetlb_vm_op_split,
3178         .pagesize = hugetlb_vm_op_pagesize,
3179 };
3180
3181 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3182                                 int writable)
3183 {
3184         pte_t entry;
3185
3186         if (writable) {
3187                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3188                                          vma->vm_page_prot)));
3189         } else {
3190                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3191                                            vma->vm_page_prot));
3192         }
3193         entry = pte_mkyoung(entry);
3194         entry = pte_mkhuge(entry);
3195         entry = arch_make_huge_pte(entry, vma, page, writable);
3196
3197         return entry;
3198 }
3199
3200 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3201                                    unsigned long address, pte_t *ptep)
3202 {
3203         pte_t entry;
3204
3205         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3206         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3207                 update_mmu_cache(vma, address, ptep);
3208 }
3209
3210 bool is_hugetlb_entry_migration(pte_t pte)
3211 {
3212         swp_entry_t swp;
3213
3214         if (huge_pte_none(pte) || pte_present(pte))
3215                 return false;
3216         swp = pte_to_swp_entry(pte);
3217         if (non_swap_entry(swp) && is_migration_entry(swp))
3218                 return true;
3219         else
3220                 return false;
3221 }
3222
3223 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3224 {
3225         swp_entry_t swp;
3226
3227         if (huge_pte_none(pte) || pte_present(pte))
3228                 return 0;
3229         swp = pte_to_swp_entry(pte);
3230         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3231                 return 1;
3232         else
3233                 return 0;
3234 }
3235
3236 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3237                             struct vm_area_struct *vma)
3238 {
3239         pte_t *src_pte, *dst_pte, entry, dst_entry;
3240         struct page *ptepage;
3241         unsigned long addr;
3242         int cow;
3243         struct hstate *h = hstate_vma(vma);
3244         unsigned long sz = huge_page_size(h);
3245         struct mmu_notifier_range range;
3246         int ret = 0;
3247
3248         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3249
3250         if (cow) {
3251                 mmu_notifier_range_init(&range, src, vma->vm_start,
3252                                         vma->vm_end);
3253                 mmu_notifier_invalidate_range_start(&range);
3254         }
3255
3256         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3257                 spinlock_t *src_ptl, *dst_ptl;
3258                 src_pte = huge_pte_offset(src, addr, sz);
3259                 if (!src_pte)
3260                         continue;
3261                 dst_pte = huge_pte_alloc(dst, addr, sz);
3262                 if (!dst_pte) {
3263                         ret = -ENOMEM;
3264                         break;
3265                 }
3266
3267                 /*
3268                  * If the pagetables are shared don't copy or take references.
3269                  * dst_pte == src_pte is the common case of src/dest sharing.
3270                  *
3271                  * However, src could have 'unshared' and dst shares with
3272                  * another vma.  If dst_pte !none, this implies sharing.
3273                  * Check here before taking page table lock, and once again
3274                  * after taking the lock below.
3275                  */
3276                 dst_entry = huge_ptep_get(dst_pte);
3277                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3278                         continue;
3279
3280                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3281                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3282                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3283                 entry = huge_ptep_get(src_pte);
3284                 dst_entry = huge_ptep_get(dst_pte);
3285                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3286                         /*
3287                          * Skip if src entry none.  Also, skip in the
3288                          * unlikely case dst entry !none as this implies
3289                          * sharing with another vma.
3290                          */
3291                         ;
3292                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3293                                     is_hugetlb_entry_hwpoisoned(entry))) {
3294                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3295
3296                         if (is_write_migration_entry(swp_entry) && cow) {
3297                                 /*
3298                                  * COW mappings require pages in both
3299                                  * parent and child to be set to read.
3300                                  */
3301                                 make_migration_entry_read(&swp_entry);
3302                                 entry = swp_entry_to_pte(swp_entry);
3303                                 set_huge_swap_pte_at(src, addr, src_pte,
3304                                                      entry, sz);
3305                         }
3306                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3307                 } else {
3308                         if (cow) {
3309                                 /*
3310                                  * No need to notify as we are downgrading page
3311                                  * table protection not changing it to point
3312                                  * to a new page.
3313                                  *
3314                                  * See Documentation/vm/mmu_notifier.rst
3315                                  */
3316                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3317                         }
3318                         entry = huge_ptep_get(src_pte);
3319                         ptepage = pte_page(entry);
3320                         get_page(ptepage);
3321                         page_dup_rmap(ptepage, true);
3322                         set_huge_pte_at(dst, addr, dst_pte, entry);
3323                         hugetlb_count_add(pages_per_huge_page(h), dst);
3324                 }
3325                 spin_unlock(src_ptl);
3326                 spin_unlock(dst_ptl);
3327         }
3328
3329         if (cow)
3330                 mmu_notifier_invalidate_range_end(&range);
3331
3332         return ret;
3333 }
3334
3335 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3336                             unsigned long start, unsigned long end,
3337                             struct page *ref_page)
3338 {
3339         struct mm_struct *mm = vma->vm_mm;
3340         unsigned long address;
3341         pte_t *ptep;
3342         pte_t pte;
3343         spinlock_t *ptl;
3344         struct page *page;
3345         struct hstate *h = hstate_vma(vma);
3346         unsigned long sz = huge_page_size(h);
3347         struct mmu_notifier_range range;
3348
3349         WARN_ON(!is_vm_hugetlb_page(vma));
3350         BUG_ON(start & ~huge_page_mask(h));
3351         BUG_ON(end & ~huge_page_mask(h));
3352
3353         /*
3354          * This is a hugetlb vma, all the pte entries should point
3355          * to huge page.
3356          */
3357         tlb_change_page_size(tlb, sz);
3358         tlb_start_vma(tlb, vma);
3359
3360         /*
3361          * If sharing possible, alert mmu notifiers of worst case.
3362          */
3363         mmu_notifier_range_init(&range, mm, start, end);
3364         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3365         mmu_notifier_invalidate_range_start(&range);
3366         address = start;
3367         for (; address < end; address += sz) {
3368                 ptep = huge_pte_offset(mm, address, sz);
3369                 if (!ptep)
3370                         continue;
3371
3372                 ptl = huge_pte_lock(h, mm, ptep);
3373                 if (huge_pmd_unshare(mm, &address, ptep)) {
3374                         spin_unlock(ptl);
3375                         /*
3376                          * We just unmapped a page of PMDs by clearing a PUD.
3377                          * The caller's TLB flush range should cover this area.
3378                          */
3379                         continue;
3380                 }
3381
3382                 pte = huge_ptep_get(ptep);
3383                 if (huge_pte_none(pte)) {
3384                         spin_unlock(ptl);
3385                         continue;
3386                 }
3387
3388                 /*
3389                  * Migrating hugepage or HWPoisoned hugepage is already
3390                  * unmapped and its refcount is dropped, so just clear pte here.
3391                  */
3392                 if (unlikely(!pte_present(pte))) {
3393                         huge_pte_clear(mm, address, ptep, sz);
3394                         spin_unlock(ptl);
3395                         continue;
3396                 }
3397
3398                 page = pte_page(pte);
3399                 /*
3400                  * If a reference page is supplied, it is because a specific
3401                  * page is being unmapped, not a range. Ensure the page we
3402                  * are about to unmap is the actual page of interest.
3403                  */
3404                 if (ref_page) {
3405                         if (page != ref_page) {
3406                                 spin_unlock(ptl);
3407                                 continue;
3408                         }
3409                         /*
3410                          * Mark the VMA as having unmapped its page so that
3411                          * future faults in this VMA will fail rather than
3412                          * looking like data was lost
3413                          */
3414                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3415                 }
3416
3417                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3418                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3419                 if (huge_pte_dirty(pte))
3420                         set_page_dirty(page);
3421
3422                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3423                 page_remove_rmap(page, true);
3424
3425                 spin_unlock(ptl);
3426                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3427                 /*
3428                  * Bail out after unmapping reference page if supplied
3429                  */
3430                 if (ref_page)
3431                         break;
3432         }
3433         mmu_notifier_invalidate_range_end(&range);
3434         tlb_end_vma(tlb, vma);
3435 }
3436
3437 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3438                           struct vm_area_struct *vma, unsigned long start,
3439                           unsigned long end, struct page *ref_page)
3440 {
3441         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3442
3443         /*
3444          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3445          * test will fail on a vma being torn down, and not grab a page table
3446          * on its way out.  We're lucky that the flag has such an appropriate
3447          * name, and can in fact be safely cleared here. We could clear it
3448          * before the __unmap_hugepage_range above, but all that's necessary
3449          * is to clear it before releasing the i_mmap_rwsem. This works
3450          * because in the context this is called, the VMA is about to be
3451          * destroyed and the i_mmap_rwsem is held.
3452          */
3453         vma->vm_flags &= ~VM_MAYSHARE;
3454 }
3455
3456 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3457                           unsigned long end, struct page *ref_page)
3458 {
3459         struct mm_struct *mm;
3460         struct mmu_gather tlb;
3461         unsigned long tlb_start = start;
3462         unsigned long tlb_end = end;
3463
3464         /*
3465          * If shared PMDs were possibly used within this vma range, adjust
3466          * start/end for worst case tlb flushing.
3467          * Note that we can not be sure if PMDs are shared until we try to
3468          * unmap pages.  However, we want to make sure TLB flushing covers
3469          * the largest possible range.
3470          */
3471         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3472
3473         mm = vma->vm_mm;
3474
3475         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3476         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3477         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3478 }
3479
3480 /*
3481  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3482  * mappping it owns the reserve page for. The intention is to unmap the page
3483  * from other VMAs and let the children be SIGKILLed if they are faulting the
3484  * same region.
3485  */
3486 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3487                               struct page *page, unsigned long address)
3488 {
3489         struct hstate *h = hstate_vma(vma);
3490         struct vm_area_struct *iter_vma;
3491         struct address_space *mapping;
3492         pgoff_t pgoff;
3493
3494         /*
3495          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3496          * from page cache lookup which is in HPAGE_SIZE units.
3497          */
3498         address = address & huge_page_mask(h);
3499         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3500                         vma->vm_pgoff;
3501         mapping = vma->vm_file->f_mapping;
3502
3503         /*
3504          * Take the mapping lock for the duration of the table walk. As
3505          * this mapping should be shared between all the VMAs,
3506          * __unmap_hugepage_range() is called as the lock is already held
3507          */
3508         i_mmap_lock_write(mapping);
3509         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3510                 /* Do not unmap the current VMA */
3511                 if (iter_vma == vma)
3512                         continue;
3513
3514                 /*
3515                  * Shared VMAs have their own reserves and do not affect
3516                  * MAP_PRIVATE accounting but it is possible that a shared
3517                  * VMA is using the same page so check and skip such VMAs.
3518                  */
3519                 if (iter_vma->vm_flags & VM_MAYSHARE)
3520                         continue;
3521
3522                 /*
3523                  * Unmap the page from other VMAs without their own reserves.
3524                  * They get marked to be SIGKILLed if they fault in these
3525                  * areas. This is because a future no-page fault on this VMA
3526                  * could insert a zeroed page instead of the data existing
3527                  * from the time of fork. This would look like data corruption
3528                  */
3529                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3530                         unmap_hugepage_range(iter_vma, address,
3531                                              address + huge_page_size(h), page);
3532         }
3533         i_mmap_unlock_write(mapping);
3534 }
3535
3536 /*
3537  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3538  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3539  * cannot race with other handlers or page migration.
3540  * Keep the pte_same checks anyway to make transition from the mutex easier.
3541  */
3542 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3543                        unsigned long address, pte_t *ptep,
3544                        struct page *pagecache_page, spinlock_t *ptl)
3545 {
3546         pte_t pte;
3547         struct hstate *h = hstate_vma(vma);
3548         struct page *old_page, *new_page;
3549         int outside_reserve = 0;
3550         vm_fault_t ret = 0;
3551         unsigned long haddr = address & huge_page_mask(h);
3552         struct mmu_notifier_range range;
3553
3554         pte = huge_ptep_get(ptep);
3555         old_page = pte_page(pte);
3556
3557 retry_avoidcopy:
3558         /* If no-one else is actually using this page, avoid the copy
3559          * and just make the page writable */
3560         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3561                 page_move_anon_rmap(old_page, vma);
3562                 set_huge_ptep_writable(vma, haddr, ptep);
3563                 return 0;
3564         }
3565
3566         /*
3567          * If the process that created a MAP_PRIVATE mapping is about to
3568          * perform a COW due to a shared page count, attempt to satisfy
3569          * the allocation without using the existing reserves. The pagecache
3570          * page is used to determine if the reserve at this address was
3571          * consumed or not. If reserves were used, a partial faulted mapping
3572          * at the time of fork() could consume its reserves on COW instead
3573          * of the full address range.
3574          */
3575         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3576                         old_page != pagecache_page)
3577                 outside_reserve = 1;
3578
3579         get_page(old_page);
3580
3581         /*
3582          * Drop page table lock as buddy allocator may be called. It will
3583          * be acquired again before returning to the caller, as expected.
3584          */
3585         spin_unlock(ptl);
3586         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3587
3588         if (IS_ERR(new_page)) {
3589                 /*
3590                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3591                  * it is due to references held by a child and an insufficient
3592                  * huge page pool. To guarantee the original mappers
3593                  * reliability, unmap the page from child processes. The child
3594                  * may get SIGKILLed if it later faults.
3595                  */
3596                 if (outside_reserve) {
3597                         put_page(old_page);
3598                         BUG_ON(huge_pte_none(pte));
3599                         unmap_ref_private(mm, vma, old_page, haddr);
3600                         BUG_ON(huge_pte_none(pte));
3601                         spin_lock(ptl);
3602                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3603                         if (likely(ptep &&
3604                                    pte_same(huge_ptep_get(ptep), pte)))
3605                                 goto retry_avoidcopy;
3606                         /*
3607                          * race occurs while re-acquiring page table
3608                          * lock, and our job is done.
3609                          */
3610                         return 0;
3611                 }
3612
3613                 ret = vmf_error(PTR_ERR(new_page));
3614                 goto out_release_old;
3615         }
3616
3617         /*
3618          * When the original hugepage is shared one, it does not have
3619          * anon_vma prepared.
3620          */
3621         if (unlikely(anon_vma_prepare(vma))) {
3622                 ret = VM_FAULT_OOM;
3623                 goto out_release_all;
3624         }
3625
3626         copy_user_huge_page(new_page, old_page, address, vma,
3627                             pages_per_huge_page(h));
3628         __SetPageUptodate(new_page);
3629
3630         mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3631         mmu_notifier_invalidate_range_start(&range);
3632
3633         /*
3634          * Retake the page table lock to check for racing updates
3635          * before the page tables are altered
3636          */
3637         spin_lock(ptl);
3638         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3639         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3640                 ClearPagePrivate(new_page);
3641
3642                 /* Break COW */
3643                 huge_ptep_clear_flush(vma, haddr, ptep);
3644                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3645                 set_huge_pte_at(mm, haddr, ptep,
3646                                 make_huge_pte(vma, new_page, 1));
3647                 page_remove_rmap(old_page, true);
3648                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3649                 set_page_huge_active(new_page);
3650                 /* Make the old page be freed below */
3651                 new_page = old_page;
3652         }
3653         spin_unlock(ptl);
3654         mmu_notifier_invalidate_range_end(&range);
3655 out_release_all:
3656         restore_reserve_on_error(h, vma, haddr, new_page);
3657         put_page(new_page);
3658 out_release_old:
3659         put_page(old_page);
3660
3661         spin_lock(ptl); /* Caller expects lock to be held */
3662         return ret;
3663 }
3664
3665 /* Return the pagecache page at a given address within a VMA */
3666 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3667                         struct vm_area_struct *vma, unsigned long address)
3668 {
3669         struct address_space *mapping;
3670         pgoff_t idx;
3671
3672         mapping = vma->vm_file->f_mapping;
3673         idx = vma_hugecache_offset(h, vma, address);
3674
3675         return find_lock_page(mapping, idx);
3676 }
3677
3678 /*
3679  * Return whether there is a pagecache page to back given address within VMA.
3680  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3681  */
3682 static bool hugetlbfs_pagecache_present(struct hstate *h,
3683                         struct vm_area_struct *vma, unsigned long address)
3684 {
3685         struct address_space *mapping;
3686         pgoff_t idx;
3687         struct page *page;
3688
3689         mapping = vma->vm_file->f_mapping;
3690         idx = vma_hugecache_offset(h, vma, address);
3691
3692         page = find_get_page(mapping, idx);
3693         if (page)
3694                 put_page(page);
3695         return page != NULL;
3696 }
3697
3698 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3699                            pgoff_t idx)
3700 {
3701         struct inode *inode = mapping->host;
3702         struct hstate *h = hstate_inode(inode);
3703         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3704
3705         if (err)
3706                 return err;
3707         ClearPagePrivate(page);
3708
3709         /*
3710          * set page dirty so that it will not be removed from cache/file
3711          * by non-hugetlbfs specific code paths.
3712          */
3713         set_page_dirty(page);
3714
3715         spin_lock(&inode->i_lock);
3716         inode->i_blocks += blocks_per_huge_page(h);
3717         spin_unlock(&inode->i_lock);
3718         return 0;
3719 }
3720
3721 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3722                         struct vm_area_struct *vma,
3723                         struct address_space *mapping, pgoff_t idx,
3724                         unsigned long address, pte_t *ptep, unsigned int flags)
3725 {
3726         struct hstate *h = hstate_vma(vma);
3727         vm_fault_t ret = VM_FAULT_SIGBUS;
3728         int anon_rmap = 0;
3729         unsigned long size;
3730         struct page *page;
3731         pte_t new_pte;
3732         spinlock_t *ptl;
3733         unsigned long haddr = address & huge_page_mask(h);
3734         bool new_page = false;
3735
3736         /*
3737          * Currently, we are forced to kill the process in the event the
3738          * original mapper has unmapped pages from the child due to a failed
3739          * COW. Warn that such a situation has occurred as it may not be obvious
3740          */
3741         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3742                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3743                            current->pid);
3744                 return ret;
3745         }
3746
3747         /*
3748          * Use page lock to guard against racing truncation
3749          * before we get page_table_lock.
3750          */
3751 retry:
3752         page = find_lock_page(mapping, idx);
3753         if (!page) {
3754                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3755                 if (idx >= size)
3756                         goto out;
3757
3758                 /*
3759                  * Check for page in userfault range
3760                  */
3761                 if (userfaultfd_missing(vma)) {
3762                         u32 hash;
3763                         struct vm_fault vmf = {
3764                                 .vma = vma,
3765                                 .address = haddr,
3766                                 .flags = flags,
3767                                 /*
3768                                  * Hard to debug if it ends up being
3769                                  * used by a callee that assumes
3770                                  * something about the other
3771                                  * uninitialized fields... same as in
3772                                  * memory.c
3773                                  */
3774                         };
3775
3776                         /*
3777                          * hugetlb_fault_mutex must be dropped before
3778                          * handling userfault.  Reacquire after handling
3779                          * fault to make calling code simpler.
3780                          */
3781                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3782                                                         idx, haddr);
3783                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3784                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3785                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3786                         goto out;
3787                 }
3788
3789                 page = alloc_huge_page(vma, haddr, 0);
3790                 if (IS_ERR(page)) {
3791                         ret = vmf_error(PTR_ERR(page));
3792                         goto out;
3793                 }
3794                 clear_huge_page(page, address, pages_per_huge_page(h));
3795                 __SetPageUptodate(page);
3796                 new_page = true;
3797
3798                 if (vma->vm_flags & VM_MAYSHARE) {
3799                         int err = huge_add_to_page_cache(page, mapping, idx);
3800                         if (err) {
3801                                 put_page(page);
3802                                 if (err == -EEXIST)
3803                                         goto retry;
3804                                 goto out;
3805                         }
3806                 } else {
3807                         lock_page(page);
3808                         if (unlikely(anon_vma_prepare(vma))) {
3809                                 ret = VM_FAULT_OOM;
3810                                 goto backout_unlocked;
3811                         }
3812                         anon_rmap = 1;
3813                 }
3814         } else {
3815                 /*
3816                  * If memory error occurs between mmap() and fault, some process
3817                  * don't have hwpoisoned swap entry for errored virtual address.
3818                  * So we need to block hugepage fault by PG_hwpoison bit check.
3819                  */
3820                 if (unlikely(PageHWPoison(page))) {
3821                         ret = VM_FAULT_HWPOISON |
3822                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3823                         goto backout_unlocked;
3824                 }
3825         }
3826
3827         /*
3828          * If we are going to COW a private mapping later, we examine the
3829          * pending reservations for this page now. This will ensure that
3830          * any allocations necessary to record that reservation occur outside
3831          * the spinlock.
3832          */
3833         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3834                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3835                         ret = VM_FAULT_OOM;
3836                         goto backout_unlocked;
3837                 }
3838                 /* Just decrements count, does not deallocate */
3839                 vma_end_reservation(h, vma, haddr);
3840         }
3841
3842         ptl = huge_pte_lock(h, mm, ptep);
3843         size = i_size_read(mapping->host) >> huge_page_shift(h);
3844         if (idx >= size)
3845                 goto backout;
3846
3847         ret = 0;
3848         if (!huge_pte_none(huge_ptep_get(ptep)))
3849                 goto backout;
3850
3851         if (anon_rmap) {
3852                 ClearPagePrivate(page);
3853                 hugepage_add_new_anon_rmap(page, vma, haddr);
3854         } else
3855                 page_dup_rmap(page, true);
3856         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3857                                 && (vma->vm_flags & VM_SHARED)));
3858         set_huge_pte_at(mm, haddr, ptep, new_pte);
3859
3860         hugetlb_count_add(pages_per_huge_page(h), mm);
3861         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3862                 /* Optimization, do the COW without a second fault */
3863                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3864         }
3865
3866         spin_unlock(ptl);
3867
3868         /*
3869          * Only make newly allocated pages active.  Existing pages found
3870          * in the pagecache could be !page_huge_active() if they have been
3871          * isolated for migration.
3872          */
3873         if (new_page)
3874                 set_page_huge_active(page);
3875
3876         unlock_page(page);
3877 out:
3878         return ret;
3879
3880 backout:
3881         spin_unlock(ptl);
3882 backout_unlocked:
3883         unlock_page(page);
3884         restore_reserve_on_error(h, vma, haddr, page);
3885         put_page(page);
3886         goto out;
3887 }
3888
3889 #ifdef CONFIG_SMP
3890 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3891                             struct vm_area_struct *vma,
3892                             struct address_space *mapping,
3893                             pgoff_t idx, unsigned long address)
3894 {
3895         unsigned long key[2];
3896         u32 hash;
3897
3898         if (vma->vm_flags & VM_SHARED) {
3899                 key[0] = (unsigned long) mapping;
3900                 key[1] = idx;
3901         } else {
3902                 key[0] = (unsigned long) mm;
3903                 key[1] = address >> huge_page_shift(h);
3904         }
3905
3906         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3907
3908         return hash & (num_fault_mutexes - 1);
3909 }
3910 #else
3911 /*
3912  * For uniprocesor systems we always use a single mutex, so just
3913  * return 0 and avoid the hashing overhead.
3914  */
3915 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3916                             struct vm_area_struct *vma,
3917                             struct address_space *mapping,
3918                             pgoff_t idx, unsigned long address)
3919 {
3920         return 0;
3921 }
3922 #endif
3923
3924 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3925                         unsigned long address, unsigned int flags)
3926 {
3927         pte_t *ptep, entry;
3928         spinlock_t *ptl;
3929         vm_fault_t ret;
3930         u32 hash;
3931         pgoff_t idx;
3932         struct page *page = NULL;
3933         struct page *pagecache_page = NULL;
3934         struct hstate *h = hstate_vma(vma);
3935         struct address_space *mapping;
3936         int need_wait_lock = 0;
3937         unsigned long haddr = address & huge_page_mask(h);
3938
3939         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3940         if (ptep) {
3941                 entry = huge_ptep_get(ptep);
3942                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3943                         migration_entry_wait_huge(vma, mm, ptep);
3944                         return 0;
3945                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3946                         return VM_FAULT_HWPOISON_LARGE |
3947                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3948         } else {
3949                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3950                 if (!ptep)
3951                         return VM_FAULT_OOM;
3952         }
3953
3954         mapping = vma->vm_file->f_mapping;
3955         idx = vma_hugecache_offset(h, vma, haddr);
3956
3957         /*
3958          * Serialize hugepage allocation and instantiation, so that we don't
3959          * get spurious allocation failures if two CPUs race to instantiate
3960          * the same page in the page cache.
3961          */
3962         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3963         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3964
3965         entry = huge_ptep_get(ptep);
3966         if (huge_pte_none(entry)) {
3967                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3968                 goto out_mutex;
3969         }
3970
3971         ret = 0;
3972
3973         /*
3974          * entry could be a migration/hwpoison entry at this point, so this
3975          * check prevents the kernel from going below assuming that we have
3976          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3977          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3978          * handle it.
3979          */
3980         if (!pte_present(entry))
3981                 goto out_mutex;
3982
3983         /*
3984          * If we are going to COW the mapping later, we examine the pending
3985          * reservations for this page now. This will ensure that any
3986          * allocations necessary to record that reservation occur outside the
3987          * spinlock. For private mappings, we also lookup the pagecache
3988          * page now as it is used to determine if a reservation has been
3989          * consumed.
3990          */
3991         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3992                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3993                         ret = VM_FAULT_OOM;
3994                         goto out_mutex;
3995                 }
3996                 /* Just decrements count, does not deallocate */
3997                 vma_end_reservation(h, vma, haddr);
3998
3999                 if (!(vma->vm_flags & VM_MAYSHARE))
4000                         pagecache_page = hugetlbfs_pagecache_page(h,
4001                                                                 vma, haddr);
4002         }
4003
4004         ptl = huge_pte_lock(h, mm, ptep);
4005
4006         /* Check for a racing update before calling hugetlb_cow */
4007         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4008                 goto out_ptl;
4009
4010         /*
4011          * hugetlb_cow() requires page locks of pte_page(entry) and
4012          * pagecache_page, so here we need take the former one
4013          * when page != pagecache_page or !pagecache_page.
4014          */
4015         page = pte_page(entry);
4016         if (page != pagecache_page)
4017                 if (!trylock_page(page)) {
4018                         need_wait_lock = 1;
4019                         goto out_ptl;
4020                 }
4021
4022         get_page(page);
4023
4024         if (flags & FAULT_FLAG_WRITE) {
4025                 if (!huge_pte_write(entry)) {
4026                         ret = hugetlb_cow(mm, vma, address, ptep,
4027                                           pagecache_page, ptl);
4028                         goto out_put_page;
4029                 }
4030                 entry = huge_pte_mkdirty(entry);
4031         }
4032         entry = pte_mkyoung(entry);
4033         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4034                                                 flags & FAULT_FLAG_WRITE))
4035                 update_mmu_cache(vma, haddr, ptep);
4036 out_put_page:
4037         if (page != pagecache_page)
4038                 unlock_page(page);
4039         put_page(page);
4040 out_ptl:
4041         spin_unlock(ptl);
4042
4043         if (pagecache_page) {
4044                 unlock_page(pagecache_page);
4045                 put_page(pagecache_page);
4046         }
4047 out_mutex:
4048         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4049         /*
4050          * Generally it's safe to hold refcount during waiting page lock. But
4051          * here we just wait to defer the next page fault to avoid busy loop and
4052          * the page is not used after unlocked before returning from the current
4053          * page fault. So we are safe from accessing freed page, even if we wait
4054          * here without taking refcount.
4055          */
4056         if (need_wait_lock)
4057                 wait_on_page_locked(page);
4058         return ret;
4059 }
4060
4061 /*
4062  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4063  * modifications for huge pages.
4064  */
4065 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4066                             pte_t *dst_pte,
4067                             struct vm_area_struct *dst_vma,
4068                             unsigned long dst_addr,
4069                             unsigned long src_addr,
4070                             struct page **pagep)
4071 {
4072         struct address_space *mapping;
4073         pgoff_t idx;
4074         unsigned long size;
4075         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4076         struct hstate *h = hstate_vma(dst_vma);
4077         pte_t _dst_pte;
4078         spinlock_t *ptl;
4079         int ret;
4080         struct page *page;
4081
4082         if (!*pagep) {
4083                 ret = -ENOMEM;
4084                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4085                 if (IS_ERR(page))
4086                         goto out;
4087
4088                 ret = copy_huge_page_from_user(page,
4089                                                 (const void __user *) src_addr,
4090                                                 pages_per_huge_page(h), false);
4091
4092                 /* fallback to copy_from_user outside mmap_sem */
4093                 if (unlikely(ret)) {
4094                         ret = -ENOENT;
4095                         *pagep = page;
4096                         /* don't free the page */
4097                         goto out;
4098                 }
4099         } else {
4100                 page = *pagep;
4101                 *pagep = NULL;
4102         }
4103
4104         /*
4105          * The memory barrier inside __SetPageUptodate makes sure that
4106          * preceding stores to the page contents become visible before
4107          * the set_pte_at() write.
4108          */
4109         __SetPageUptodate(page);
4110
4111         mapping = dst_vma->vm_file->f_mapping;
4112         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4113
4114         /*
4115          * If shared, add to page cache
4116          */
4117         if (vm_shared) {
4118                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4119                 ret = -EFAULT;
4120                 if (idx >= size)
4121                         goto out_release_nounlock;
4122
4123                 /*
4124                  * Serialization between remove_inode_hugepages() and
4125                  * huge_add_to_page_cache() below happens through the
4126                  * hugetlb_fault_mutex_table that here must be hold by
4127                  * the caller.
4128                  */
4129                 ret = huge_add_to_page_cache(page, mapping, idx);
4130                 if (ret)
4131                         goto out_release_nounlock;
4132         }
4133
4134         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4135         spin_lock(ptl);
4136
4137         /*
4138          * Recheck the i_size after holding PT lock to make sure not
4139          * to leave any page mapped (as page_mapped()) beyond the end
4140          * of the i_size (remove_inode_hugepages() is strict about
4141          * enforcing that). If we bail out here, we'll also leave a
4142          * page in the radix tree in the vm_shared case beyond the end
4143          * of the i_size, but remove_inode_hugepages() will take care
4144          * of it as soon as we drop the hugetlb_fault_mutex_table.
4145          */
4146         size = i_size_read(mapping->host) >> huge_page_shift(h);
4147         ret = -EFAULT;
4148         if (idx >= size)
4149                 goto out_release_unlock;
4150
4151         ret = -EEXIST;
4152         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4153                 goto out_release_unlock;
4154
4155         if (vm_shared) {
4156                 page_dup_rmap(page, true);
4157         } else {
4158                 ClearPagePrivate(page);
4159                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4160         }
4161
4162         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4163         if (dst_vma->vm_flags & VM_WRITE)
4164                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4165         _dst_pte = pte_mkyoung(_dst_pte);
4166
4167         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4168
4169         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4170                                         dst_vma->vm_flags & VM_WRITE);
4171         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4172
4173         /* No need to invalidate - it was non-present before */
4174         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4175
4176         spin_unlock(ptl);
4177         set_page_huge_active(page);
4178         if (vm_shared)
4179                 unlock_page(page);
4180         ret = 0;
4181 out:
4182         return ret;
4183 out_release_unlock:
4184         spin_unlock(ptl);
4185         if (vm_shared)
4186                 unlock_page(page);
4187 out_release_nounlock:
4188         put_page(page);
4189         goto out;
4190 }
4191
4192 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4193                          struct page **pages, struct vm_area_struct **vmas,
4194                          unsigned long *position, unsigned long *nr_pages,
4195                          long i, unsigned int flags, int *nonblocking)
4196 {
4197         unsigned long pfn_offset;
4198         unsigned long vaddr = *position;
4199         unsigned long remainder = *nr_pages;
4200         struct hstate *h = hstate_vma(vma);
4201         int err = -EFAULT;
4202
4203         while (vaddr < vma->vm_end && remainder) {
4204                 pte_t *pte;
4205                 spinlock_t *ptl = NULL;
4206                 int absent;
4207                 struct page *page;
4208
4209                 /*
4210                  * If we have a pending SIGKILL, don't keep faulting pages and
4211                  * potentially allocating memory.
4212                  */
4213                 if (fatal_signal_pending(current)) {
4214                         remainder = 0;
4215                         break;
4216                 }
4217
4218                 /*
4219                  * Some archs (sparc64, sh*) have multiple pte_ts to
4220                  * each hugepage.  We have to make sure we get the
4221                  * first, for the page indexing below to work.
4222                  *
4223                  * Note that page table lock is not held when pte is null.
4224                  */
4225                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4226                                       huge_page_size(h));
4227                 if (pte)
4228                         ptl = huge_pte_lock(h, mm, pte);
4229                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4230
4231                 /*
4232                  * When coredumping, it suits get_dump_page if we just return
4233                  * an error where there's an empty slot with no huge pagecache
4234                  * to back it.  This way, we avoid allocating a hugepage, and
4235                  * the sparse dumpfile avoids allocating disk blocks, but its
4236                  * huge holes still show up with zeroes where they need to be.
4237                  */
4238                 if (absent && (flags & FOLL_DUMP) &&
4239                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4240                         if (pte)
4241                                 spin_unlock(ptl);
4242                         remainder = 0;
4243                         break;
4244                 }
4245
4246                 /*
4247                  * We need call hugetlb_fault for both hugepages under migration
4248                  * (in which case hugetlb_fault waits for the migration,) and
4249                  * hwpoisoned hugepages (in which case we need to prevent the
4250                  * caller from accessing to them.) In order to do this, we use
4251                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4252                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4253                  * both cases, and because we can't follow correct pages
4254                  * directly from any kind of swap entries.
4255                  */
4256                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4257                     ((flags & FOLL_WRITE) &&
4258                       !huge_pte_write(huge_ptep_get(pte)))) {
4259                         vm_fault_t ret;
4260                         unsigned int fault_flags = 0;
4261
4262                         if (pte)
4263                                 spin_unlock(ptl);
4264                         if (flags & FOLL_WRITE)
4265                                 fault_flags |= FAULT_FLAG_WRITE;
4266                         if (nonblocking)
4267                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4268                         if (flags & FOLL_NOWAIT)
4269                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4270                                         FAULT_FLAG_RETRY_NOWAIT;
4271                         if (flags & FOLL_TRIED) {
4272                                 VM_WARN_ON_ONCE(fault_flags &
4273                                                 FAULT_FLAG_ALLOW_RETRY);
4274                                 fault_flags |= FAULT_FLAG_TRIED;
4275                         }
4276                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4277                         if (ret & VM_FAULT_ERROR) {
4278                                 err = vm_fault_to_errno(ret, flags);
4279                                 remainder = 0;
4280                                 break;
4281                         }
4282                         if (ret & VM_FAULT_RETRY) {
4283                                 if (nonblocking &&
4284                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4285                                         *nonblocking = 0;
4286                                 *nr_pages = 0;
4287                                 /*
4288                                  * VM_FAULT_RETRY must not return an
4289                                  * error, it will return zero
4290                                  * instead.
4291                                  *
4292                                  * No need to update "position" as the
4293                                  * caller will not check it after
4294                                  * *nr_pages is set to 0.
4295                                  */
4296                                 return i;
4297                         }
4298                         continue;
4299                 }
4300
4301                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4302                 page = pte_page(huge_ptep_get(pte));
4303
4304                 /*
4305                  * Instead of doing 'try_get_page()' below in the same_page
4306                  * loop, just check the count once here.
4307                  */
4308                 if (unlikely(page_count(page) <= 0)) {
4309                         if (pages) {
4310                                 spin_unlock(ptl);
4311                                 remainder = 0;
4312                                 err = -ENOMEM;
4313                                 break;
4314                         }
4315                 }
4316 same_page:
4317                 if (pages) {
4318                         pages[i] = mem_map_offset(page, pfn_offset);
4319                         get_page(pages[i]);
4320                 }
4321
4322                 if (vmas)
4323                         vmas[i] = vma;
4324
4325                 vaddr += PAGE_SIZE;
4326                 ++pfn_offset;
4327                 --remainder;
4328                 ++i;
4329                 if (vaddr < vma->vm_end && remainder &&
4330                                 pfn_offset < pages_per_huge_page(h)) {
4331                         /*
4332                          * We use pfn_offset to avoid touching the pageframes
4333                          * of this compound page.
4334                          */
4335                         goto same_page;
4336                 }
4337                 spin_unlock(ptl);
4338         }
4339         *nr_pages = remainder;
4340         /*
4341          * setting position is actually required only if remainder is
4342          * not zero but it's faster not to add a "if (remainder)"
4343          * branch.
4344          */
4345         *position = vaddr;
4346
4347         return i ? i : err;
4348 }
4349
4350 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4351 /*
4352  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4353  * implement this.
4354  */
4355 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4356 #endif
4357
4358 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4359                 unsigned long address, unsigned long end, pgprot_t newprot)
4360 {
4361         struct mm_struct *mm = vma->vm_mm;
4362         unsigned long start = address;
4363         pte_t *ptep;
4364         pte_t pte;
4365         struct hstate *h = hstate_vma(vma);
4366         unsigned long pages = 0;
4367         bool shared_pmd = false;
4368         struct mmu_notifier_range range;
4369
4370         /*
4371          * In the case of shared PMDs, the area to flush could be beyond
4372          * start/end.  Set range.start/range.end to cover the maximum possible
4373          * range if PMD sharing is possible.
4374          */
4375         mmu_notifier_range_init(&range, mm, start, end);
4376         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4377
4378         BUG_ON(address >= end);
4379         flush_cache_range(vma, range.start, range.end);
4380
4381         mmu_notifier_invalidate_range_start(&range);
4382         i_mmap_lock_write(vma->vm_file->f_mapping);
4383         for (; address < end; address += huge_page_size(h)) {
4384                 spinlock_t *ptl;
4385                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4386                 if (!ptep)
4387                         continue;
4388                 ptl = huge_pte_lock(h, mm, ptep);
4389                 if (huge_pmd_unshare(mm, &address, ptep)) {
4390                         pages++;
4391                         spin_unlock(ptl);
4392                         shared_pmd = true;
4393                         continue;
4394                 }
4395                 pte = huge_ptep_get(ptep);
4396                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4397                         spin_unlock(ptl);
4398                         continue;
4399                 }
4400                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4401                         swp_entry_t entry = pte_to_swp_entry(pte);
4402
4403                         if (is_write_migration_entry(entry)) {
4404                                 pte_t newpte;
4405
4406                                 make_migration_entry_read(&entry);
4407                                 newpte = swp_entry_to_pte(entry);
4408                                 set_huge_swap_pte_at(mm, address, ptep,
4409                                                      newpte, huge_page_size(h));
4410                                 pages++;
4411                         }
4412                         spin_unlock(ptl);
4413                         continue;
4414                 }
4415                 if (!huge_pte_none(pte)) {
4416                         pte_t old_pte;
4417
4418                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4419                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4420                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4421                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4422                         pages++;
4423                 }
4424                 spin_unlock(ptl);
4425         }
4426         /*
4427          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4428          * may have cleared our pud entry and done put_page on the page table:
4429          * once we release i_mmap_rwsem, another task can do the final put_page
4430          * and that page table be reused and filled with junk.  If we actually
4431          * did unshare a page of pmds, flush the range corresponding to the pud.
4432          */
4433         if (shared_pmd)
4434                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4435         else
4436                 flush_hugetlb_tlb_range(vma, start, end);
4437         /*
4438          * No need to call mmu_notifier_invalidate_range() we are downgrading
4439          * page table protection not changing it to point to a new page.
4440          *
4441          * See Documentation/vm/mmu_notifier.rst
4442          */
4443         i_mmap_unlock_write(vma->vm_file->f_mapping);
4444         mmu_notifier_invalidate_range_end(&range);
4445
4446         return pages << h->order;
4447 }
4448
4449 int hugetlb_reserve_pages(struct inode *inode,
4450                                         long from, long to,
4451                                         struct vm_area_struct *vma,
4452                                         vm_flags_t vm_flags)
4453 {
4454         long ret, chg;
4455         struct hstate *h = hstate_inode(inode);
4456         struct hugepage_subpool *spool = subpool_inode(inode);
4457         struct resv_map *resv_map;
4458         long gbl_reserve;
4459
4460         /* This should never happen */
4461         if (from > to) {
4462                 VM_WARN(1, "%s called with a negative range\n", __func__);
4463                 return -EINVAL;
4464         }
4465
4466         /*
4467          * Only apply hugepage reservation if asked. At fault time, an
4468          * attempt will be made for VM_NORESERVE to allocate a page
4469          * without using reserves
4470          */
4471         if (vm_flags & VM_NORESERVE)
4472                 return 0;
4473
4474         /*
4475          * Shared mappings base their reservation on the number of pages that
4476          * are already allocated on behalf of the file. Private mappings need
4477          * to reserve the full area even if read-only as mprotect() may be
4478          * called to make the mapping read-write. Assume !vma is a shm mapping
4479          */
4480         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4481                 resv_map = inode_resv_map(inode);
4482
4483                 chg = region_chg(resv_map, from, to);
4484
4485         } else {
4486                 resv_map = resv_map_alloc();
4487                 if (!resv_map)
4488                         return -ENOMEM;
4489
4490                 chg = to - from;
4491
4492                 set_vma_resv_map(vma, resv_map);
4493                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4494         }
4495
4496         if (chg < 0) {
4497                 ret = chg;
4498                 goto out_err;
4499         }
4500
4501         /*
4502          * There must be enough pages in the subpool for the mapping. If
4503          * the subpool has a minimum size, there may be some global
4504          * reservations already in place (gbl_reserve).
4505          */
4506         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4507         if (gbl_reserve < 0) {
4508                 ret = -ENOSPC;
4509                 goto out_err;
4510         }
4511
4512         /*
4513          * Check enough hugepages are available for the reservation.
4514          * Hand the pages back to the subpool if there are not
4515          */
4516         ret = hugetlb_acct_memory(h, gbl_reserve);
4517         if (ret < 0) {
4518                 /* put back original number of pages, chg */
4519                 (void)hugepage_subpool_put_pages(spool, chg);
4520                 goto out_err;
4521         }
4522
4523         /*
4524          * Account for the reservations made. Shared mappings record regions
4525          * that have reservations as they are shared by multiple VMAs.
4526          * When the last VMA disappears, the region map says how much
4527          * the reservation was and the page cache tells how much of
4528          * the reservation was consumed. Private mappings are per-VMA and
4529          * only the consumed reservations are tracked. When the VMA
4530          * disappears, the original reservation is the VMA size and the
4531          * consumed reservations are stored in the map. Hence, nothing
4532          * else has to be done for private mappings here
4533          */
4534         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4535                 long add = region_add(resv_map, from, to);
4536
4537                 if (unlikely(chg > add)) {
4538                         /*
4539                          * pages in this range were added to the reserve
4540                          * map between region_chg and region_add.  This
4541                          * indicates a race with alloc_huge_page.  Adjust
4542                          * the subpool and reserve counts modified above
4543                          * based on the difference.
4544                          */
4545                         long rsv_adjust;
4546
4547                         rsv_adjust = hugepage_subpool_put_pages(spool,
4548                                                                 chg - add);
4549                         hugetlb_acct_memory(h, -rsv_adjust);
4550                 }
4551         }
4552         return 0;
4553 out_err:
4554         if (!vma || vma->vm_flags & VM_MAYSHARE)
4555                 /* Don't call region_abort if region_chg failed */
4556                 if (chg >= 0)
4557                         region_abort(resv_map, from, to);
4558         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4559                 kref_put(&resv_map->refs, resv_map_release);
4560         return ret;
4561 }
4562
4563 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4564                                                                 long freed)
4565 {
4566         struct hstate *h = hstate_inode(inode);
4567         struct resv_map *resv_map = inode_resv_map(inode);
4568         long chg = 0;
4569         struct hugepage_subpool *spool = subpool_inode(inode);
4570         long gbl_reserve;
4571
4572         if (resv_map) {
4573                 chg = region_del(resv_map, start, end);
4574                 /*
4575                  * region_del() can fail in the rare case where a region
4576                  * must be split and another region descriptor can not be
4577                  * allocated.  If end == LONG_MAX, it will not fail.
4578                  */
4579                 if (chg < 0)
4580                         return chg;
4581         }
4582
4583         spin_lock(&inode->i_lock);
4584         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4585         spin_unlock(&inode->i_lock);
4586
4587         /*
4588          * If the subpool has a minimum size, the number of global
4589          * reservations to be released may be adjusted.
4590          */
4591         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4592         hugetlb_acct_memory(h, -gbl_reserve);
4593
4594         return 0;
4595 }
4596
4597 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4598 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4599                                 struct vm_area_struct *vma,
4600                                 unsigned long addr, pgoff_t idx)
4601 {
4602         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4603                                 svma->vm_start;
4604         unsigned long sbase = saddr & PUD_MASK;
4605         unsigned long s_end = sbase + PUD_SIZE;
4606
4607         /* Allow segments to share if only one is marked locked */
4608         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4609         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4610
4611         /*
4612          * match the virtual addresses, permission and the alignment of the
4613          * page table page.
4614          */
4615         if (pmd_index(addr) != pmd_index(saddr) ||
4616             vm_flags != svm_flags ||
4617             sbase < svma->vm_start || svma->vm_end < s_end)
4618                 return 0;
4619
4620         return saddr;
4621 }
4622
4623 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4624 {
4625         unsigned long base = addr & PUD_MASK;
4626         unsigned long end = base + PUD_SIZE;
4627
4628         /*
4629          * check on proper vm_flags and page table alignment
4630          */
4631         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4632                 return true;
4633         return false;
4634 }
4635
4636 /*
4637  * Determine if start,end range within vma could be mapped by shared pmd.
4638  * If yes, adjust start and end to cover range associated with possible
4639  * shared pmd mappings.
4640  */
4641 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4642                                 unsigned long *start, unsigned long *end)
4643 {
4644         unsigned long check_addr = *start;
4645
4646         if (!(vma->vm_flags & VM_MAYSHARE))
4647                 return;
4648
4649         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4650                 unsigned long a_start = check_addr & PUD_MASK;
4651                 unsigned long a_end = a_start + PUD_SIZE;
4652
4653                 /*
4654                  * If sharing is possible, adjust start/end if necessary.
4655                  */
4656                 if (range_in_vma(vma, a_start, a_end)) {
4657                         if (a_start < *start)
4658                                 *start = a_start;
4659                         if (a_end > *end)
4660                                 *end = a_end;
4661                 }
4662         }
4663 }
4664
4665 /*
4666  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4667  * and returns the corresponding pte. While this is not necessary for the
4668  * !shared pmd case because we can allocate the pmd later as well, it makes the
4669  * code much cleaner. pmd allocation is essential for the shared case because
4670  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4671  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4672  * bad pmd for sharing.
4673  */
4674 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4675 {
4676         struct vm_area_struct *vma = find_vma(mm, addr);
4677         struct address_space *mapping = vma->vm_file->f_mapping;
4678         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4679                         vma->vm_pgoff;
4680         struct vm_area_struct *svma;
4681         unsigned long saddr;
4682         pte_t *spte = NULL;
4683         pte_t *pte;
4684         spinlock_t *ptl;
4685
4686         if (!vma_shareable(vma, addr))
4687                 return (pte_t *)pmd_alloc(mm, pud, addr);
4688
4689         i_mmap_lock_write(mapping);
4690         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4691                 if (svma == vma)
4692                         continue;
4693
4694                 saddr = page_table_shareable(svma, vma, addr, idx);
4695                 if (saddr) {
4696                         spte = huge_pte_offset(svma->vm_mm, saddr,
4697                                                vma_mmu_pagesize(svma));
4698                         if (spte) {
4699                                 get_page(virt_to_page(spte));
4700                                 break;
4701                         }
4702                 }
4703         }
4704
4705         if (!spte)
4706                 goto out;
4707
4708         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4709         if (pud_none(*pud)) {
4710                 pud_populate(mm, pud,
4711                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4712                 mm_inc_nr_pmds(mm);
4713         } else {
4714                 put_page(virt_to_page(spte));
4715         }
4716         spin_unlock(ptl);
4717 out:
4718         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4719         i_mmap_unlock_write(mapping);
4720         return pte;
4721 }
4722
4723 /*
4724  * unmap huge page backed by shared pte.
4725  *
4726  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4727  * indicated by page_count > 1, unmap is achieved by clearing pud and
4728  * decrementing the ref count. If count == 1, the pte page is not shared.
4729  *
4730  * called with page table lock held.
4731  *
4732  * returns: 1 successfully unmapped a shared pte page
4733  *          0 the underlying pte page is not shared, or it is the last user
4734  */
4735 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4736 {
4737         pgd_t *pgd = pgd_offset(mm, *addr);
4738         p4d_t *p4d = p4d_offset(pgd, *addr);
4739         pud_t *pud = pud_offset(p4d, *addr);
4740
4741         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4742         if (page_count(virt_to_page(ptep)) == 1)
4743                 return 0;
4744
4745         pud_clear(pud);
4746         put_page(virt_to_page(ptep));
4747         mm_dec_nr_pmds(mm);
4748         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4749         return 1;
4750 }
4751 #define want_pmd_share()        (1)
4752 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4753 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4754 {
4755         return NULL;
4756 }
4757
4758 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4759 {
4760         return 0;
4761 }
4762
4763 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4764                                 unsigned long *start, unsigned long *end)
4765 {
4766 }
4767 #define want_pmd_share()        (0)
4768 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4769
4770 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4771 pte_t *huge_pte_alloc(struct mm_struct *mm,
4772                         unsigned long addr, unsigned long sz)
4773 {
4774         pgd_t *pgd;
4775         p4d_t *p4d;
4776         pud_t *pud;
4777         pte_t *pte = NULL;
4778
4779         pgd = pgd_offset(mm, addr);
4780         p4d = p4d_alloc(mm, pgd, addr);
4781         if (!p4d)
4782                 return NULL;
4783         pud = pud_alloc(mm, p4d, addr);
4784         if (pud) {
4785                 if (sz == PUD_SIZE) {
4786                         pte = (pte_t *)pud;
4787                 } else {
4788                         BUG_ON(sz != PMD_SIZE);
4789                         if (want_pmd_share() && pud_none(*pud))
4790                                 pte = huge_pmd_share(mm, addr, pud);
4791                         else
4792                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4793                 }
4794         }
4795         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4796
4797         return pte;
4798 }
4799
4800 /*
4801  * huge_pte_offset() - Walk the page table to resolve the hugepage
4802  * entry at address @addr
4803  *
4804  * Return: Pointer to page table or swap entry (PUD or PMD) for
4805  * address @addr, or NULL if a p*d_none() entry is encountered and the
4806  * size @sz doesn't match the hugepage size at this level of the page
4807  * table.
4808  */
4809 pte_t *huge_pte_offset(struct mm_struct *mm,
4810                        unsigned long addr, unsigned long sz)
4811 {
4812         pgd_t *pgd;
4813         p4d_t *p4d;
4814         pud_t *pud;
4815         pmd_t *pmd;
4816
4817         pgd = pgd_offset(mm, addr);
4818         if (!pgd_present(*pgd))
4819                 return NULL;
4820         p4d = p4d_offset(pgd, addr);
4821         if (!p4d_present(*p4d))
4822                 return NULL;
4823
4824         pud = pud_offset(p4d, addr);
4825         if (sz != PUD_SIZE && pud_none(*pud))
4826                 return NULL;
4827         /* hugepage or swap? */
4828         if (pud_huge(*pud) || !pud_present(*pud))
4829                 return (pte_t *)pud;
4830
4831         pmd = pmd_offset(pud, addr);
4832         if (sz != PMD_SIZE && pmd_none(*pmd))
4833                 return NULL;
4834         /* hugepage or swap? */
4835         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4836                 return (pte_t *)pmd;
4837
4838         return NULL;
4839 }
4840
4841 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4842
4843 /*
4844  * These functions are overwritable if your architecture needs its own
4845  * behavior.
4846  */
4847 struct page * __weak
4848 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4849                               int write)
4850 {
4851         return ERR_PTR(-EINVAL);
4852 }
4853
4854 struct page * __weak
4855 follow_huge_pd(struct vm_area_struct *vma,
4856                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4857 {
4858         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4859         return NULL;
4860 }
4861
4862 struct page * __weak
4863 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4864                 pmd_t *pmd, int flags)
4865 {
4866         struct page *page = NULL;
4867         spinlock_t *ptl;
4868         pte_t pte;
4869 retry:
4870         ptl = pmd_lockptr(mm, pmd);
4871         spin_lock(ptl);
4872         /*
4873          * make sure that the address range covered by this pmd is not
4874          * unmapped from other threads.
4875          */
4876         if (!pmd_huge(*pmd))
4877                 goto out;
4878         pte = huge_ptep_get((pte_t *)pmd);
4879         if (pte_present(pte)) {
4880                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4881                 if (flags & FOLL_GET)
4882                         get_page(page);
4883         } else {
4884                 if (is_hugetlb_entry_migration(pte)) {
4885                         spin_unlock(ptl);
4886                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4887                         goto retry;
4888                 }
4889                 /*
4890                  * hwpoisoned entry is treated as no_page_table in
4891                  * follow_page_mask().
4892                  */
4893         }
4894 out:
4895         spin_unlock(ptl);
4896         return page;
4897 }
4898
4899 struct page * __weak
4900 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4901                 pud_t *pud, int flags)
4902 {
4903         if (flags & FOLL_GET)
4904                 return NULL;
4905
4906         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4907 }
4908
4909 struct page * __weak
4910 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4911 {
4912         if (flags & FOLL_GET)
4913                 return NULL;
4914
4915         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4916 }
4917
4918 bool isolate_huge_page(struct page *page, struct list_head *list)
4919 {
4920         bool ret = true;
4921
4922         VM_BUG_ON_PAGE(!PageHead(page), page);
4923         spin_lock(&hugetlb_lock);
4924         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4925                 ret = false;
4926                 goto unlock;
4927         }
4928         clear_page_huge_active(page);
4929         list_move_tail(&page->lru, list);
4930 unlock:
4931         spin_unlock(&hugetlb_lock);
4932         return ret;
4933 }
4934
4935 void putback_active_hugepage(struct page *page)
4936 {
4937         VM_BUG_ON_PAGE(!PageHead(page), page);
4938         spin_lock(&hugetlb_lock);
4939         set_page_huge_active(page);
4940         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4941         spin_unlock(&hugetlb_lock);
4942         put_page(page);
4943 }
4944
4945 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4946 {
4947         struct hstate *h = page_hstate(oldpage);
4948
4949         hugetlb_cgroup_migrate(oldpage, newpage);
4950         set_page_owner_migrate_reason(newpage, reason);
4951
4952         /*
4953          * transfer temporary state of the new huge page. This is
4954          * reverse to other transitions because the newpage is going to
4955          * be final while the old one will be freed so it takes over
4956          * the temporary status.
4957          *
4958          * Also note that we have to transfer the per-node surplus state
4959          * here as well otherwise the global surplus count will not match
4960          * the per-node's.
4961          */
4962         if (PageHugeTemporary(newpage)) {
4963                 int old_nid = page_to_nid(oldpage);
4964                 int new_nid = page_to_nid(newpage);
4965
4966                 SetPageHugeTemporary(oldpage);
4967                 ClearPageHugeTemporary(newpage);
4968
4969                 spin_lock(&hugetlb_lock);
4970                 if (h->surplus_huge_pages_node[old_nid]) {
4971                         h->surplus_huge_pages_node[old_nid]--;
4972                         h->surplus_huge_pages_node[new_nid]++;
4973                 }
4974                 spin_unlock(&hugetlb_lock);
4975         }
4976 }