2f901a6e13d23f3e54795084d9a8534068b661c6
[linux-2.6-block.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/memblock.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/mmdebug.h>
22 #include <linux/sched/signal.h>
23 #include <linux/rmap.h>
24 #include <linux/string_helpers.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/jhash.h>
28 #include <linux/numa.h>
29
30 #include <asm/page.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlb.h>
33
34 #include <linux/io.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/node.h>
38 #include <linux/userfaultfd_k.h>
39 #include <linux/page_owner.h>
40 #include "internal.h"
41
42 int hugetlb_max_hstate __read_mostly;
43 unsigned int default_hstate_idx;
44 struct hstate hstates[HUGE_MAX_HSTATE];
45 /*
46  * Minimum page order among possible hugepage sizes, set to a proper value
47  * at boot time.
48  */
49 static unsigned int minimum_order __read_mostly = UINT_MAX;
50
51 __initdata LIST_HEAD(huge_boot_pages);
52
53 /* for command line parsing */
54 static struct hstate * __initdata parsed_hstate;
55 static unsigned long __initdata default_hstate_max_huge_pages;
56 static unsigned long __initdata default_hstate_size;
57 static bool __initdata parsed_valid_hugepagesz = true;
58
59 /*
60  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61  * free_huge_pages, and surplus_huge_pages.
62  */
63 DEFINE_SPINLOCK(hugetlb_lock);
64
65 /*
66  * Serializes faults on the same logical page.  This is used to
67  * prevent spurious OOMs when the hugepage pool is fully utilized.
68  */
69 static int num_fault_mutexes;
70 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
71
72 /* Forward declaration */
73 static int hugetlb_acct_memory(struct hstate *h, long delta);
74
75 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76 {
77         bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79         spin_unlock(&spool->lock);
80
81         /* If no pages are used, and no other handles to the subpool
82          * remain, give up any reservations mased on minimum size and
83          * free the subpool */
84         if (free) {
85                 if (spool->min_hpages != -1)
86                         hugetlb_acct_memory(spool->hstate,
87                                                 -spool->min_hpages);
88                 kfree(spool);
89         }
90 }
91
92 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93                                                 long min_hpages)
94 {
95         struct hugepage_subpool *spool;
96
97         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
98         if (!spool)
99                 return NULL;
100
101         spin_lock_init(&spool->lock);
102         spool->count = 1;
103         spool->max_hpages = max_hpages;
104         spool->hstate = h;
105         spool->min_hpages = min_hpages;
106
107         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108                 kfree(spool);
109                 return NULL;
110         }
111         spool->rsv_hpages = min_hpages;
112
113         return spool;
114 }
115
116 void hugepage_put_subpool(struct hugepage_subpool *spool)
117 {
118         spin_lock(&spool->lock);
119         BUG_ON(!spool->count);
120         spool->count--;
121         unlock_or_release_subpool(spool);
122 }
123
124 /*
125  * Subpool accounting for allocating and reserving pages.
126  * Return -ENOMEM if there are not enough resources to satisfy the
127  * the request.  Otherwise, return the number of pages by which the
128  * global pools must be adjusted (upward).  The returned value may
129  * only be different than the passed value (delta) in the case where
130  * a subpool minimum size must be manitained.
131  */
132 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
133                                       long delta)
134 {
135         long ret = delta;
136
137         if (!spool)
138                 return ret;
139
140         spin_lock(&spool->lock);
141
142         if (spool->max_hpages != -1) {          /* maximum size accounting */
143                 if ((spool->used_hpages + delta) <= spool->max_hpages)
144                         spool->used_hpages += delta;
145                 else {
146                         ret = -ENOMEM;
147                         goto unlock_ret;
148                 }
149         }
150
151         /* minimum size accounting */
152         if (spool->min_hpages != -1 && spool->rsv_hpages) {
153                 if (delta > spool->rsv_hpages) {
154                         /*
155                          * Asking for more reserves than those already taken on
156                          * behalf of subpool.  Return difference.
157                          */
158                         ret = delta - spool->rsv_hpages;
159                         spool->rsv_hpages = 0;
160                 } else {
161                         ret = 0;        /* reserves already accounted for */
162                         spool->rsv_hpages -= delta;
163                 }
164         }
165
166 unlock_ret:
167         spin_unlock(&spool->lock);
168         return ret;
169 }
170
171 /*
172  * Subpool accounting for freeing and unreserving pages.
173  * Return the number of global page reservations that must be dropped.
174  * The return value may only be different than the passed value (delta)
175  * in the case where a subpool minimum size must be maintained.
176  */
177 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
178                                        long delta)
179 {
180         long ret = delta;
181
182         if (!spool)
183                 return delta;
184
185         spin_lock(&spool->lock);
186
187         if (spool->max_hpages != -1)            /* maximum size accounting */
188                 spool->used_hpages -= delta;
189
190          /* minimum size accounting */
191         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
192                 if (spool->rsv_hpages + delta <= spool->min_hpages)
193                         ret = 0;
194                 else
195                         ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197                 spool->rsv_hpages += delta;
198                 if (spool->rsv_hpages > spool->min_hpages)
199                         spool->rsv_hpages = spool->min_hpages;
200         }
201
202         /*
203          * If hugetlbfs_put_super couldn't free spool due to an outstanding
204          * quota reference, free it now.
205          */
206         unlock_or_release_subpool(spool);
207
208         return ret;
209 }
210
211 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212 {
213         return HUGETLBFS_SB(inode->i_sb)->spool;
214 }
215
216 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217 {
218         return subpool_inode(file_inode(vma->vm_file));
219 }
220
221 /*
222  * Region tracking -- allows tracking of reservations and instantiated pages
223  *                    across the pages in a mapping.
224  *
225  * The region data structures are embedded into a resv_map and protected
226  * by a resv_map's lock.  The set of regions within the resv_map represent
227  * reservations for huge pages, or huge pages that have already been
228  * instantiated within the map.  The from and to elements are huge page
229  * indicies into the associated mapping.  from indicates the starting index
230  * of the region.  to represents the first index past the end of  the region.
231  *
232  * For example, a file region structure with from == 0 and to == 4 represents
233  * four huge pages in a mapping.  It is important to note that the to element
234  * represents the first element past the end of the region. This is used in
235  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236  *
237  * Interval notation of the form [from, to) will be used to indicate that
238  * the endpoint from is inclusive and to is exclusive.
239  */
240 struct file_region {
241         struct list_head link;
242         long from;
243         long to;
244 };
245
246 /*
247  * Add the huge page range represented by [f, t) to the reserve
248  * map.  In the normal case, existing regions will be expanded
249  * to accommodate the specified range.  Sufficient regions should
250  * exist for expansion due to the previous call to region_chg
251  * with the same range.  However, it is possible that region_del
252  * could have been called after region_chg and modifed the map
253  * in such a way that no region exists to be expanded.  In this
254  * case, pull a region descriptor from the cache associated with
255  * the map and use that for the new range.
256  *
257  * Return the number of new huge pages added to the map.  This
258  * number is greater than or equal to zero.
259  */
260 static long region_add(struct resv_map *resv, long f, long t)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *nrg, *trg;
264         long add = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (f <= rg->to)
270                         break;
271
272         /*
273          * If no region exists which can be expanded to include the
274          * specified range, the list must have been modified by an
275          * interleving call to region_del().  Pull a region descriptor
276          * from the cache and use it for this range.
277          */
278         if (&rg->link == head || t < rg->from) {
279                 VM_BUG_ON(resv->region_cache_count <= 0);
280
281                 resv->region_cache_count--;
282                 nrg = list_first_entry(&resv->region_cache, struct file_region,
283                                         link);
284                 list_del(&nrg->link);
285
286                 nrg->from = f;
287                 nrg->to = t;
288                 list_add(&nrg->link, rg->link.prev);
289
290                 add += t - f;
291                 goto out_locked;
292         }
293
294         /* Round our left edge to the current segment if it encloses us. */
295         if (f > rg->from)
296                 f = rg->from;
297
298         /* Check for and consume any regions we now overlap with. */
299         nrg = rg;
300         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301                 if (&rg->link == head)
302                         break;
303                 if (rg->from > t)
304                         break;
305
306                 /* If this area reaches higher then extend our area to
307                  * include it completely.  If this is not the first area
308                  * which we intend to reuse, free it. */
309                 if (rg->to > t)
310                         t = rg->to;
311                 if (rg != nrg) {
312                         /* Decrement return value by the deleted range.
313                          * Another range will span this area so that by
314                          * end of routine add will be >= zero
315                          */
316                         add -= (rg->to - rg->from);
317                         list_del(&rg->link);
318                         kfree(rg);
319                 }
320         }
321
322         add += (nrg->from - f);         /* Added to beginning of region */
323         nrg->from = f;
324         add += t - nrg->to;             /* Added to end of region */
325         nrg->to = t;
326
327 out_locked:
328         resv->adds_in_progress--;
329         spin_unlock(&resv->lock);
330         VM_BUG_ON(add < 0);
331         return add;
332 }
333
334 /*
335  * Examine the existing reserve map and determine how many
336  * huge pages in the specified range [f, t) are NOT currently
337  * represented.  This routine is called before a subsequent
338  * call to region_add that will actually modify the reserve
339  * map to add the specified range [f, t).  region_chg does
340  * not change the number of huge pages represented by the
341  * map.  However, if the existing regions in the map can not
342  * be expanded to represent the new range, a new file_region
343  * structure is added to the map as a placeholder.  This is
344  * so that the subsequent region_add call will have all the
345  * regions it needs and will not fail.
346  *
347  * Upon entry, region_chg will also examine the cache of region descriptors
348  * associated with the map.  If there are not enough descriptors cached, one
349  * will be allocated for the in progress add operation.
350  *
351  * Returns the number of huge pages that need to be added to the existing
352  * reservation map for the range [f, t).  This number is greater or equal to
353  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
354  * is needed and can not be allocated.
355  */
356 static long region_chg(struct resv_map *resv, long f, long t)
357 {
358         struct list_head *head = &resv->regions;
359         struct file_region *rg, *nrg = NULL;
360         long chg = 0;
361
362 retry:
363         spin_lock(&resv->lock);
364 retry_locked:
365         resv->adds_in_progress++;
366
367         /*
368          * Check for sufficient descriptors in the cache to accommodate
369          * the number of in progress add operations.
370          */
371         if (resv->adds_in_progress > resv->region_cache_count) {
372                 struct file_region *trg;
373
374                 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375                 /* Must drop lock to allocate a new descriptor. */
376                 resv->adds_in_progress--;
377                 spin_unlock(&resv->lock);
378
379                 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
380                 if (!trg) {
381                         kfree(nrg);
382                         return -ENOMEM;
383                 }
384
385                 spin_lock(&resv->lock);
386                 list_add(&trg->link, &resv->region_cache);
387                 resv->region_cache_count++;
388                 goto retry_locked;
389         }
390
391         /* Locate the region we are before or in. */
392         list_for_each_entry(rg, head, link)
393                 if (f <= rg->to)
394                         break;
395
396         /* If we are below the current region then a new region is required.
397          * Subtle, allocate a new region at the position but make it zero
398          * size such that we can guarantee to record the reservation. */
399         if (&rg->link == head || t < rg->from) {
400                 if (!nrg) {
401                         resv->adds_in_progress--;
402                         spin_unlock(&resv->lock);
403                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404                         if (!nrg)
405                                 return -ENOMEM;
406
407                         nrg->from = f;
408                         nrg->to   = f;
409                         INIT_LIST_HEAD(&nrg->link);
410                         goto retry;
411                 }
412
413                 list_add(&nrg->link, rg->link.prev);
414                 chg = t - f;
415                 goto out_nrg;
416         }
417
418         /* Round our left edge to the current segment if it encloses us. */
419         if (f > rg->from)
420                 f = rg->from;
421         chg = t - f;
422
423         /* Check for and consume any regions we now overlap with. */
424         list_for_each_entry(rg, rg->link.prev, link) {
425                 if (&rg->link == head)
426                         break;
427                 if (rg->from > t)
428                         goto out;
429
430                 /* We overlap with this area, if it extends further than
431                  * us then we must extend ourselves.  Account for its
432                  * existing reservation. */
433                 if (rg->to > t) {
434                         chg += rg->to - t;
435                         t = rg->to;
436                 }
437                 chg -= rg->to - rg->from;
438         }
439
440 out:
441         spin_unlock(&resv->lock);
442         /*  We already know we raced and no longer need the new region */
443         kfree(nrg);
444         return chg;
445 out_nrg:
446         spin_unlock(&resv->lock);
447         return chg;
448 }
449
450 /*
451  * Abort the in progress add operation.  The adds_in_progress field
452  * of the resv_map keeps track of the operations in progress between
453  * calls to region_chg and region_add.  Operations are sometimes
454  * aborted after the call to region_chg.  In such cases, region_abort
455  * is called to decrement the adds_in_progress counter.
456  *
457  * NOTE: The range arguments [f, t) are not needed or used in this
458  * routine.  They are kept to make reading the calling code easier as
459  * arguments will match the associated region_chg call.
460  */
461 static void region_abort(struct resv_map *resv, long f, long t)
462 {
463         spin_lock(&resv->lock);
464         VM_BUG_ON(!resv->region_cache_count);
465         resv->adds_in_progress--;
466         spin_unlock(&resv->lock);
467 }
468
469 /*
470  * Delete the specified range [f, t) from the reserve map.  If the
471  * t parameter is LONG_MAX, this indicates that ALL regions after f
472  * should be deleted.  Locate the regions which intersect [f, t)
473  * and either trim, delete or split the existing regions.
474  *
475  * Returns the number of huge pages deleted from the reserve map.
476  * In the normal case, the return value is zero or more.  In the
477  * case where a region must be split, a new region descriptor must
478  * be allocated.  If the allocation fails, -ENOMEM will be returned.
479  * NOTE: If the parameter t == LONG_MAX, then we will never split
480  * a region and possibly return -ENOMEM.  Callers specifying
481  * t == LONG_MAX do not need to check for -ENOMEM error.
482  */
483 static long region_del(struct resv_map *resv, long f, long t)
484 {
485         struct list_head *head = &resv->regions;
486         struct file_region *rg, *trg;
487         struct file_region *nrg = NULL;
488         long del = 0;
489
490 retry:
491         spin_lock(&resv->lock);
492         list_for_each_entry_safe(rg, trg, head, link) {
493                 /*
494                  * Skip regions before the range to be deleted.  file_region
495                  * ranges are normally of the form [from, to).  However, there
496                  * may be a "placeholder" entry in the map which is of the form
497                  * (from, to) with from == to.  Check for placeholder entries
498                  * at the beginning of the range to be deleted.
499                  */
500                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
501                         continue;
502
503                 if (rg->from >= t)
504                         break;
505
506                 if (f > rg->from && t < rg->to) { /* Must split region */
507                         /*
508                          * Check for an entry in the cache before dropping
509                          * lock and attempting allocation.
510                          */
511                         if (!nrg &&
512                             resv->region_cache_count > resv->adds_in_progress) {
513                                 nrg = list_first_entry(&resv->region_cache,
514                                                         struct file_region,
515                                                         link);
516                                 list_del(&nrg->link);
517                                 resv->region_cache_count--;
518                         }
519
520                         if (!nrg) {
521                                 spin_unlock(&resv->lock);
522                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523                                 if (!nrg)
524                                         return -ENOMEM;
525                                 goto retry;
526                         }
527
528                         del += t - f;
529
530                         /* New entry for end of split region */
531                         nrg->from = t;
532                         nrg->to = rg->to;
533                         INIT_LIST_HEAD(&nrg->link);
534
535                         /* Original entry is trimmed */
536                         rg->to = f;
537
538                         list_add(&nrg->link, &rg->link);
539                         nrg = NULL;
540                         break;
541                 }
542
543                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544                         del += rg->to - rg->from;
545                         list_del(&rg->link);
546                         kfree(rg);
547                         continue;
548                 }
549
550                 if (f <= rg->from) {    /* Trim beginning of region */
551                         del += t - rg->from;
552                         rg->from = t;
553                 } else {                /* Trim end of region */
554                         del += rg->to - f;
555                         rg->to = f;
556                 }
557         }
558
559         spin_unlock(&resv->lock);
560         kfree(nrg);
561         return del;
562 }
563
564 /*
565  * A rare out of memory error was encountered which prevented removal of
566  * the reserve map region for a page.  The huge page itself was free'ed
567  * and removed from the page cache.  This routine will adjust the subpool
568  * usage count, and the global reserve count if needed.  By incrementing
569  * these counts, the reserve map entry which could not be deleted will
570  * appear as a "reserved" entry instead of simply dangling with incorrect
571  * counts.
572  */
573 void hugetlb_fix_reserve_counts(struct inode *inode)
574 {
575         struct hugepage_subpool *spool = subpool_inode(inode);
576         long rsv_adjust;
577
578         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
579         if (rsv_adjust) {
580                 struct hstate *h = hstate_inode(inode);
581
582                 hugetlb_acct_memory(h, 1);
583         }
584 }
585
586 /*
587  * Count and return the number of huge pages in the reserve map
588  * that intersect with the range [f, t).
589  */
590 static long region_count(struct resv_map *resv, long f, long t)
591 {
592         struct list_head *head = &resv->regions;
593         struct file_region *rg;
594         long chg = 0;
595
596         spin_lock(&resv->lock);
597         /* Locate each segment we overlap with, and count that overlap. */
598         list_for_each_entry(rg, head, link) {
599                 long seg_from;
600                 long seg_to;
601
602                 if (rg->to <= f)
603                         continue;
604                 if (rg->from >= t)
605                         break;
606
607                 seg_from = max(rg->from, f);
608                 seg_to = min(rg->to, t);
609
610                 chg += seg_to - seg_from;
611         }
612         spin_unlock(&resv->lock);
613
614         return chg;
615 }
616
617 /*
618  * Convert the address within this vma to the page offset within
619  * the mapping, in pagecache page units; huge pages here.
620  */
621 static pgoff_t vma_hugecache_offset(struct hstate *h,
622                         struct vm_area_struct *vma, unsigned long address)
623 {
624         return ((address - vma->vm_start) >> huge_page_shift(h)) +
625                         (vma->vm_pgoff >> huge_page_order(h));
626 }
627
628 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629                                      unsigned long address)
630 {
631         return vma_hugecache_offset(hstate_vma(vma), vma, address);
632 }
633 EXPORT_SYMBOL_GPL(linear_hugepage_index);
634
635 /*
636  * Return the size of the pages allocated when backing a VMA. In the majority
637  * cases this will be same size as used by the page table entries.
638  */
639 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640 {
641         if (vma->vm_ops && vma->vm_ops->pagesize)
642                 return vma->vm_ops->pagesize(vma);
643         return PAGE_SIZE;
644 }
645 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
646
647 /*
648  * Return the page size being used by the MMU to back a VMA. In the majority
649  * of cases, the page size used by the kernel matches the MMU size. On
650  * architectures where it differs, an architecture-specific 'strong'
651  * version of this symbol is required.
652  */
653 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
654 {
655         return vma_kernel_pagesize(vma);
656 }
657
658 /*
659  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
660  * bits of the reservation map pointer, which are always clear due to
661  * alignment.
662  */
663 #define HPAGE_RESV_OWNER    (1UL << 0)
664 #define HPAGE_RESV_UNMAPPED (1UL << 1)
665 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
666
667 /*
668  * These helpers are used to track how many pages are reserved for
669  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670  * is guaranteed to have their future faults succeed.
671  *
672  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673  * the reserve counters are updated with the hugetlb_lock held. It is safe
674  * to reset the VMA at fork() time as it is not in use yet and there is no
675  * chance of the global counters getting corrupted as a result of the values.
676  *
677  * The private mapping reservation is represented in a subtly different
678  * manner to a shared mapping.  A shared mapping has a region map associated
679  * with the underlying file, this region map represents the backing file
680  * pages which have ever had a reservation assigned which this persists even
681  * after the page is instantiated.  A private mapping has a region map
682  * associated with the original mmap which is attached to all VMAs which
683  * reference it, this region map represents those offsets which have consumed
684  * reservation ie. where pages have been instantiated.
685  */
686 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687 {
688         return (unsigned long)vma->vm_private_data;
689 }
690
691 static void set_vma_private_data(struct vm_area_struct *vma,
692                                                         unsigned long value)
693 {
694         vma->vm_private_data = (void *)value;
695 }
696
697 struct resv_map *resv_map_alloc(void)
698 {
699         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
700         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702         if (!resv_map || !rg) {
703                 kfree(resv_map);
704                 kfree(rg);
705                 return NULL;
706         }
707
708         kref_init(&resv_map->refs);
709         spin_lock_init(&resv_map->lock);
710         INIT_LIST_HEAD(&resv_map->regions);
711
712         resv_map->adds_in_progress = 0;
713
714         INIT_LIST_HEAD(&resv_map->region_cache);
715         list_add(&rg->link, &resv_map->region_cache);
716         resv_map->region_cache_count = 1;
717
718         return resv_map;
719 }
720
721 void resv_map_release(struct kref *ref)
722 {
723         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
724         struct list_head *head = &resv_map->region_cache;
725         struct file_region *rg, *trg;
726
727         /* Clear out any active regions before we release the map. */
728         region_del(resv_map, 0, LONG_MAX);
729
730         /* ... and any entries left in the cache */
731         list_for_each_entry_safe(rg, trg, head, link) {
732                 list_del(&rg->link);
733                 kfree(rg);
734         }
735
736         VM_BUG_ON(resv_map->adds_in_progress);
737
738         kfree(resv_map);
739 }
740
741 static inline struct resv_map *inode_resv_map(struct inode *inode)
742 {
743         return inode->i_mapping->private_data;
744 }
745
746 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
747 {
748         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
749         if (vma->vm_flags & VM_MAYSHARE) {
750                 struct address_space *mapping = vma->vm_file->f_mapping;
751                 struct inode *inode = mapping->host;
752
753                 return inode_resv_map(inode);
754
755         } else {
756                 return (struct resv_map *)(get_vma_private_data(vma) &
757                                                         ~HPAGE_RESV_MASK);
758         }
759 }
760
761 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
762 {
763         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766         set_vma_private_data(vma, (get_vma_private_data(vma) &
767                                 HPAGE_RESV_MASK) | (unsigned long)map);
768 }
769
770 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771 {
772         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
774
775         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
776 }
777
778 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779 {
780         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
781
782         return (get_vma_private_data(vma) & flag) != 0;
783 }
784
785 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
786 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787 {
788         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789         if (!(vma->vm_flags & VM_MAYSHARE))
790                 vma->vm_private_data = (void *)0;
791 }
792
793 /* Returns true if the VMA has associated reserve pages */
794 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
795 {
796         if (vma->vm_flags & VM_NORESERVE) {
797                 /*
798                  * This address is already reserved by other process(chg == 0),
799                  * so, we should decrement reserved count. Without decrementing,
800                  * reserve count remains after releasing inode, because this
801                  * allocated page will go into page cache and is regarded as
802                  * coming from reserved pool in releasing step.  Currently, we
803                  * don't have any other solution to deal with this situation
804                  * properly, so add work-around here.
805                  */
806                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
807                         return true;
808                 else
809                         return false;
810         }
811
812         /* Shared mappings always use reserves */
813         if (vma->vm_flags & VM_MAYSHARE) {
814                 /*
815                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
816                  * be a region map for all pages.  The only situation where
817                  * there is no region map is if a hole was punched via
818                  * fallocate.  In this case, there really are no reverves to
819                  * use.  This situation is indicated if chg != 0.
820                  */
821                 if (chg)
822                         return false;
823                 else
824                         return true;
825         }
826
827         /*
828          * Only the process that called mmap() has reserves for
829          * private mappings.
830          */
831         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
832                 /*
833                  * Like the shared case above, a hole punch or truncate
834                  * could have been performed on the private mapping.
835                  * Examine the value of chg to determine if reserves
836                  * actually exist or were previously consumed.
837                  * Very Subtle - The value of chg comes from a previous
838                  * call to vma_needs_reserves().  The reserve map for
839                  * private mappings has different (opposite) semantics
840                  * than that of shared mappings.  vma_needs_reserves()
841                  * has already taken this difference in semantics into
842                  * account.  Therefore, the meaning of chg is the same
843                  * as in the shared case above.  Code could easily be
844                  * combined, but keeping it separate draws attention to
845                  * subtle differences.
846                  */
847                 if (chg)
848                         return false;
849                 else
850                         return true;
851         }
852
853         return false;
854 }
855
856 static void enqueue_huge_page(struct hstate *h, struct page *page)
857 {
858         int nid = page_to_nid(page);
859         list_move(&page->lru, &h->hugepage_freelists[nid]);
860         h->free_huge_pages++;
861         h->free_huge_pages_node[nid]++;
862 }
863
864 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
865 {
866         struct page *page;
867
868         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
869                 if (!PageHWPoison(page))
870                         break;
871         /*
872          * if 'non-isolated free hugepage' not found on the list,
873          * the allocation fails.
874          */
875         if (&h->hugepage_freelists[nid] == &page->lru)
876                 return NULL;
877         list_move(&page->lru, &h->hugepage_activelist);
878         set_page_refcounted(page);
879         h->free_huge_pages--;
880         h->free_huge_pages_node[nid]--;
881         return page;
882 }
883
884 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
885                 nodemask_t *nmask)
886 {
887         unsigned int cpuset_mems_cookie;
888         struct zonelist *zonelist;
889         struct zone *zone;
890         struct zoneref *z;
891         int node = NUMA_NO_NODE;
892
893         zonelist = node_zonelist(nid, gfp_mask);
894
895 retry_cpuset:
896         cpuset_mems_cookie = read_mems_allowed_begin();
897         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
898                 struct page *page;
899
900                 if (!cpuset_zone_allowed(zone, gfp_mask))
901                         continue;
902                 /*
903                  * no need to ask again on the same node. Pool is node rather than
904                  * zone aware
905                  */
906                 if (zone_to_nid(zone) == node)
907                         continue;
908                 node = zone_to_nid(zone);
909
910                 page = dequeue_huge_page_node_exact(h, node);
911                 if (page)
912                         return page;
913         }
914         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
915                 goto retry_cpuset;
916
917         return NULL;
918 }
919
920 /* Movability of hugepages depends on migration support. */
921 static inline gfp_t htlb_alloc_mask(struct hstate *h)
922 {
923         if (hugepage_movable_supported(h))
924                 return GFP_HIGHUSER_MOVABLE;
925         else
926                 return GFP_HIGHUSER;
927 }
928
929 static struct page *dequeue_huge_page_vma(struct hstate *h,
930                                 struct vm_area_struct *vma,
931                                 unsigned long address, int avoid_reserve,
932                                 long chg)
933 {
934         struct page *page;
935         struct mempolicy *mpol;
936         gfp_t gfp_mask;
937         nodemask_t *nodemask;
938         int nid;
939
940         /*
941          * A child process with MAP_PRIVATE mappings created by their parent
942          * have no page reserves. This check ensures that reservations are
943          * not "stolen". The child may still get SIGKILLed
944          */
945         if (!vma_has_reserves(vma, chg) &&
946                         h->free_huge_pages - h->resv_huge_pages == 0)
947                 goto err;
948
949         /* If reserves cannot be used, ensure enough pages are in the pool */
950         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951                 goto err;
952
953         gfp_mask = htlb_alloc_mask(h);
954         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
955         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
956         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
957                 SetPagePrivate(page);
958                 h->resv_huge_pages--;
959         }
960
961         mpol_cond_put(mpol);
962         return page;
963
964 err:
965         return NULL;
966 }
967
968 /*
969  * common helper functions for hstate_next_node_to_{alloc|free}.
970  * We may have allocated or freed a huge page based on a different
971  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
972  * be outside of *nodes_allowed.  Ensure that we use an allowed
973  * node for alloc or free.
974  */
975 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
976 {
977         nid = next_node_in(nid, *nodes_allowed);
978         VM_BUG_ON(nid >= MAX_NUMNODES);
979
980         return nid;
981 }
982
983 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
984 {
985         if (!node_isset(nid, *nodes_allowed))
986                 nid = next_node_allowed(nid, nodes_allowed);
987         return nid;
988 }
989
990 /*
991  * returns the previously saved node ["this node"] from which to
992  * allocate a persistent huge page for the pool and advance the
993  * next node from which to allocate, handling wrap at end of node
994  * mask.
995  */
996 static int hstate_next_node_to_alloc(struct hstate *h,
997                                         nodemask_t *nodes_allowed)
998 {
999         int nid;
1000
1001         VM_BUG_ON(!nodes_allowed);
1002
1003         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1004         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1005
1006         return nid;
1007 }
1008
1009 /*
1010  * helper for free_pool_huge_page() - return the previously saved
1011  * node ["this node"] from which to free a huge page.  Advance the
1012  * next node id whether or not we find a free huge page to free so
1013  * that the next attempt to free addresses the next node.
1014  */
1015 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1016 {
1017         int nid;
1018
1019         VM_BUG_ON(!nodes_allowed);
1020
1021         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1022         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1023
1024         return nid;
1025 }
1026
1027 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1028         for (nr_nodes = nodes_weight(*mask);                            \
1029                 nr_nodes > 0 &&                                         \
1030                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1031                 nr_nodes--)
1032
1033 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1034         for (nr_nodes = nodes_weight(*mask);                            \
1035                 nr_nodes > 0 &&                                         \
1036                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1037                 nr_nodes--)
1038
1039 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1040 static void destroy_compound_gigantic_page(struct page *page,
1041                                         unsigned int order)
1042 {
1043         int i;
1044         int nr_pages = 1 << order;
1045         struct page *p = page + 1;
1046
1047         atomic_set(compound_mapcount_ptr(page), 0);
1048         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1049                 clear_compound_head(p);
1050                 set_page_refcounted(p);
1051         }
1052
1053         set_compound_order(page, 0);
1054         __ClearPageHead(page);
1055 }
1056
1057 static void free_gigantic_page(struct page *page, unsigned int order)
1058 {
1059         free_contig_range(page_to_pfn(page), 1 << order);
1060 }
1061
1062 #ifdef CONFIG_CONTIG_ALLOC
1063 static int __alloc_gigantic_page(unsigned long start_pfn,
1064                                 unsigned long nr_pages, gfp_t gfp_mask)
1065 {
1066         unsigned long end_pfn = start_pfn + nr_pages;
1067         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1068                                   gfp_mask);
1069 }
1070
1071 static bool pfn_range_valid_gigantic(struct zone *z,
1072                         unsigned long start_pfn, unsigned long nr_pages)
1073 {
1074         unsigned long i, end_pfn = start_pfn + nr_pages;
1075         struct page *page;
1076
1077         for (i = start_pfn; i < end_pfn; i++) {
1078                 if (!pfn_valid(i))
1079                         return false;
1080
1081                 page = pfn_to_page(i);
1082
1083                 if (page_zone(page) != z)
1084                         return false;
1085
1086                 if (PageReserved(page))
1087                         return false;
1088
1089                 if (page_count(page) > 0)
1090                         return false;
1091
1092                 if (PageHuge(page))
1093                         return false;
1094         }
1095
1096         return true;
1097 }
1098
1099 static bool zone_spans_last_pfn(const struct zone *zone,
1100                         unsigned long start_pfn, unsigned long nr_pages)
1101 {
1102         unsigned long last_pfn = start_pfn + nr_pages - 1;
1103         return zone_spans_pfn(zone, last_pfn);
1104 }
1105
1106 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1107                 int nid, nodemask_t *nodemask)
1108 {
1109         unsigned int order = huge_page_order(h);
1110         unsigned long nr_pages = 1 << order;
1111         unsigned long ret, pfn, flags;
1112         struct zonelist *zonelist;
1113         struct zone *zone;
1114         struct zoneref *z;
1115
1116         zonelist = node_zonelist(nid, gfp_mask);
1117         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1118                 spin_lock_irqsave(&zone->lock, flags);
1119
1120                 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1121                 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1122                         if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1123                                 /*
1124                                  * We release the zone lock here because
1125                                  * alloc_contig_range() will also lock the zone
1126                                  * at some point. If there's an allocation
1127                                  * spinning on this lock, it may win the race
1128                                  * and cause alloc_contig_range() to fail...
1129                                  */
1130                                 spin_unlock_irqrestore(&zone->lock, flags);
1131                                 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1132                                 if (!ret)
1133                                         return pfn_to_page(pfn);
1134                                 spin_lock_irqsave(&zone->lock, flags);
1135                         }
1136                         pfn += nr_pages;
1137                 }
1138
1139                 spin_unlock_irqrestore(&zone->lock, flags);
1140         }
1141
1142         return NULL;
1143 }
1144
1145 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1146 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1147 #else /* !CONFIG_CONTIG_ALLOC */
1148 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1149                                         int nid, nodemask_t *nodemask)
1150 {
1151         return NULL;
1152 }
1153 #endif /* CONFIG_CONTIG_ALLOC */
1154
1155 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1156 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1157                                         int nid, nodemask_t *nodemask)
1158 {
1159         return NULL;
1160 }
1161 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162 static inline void destroy_compound_gigantic_page(struct page *page,
1163                                                 unsigned int order) { }
1164 #endif
1165
1166 static void update_and_free_page(struct hstate *h, struct page *page)
1167 {
1168         int i;
1169
1170         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1171                 return;
1172
1173         h->nr_huge_pages--;
1174         h->nr_huge_pages_node[page_to_nid(page)]--;
1175         for (i = 0; i < pages_per_huge_page(h); i++) {
1176                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1177                                 1 << PG_referenced | 1 << PG_dirty |
1178                                 1 << PG_active | 1 << PG_private |
1179                                 1 << PG_writeback);
1180         }
1181         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1182         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1183         set_page_refcounted(page);
1184         if (hstate_is_gigantic(h)) {
1185                 destroy_compound_gigantic_page(page, huge_page_order(h));
1186                 free_gigantic_page(page, huge_page_order(h));
1187         } else {
1188                 __free_pages(page, huge_page_order(h));
1189         }
1190 }
1191
1192 struct hstate *size_to_hstate(unsigned long size)
1193 {
1194         struct hstate *h;
1195
1196         for_each_hstate(h) {
1197                 if (huge_page_size(h) == size)
1198                         return h;
1199         }
1200         return NULL;
1201 }
1202
1203 /*
1204  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1205  * to hstate->hugepage_activelist.)
1206  *
1207  * This function can be called for tail pages, but never returns true for them.
1208  */
1209 bool page_huge_active(struct page *page)
1210 {
1211         VM_BUG_ON_PAGE(!PageHuge(page), page);
1212         return PageHead(page) && PagePrivate(&page[1]);
1213 }
1214
1215 /* never called for tail page */
1216 static void set_page_huge_active(struct page *page)
1217 {
1218         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1219         SetPagePrivate(&page[1]);
1220 }
1221
1222 static void clear_page_huge_active(struct page *page)
1223 {
1224         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1225         ClearPagePrivate(&page[1]);
1226 }
1227
1228 /*
1229  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1230  * code
1231  */
1232 static inline bool PageHugeTemporary(struct page *page)
1233 {
1234         if (!PageHuge(page))
1235                 return false;
1236
1237         return (unsigned long)page[2].mapping == -1U;
1238 }
1239
1240 static inline void SetPageHugeTemporary(struct page *page)
1241 {
1242         page[2].mapping = (void *)-1U;
1243 }
1244
1245 static inline void ClearPageHugeTemporary(struct page *page)
1246 {
1247         page[2].mapping = NULL;
1248 }
1249
1250 void free_huge_page(struct page *page)
1251 {
1252         /*
1253          * Can't pass hstate in here because it is called from the
1254          * compound page destructor.
1255          */
1256         struct hstate *h = page_hstate(page);
1257         int nid = page_to_nid(page);
1258         struct hugepage_subpool *spool =
1259                 (struct hugepage_subpool *)page_private(page);
1260         bool restore_reserve;
1261
1262         VM_BUG_ON_PAGE(page_count(page), page);
1263         VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
1265         set_page_private(page, 0);
1266         page->mapping = NULL;
1267         restore_reserve = PagePrivate(page);
1268         ClearPagePrivate(page);
1269
1270         /*
1271          * A return code of zero implies that the subpool will be under its
1272          * minimum size if the reservation is not restored after page is free.
1273          * Therefore, force restore_reserve operation.
1274          */
1275         if (hugepage_subpool_put_pages(spool, 1) == 0)
1276                 restore_reserve = true;
1277
1278         spin_lock(&hugetlb_lock);
1279         clear_page_huge_active(page);
1280         hugetlb_cgroup_uncharge_page(hstate_index(h),
1281                                      pages_per_huge_page(h), page);
1282         if (restore_reserve)
1283                 h->resv_huge_pages++;
1284
1285         if (PageHugeTemporary(page)) {
1286                 list_del(&page->lru);
1287                 ClearPageHugeTemporary(page);
1288                 update_and_free_page(h, page);
1289         } else if (h->surplus_huge_pages_node[nid]) {
1290                 /* remove the page from active list */
1291                 list_del(&page->lru);
1292                 update_and_free_page(h, page);
1293                 h->surplus_huge_pages--;
1294                 h->surplus_huge_pages_node[nid]--;
1295         } else {
1296                 arch_clear_hugepage_flags(page);
1297                 enqueue_huge_page(h, page);
1298         }
1299         spin_unlock(&hugetlb_lock);
1300 }
1301
1302 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1303 {
1304         INIT_LIST_HEAD(&page->lru);
1305         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1306         spin_lock(&hugetlb_lock);
1307         set_hugetlb_cgroup(page, NULL);
1308         h->nr_huge_pages++;
1309         h->nr_huge_pages_node[nid]++;
1310         spin_unlock(&hugetlb_lock);
1311 }
1312
1313 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1314 {
1315         int i;
1316         int nr_pages = 1 << order;
1317         struct page *p = page + 1;
1318
1319         /* we rely on prep_new_huge_page to set the destructor */
1320         set_compound_order(page, order);
1321         __ClearPageReserved(page);
1322         __SetPageHead(page);
1323         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1324                 /*
1325                  * For gigantic hugepages allocated through bootmem at
1326                  * boot, it's safer to be consistent with the not-gigantic
1327                  * hugepages and clear the PG_reserved bit from all tail pages
1328                  * too.  Otherwse drivers using get_user_pages() to access tail
1329                  * pages may get the reference counting wrong if they see
1330                  * PG_reserved set on a tail page (despite the head page not
1331                  * having PG_reserved set).  Enforcing this consistency between
1332                  * head and tail pages allows drivers to optimize away a check
1333                  * on the head page when they need know if put_page() is needed
1334                  * after get_user_pages().
1335                  */
1336                 __ClearPageReserved(p);
1337                 set_page_count(p, 0);
1338                 set_compound_head(p, page);
1339         }
1340         atomic_set(compound_mapcount_ptr(page), -1);
1341 }
1342
1343 /*
1344  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1345  * transparent huge pages.  See the PageTransHuge() documentation for more
1346  * details.
1347  */
1348 int PageHuge(struct page *page)
1349 {
1350         if (!PageCompound(page))
1351                 return 0;
1352
1353         page = compound_head(page);
1354         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1355 }
1356 EXPORT_SYMBOL_GPL(PageHuge);
1357
1358 /*
1359  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1360  * normal or transparent huge pages.
1361  */
1362 int PageHeadHuge(struct page *page_head)
1363 {
1364         if (!PageHead(page_head))
1365                 return 0;
1366
1367         return get_compound_page_dtor(page_head) == free_huge_page;
1368 }
1369
1370 pgoff_t __basepage_index(struct page *page)
1371 {
1372         struct page *page_head = compound_head(page);
1373         pgoff_t index = page_index(page_head);
1374         unsigned long compound_idx;
1375
1376         if (!PageHuge(page_head))
1377                 return page_index(page);
1378
1379         if (compound_order(page_head) >= MAX_ORDER)
1380                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1381         else
1382                 compound_idx = page - page_head;
1383
1384         return (index << compound_order(page_head)) + compound_idx;
1385 }
1386
1387 static struct page *alloc_buddy_huge_page(struct hstate *h,
1388                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1389 {
1390         int order = huge_page_order(h);
1391         struct page *page;
1392
1393         gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1394         if (nid == NUMA_NO_NODE)
1395                 nid = numa_mem_id();
1396         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1397         if (page)
1398                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1399         else
1400                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1401
1402         return page;
1403 }
1404
1405 /*
1406  * Common helper to allocate a fresh hugetlb page. All specific allocators
1407  * should use this function to get new hugetlb pages
1408  */
1409 static struct page *alloc_fresh_huge_page(struct hstate *h,
1410                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1411 {
1412         struct page *page;
1413
1414         if (hstate_is_gigantic(h))
1415                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1416         else
1417                 page = alloc_buddy_huge_page(h, gfp_mask,
1418                                 nid, nmask);
1419         if (!page)
1420                 return NULL;
1421
1422         if (hstate_is_gigantic(h))
1423                 prep_compound_gigantic_page(page, huge_page_order(h));
1424         prep_new_huge_page(h, page, page_to_nid(page));
1425
1426         return page;
1427 }
1428
1429 /*
1430  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1431  * manner.
1432  */
1433 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1434 {
1435         struct page *page;
1436         int nr_nodes, node;
1437         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1438
1439         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1440                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1441                 if (page)
1442                         break;
1443         }
1444
1445         if (!page)
1446                 return 0;
1447
1448         put_page(page); /* free it into the hugepage allocator */
1449
1450         return 1;
1451 }
1452
1453 /*
1454  * Free huge page from pool from next node to free.
1455  * Attempt to keep persistent huge pages more or less
1456  * balanced over allowed nodes.
1457  * Called with hugetlb_lock locked.
1458  */
1459 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1460                                                          bool acct_surplus)
1461 {
1462         int nr_nodes, node;
1463         int ret = 0;
1464
1465         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1466                 /*
1467                  * If we're returning unused surplus pages, only examine
1468                  * nodes with surplus pages.
1469                  */
1470                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1471                     !list_empty(&h->hugepage_freelists[node])) {
1472                         struct page *page =
1473                                 list_entry(h->hugepage_freelists[node].next,
1474                                           struct page, lru);
1475                         list_del(&page->lru);
1476                         h->free_huge_pages--;
1477                         h->free_huge_pages_node[node]--;
1478                         if (acct_surplus) {
1479                                 h->surplus_huge_pages--;
1480                                 h->surplus_huge_pages_node[node]--;
1481                         }
1482                         update_and_free_page(h, page);
1483                         ret = 1;
1484                         break;
1485                 }
1486         }
1487
1488         return ret;
1489 }
1490
1491 /*
1492  * Dissolve a given free hugepage into free buddy pages. This function does
1493  * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1494  * dissolution fails because a give page is not a free hugepage, or because
1495  * free hugepages are fully reserved.
1496  */
1497 int dissolve_free_huge_page(struct page *page)
1498 {
1499         int rc = -EBUSY;
1500
1501         spin_lock(&hugetlb_lock);
1502         if (PageHuge(page) && !page_count(page)) {
1503                 struct page *head = compound_head(page);
1504                 struct hstate *h = page_hstate(head);
1505                 int nid = page_to_nid(head);
1506                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1507                         goto out;
1508                 /*
1509                  * Move PageHWPoison flag from head page to the raw error page,
1510                  * which makes any subpages rather than the error page reusable.
1511                  */
1512                 if (PageHWPoison(head) && page != head) {
1513                         SetPageHWPoison(page);
1514                         ClearPageHWPoison(head);
1515                 }
1516                 list_del(&head->lru);
1517                 h->free_huge_pages--;
1518                 h->free_huge_pages_node[nid]--;
1519                 h->max_huge_pages--;
1520                 update_and_free_page(h, head);
1521                 rc = 0;
1522         }
1523 out:
1524         spin_unlock(&hugetlb_lock);
1525         return rc;
1526 }
1527
1528 /*
1529  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1530  * make specified memory blocks removable from the system.
1531  * Note that this will dissolve a free gigantic hugepage completely, if any
1532  * part of it lies within the given range.
1533  * Also note that if dissolve_free_huge_page() returns with an error, all
1534  * free hugepages that were dissolved before that error are lost.
1535  */
1536 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1537 {
1538         unsigned long pfn;
1539         struct page *page;
1540         int rc = 0;
1541
1542         if (!hugepages_supported())
1543                 return rc;
1544
1545         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1546                 page = pfn_to_page(pfn);
1547                 if (PageHuge(page) && !page_count(page)) {
1548                         rc = dissolve_free_huge_page(page);
1549                         if (rc)
1550                                 break;
1551                 }
1552         }
1553
1554         return rc;
1555 }
1556
1557 /*
1558  * Allocates a fresh surplus page from the page allocator.
1559  */
1560 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1561                 int nid, nodemask_t *nmask)
1562 {
1563         struct page *page = NULL;
1564
1565         if (hstate_is_gigantic(h))
1566                 return NULL;
1567
1568         spin_lock(&hugetlb_lock);
1569         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1570                 goto out_unlock;
1571         spin_unlock(&hugetlb_lock);
1572
1573         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1574         if (!page)
1575                 return NULL;
1576
1577         spin_lock(&hugetlb_lock);
1578         /*
1579          * We could have raced with the pool size change.
1580          * Double check that and simply deallocate the new page
1581          * if we would end up overcommiting the surpluses. Abuse
1582          * temporary page to workaround the nasty free_huge_page
1583          * codeflow
1584          */
1585         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1586                 SetPageHugeTemporary(page);
1587                 spin_unlock(&hugetlb_lock);
1588                 put_page(page);
1589                 return NULL;
1590         } else {
1591                 h->surplus_huge_pages++;
1592                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1593         }
1594
1595 out_unlock:
1596         spin_unlock(&hugetlb_lock);
1597
1598         return page;
1599 }
1600
1601 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1602                                      int nid, nodemask_t *nmask)
1603 {
1604         struct page *page;
1605
1606         if (hstate_is_gigantic(h))
1607                 return NULL;
1608
1609         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1610         if (!page)
1611                 return NULL;
1612
1613         /*
1614          * We do not account these pages as surplus because they are only
1615          * temporary and will be released properly on the last reference
1616          */
1617         SetPageHugeTemporary(page);
1618
1619         return page;
1620 }
1621
1622 /*
1623  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1624  */
1625 static
1626 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1627                 struct vm_area_struct *vma, unsigned long addr)
1628 {
1629         struct page *page;
1630         struct mempolicy *mpol;
1631         gfp_t gfp_mask = htlb_alloc_mask(h);
1632         int nid;
1633         nodemask_t *nodemask;
1634
1635         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1636         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1637         mpol_cond_put(mpol);
1638
1639         return page;
1640 }
1641
1642 /* page migration callback function */
1643 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1644 {
1645         gfp_t gfp_mask = htlb_alloc_mask(h);
1646         struct page *page = NULL;
1647
1648         if (nid != NUMA_NO_NODE)
1649                 gfp_mask |= __GFP_THISNODE;
1650
1651         spin_lock(&hugetlb_lock);
1652         if (h->free_huge_pages - h->resv_huge_pages > 0)
1653                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1654         spin_unlock(&hugetlb_lock);
1655
1656         if (!page)
1657                 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1658
1659         return page;
1660 }
1661
1662 /* page migration callback function */
1663 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1664                 nodemask_t *nmask)
1665 {
1666         gfp_t gfp_mask = htlb_alloc_mask(h);
1667
1668         spin_lock(&hugetlb_lock);
1669         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1670                 struct page *page;
1671
1672                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1673                 if (page) {
1674                         spin_unlock(&hugetlb_lock);
1675                         return page;
1676                 }
1677         }
1678         spin_unlock(&hugetlb_lock);
1679
1680         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1681 }
1682
1683 /* mempolicy aware migration callback */
1684 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1685                 unsigned long address)
1686 {
1687         struct mempolicy *mpol;
1688         nodemask_t *nodemask;
1689         struct page *page;
1690         gfp_t gfp_mask;
1691         int node;
1692
1693         gfp_mask = htlb_alloc_mask(h);
1694         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1695         page = alloc_huge_page_nodemask(h, node, nodemask);
1696         mpol_cond_put(mpol);
1697
1698         return page;
1699 }
1700
1701 /*
1702  * Increase the hugetlb pool such that it can accommodate a reservation
1703  * of size 'delta'.
1704  */
1705 static int gather_surplus_pages(struct hstate *h, int delta)
1706 {
1707         struct list_head surplus_list;
1708         struct page *page, *tmp;
1709         int ret, i;
1710         int needed, allocated;
1711         bool alloc_ok = true;
1712
1713         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1714         if (needed <= 0) {
1715                 h->resv_huge_pages += delta;
1716                 return 0;
1717         }
1718
1719         allocated = 0;
1720         INIT_LIST_HEAD(&surplus_list);
1721
1722         ret = -ENOMEM;
1723 retry:
1724         spin_unlock(&hugetlb_lock);
1725         for (i = 0; i < needed; i++) {
1726                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1727                                 NUMA_NO_NODE, NULL);
1728                 if (!page) {
1729                         alloc_ok = false;
1730                         break;
1731                 }
1732                 list_add(&page->lru, &surplus_list);
1733                 cond_resched();
1734         }
1735         allocated += i;
1736
1737         /*
1738          * After retaking hugetlb_lock, we need to recalculate 'needed'
1739          * because either resv_huge_pages or free_huge_pages may have changed.
1740          */
1741         spin_lock(&hugetlb_lock);
1742         needed = (h->resv_huge_pages + delta) -
1743                         (h->free_huge_pages + allocated);
1744         if (needed > 0) {
1745                 if (alloc_ok)
1746                         goto retry;
1747                 /*
1748                  * We were not able to allocate enough pages to
1749                  * satisfy the entire reservation so we free what
1750                  * we've allocated so far.
1751                  */
1752                 goto free;
1753         }
1754         /*
1755          * The surplus_list now contains _at_least_ the number of extra pages
1756          * needed to accommodate the reservation.  Add the appropriate number
1757          * of pages to the hugetlb pool and free the extras back to the buddy
1758          * allocator.  Commit the entire reservation here to prevent another
1759          * process from stealing the pages as they are added to the pool but
1760          * before they are reserved.
1761          */
1762         needed += allocated;
1763         h->resv_huge_pages += delta;
1764         ret = 0;
1765
1766         /* Free the needed pages to the hugetlb pool */
1767         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1768                 if ((--needed) < 0)
1769                         break;
1770                 /*
1771                  * This page is now managed by the hugetlb allocator and has
1772                  * no users -- drop the buddy allocator's reference.
1773                  */
1774                 put_page_testzero(page);
1775                 VM_BUG_ON_PAGE(page_count(page), page);
1776                 enqueue_huge_page(h, page);
1777         }
1778 free:
1779         spin_unlock(&hugetlb_lock);
1780
1781         /* Free unnecessary surplus pages to the buddy allocator */
1782         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1783                 put_page(page);
1784         spin_lock(&hugetlb_lock);
1785
1786         return ret;
1787 }
1788
1789 /*
1790  * This routine has two main purposes:
1791  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1792  *    in unused_resv_pages.  This corresponds to the prior adjustments made
1793  *    to the associated reservation map.
1794  * 2) Free any unused surplus pages that may have been allocated to satisfy
1795  *    the reservation.  As many as unused_resv_pages may be freed.
1796  *
1797  * Called with hugetlb_lock held.  However, the lock could be dropped (and
1798  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
1799  * we must make sure nobody else can claim pages we are in the process of
1800  * freeing.  Do this by ensuring resv_huge_page always is greater than the
1801  * number of huge pages we plan to free when dropping the lock.
1802  */
1803 static void return_unused_surplus_pages(struct hstate *h,
1804                                         unsigned long unused_resv_pages)
1805 {
1806         unsigned long nr_pages;
1807
1808         /* Cannot return gigantic pages currently */
1809         if (hstate_is_gigantic(h))
1810                 goto out;
1811
1812         /*
1813          * Part (or even all) of the reservation could have been backed
1814          * by pre-allocated pages. Only free surplus pages.
1815          */
1816         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1817
1818         /*
1819          * We want to release as many surplus pages as possible, spread
1820          * evenly across all nodes with memory. Iterate across these nodes
1821          * until we can no longer free unreserved surplus pages. This occurs
1822          * when the nodes with surplus pages have no free pages.
1823          * free_pool_huge_page() will balance the the freed pages across the
1824          * on-line nodes with memory and will handle the hstate accounting.
1825          *
1826          * Note that we decrement resv_huge_pages as we free the pages.  If
1827          * we drop the lock, resv_huge_pages will still be sufficiently large
1828          * to cover subsequent pages we may free.
1829          */
1830         while (nr_pages--) {
1831                 h->resv_huge_pages--;
1832                 unused_resv_pages--;
1833                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1834                         goto out;
1835                 cond_resched_lock(&hugetlb_lock);
1836         }
1837
1838 out:
1839         /* Fully uncommit the reservation */
1840         h->resv_huge_pages -= unused_resv_pages;
1841 }
1842
1843
1844 /*
1845  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1846  * are used by the huge page allocation routines to manage reservations.
1847  *
1848  * vma_needs_reservation is called to determine if the huge page at addr
1849  * within the vma has an associated reservation.  If a reservation is
1850  * needed, the value 1 is returned.  The caller is then responsible for
1851  * managing the global reservation and subpool usage counts.  After
1852  * the huge page has been allocated, vma_commit_reservation is called
1853  * to add the page to the reservation map.  If the page allocation fails,
1854  * the reservation must be ended instead of committed.  vma_end_reservation
1855  * is called in such cases.
1856  *
1857  * In the normal case, vma_commit_reservation returns the same value
1858  * as the preceding vma_needs_reservation call.  The only time this
1859  * is not the case is if a reserve map was changed between calls.  It
1860  * is the responsibility of the caller to notice the difference and
1861  * take appropriate action.
1862  *
1863  * vma_add_reservation is used in error paths where a reservation must
1864  * be restored when a newly allocated huge page must be freed.  It is
1865  * to be called after calling vma_needs_reservation to determine if a
1866  * reservation exists.
1867  */
1868 enum vma_resv_mode {
1869         VMA_NEEDS_RESV,
1870         VMA_COMMIT_RESV,
1871         VMA_END_RESV,
1872         VMA_ADD_RESV,
1873 };
1874 static long __vma_reservation_common(struct hstate *h,
1875                                 struct vm_area_struct *vma, unsigned long addr,
1876                                 enum vma_resv_mode mode)
1877 {
1878         struct resv_map *resv;
1879         pgoff_t idx;
1880         long ret;
1881
1882         resv = vma_resv_map(vma);
1883         if (!resv)
1884                 return 1;
1885
1886         idx = vma_hugecache_offset(h, vma, addr);
1887         switch (mode) {
1888         case VMA_NEEDS_RESV:
1889                 ret = region_chg(resv, idx, idx + 1);
1890                 break;
1891         case VMA_COMMIT_RESV:
1892                 ret = region_add(resv, idx, idx + 1);
1893                 break;
1894         case VMA_END_RESV:
1895                 region_abort(resv, idx, idx + 1);
1896                 ret = 0;
1897                 break;
1898         case VMA_ADD_RESV:
1899                 if (vma->vm_flags & VM_MAYSHARE)
1900                         ret = region_add(resv, idx, idx + 1);
1901                 else {
1902                         region_abort(resv, idx, idx + 1);
1903                         ret = region_del(resv, idx, idx + 1);
1904                 }
1905                 break;
1906         default:
1907                 BUG();
1908         }
1909
1910         if (vma->vm_flags & VM_MAYSHARE)
1911                 return ret;
1912         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1913                 /*
1914                  * In most cases, reserves always exist for private mappings.
1915                  * However, a file associated with mapping could have been
1916                  * hole punched or truncated after reserves were consumed.
1917                  * As subsequent fault on such a range will not use reserves.
1918                  * Subtle - The reserve map for private mappings has the
1919                  * opposite meaning than that of shared mappings.  If NO
1920                  * entry is in the reserve map, it means a reservation exists.
1921                  * If an entry exists in the reserve map, it means the
1922                  * reservation has already been consumed.  As a result, the
1923                  * return value of this routine is the opposite of the
1924                  * value returned from reserve map manipulation routines above.
1925                  */
1926                 if (ret)
1927                         return 0;
1928                 else
1929                         return 1;
1930         }
1931         else
1932                 return ret < 0 ? ret : 0;
1933 }
1934
1935 static long vma_needs_reservation(struct hstate *h,
1936                         struct vm_area_struct *vma, unsigned long addr)
1937 {
1938         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1939 }
1940
1941 static long vma_commit_reservation(struct hstate *h,
1942                         struct vm_area_struct *vma, unsigned long addr)
1943 {
1944         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1945 }
1946
1947 static void vma_end_reservation(struct hstate *h,
1948                         struct vm_area_struct *vma, unsigned long addr)
1949 {
1950         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1951 }
1952
1953 static long vma_add_reservation(struct hstate *h,
1954                         struct vm_area_struct *vma, unsigned long addr)
1955 {
1956         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1957 }
1958
1959 /*
1960  * This routine is called to restore a reservation on error paths.  In the
1961  * specific error paths, a huge page was allocated (via alloc_huge_page)
1962  * and is about to be freed.  If a reservation for the page existed,
1963  * alloc_huge_page would have consumed the reservation and set PagePrivate
1964  * in the newly allocated page.  When the page is freed via free_huge_page,
1965  * the global reservation count will be incremented if PagePrivate is set.
1966  * However, free_huge_page can not adjust the reserve map.  Adjust the
1967  * reserve map here to be consistent with global reserve count adjustments
1968  * to be made by free_huge_page.
1969  */
1970 static void restore_reserve_on_error(struct hstate *h,
1971                         struct vm_area_struct *vma, unsigned long address,
1972                         struct page *page)
1973 {
1974         if (unlikely(PagePrivate(page))) {
1975                 long rc = vma_needs_reservation(h, vma, address);
1976
1977                 if (unlikely(rc < 0)) {
1978                         /*
1979                          * Rare out of memory condition in reserve map
1980                          * manipulation.  Clear PagePrivate so that
1981                          * global reserve count will not be incremented
1982                          * by free_huge_page.  This will make it appear
1983                          * as though the reservation for this page was
1984                          * consumed.  This may prevent the task from
1985                          * faulting in the page at a later time.  This
1986                          * is better than inconsistent global huge page
1987                          * accounting of reserve counts.
1988                          */
1989                         ClearPagePrivate(page);
1990                 } else if (rc) {
1991                         rc = vma_add_reservation(h, vma, address);
1992                         if (unlikely(rc < 0))
1993                                 /*
1994                                  * See above comment about rare out of
1995                                  * memory condition.
1996                                  */
1997                                 ClearPagePrivate(page);
1998                 } else
1999                         vma_end_reservation(h, vma, address);
2000         }
2001 }
2002
2003 struct page *alloc_huge_page(struct vm_area_struct *vma,
2004                                     unsigned long addr, int avoid_reserve)
2005 {
2006         struct hugepage_subpool *spool = subpool_vma(vma);
2007         struct hstate *h = hstate_vma(vma);
2008         struct page *page;
2009         long map_chg, map_commit;
2010         long gbl_chg;
2011         int ret, idx;
2012         struct hugetlb_cgroup *h_cg;
2013
2014         idx = hstate_index(h);
2015         /*
2016          * Examine the region/reserve map to determine if the process
2017          * has a reservation for the page to be allocated.  A return
2018          * code of zero indicates a reservation exists (no change).
2019          */
2020         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2021         if (map_chg < 0)
2022                 return ERR_PTR(-ENOMEM);
2023
2024         /*
2025          * Processes that did not create the mapping will have no
2026          * reserves as indicated by the region/reserve map. Check
2027          * that the allocation will not exceed the subpool limit.
2028          * Allocations for MAP_NORESERVE mappings also need to be
2029          * checked against any subpool limit.
2030          */
2031         if (map_chg || avoid_reserve) {
2032                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2033                 if (gbl_chg < 0) {
2034                         vma_end_reservation(h, vma, addr);
2035                         return ERR_PTR(-ENOSPC);
2036                 }
2037
2038                 /*
2039                  * Even though there was no reservation in the region/reserve
2040                  * map, there could be reservations associated with the
2041                  * subpool that can be used.  This would be indicated if the
2042                  * return value of hugepage_subpool_get_pages() is zero.
2043                  * However, if avoid_reserve is specified we still avoid even
2044                  * the subpool reservations.
2045                  */
2046                 if (avoid_reserve)
2047                         gbl_chg = 1;
2048         }
2049
2050         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2051         if (ret)
2052                 goto out_subpool_put;
2053
2054         spin_lock(&hugetlb_lock);
2055         /*
2056          * glb_chg is passed to indicate whether or not a page must be taken
2057          * from the global free pool (global change).  gbl_chg == 0 indicates
2058          * a reservation exists for the allocation.
2059          */
2060         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2061         if (!page) {
2062                 spin_unlock(&hugetlb_lock);
2063                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2064                 if (!page)
2065                         goto out_uncharge_cgroup;
2066                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2067                         SetPagePrivate(page);
2068                         h->resv_huge_pages--;
2069                 }
2070                 spin_lock(&hugetlb_lock);
2071                 list_move(&page->lru, &h->hugepage_activelist);
2072                 /* Fall through */
2073         }
2074         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2075         spin_unlock(&hugetlb_lock);
2076
2077         set_page_private(page, (unsigned long)spool);
2078
2079         map_commit = vma_commit_reservation(h, vma, addr);
2080         if (unlikely(map_chg > map_commit)) {
2081                 /*
2082                  * The page was added to the reservation map between
2083                  * vma_needs_reservation and vma_commit_reservation.
2084                  * This indicates a race with hugetlb_reserve_pages.
2085                  * Adjust for the subpool count incremented above AND
2086                  * in hugetlb_reserve_pages for the same page.  Also,
2087                  * the reservation count added in hugetlb_reserve_pages
2088                  * no longer applies.
2089                  */
2090                 long rsv_adjust;
2091
2092                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2093                 hugetlb_acct_memory(h, -rsv_adjust);
2094         }
2095         return page;
2096
2097 out_uncharge_cgroup:
2098         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2099 out_subpool_put:
2100         if (map_chg || avoid_reserve)
2101                 hugepage_subpool_put_pages(spool, 1);
2102         vma_end_reservation(h, vma, addr);
2103         return ERR_PTR(-ENOSPC);
2104 }
2105
2106 int alloc_bootmem_huge_page(struct hstate *h)
2107         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2108 int __alloc_bootmem_huge_page(struct hstate *h)
2109 {
2110         struct huge_bootmem_page *m;
2111         int nr_nodes, node;
2112
2113         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2114                 void *addr;
2115
2116                 addr = memblock_alloc_try_nid_raw(
2117                                 huge_page_size(h), huge_page_size(h),
2118                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2119                 if (addr) {
2120                         /*
2121                          * Use the beginning of the huge page to store the
2122                          * huge_bootmem_page struct (until gather_bootmem
2123                          * puts them into the mem_map).
2124                          */
2125                         m = addr;
2126                         goto found;
2127                 }
2128         }
2129         return 0;
2130
2131 found:
2132         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2133         /* Put them into a private list first because mem_map is not up yet */
2134         INIT_LIST_HEAD(&m->list);
2135         list_add(&m->list, &huge_boot_pages);
2136         m->hstate = h;
2137         return 1;
2138 }
2139
2140 static void __init prep_compound_huge_page(struct page *page,
2141                 unsigned int order)
2142 {
2143         if (unlikely(order > (MAX_ORDER - 1)))
2144                 prep_compound_gigantic_page(page, order);
2145         else
2146                 prep_compound_page(page, order);
2147 }
2148
2149 /* Put bootmem huge pages into the standard lists after mem_map is up */
2150 static void __init gather_bootmem_prealloc(void)
2151 {
2152         struct huge_bootmem_page *m;
2153
2154         list_for_each_entry(m, &huge_boot_pages, list) {
2155                 struct page *page = virt_to_page(m);
2156                 struct hstate *h = m->hstate;
2157
2158                 WARN_ON(page_count(page) != 1);
2159                 prep_compound_huge_page(page, h->order);
2160                 WARN_ON(PageReserved(page));
2161                 prep_new_huge_page(h, page, page_to_nid(page));
2162                 put_page(page); /* free it into the hugepage allocator */
2163
2164                 /*
2165                  * If we had gigantic hugepages allocated at boot time, we need
2166                  * to restore the 'stolen' pages to totalram_pages in order to
2167                  * fix confusing memory reports from free(1) and another
2168                  * side-effects, like CommitLimit going negative.
2169                  */
2170                 if (hstate_is_gigantic(h))
2171                         adjust_managed_page_count(page, 1 << h->order);
2172                 cond_resched();
2173         }
2174 }
2175
2176 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2177 {
2178         unsigned long i;
2179
2180         for (i = 0; i < h->max_huge_pages; ++i) {
2181                 if (hstate_is_gigantic(h)) {
2182                         if (!alloc_bootmem_huge_page(h))
2183                                 break;
2184                 } else if (!alloc_pool_huge_page(h,
2185                                          &node_states[N_MEMORY]))
2186                         break;
2187                 cond_resched();
2188         }
2189         if (i < h->max_huge_pages) {
2190                 char buf[32];
2191
2192                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2193                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2194                         h->max_huge_pages, buf, i);
2195                 h->max_huge_pages = i;
2196         }
2197 }
2198
2199 static void __init hugetlb_init_hstates(void)
2200 {
2201         struct hstate *h;
2202
2203         for_each_hstate(h) {
2204                 if (minimum_order > huge_page_order(h))
2205                         minimum_order = huge_page_order(h);
2206
2207                 /* oversize hugepages were init'ed in early boot */
2208                 if (!hstate_is_gigantic(h))
2209                         hugetlb_hstate_alloc_pages(h);
2210         }
2211         VM_BUG_ON(minimum_order == UINT_MAX);
2212 }
2213
2214 static void __init report_hugepages(void)
2215 {
2216         struct hstate *h;
2217
2218         for_each_hstate(h) {
2219                 char buf[32];
2220
2221                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2222                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2223                         buf, h->free_huge_pages);
2224         }
2225 }
2226
2227 #ifdef CONFIG_HIGHMEM
2228 static void try_to_free_low(struct hstate *h, unsigned long count,
2229                                                 nodemask_t *nodes_allowed)
2230 {
2231         int i;
2232
2233         if (hstate_is_gigantic(h))
2234                 return;
2235
2236         for_each_node_mask(i, *nodes_allowed) {
2237                 struct page *page, *next;
2238                 struct list_head *freel = &h->hugepage_freelists[i];
2239                 list_for_each_entry_safe(page, next, freel, lru) {
2240                         if (count >= h->nr_huge_pages)
2241                                 return;
2242                         if (PageHighMem(page))
2243                                 continue;
2244                         list_del(&page->lru);
2245                         update_and_free_page(h, page);
2246                         h->free_huge_pages--;
2247                         h->free_huge_pages_node[page_to_nid(page)]--;
2248                 }
2249         }
2250 }
2251 #else
2252 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253                                                 nodemask_t *nodes_allowed)
2254 {
2255 }
2256 #endif
2257
2258 /*
2259  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2260  * balanced by operating on them in a round-robin fashion.
2261  * Returns 1 if an adjustment was made.
2262  */
2263 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264                                 int delta)
2265 {
2266         int nr_nodes, node;
2267
2268         VM_BUG_ON(delta != -1 && delta != 1);
2269
2270         if (delta < 0) {
2271                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272                         if (h->surplus_huge_pages_node[node])
2273                                 goto found;
2274                 }
2275         } else {
2276                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277                         if (h->surplus_huge_pages_node[node] <
2278                                         h->nr_huge_pages_node[node])
2279                                 goto found;
2280                 }
2281         }
2282         return 0;
2283
2284 found:
2285         h->surplus_huge_pages += delta;
2286         h->surplus_huge_pages_node[node] += delta;
2287         return 1;
2288 }
2289
2290 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2291 static int set_max_huge_pages(struct hstate *h, unsigned long count,
2292                               nodemask_t *nodes_allowed)
2293 {
2294         unsigned long min_count, ret;
2295
2296         spin_lock(&hugetlb_lock);
2297
2298         /*
2299          * Gigantic pages runtime allocation depend on the capability for large
2300          * page range allocation.
2301          * If the system does not provide this feature, return an error when
2302          * the user tries to allocate gigantic pages but let the user free the
2303          * boottime allocated gigantic pages.
2304          */
2305         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2306                 if (count > persistent_huge_pages(h)) {
2307                         spin_unlock(&hugetlb_lock);
2308                         return -EINVAL;
2309                 }
2310                 /* Fall through to decrease pool */
2311         }
2312
2313         /*
2314          * Increase the pool size
2315          * First take pages out of surplus state.  Then make up the
2316          * remaining difference by allocating fresh huge pages.
2317          *
2318          * We might race with alloc_surplus_huge_page() here and be unable
2319          * to convert a surplus huge page to a normal huge page. That is
2320          * not critical, though, it just means the overall size of the
2321          * pool might be one hugepage larger than it needs to be, but
2322          * within all the constraints specified by the sysctls.
2323          */
2324         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2325                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2326                         break;
2327         }
2328
2329         while (count > persistent_huge_pages(h)) {
2330                 /*
2331                  * If this allocation races such that we no longer need the
2332                  * page, free_huge_page will handle it by freeing the page
2333                  * and reducing the surplus.
2334                  */
2335                 spin_unlock(&hugetlb_lock);
2336
2337                 /* yield cpu to avoid soft lockup */
2338                 cond_resched();
2339
2340                 ret = alloc_pool_huge_page(h, nodes_allowed);
2341                 spin_lock(&hugetlb_lock);
2342                 if (!ret)
2343                         goto out;
2344
2345                 /* Bail for signals. Probably ctrl-c from user */
2346                 if (signal_pending(current))
2347                         goto out;
2348         }
2349
2350         /*
2351          * Decrease the pool size
2352          * First return free pages to the buddy allocator (being careful
2353          * to keep enough around to satisfy reservations).  Then place
2354          * pages into surplus state as needed so the pool will shrink
2355          * to the desired size as pages become free.
2356          *
2357          * By placing pages into the surplus state independent of the
2358          * overcommit value, we are allowing the surplus pool size to
2359          * exceed overcommit. There are few sane options here. Since
2360          * alloc_surplus_huge_page() is checking the global counter,
2361          * though, we'll note that we're not allowed to exceed surplus
2362          * and won't grow the pool anywhere else. Not until one of the
2363          * sysctls are changed, or the surplus pages go out of use.
2364          */
2365         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2366         min_count = max(count, min_count);
2367         try_to_free_low(h, min_count, nodes_allowed);
2368         while (min_count < persistent_huge_pages(h)) {
2369                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2370                         break;
2371                 cond_resched_lock(&hugetlb_lock);
2372         }
2373         while (count < persistent_huge_pages(h)) {
2374                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2375                         break;
2376         }
2377 out:
2378         h->max_huge_pages = persistent_huge_pages(h);
2379         spin_unlock(&hugetlb_lock);
2380
2381         return 0;
2382 }
2383
2384 #define HSTATE_ATTR_RO(_name) \
2385         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2386
2387 #define HSTATE_ATTR(_name) \
2388         static struct kobj_attribute _name##_attr = \
2389                 __ATTR(_name, 0644, _name##_show, _name##_store)
2390
2391 static struct kobject *hugepages_kobj;
2392 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2393
2394 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2395
2396 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2397 {
2398         int i;
2399
2400         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2401                 if (hstate_kobjs[i] == kobj) {
2402                         if (nidp)
2403                                 *nidp = NUMA_NO_NODE;
2404                         return &hstates[i];
2405                 }
2406
2407         return kobj_to_node_hstate(kobj, nidp);
2408 }
2409
2410 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2411                                         struct kobj_attribute *attr, char *buf)
2412 {
2413         struct hstate *h;
2414         unsigned long nr_huge_pages;
2415         int nid;
2416
2417         h = kobj_to_hstate(kobj, &nid);
2418         if (nid == NUMA_NO_NODE)
2419                 nr_huge_pages = h->nr_huge_pages;
2420         else
2421                 nr_huge_pages = h->nr_huge_pages_node[nid];
2422
2423         return sprintf(buf, "%lu\n", nr_huge_pages);
2424 }
2425
2426 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2427                                            struct hstate *h, int nid,
2428                                            unsigned long count, size_t len)
2429 {
2430         int err;
2431         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2432
2433         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported()) {
2434                 err = -EINVAL;
2435                 goto out;
2436         }
2437
2438         if (nid == NUMA_NO_NODE) {
2439                 /*
2440                  * global hstate attribute
2441                  */
2442                 if (!(obey_mempolicy &&
2443                                 init_nodemask_of_mempolicy(nodes_allowed))) {
2444                         NODEMASK_FREE(nodes_allowed);
2445                         nodes_allowed = &node_states[N_MEMORY];
2446                 }
2447         } else if (nodes_allowed) {
2448                 /*
2449                  * per node hstate attribute: adjust count to global,
2450                  * but restrict alloc/free to the specified node.
2451                  */
2452                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2453                 init_nodemask_of_node(nodes_allowed, nid);
2454         } else
2455                 nodes_allowed = &node_states[N_MEMORY];
2456
2457         err = set_max_huge_pages(h, count, nodes_allowed);
2458
2459 out:
2460         if (nodes_allowed != &node_states[N_MEMORY])
2461                 NODEMASK_FREE(nodes_allowed);
2462
2463         return err ? err : len;
2464 }
2465
2466 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2467                                          struct kobject *kobj, const char *buf,
2468                                          size_t len)
2469 {
2470         struct hstate *h;
2471         unsigned long count;
2472         int nid;
2473         int err;
2474
2475         err = kstrtoul(buf, 10, &count);
2476         if (err)
2477                 return err;
2478
2479         h = kobj_to_hstate(kobj, &nid);
2480         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2481 }
2482
2483 static ssize_t nr_hugepages_show(struct kobject *kobj,
2484                                        struct kobj_attribute *attr, char *buf)
2485 {
2486         return nr_hugepages_show_common(kobj, attr, buf);
2487 }
2488
2489 static ssize_t nr_hugepages_store(struct kobject *kobj,
2490                struct kobj_attribute *attr, const char *buf, size_t len)
2491 {
2492         return nr_hugepages_store_common(false, kobj, buf, len);
2493 }
2494 HSTATE_ATTR(nr_hugepages);
2495
2496 #ifdef CONFIG_NUMA
2497
2498 /*
2499  * hstate attribute for optionally mempolicy-based constraint on persistent
2500  * huge page alloc/free.
2501  */
2502 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2503                                        struct kobj_attribute *attr, char *buf)
2504 {
2505         return nr_hugepages_show_common(kobj, attr, buf);
2506 }
2507
2508 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2509                struct kobj_attribute *attr, const char *buf, size_t len)
2510 {
2511         return nr_hugepages_store_common(true, kobj, buf, len);
2512 }
2513 HSTATE_ATTR(nr_hugepages_mempolicy);
2514 #endif
2515
2516
2517 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2518                                         struct kobj_attribute *attr, char *buf)
2519 {
2520         struct hstate *h = kobj_to_hstate(kobj, NULL);
2521         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2522 }
2523
2524 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2525                 struct kobj_attribute *attr, const char *buf, size_t count)
2526 {
2527         int err;
2528         unsigned long input;
2529         struct hstate *h = kobj_to_hstate(kobj, NULL);
2530
2531         if (hstate_is_gigantic(h))
2532                 return -EINVAL;
2533
2534         err = kstrtoul(buf, 10, &input);
2535         if (err)
2536                 return err;
2537
2538         spin_lock(&hugetlb_lock);
2539         h->nr_overcommit_huge_pages = input;
2540         spin_unlock(&hugetlb_lock);
2541
2542         return count;
2543 }
2544 HSTATE_ATTR(nr_overcommit_hugepages);
2545
2546 static ssize_t free_hugepages_show(struct kobject *kobj,
2547                                         struct kobj_attribute *attr, char *buf)
2548 {
2549         struct hstate *h;
2550         unsigned long free_huge_pages;
2551         int nid;
2552
2553         h = kobj_to_hstate(kobj, &nid);
2554         if (nid == NUMA_NO_NODE)
2555                 free_huge_pages = h->free_huge_pages;
2556         else
2557                 free_huge_pages = h->free_huge_pages_node[nid];
2558
2559         return sprintf(buf, "%lu\n", free_huge_pages);
2560 }
2561 HSTATE_ATTR_RO(free_hugepages);
2562
2563 static ssize_t resv_hugepages_show(struct kobject *kobj,
2564                                         struct kobj_attribute *attr, char *buf)
2565 {
2566         struct hstate *h = kobj_to_hstate(kobj, NULL);
2567         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2568 }
2569 HSTATE_ATTR_RO(resv_hugepages);
2570
2571 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2572                                         struct kobj_attribute *attr, char *buf)
2573 {
2574         struct hstate *h;
2575         unsigned long surplus_huge_pages;
2576         int nid;
2577
2578         h = kobj_to_hstate(kobj, &nid);
2579         if (nid == NUMA_NO_NODE)
2580                 surplus_huge_pages = h->surplus_huge_pages;
2581         else
2582                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2583
2584         return sprintf(buf, "%lu\n", surplus_huge_pages);
2585 }
2586 HSTATE_ATTR_RO(surplus_hugepages);
2587
2588 static struct attribute *hstate_attrs[] = {
2589         &nr_hugepages_attr.attr,
2590         &nr_overcommit_hugepages_attr.attr,
2591         &free_hugepages_attr.attr,
2592         &resv_hugepages_attr.attr,
2593         &surplus_hugepages_attr.attr,
2594 #ifdef CONFIG_NUMA
2595         &nr_hugepages_mempolicy_attr.attr,
2596 #endif
2597         NULL,
2598 };
2599
2600 static const struct attribute_group hstate_attr_group = {
2601         .attrs = hstate_attrs,
2602 };
2603
2604 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2605                                     struct kobject **hstate_kobjs,
2606                                     const struct attribute_group *hstate_attr_group)
2607 {
2608         int retval;
2609         int hi = hstate_index(h);
2610
2611         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2612         if (!hstate_kobjs[hi])
2613                 return -ENOMEM;
2614
2615         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2616         if (retval)
2617                 kobject_put(hstate_kobjs[hi]);
2618
2619         return retval;
2620 }
2621
2622 static void __init hugetlb_sysfs_init(void)
2623 {
2624         struct hstate *h;
2625         int err;
2626
2627         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2628         if (!hugepages_kobj)
2629                 return;
2630
2631         for_each_hstate(h) {
2632                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2633                                          hstate_kobjs, &hstate_attr_group);
2634                 if (err)
2635                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2636         }
2637 }
2638
2639 #ifdef CONFIG_NUMA
2640
2641 /*
2642  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2643  * with node devices in node_devices[] using a parallel array.  The array
2644  * index of a node device or _hstate == node id.
2645  * This is here to avoid any static dependency of the node device driver, in
2646  * the base kernel, on the hugetlb module.
2647  */
2648 struct node_hstate {
2649         struct kobject          *hugepages_kobj;
2650         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2651 };
2652 static struct node_hstate node_hstates[MAX_NUMNODES];
2653
2654 /*
2655  * A subset of global hstate attributes for node devices
2656  */
2657 static struct attribute *per_node_hstate_attrs[] = {
2658         &nr_hugepages_attr.attr,
2659         &free_hugepages_attr.attr,
2660         &surplus_hugepages_attr.attr,
2661         NULL,
2662 };
2663
2664 static const struct attribute_group per_node_hstate_attr_group = {
2665         .attrs = per_node_hstate_attrs,
2666 };
2667
2668 /*
2669  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2670  * Returns node id via non-NULL nidp.
2671  */
2672 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2673 {
2674         int nid;
2675
2676         for (nid = 0; nid < nr_node_ids; nid++) {
2677                 struct node_hstate *nhs = &node_hstates[nid];
2678                 int i;
2679                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2680                         if (nhs->hstate_kobjs[i] == kobj) {
2681                                 if (nidp)
2682                                         *nidp = nid;
2683                                 return &hstates[i];
2684                         }
2685         }
2686
2687         BUG();
2688         return NULL;
2689 }
2690
2691 /*
2692  * Unregister hstate attributes from a single node device.
2693  * No-op if no hstate attributes attached.
2694  */
2695 static void hugetlb_unregister_node(struct node *node)
2696 {
2697         struct hstate *h;
2698         struct node_hstate *nhs = &node_hstates[node->dev.id];
2699
2700         if (!nhs->hugepages_kobj)
2701                 return;         /* no hstate attributes */
2702
2703         for_each_hstate(h) {
2704                 int idx = hstate_index(h);
2705                 if (nhs->hstate_kobjs[idx]) {
2706                         kobject_put(nhs->hstate_kobjs[idx]);
2707                         nhs->hstate_kobjs[idx] = NULL;
2708                 }
2709         }
2710
2711         kobject_put(nhs->hugepages_kobj);
2712         nhs->hugepages_kobj = NULL;
2713 }
2714
2715
2716 /*
2717  * Register hstate attributes for a single node device.
2718  * No-op if attributes already registered.
2719  */
2720 static void hugetlb_register_node(struct node *node)
2721 {
2722         struct hstate *h;
2723         struct node_hstate *nhs = &node_hstates[node->dev.id];
2724         int err;
2725
2726         if (nhs->hugepages_kobj)
2727                 return;         /* already allocated */
2728
2729         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2730                                                         &node->dev.kobj);
2731         if (!nhs->hugepages_kobj)
2732                 return;
2733
2734         for_each_hstate(h) {
2735                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2736                                                 nhs->hstate_kobjs,
2737                                                 &per_node_hstate_attr_group);
2738                 if (err) {
2739                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2740                                 h->name, node->dev.id);
2741                         hugetlb_unregister_node(node);
2742                         break;
2743                 }
2744         }
2745 }
2746
2747 /*
2748  * hugetlb init time:  register hstate attributes for all registered node
2749  * devices of nodes that have memory.  All on-line nodes should have
2750  * registered their associated device by this time.
2751  */
2752 static void __init hugetlb_register_all_nodes(void)
2753 {
2754         int nid;
2755
2756         for_each_node_state(nid, N_MEMORY) {
2757                 struct node *node = node_devices[nid];
2758                 if (node->dev.id == nid)
2759                         hugetlb_register_node(node);
2760         }
2761
2762         /*
2763          * Let the node device driver know we're here so it can
2764          * [un]register hstate attributes on node hotplug.
2765          */
2766         register_hugetlbfs_with_node(hugetlb_register_node,
2767                                      hugetlb_unregister_node);
2768 }
2769 #else   /* !CONFIG_NUMA */
2770
2771 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2772 {
2773         BUG();
2774         if (nidp)
2775                 *nidp = -1;
2776         return NULL;
2777 }
2778
2779 static void hugetlb_register_all_nodes(void) { }
2780
2781 #endif
2782
2783 static int __init hugetlb_init(void)
2784 {
2785         int i;
2786
2787         if (!hugepages_supported())
2788                 return 0;
2789
2790         if (!size_to_hstate(default_hstate_size)) {
2791                 if (default_hstate_size != 0) {
2792                         pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2793                                default_hstate_size, HPAGE_SIZE);
2794                 }
2795
2796                 default_hstate_size = HPAGE_SIZE;
2797                 if (!size_to_hstate(default_hstate_size))
2798                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2799         }
2800         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2801         if (default_hstate_max_huge_pages) {
2802                 if (!default_hstate.max_huge_pages)
2803                         default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2804         }
2805
2806         hugetlb_init_hstates();
2807         gather_bootmem_prealloc();
2808         report_hugepages();
2809
2810         hugetlb_sysfs_init();
2811         hugetlb_register_all_nodes();
2812         hugetlb_cgroup_file_init();
2813
2814 #ifdef CONFIG_SMP
2815         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2816 #else
2817         num_fault_mutexes = 1;
2818 #endif
2819         hugetlb_fault_mutex_table =
2820                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2821                               GFP_KERNEL);
2822         BUG_ON(!hugetlb_fault_mutex_table);
2823
2824         for (i = 0; i < num_fault_mutexes; i++)
2825                 mutex_init(&hugetlb_fault_mutex_table[i]);
2826         return 0;
2827 }
2828 subsys_initcall(hugetlb_init);
2829
2830 /* Should be called on processing a hugepagesz=... option */
2831 void __init hugetlb_bad_size(void)
2832 {
2833         parsed_valid_hugepagesz = false;
2834 }
2835
2836 void __init hugetlb_add_hstate(unsigned int order)
2837 {
2838         struct hstate *h;
2839         unsigned long i;
2840
2841         if (size_to_hstate(PAGE_SIZE << order)) {
2842                 pr_warn("hugepagesz= specified twice, ignoring\n");
2843                 return;
2844         }
2845         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2846         BUG_ON(order == 0);
2847         h = &hstates[hugetlb_max_hstate++];
2848         h->order = order;
2849         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2850         h->nr_huge_pages = 0;
2851         h->free_huge_pages = 0;
2852         for (i = 0; i < MAX_NUMNODES; ++i)
2853                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2854         INIT_LIST_HEAD(&h->hugepage_activelist);
2855         h->next_nid_to_alloc = first_memory_node;
2856         h->next_nid_to_free = first_memory_node;
2857         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2858                                         huge_page_size(h)/1024);
2859
2860         parsed_hstate = h;
2861 }
2862
2863 static int __init hugetlb_nrpages_setup(char *s)
2864 {
2865         unsigned long *mhp;
2866         static unsigned long *last_mhp;
2867
2868         if (!parsed_valid_hugepagesz) {
2869                 pr_warn("hugepages = %s preceded by "
2870                         "an unsupported hugepagesz, ignoring\n", s);
2871                 parsed_valid_hugepagesz = true;
2872                 return 1;
2873         }
2874         /*
2875          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2876          * so this hugepages= parameter goes to the "default hstate".
2877          */
2878         else if (!hugetlb_max_hstate)
2879                 mhp = &default_hstate_max_huge_pages;
2880         else
2881                 mhp = &parsed_hstate->max_huge_pages;
2882
2883         if (mhp == last_mhp) {
2884                 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2885                 return 1;
2886         }
2887
2888         if (sscanf(s, "%lu", mhp) <= 0)
2889                 *mhp = 0;
2890
2891         /*
2892          * Global state is always initialized later in hugetlb_init.
2893          * But we need to allocate >= MAX_ORDER hstates here early to still
2894          * use the bootmem allocator.
2895          */
2896         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2897                 hugetlb_hstate_alloc_pages(parsed_hstate);
2898
2899         last_mhp = mhp;
2900
2901         return 1;
2902 }
2903 __setup("hugepages=", hugetlb_nrpages_setup);
2904
2905 static int __init hugetlb_default_setup(char *s)
2906 {
2907         default_hstate_size = memparse(s, &s);
2908         return 1;
2909 }
2910 __setup("default_hugepagesz=", hugetlb_default_setup);
2911
2912 static unsigned int cpuset_mems_nr(unsigned int *array)
2913 {
2914         int node;
2915         unsigned int nr = 0;
2916
2917         for_each_node_mask(node, cpuset_current_mems_allowed)
2918                 nr += array[node];
2919
2920         return nr;
2921 }
2922
2923 #ifdef CONFIG_SYSCTL
2924 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2925                          struct ctl_table *table, int write,
2926                          void __user *buffer, size_t *length, loff_t *ppos)
2927 {
2928         struct hstate *h = &default_hstate;
2929         unsigned long tmp = h->max_huge_pages;
2930         int ret;
2931
2932         if (!hugepages_supported())
2933                 return -EOPNOTSUPP;
2934
2935         table->data = &tmp;
2936         table->maxlen = sizeof(unsigned long);
2937         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2938         if (ret)
2939                 goto out;
2940
2941         if (write)
2942                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2943                                                   NUMA_NO_NODE, tmp, *length);
2944 out:
2945         return ret;
2946 }
2947
2948 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2949                           void __user *buffer, size_t *length, loff_t *ppos)
2950 {
2951
2952         return hugetlb_sysctl_handler_common(false, table, write,
2953                                                         buffer, length, ppos);
2954 }
2955
2956 #ifdef CONFIG_NUMA
2957 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2958                           void __user *buffer, size_t *length, loff_t *ppos)
2959 {
2960         return hugetlb_sysctl_handler_common(true, table, write,
2961                                                         buffer, length, ppos);
2962 }
2963 #endif /* CONFIG_NUMA */
2964
2965 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2966                         void __user *buffer,
2967                         size_t *length, loff_t *ppos)
2968 {
2969         struct hstate *h = &default_hstate;
2970         unsigned long tmp;
2971         int ret;
2972
2973         if (!hugepages_supported())
2974                 return -EOPNOTSUPP;
2975
2976         tmp = h->nr_overcommit_huge_pages;
2977
2978         if (write && hstate_is_gigantic(h))
2979                 return -EINVAL;
2980
2981         table->data = &tmp;
2982         table->maxlen = sizeof(unsigned long);
2983         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2984         if (ret)
2985                 goto out;
2986
2987         if (write) {
2988                 spin_lock(&hugetlb_lock);
2989                 h->nr_overcommit_huge_pages = tmp;
2990                 spin_unlock(&hugetlb_lock);
2991         }
2992 out:
2993         return ret;
2994 }
2995
2996 #endif /* CONFIG_SYSCTL */
2997
2998 void hugetlb_report_meminfo(struct seq_file *m)
2999 {
3000         struct hstate *h;
3001         unsigned long total = 0;
3002
3003         if (!hugepages_supported())
3004                 return;
3005
3006         for_each_hstate(h) {
3007                 unsigned long count = h->nr_huge_pages;
3008
3009                 total += (PAGE_SIZE << huge_page_order(h)) * count;
3010
3011                 if (h == &default_hstate)
3012                         seq_printf(m,
3013                                    "HugePages_Total:   %5lu\n"
3014                                    "HugePages_Free:    %5lu\n"
3015                                    "HugePages_Rsvd:    %5lu\n"
3016                                    "HugePages_Surp:    %5lu\n"
3017                                    "Hugepagesize:   %8lu kB\n",
3018                                    count,
3019                                    h->free_huge_pages,
3020                                    h->resv_huge_pages,
3021                                    h->surplus_huge_pages,
3022                                    (PAGE_SIZE << huge_page_order(h)) / 1024);
3023         }
3024
3025         seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3026 }
3027
3028 int hugetlb_report_node_meminfo(int nid, char *buf)
3029 {
3030         struct hstate *h = &default_hstate;
3031         if (!hugepages_supported())
3032                 return 0;
3033         return sprintf(buf,
3034                 "Node %d HugePages_Total: %5u\n"
3035                 "Node %d HugePages_Free:  %5u\n"
3036                 "Node %d HugePages_Surp:  %5u\n",
3037                 nid, h->nr_huge_pages_node[nid],
3038                 nid, h->free_huge_pages_node[nid],
3039                 nid, h->surplus_huge_pages_node[nid]);
3040 }
3041
3042 void hugetlb_show_meminfo(void)
3043 {
3044         struct hstate *h;
3045         int nid;
3046
3047         if (!hugepages_supported())
3048                 return;
3049
3050         for_each_node_state(nid, N_MEMORY)
3051                 for_each_hstate(h)
3052                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3053                                 nid,
3054                                 h->nr_huge_pages_node[nid],
3055                                 h->free_huge_pages_node[nid],
3056                                 h->surplus_huge_pages_node[nid],
3057                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3058 }
3059
3060 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3061 {
3062         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3063                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3064 }
3065
3066 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3067 unsigned long hugetlb_total_pages(void)
3068 {
3069         struct hstate *h;
3070         unsigned long nr_total_pages = 0;
3071
3072         for_each_hstate(h)
3073                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3074         return nr_total_pages;
3075 }
3076
3077 static int hugetlb_acct_memory(struct hstate *h, long delta)
3078 {
3079         int ret = -ENOMEM;
3080
3081         spin_lock(&hugetlb_lock);
3082         /*
3083          * When cpuset is configured, it breaks the strict hugetlb page
3084          * reservation as the accounting is done on a global variable. Such
3085          * reservation is completely rubbish in the presence of cpuset because
3086          * the reservation is not checked against page availability for the
3087          * current cpuset. Application can still potentially OOM'ed by kernel
3088          * with lack of free htlb page in cpuset that the task is in.
3089          * Attempt to enforce strict accounting with cpuset is almost
3090          * impossible (or too ugly) because cpuset is too fluid that
3091          * task or memory node can be dynamically moved between cpusets.
3092          *
3093          * The change of semantics for shared hugetlb mapping with cpuset is
3094          * undesirable. However, in order to preserve some of the semantics,
3095          * we fall back to check against current free page availability as
3096          * a best attempt and hopefully to minimize the impact of changing
3097          * semantics that cpuset has.
3098          */
3099         if (delta > 0) {
3100                 if (gather_surplus_pages(h, delta) < 0)
3101                         goto out;
3102
3103                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3104                         return_unused_surplus_pages(h, delta);
3105                         goto out;
3106                 }
3107         }
3108
3109         ret = 0;
3110         if (delta < 0)
3111                 return_unused_surplus_pages(h, (unsigned long) -delta);
3112
3113 out:
3114         spin_unlock(&hugetlb_lock);
3115         return ret;
3116 }
3117
3118 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3119 {
3120         struct resv_map *resv = vma_resv_map(vma);
3121
3122         /*
3123          * This new VMA should share its siblings reservation map if present.
3124          * The VMA will only ever have a valid reservation map pointer where
3125          * it is being copied for another still existing VMA.  As that VMA
3126          * has a reference to the reservation map it cannot disappear until
3127          * after this open call completes.  It is therefore safe to take a
3128          * new reference here without additional locking.
3129          */
3130         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3131                 kref_get(&resv->refs);
3132 }
3133
3134 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3135 {
3136         struct hstate *h = hstate_vma(vma);
3137         struct resv_map *resv = vma_resv_map(vma);
3138         struct hugepage_subpool *spool = subpool_vma(vma);
3139         unsigned long reserve, start, end;
3140         long gbl_reserve;
3141
3142         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3143                 return;
3144
3145         start = vma_hugecache_offset(h, vma, vma->vm_start);
3146         end = vma_hugecache_offset(h, vma, vma->vm_end);
3147
3148         reserve = (end - start) - region_count(resv, start, end);
3149
3150         kref_put(&resv->refs, resv_map_release);
3151
3152         if (reserve) {
3153                 /*
3154                  * Decrement reserve counts.  The global reserve count may be
3155                  * adjusted if the subpool has a minimum size.
3156                  */
3157                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3158                 hugetlb_acct_memory(h, -gbl_reserve);
3159         }
3160 }
3161
3162 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3163 {
3164         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3165                 return -EINVAL;
3166         return 0;
3167 }
3168
3169 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3170 {
3171         struct hstate *hstate = hstate_vma(vma);
3172
3173         return 1UL << huge_page_shift(hstate);
3174 }
3175
3176 /*
3177  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3178  * handle_mm_fault() to try to instantiate regular-sized pages in the
3179  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3180  * this far.
3181  */
3182 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3183 {
3184         BUG();
3185         return 0;
3186 }
3187
3188 /*
3189  * When a new function is introduced to vm_operations_struct and added
3190  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3191  * This is because under System V memory model, mappings created via
3192  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3193  * their original vm_ops are overwritten with shm_vm_ops.
3194  */
3195 const struct vm_operations_struct hugetlb_vm_ops = {
3196         .fault = hugetlb_vm_op_fault,
3197         .open = hugetlb_vm_op_open,
3198         .close = hugetlb_vm_op_close,
3199         .split = hugetlb_vm_op_split,
3200         .pagesize = hugetlb_vm_op_pagesize,
3201 };
3202
3203 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3204                                 int writable)
3205 {
3206         pte_t entry;
3207
3208         if (writable) {
3209                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3210                                          vma->vm_page_prot)));
3211         } else {
3212                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3213                                            vma->vm_page_prot));
3214         }
3215         entry = pte_mkyoung(entry);
3216         entry = pte_mkhuge(entry);
3217         entry = arch_make_huge_pte(entry, vma, page, writable);
3218
3219         return entry;
3220 }
3221
3222 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3223                                    unsigned long address, pte_t *ptep)
3224 {
3225         pte_t entry;
3226
3227         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3228         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3229                 update_mmu_cache(vma, address, ptep);
3230 }
3231
3232 bool is_hugetlb_entry_migration(pte_t pte)
3233 {
3234         swp_entry_t swp;
3235
3236         if (huge_pte_none(pte) || pte_present(pte))
3237                 return false;
3238         swp = pte_to_swp_entry(pte);
3239         if (non_swap_entry(swp) && is_migration_entry(swp))
3240                 return true;
3241         else
3242                 return false;
3243 }
3244
3245 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3246 {
3247         swp_entry_t swp;
3248
3249         if (huge_pte_none(pte) || pte_present(pte))
3250                 return 0;
3251         swp = pte_to_swp_entry(pte);
3252         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3253                 return 1;
3254         else
3255                 return 0;
3256 }
3257
3258 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3259                             struct vm_area_struct *vma)
3260 {
3261         pte_t *src_pte, *dst_pte, entry, dst_entry;
3262         struct page *ptepage;
3263         unsigned long addr;
3264         int cow;
3265         struct hstate *h = hstate_vma(vma);
3266         unsigned long sz = huge_page_size(h);
3267         struct mmu_notifier_range range;
3268         int ret = 0;
3269
3270         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3271
3272         if (cow) {
3273                 mmu_notifier_range_init(&range, src, vma->vm_start,
3274                                         vma->vm_end);
3275                 mmu_notifier_invalidate_range_start(&range);
3276         }
3277
3278         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3279                 spinlock_t *src_ptl, *dst_ptl;
3280                 src_pte = huge_pte_offset(src, addr, sz);
3281                 if (!src_pte)
3282                         continue;
3283                 dst_pte = huge_pte_alloc(dst, addr, sz);
3284                 if (!dst_pte) {
3285                         ret = -ENOMEM;
3286                         break;
3287                 }
3288
3289                 /*
3290                  * If the pagetables are shared don't copy or take references.
3291                  * dst_pte == src_pte is the common case of src/dest sharing.
3292                  *
3293                  * However, src could have 'unshared' and dst shares with
3294                  * another vma.  If dst_pte !none, this implies sharing.
3295                  * Check here before taking page table lock, and once again
3296                  * after taking the lock below.
3297                  */
3298                 dst_entry = huge_ptep_get(dst_pte);
3299                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3300                         continue;
3301
3302                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3303                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3304                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3305                 entry = huge_ptep_get(src_pte);
3306                 dst_entry = huge_ptep_get(dst_pte);
3307                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3308                         /*
3309                          * Skip if src entry none.  Also, skip in the
3310                          * unlikely case dst entry !none as this implies
3311                          * sharing with another vma.
3312                          */
3313                         ;
3314                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3315                                     is_hugetlb_entry_hwpoisoned(entry))) {
3316                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3317
3318                         if (is_write_migration_entry(swp_entry) && cow) {
3319                                 /*
3320                                  * COW mappings require pages in both
3321                                  * parent and child to be set to read.
3322                                  */
3323                                 make_migration_entry_read(&swp_entry);
3324                                 entry = swp_entry_to_pte(swp_entry);
3325                                 set_huge_swap_pte_at(src, addr, src_pte,
3326                                                      entry, sz);
3327                         }
3328                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3329                 } else {
3330                         if (cow) {
3331                                 /*
3332                                  * No need to notify as we are downgrading page
3333                                  * table protection not changing it to point
3334                                  * to a new page.
3335                                  *
3336                                  * See Documentation/vm/mmu_notifier.rst
3337                                  */
3338                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3339                         }
3340                         entry = huge_ptep_get(src_pte);
3341                         ptepage = pte_page(entry);
3342                         get_page(ptepage);
3343                         page_dup_rmap(ptepage, true);
3344                         set_huge_pte_at(dst, addr, dst_pte, entry);
3345                         hugetlb_count_add(pages_per_huge_page(h), dst);
3346                 }
3347                 spin_unlock(src_ptl);
3348                 spin_unlock(dst_ptl);
3349         }
3350
3351         if (cow)
3352                 mmu_notifier_invalidate_range_end(&range);
3353
3354         return ret;
3355 }
3356
3357 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3358                             unsigned long start, unsigned long end,
3359                             struct page *ref_page)
3360 {
3361         struct mm_struct *mm = vma->vm_mm;
3362         unsigned long address;
3363         pte_t *ptep;
3364         pte_t pte;
3365         spinlock_t *ptl;
3366         struct page *page;
3367         struct hstate *h = hstate_vma(vma);
3368         unsigned long sz = huge_page_size(h);
3369         struct mmu_notifier_range range;
3370
3371         WARN_ON(!is_vm_hugetlb_page(vma));
3372         BUG_ON(start & ~huge_page_mask(h));
3373         BUG_ON(end & ~huge_page_mask(h));
3374
3375         /*
3376          * This is a hugetlb vma, all the pte entries should point
3377          * to huge page.
3378          */
3379         tlb_change_page_size(tlb, sz);
3380         tlb_start_vma(tlb, vma);
3381
3382         /*
3383          * If sharing possible, alert mmu notifiers of worst case.
3384          */
3385         mmu_notifier_range_init(&range, mm, start, end);
3386         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3387         mmu_notifier_invalidate_range_start(&range);
3388         address = start;
3389         for (; address < end; address += sz) {
3390                 ptep = huge_pte_offset(mm, address, sz);
3391                 if (!ptep)
3392                         continue;
3393
3394                 ptl = huge_pte_lock(h, mm, ptep);
3395                 if (huge_pmd_unshare(mm, &address, ptep)) {
3396                         spin_unlock(ptl);
3397                         /*
3398                          * We just unmapped a page of PMDs by clearing a PUD.
3399                          * The caller's TLB flush range should cover this area.
3400                          */
3401                         continue;
3402                 }
3403
3404                 pte = huge_ptep_get(ptep);
3405                 if (huge_pte_none(pte)) {
3406                         spin_unlock(ptl);
3407                         continue;
3408                 }
3409
3410                 /*
3411                  * Migrating hugepage or HWPoisoned hugepage is already
3412                  * unmapped and its refcount is dropped, so just clear pte here.
3413                  */
3414                 if (unlikely(!pte_present(pte))) {
3415                         huge_pte_clear(mm, address, ptep, sz);
3416                         spin_unlock(ptl);
3417                         continue;
3418                 }
3419
3420                 page = pte_page(pte);
3421                 /*
3422                  * If a reference page is supplied, it is because a specific
3423                  * page is being unmapped, not a range. Ensure the page we
3424                  * are about to unmap is the actual page of interest.
3425                  */
3426                 if (ref_page) {
3427                         if (page != ref_page) {
3428                                 spin_unlock(ptl);
3429                                 continue;
3430                         }
3431                         /*
3432                          * Mark the VMA as having unmapped its page so that
3433                          * future faults in this VMA will fail rather than
3434                          * looking like data was lost
3435                          */
3436                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3437                 }
3438
3439                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3440                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3441                 if (huge_pte_dirty(pte))
3442                         set_page_dirty(page);
3443
3444                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3445                 page_remove_rmap(page, true);
3446
3447                 spin_unlock(ptl);
3448                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3449                 /*
3450                  * Bail out after unmapping reference page if supplied
3451                  */
3452                 if (ref_page)
3453                         break;
3454         }
3455         mmu_notifier_invalidate_range_end(&range);
3456         tlb_end_vma(tlb, vma);
3457 }
3458
3459 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3460                           struct vm_area_struct *vma, unsigned long start,
3461                           unsigned long end, struct page *ref_page)
3462 {
3463         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3464
3465         /*
3466          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3467          * test will fail on a vma being torn down, and not grab a page table
3468          * on its way out.  We're lucky that the flag has such an appropriate
3469          * name, and can in fact be safely cleared here. We could clear it
3470          * before the __unmap_hugepage_range above, but all that's necessary
3471          * is to clear it before releasing the i_mmap_rwsem. This works
3472          * because in the context this is called, the VMA is about to be
3473          * destroyed and the i_mmap_rwsem is held.
3474          */
3475         vma->vm_flags &= ~VM_MAYSHARE;
3476 }
3477
3478 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3479                           unsigned long end, struct page *ref_page)
3480 {
3481         struct mm_struct *mm;
3482         struct mmu_gather tlb;
3483         unsigned long tlb_start = start;
3484         unsigned long tlb_end = end;
3485
3486         /*
3487          * If shared PMDs were possibly used within this vma range, adjust
3488          * start/end for worst case tlb flushing.
3489          * Note that we can not be sure if PMDs are shared until we try to
3490          * unmap pages.  However, we want to make sure TLB flushing covers
3491          * the largest possible range.
3492          */
3493         adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3494
3495         mm = vma->vm_mm;
3496
3497         tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3498         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3499         tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3500 }
3501
3502 /*
3503  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3504  * mappping it owns the reserve page for. The intention is to unmap the page
3505  * from other VMAs and let the children be SIGKILLed if they are faulting the
3506  * same region.
3507  */
3508 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3509                               struct page *page, unsigned long address)
3510 {
3511         struct hstate *h = hstate_vma(vma);
3512         struct vm_area_struct *iter_vma;
3513         struct address_space *mapping;
3514         pgoff_t pgoff;
3515
3516         /*
3517          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3518          * from page cache lookup which is in HPAGE_SIZE units.
3519          */
3520         address = address & huge_page_mask(h);
3521         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3522                         vma->vm_pgoff;
3523         mapping = vma->vm_file->f_mapping;
3524
3525         /*
3526          * Take the mapping lock for the duration of the table walk. As
3527          * this mapping should be shared between all the VMAs,
3528          * __unmap_hugepage_range() is called as the lock is already held
3529          */
3530         i_mmap_lock_write(mapping);
3531         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3532                 /* Do not unmap the current VMA */
3533                 if (iter_vma == vma)
3534                         continue;
3535
3536                 /*
3537                  * Shared VMAs have their own reserves and do not affect
3538                  * MAP_PRIVATE accounting but it is possible that a shared
3539                  * VMA is using the same page so check and skip such VMAs.
3540                  */
3541                 if (iter_vma->vm_flags & VM_MAYSHARE)
3542                         continue;
3543
3544                 /*
3545                  * Unmap the page from other VMAs without their own reserves.
3546                  * They get marked to be SIGKILLed if they fault in these
3547                  * areas. This is because a future no-page fault on this VMA
3548                  * could insert a zeroed page instead of the data existing
3549                  * from the time of fork. This would look like data corruption
3550                  */
3551                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3552                         unmap_hugepage_range(iter_vma, address,
3553                                              address + huge_page_size(h), page);
3554         }
3555         i_mmap_unlock_write(mapping);
3556 }
3557
3558 /*
3559  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3560  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3561  * cannot race with other handlers or page migration.
3562  * Keep the pte_same checks anyway to make transition from the mutex easier.
3563  */
3564 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3565                        unsigned long address, pte_t *ptep,
3566                        struct page *pagecache_page, spinlock_t *ptl)
3567 {
3568         pte_t pte;
3569         struct hstate *h = hstate_vma(vma);
3570         struct page *old_page, *new_page;
3571         int outside_reserve = 0;
3572         vm_fault_t ret = 0;
3573         unsigned long haddr = address & huge_page_mask(h);
3574         struct mmu_notifier_range range;
3575
3576         pte = huge_ptep_get(ptep);
3577         old_page = pte_page(pte);
3578
3579 retry_avoidcopy:
3580         /* If no-one else is actually using this page, avoid the copy
3581          * and just make the page writable */
3582         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3583                 page_move_anon_rmap(old_page, vma);
3584                 set_huge_ptep_writable(vma, haddr, ptep);
3585                 return 0;
3586         }
3587
3588         /*
3589          * If the process that created a MAP_PRIVATE mapping is about to
3590          * perform a COW due to a shared page count, attempt to satisfy
3591          * the allocation without using the existing reserves. The pagecache
3592          * page is used to determine if the reserve at this address was
3593          * consumed or not. If reserves were used, a partial faulted mapping
3594          * at the time of fork() could consume its reserves on COW instead
3595          * of the full address range.
3596          */
3597         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3598                         old_page != pagecache_page)
3599                 outside_reserve = 1;
3600
3601         get_page(old_page);
3602
3603         /*
3604          * Drop page table lock as buddy allocator may be called. It will
3605          * be acquired again before returning to the caller, as expected.
3606          */
3607         spin_unlock(ptl);
3608         new_page = alloc_huge_page(vma, haddr, outside_reserve);
3609
3610         if (IS_ERR(new_page)) {
3611                 /*
3612                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3613                  * it is due to references held by a child and an insufficient
3614                  * huge page pool. To guarantee the original mappers
3615                  * reliability, unmap the page from child processes. The child
3616                  * may get SIGKILLed if it later faults.
3617                  */
3618                 if (outside_reserve) {
3619                         put_page(old_page);
3620                         BUG_ON(huge_pte_none(pte));
3621                         unmap_ref_private(mm, vma, old_page, haddr);
3622                         BUG_ON(huge_pte_none(pte));
3623                         spin_lock(ptl);
3624                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3625                         if (likely(ptep &&
3626                                    pte_same(huge_ptep_get(ptep), pte)))
3627                                 goto retry_avoidcopy;
3628                         /*
3629                          * race occurs while re-acquiring page table
3630                          * lock, and our job is done.
3631                          */
3632                         return 0;
3633                 }
3634
3635                 ret = vmf_error(PTR_ERR(new_page));
3636                 goto out_release_old;
3637         }
3638
3639         /*
3640          * When the original hugepage is shared one, it does not have
3641          * anon_vma prepared.
3642          */
3643         if (unlikely(anon_vma_prepare(vma))) {
3644                 ret = VM_FAULT_OOM;
3645                 goto out_release_all;
3646         }
3647
3648         copy_user_huge_page(new_page, old_page, address, vma,
3649                             pages_per_huge_page(h));
3650         __SetPageUptodate(new_page);
3651
3652         mmu_notifier_range_init(&range, mm, haddr, haddr + huge_page_size(h));
3653         mmu_notifier_invalidate_range_start(&range);
3654
3655         /*
3656          * Retake the page table lock to check for racing updates
3657          * before the page tables are altered
3658          */
3659         spin_lock(ptl);
3660         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3661         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3662                 ClearPagePrivate(new_page);
3663
3664                 /* Break COW */
3665                 huge_ptep_clear_flush(vma, haddr, ptep);
3666                 mmu_notifier_invalidate_range(mm, range.start, range.end);
3667                 set_huge_pte_at(mm, haddr, ptep,
3668                                 make_huge_pte(vma, new_page, 1));
3669                 page_remove_rmap(old_page, true);
3670                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3671                 set_page_huge_active(new_page);
3672                 /* Make the old page be freed below */
3673                 new_page = old_page;
3674         }
3675         spin_unlock(ptl);
3676         mmu_notifier_invalidate_range_end(&range);
3677 out_release_all:
3678         restore_reserve_on_error(h, vma, haddr, new_page);
3679         put_page(new_page);
3680 out_release_old:
3681         put_page(old_page);
3682
3683         spin_lock(ptl); /* Caller expects lock to be held */
3684         return ret;
3685 }
3686
3687 /* Return the pagecache page at a given address within a VMA */
3688 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3689                         struct vm_area_struct *vma, unsigned long address)
3690 {
3691         struct address_space *mapping;
3692         pgoff_t idx;
3693
3694         mapping = vma->vm_file->f_mapping;
3695         idx = vma_hugecache_offset(h, vma, address);
3696
3697         return find_lock_page(mapping, idx);
3698 }
3699
3700 /*
3701  * Return whether there is a pagecache page to back given address within VMA.
3702  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3703  */
3704 static bool hugetlbfs_pagecache_present(struct hstate *h,
3705                         struct vm_area_struct *vma, unsigned long address)
3706 {
3707         struct address_space *mapping;
3708         pgoff_t idx;
3709         struct page *page;
3710
3711         mapping = vma->vm_file->f_mapping;
3712         idx = vma_hugecache_offset(h, vma, address);
3713
3714         page = find_get_page(mapping, idx);
3715         if (page)
3716                 put_page(page);
3717         return page != NULL;
3718 }
3719
3720 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3721                            pgoff_t idx)
3722 {
3723         struct inode *inode = mapping->host;
3724         struct hstate *h = hstate_inode(inode);
3725         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3726
3727         if (err)
3728                 return err;
3729         ClearPagePrivate(page);
3730
3731         /*
3732          * set page dirty so that it will not be removed from cache/file
3733          * by non-hugetlbfs specific code paths.
3734          */
3735         set_page_dirty(page);
3736
3737         spin_lock(&inode->i_lock);
3738         inode->i_blocks += blocks_per_huge_page(h);
3739         spin_unlock(&inode->i_lock);
3740         return 0;
3741 }
3742
3743 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3744                         struct vm_area_struct *vma,
3745                         struct address_space *mapping, pgoff_t idx,
3746                         unsigned long address, pte_t *ptep, unsigned int flags)
3747 {
3748         struct hstate *h = hstate_vma(vma);
3749         vm_fault_t ret = VM_FAULT_SIGBUS;
3750         int anon_rmap = 0;
3751         unsigned long size;
3752         struct page *page;
3753         pte_t new_pte;
3754         spinlock_t *ptl;
3755         unsigned long haddr = address & huge_page_mask(h);
3756         bool new_page = false;
3757
3758         /*
3759          * Currently, we are forced to kill the process in the event the
3760          * original mapper has unmapped pages from the child due to a failed
3761          * COW. Warn that such a situation has occurred as it may not be obvious
3762          */
3763         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3764                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3765                            current->pid);
3766                 return ret;
3767         }
3768
3769         /*
3770          * Use page lock to guard against racing truncation
3771          * before we get page_table_lock.
3772          */
3773 retry:
3774         page = find_lock_page(mapping, idx);
3775         if (!page) {
3776                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3777                 if (idx >= size)
3778                         goto out;
3779
3780                 /*
3781                  * Check for page in userfault range
3782                  */
3783                 if (userfaultfd_missing(vma)) {
3784                         u32 hash;
3785                         struct vm_fault vmf = {
3786                                 .vma = vma,
3787                                 .address = haddr,
3788                                 .flags = flags,
3789                                 /*
3790                                  * Hard to debug if it ends up being
3791                                  * used by a callee that assumes
3792                                  * something about the other
3793                                  * uninitialized fields... same as in
3794                                  * memory.c
3795                                  */
3796                         };
3797
3798                         /*
3799                          * hugetlb_fault_mutex must be dropped before
3800                          * handling userfault.  Reacquire after handling
3801                          * fault to make calling code simpler.
3802                          */
3803                         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3804                                                         idx, haddr);
3805                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3806                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3807                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3808                         goto out;
3809                 }
3810
3811                 page = alloc_huge_page(vma, haddr, 0);
3812                 if (IS_ERR(page)) {
3813                         ret = vmf_error(PTR_ERR(page));
3814                         goto out;
3815                 }
3816                 clear_huge_page(page, address, pages_per_huge_page(h));
3817                 __SetPageUptodate(page);
3818                 new_page = true;
3819
3820                 if (vma->vm_flags & VM_MAYSHARE) {
3821                         int err = huge_add_to_page_cache(page, mapping, idx);
3822                         if (err) {
3823                                 put_page(page);
3824                                 if (err == -EEXIST)
3825                                         goto retry;
3826                                 goto out;
3827                         }
3828                 } else {
3829                         lock_page(page);
3830                         if (unlikely(anon_vma_prepare(vma))) {
3831                                 ret = VM_FAULT_OOM;
3832                                 goto backout_unlocked;
3833                         }
3834                         anon_rmap = 1;
3835                 }
3836         } else {
3837                 /*
3838                  * If memory error occurs between mmap() and fault, some process
3839                  * don't have hwpoisoned swap entry for errored virtual address.
3840                  * So we need to block hugepage fault by PG_hwpoison bit check.
3841                  */
3842                 if (unlikely(PageHWPoison(page))) {
3843                         ret = VM_FAULT_HWPOISON |
3844                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3845                         goto backout_unlocked;
3846                 }
3847         }
3848
3849         /*
3850          * If we are going to COW a private mapping later, we examine the
3851          * pending reservations for this page now. This will ensure that
3852          * any allocations necessary to record that reservation occur outside
3853          * the spinlock.
3854          */
3855         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3856                 if (vma_needs_reservation(h, vma, haddr) < 0) {
3857                         ret = VM_FAULT_OOM;
3858                         goto backout_unlocked;
3859                 }
3860                 /* Just decrements count, does not deallocate */
3861                 vma_end_reservation(h, vma, haddr);
3862         }
3863
3864         ptl = huge_pte_lock(h, mm, ptep);
3865         size = i_size_read(mapping->host) >> huge_page_shift(h);
3866         if (idx >= size)
3867                 goto backout;
3868
3869         ret = 0;
3870         if (!huge_pte_none(huge_ptep_get(ptep)))
3871                 goto backout;
3872
3873         if (anon_rmap) {
3874                 ClearPagePrivate(page);
3875                 hugepage_add_new_anon_rmap(page, vma, haddr);
3876         } else
3877                 page_dup_rmap(page, true);
3878         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3879                                 && (vma->vm_flags & VM_SHARED)));
3880         set_huge_pte_at(mm, haddr, ptep, new_pte);
3881
3882         hugetlb_count_add(pages_per_huge_page(h), mm);
3883         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3884                 /* Optimization, do the COW without a second fault */
3885                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3886         }
3887
3888         spin_unlock(ptl);
3889
3890         /*
3891          * Only make newly allocated pages active.  Existing pages found
3892          * in the pagecache could be !page_huge_active() if they have been
3893          * isolated for migration.
3894          */
3895         if (new_page)
3896                 set_page_huge_active(page);
3897
3898         unlock_page(page);
3899 out:
3900         return ret;
3901
3902 backout:
3903         spin_unlock(ptl);
3904 backout_unlocked:
3905         unlock_page(page);
3906         restore_reserve_on_error(h, vma, haddr, page);
3907         put_page(page);
3908         goto out;
3909 }
3910
3911 #ifdef CONFIG_SMP
3912 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3913                             struct vm_area_struct *vma,
3914                             struct address_space *mapping,
3915                             pgoff_t idx, unsigned long address)
3916 {
3917         unsigned long key[2];
3918         u32 hash;
3919
3920         if (vma->vm_flags & VM_SHARED) {
3921                 key[0] = (unsigned long) mapping;
3922                 key[1] = idx;
3923         } else {
3924                 key[0] = (unsigned long) mm;
3925                 key[1] = address >> huge_page_shift(h);
3926         }
3927
3928         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3929
3930         return hash & (num_fault_mutexes - 1);
3931 }
3932 #else
3933 /*
3934  * For uniprocesor systems we always use a single mutex, so just
3935  * return 0 and avoid the hashing overhead.
3936  */
3937 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3938                             struct vm_area_struct *vma,
3939                             struct address_space *mapping,
3940                             pgoff_t idx, unsigned long address)
3941 {
3942         return 0;
3943 }
3944 #endif
3945
3946 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3947                         unsigned long address, unsigned int flags)
3948 {
3949         pte_t *ptep, entry;
3950         spinlock_t *ptl;
3951         vm_fault_t ret;
3952         u32 hash;
3953         pgoff_t idx;
3954         struct page *page = NULL;
3955         struct page *pagecache_page = NULL;
3956         struct hstate *h = hstate_vma(vma);
3957         struct address_space *mapping;
3958         int need_wait_lock = 0;
3959         unsigned long haddr = address & huge_page_mask(h);
3960
3961         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3962         if (ptep) {
3963                 entry = huge_ptep_get(ptep);
3964                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3965                         migration_entry_wait_huge(vma, mm, ptep);
3966                         return 0;
3967                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3968                         return VM_FAULT_HWPOISON_LARGE |
3969                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3970         } else {
3971                 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3972                 if (!ptep)
3973                         return VM_FAULT_OOM;
3974         }
3975
3976         mapping = vma->vm_file->f_mapping;
3977         idx = vma_hugecache_offset(h, vma, haddr);
3978
3979         /*
3980          * Serialize hugepage allocation and instantiation, so that we don't
3981          * get spurious allocation failures if two CPUs race to instantiate
3982          * the same page in the page cache.
3983          */
3984         hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, haddr);
3985         mutex_lock(&hugetlb_fault_mutex_table[hash]);
3986
3987         entry = huge_ptep_get(ptep);
3988         if (huge_pte_none(entry)) {
3989                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3990                 goto out_mutex;
3991         }
3992
3993         ret = 0;
3994
3995         /*
3996          * entry could be a migration/hwpoison entry at this point, so this
3997          * check prevents the kernel from going below assuming that we have
3998          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3999          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4000          * handle it.
4001          */
4002         if (!pte_present(entry))
4003                 goto out_mutex;
4004
4005         /*
4006          * If we are going to COW the mapping later, we examine the pending
4007          * reservations for this page now. This will ensure that any
4008          * allocations necessary to record that reservation occur outside the
4009          * spinlock. For private mappings, we also lookup the pagecache
4010          * page now as it is used to determine if a reservation has been
4011          * consumed.
4012          */
4013         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4014                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4015                         ret = VM_FAULT_OOM;
4016                         goto out_mutex;
4017                 }
4018                 /* Just decrements count, does not deallocate */
4019                 vma_end_reservation(h, vma, haddr);
4020
4021                 if (!(vma->vm_flags & VM_MAYSHARE))
4022                         pagecache_page = hugetlbfs_pagecache_page(h,
4023                                                                 vma, haddr);
4024         }
4025
4026         ptl = huge_pte_lock(h, mm, ptep);
4027
4028         /* Check for a racing update before calling hugetlb_cow */
4029         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4030                 goto out_ptl;
4031
4032         /*
4033          * hugetlb_cow() requires page locks of pte_page(entry) and
4034          * pagecache_page, so here we need take the former one
4035          * when page != pagecache_page or !pagecache_page.
4036          */
4037         page = pte_page(entry);
4038         if (page != pagecache_page)
4039                 if (!trylock_page(page)) {
4040                         need_wait_lock = 1;
4041                         goto out_ptl;
4042                 }
4043
4044         get_page(page);
4045
4046         if (flags & FAULT_FLAG_WRITE) {
4047                 if (!huge_pte_write(entry)) {
4048                         ret = hugetlb_cow(mm, vma, address, ptep,
4049                                           pagecache_page, ptl);
4050                         goto out_put_page;
4051                 }
4052                 entry = huge_pte_mkdirty(entry);
4053         }
4054         entry = pte_mkyoung(entry);
4055         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4056                                                 flags & FAULT_FLAG_WRITE))
4057                 update_mmu_cache(vma, haddr, ptep);
4058 out_put_page:
4059         if (page != pagecache_page)
4060                 unlock_page(page);
4061         put_page(page);
4062 out_ptl:
4063         spin_unlock(ptl);
4064
4065         if (pagecache_page) {
4066                 unlock_page(pagecache_page);
4067                 put_page(pagecache_page);
4068         }
4069 out_mutex:
4070         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4071         /*
4072          * Generally it's safe to hold refcount during waiting page lock. But
4073          * here we just wait to defer the next page fault to avoid busy loop and
4074          * the page is not used after unlocked before returning from the current
4075          * page fault. So we are safe from accessing freed page, even if we wait
4076          * here without taking refcount.
4077          */
4078         if (need_wait_lock)
4079                 wait_on_page_locked(page);
4080         return ret;
4081 }
4082
4083 /*
4084  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4085  * modifications for huge pages.
4086  */
4087 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4088                             pte_t *dst_pte,
4089                             struct vm_area_struct *dst_vma,
4090                             unsigned long dst_addr,
4091                             unsigned long src_addr,
4092                             struct page **pagep)
4093 {
4094         struct address_space *mapping;
4095         pgoff_t idx;
4096         unsigned long size;
4097         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4098         struct hstate *h = hstate_vma(dst_vma);
4099         pte_t _dst_pte;
4100         spinlock_t *ptl;
4101         int ret;
4102         struct page *page;
4103
4104         if (!*pagep) {
4105                 ret = -ENOMEM;
4106                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4107                 if (IS_ERR(page))
4108                         goto out;
4109
4110                 ret = copy_huge_page_from_user(page,
4111                                                 (const void __user *) src_addr,
4112                                                 pages_per_huge_page(h), false);
4113
4114                 /* fallback to copy_from_user outside mmap_sem */
4115                 if (unlikely(ret)) {
4116                         ret = -ENOENT;
4117                         *pagep = page;
4118                         /* don't free the page */
4119                         goto out;
4120                 }
4121         } else {
4122                 page = *pagep;
4123                 *pagep = NULL;
4124         }
4125
4126         /*
4127          * The memory barrier inside __SetPageUptodate makes sure that
4128          * preceding stores to the page contents become visible before
4129          * the set_pte_at() write.
4130          */
4131         __SetPageUptodate(page);
4132
4133         mapping = dst_vma->vm_file->f_mapping;
4134         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4135
4136         /*
4137          * If shared, add to page cache
4138          */
4139         if (vm_shared) {
4140                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4141                 ret = -EFAULT;
4142                 if (idx >= size)
4143                         goto out_release_nounlock;
4144
4145                 /*
4146                  * Serialization between remove_inode_hugepages() and
4147                  * huge_add_to_page_cache() below happens through the
4148                  * hugetlb_fault_mutex_table that here must be hold by
4149                  * the caller.
4150                  */
4151                 ret = huge_add_to_page_cache(page, mapping, idx);
4152                 if (ret)
4153                         goto out_release_nounlock;
4154         }
4155
4156         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4157         spin_lock(ptl);
4158
4159         /*
4160          * Recheck the i_size after holding PT lock to make sure not
4161          * to leave any page mapped (as page_mapped()) beyond the end
4162          * of the i_size (remove_inode_hugepages() is strict about
4163          * enforcing that). If we bail out here, we'll also leave a
4164          * page in the radix tree in the vm_shared case beyond the end
4165          * of the i_size, but remove_inode_hugepages() will take care
4166          * of it as soon as we drop the hugetlb_fault_mutex_table.
4167          */
4168         size = i_size_read(mapping->host) >> huge_page_shift(h);
4169         ret = -EFAULT;
4170         if (idx >= size)
4171                 goto out_release_unlock;
4172
4173         ret = -EEXIST;
4174         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4175                 goto out_release_unlock;
4176
4177         if (vm_shared) {
4178                 page_dup_rmap(page, true);
4179         } else {
4180                 ClearPagePrivate(page);
4181                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4182         }
4183
4184         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4185         if (dst_vma->vm_flags & VM_WRITE)
4186                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4187         _dst_pte = pte_mkyoung(_dst_pte);
4188
4189         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4190
4191         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4192                                         dst_vma->vm_flags & VM_WRITE);
4193         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4194
4195         /* No need to invalidate - it was non-present before */
4196         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4197
4198         spin_unlock(ptl);
4199         set_page_huge_active(page);
4200         if (vm_shared)
4201                 unlock_page(page);
4202         ret = 0;
4203 out:
4204         return ret;
4205 out_release_unlock:
4206         spin_unlock(ptl);
4207         if (vm_shared)
4208                 unlock_page(page);
4209 out_release_nounlock:
4210         put_page(page);
4211         goto out;
4212 }
4213
4214 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4215                          struct page **pages, struct vm_area_struct **vmas,
4216                          unsigned long *position, unsigned long *nr_pages,
4217                          long i, unsigned int flags, int *nonblocking)
4218 {
4219         unsigned long pfn_offset;
4220         unsigned long vaddr = *position;
4221         unsigned long remainder = *nr_pages;
4222         struct hstate *h = hstate_vma(vma);
4223         int err = -EFAULT;
4224
4225         while (vaddr < vma->vm_end && remainder) {
4226                 pte_t *pte;
4227                 spinlock_t *ptl = NULL;
4228                 int absent;
4229                 struct page *page;
4230
4231                 /*
4232                  * If we have a pending SIGKILL, don't keep faulting pages and
4233                  * potentially allocating memory.
4234                  */
4235                 if (fatal_signal_pending(current)) {
4236                         remainder = 0;
4237                         break;
4238                 }
4239
4240                 /*
4241                  * Some archs (sparc64, sh*) have multiple pte_ts to
4242                  * each hugepage.  We have to make sure we get the
4243                  * first, for the page indexing below to work.
4244                  *
4245                  * Note that page table lock is not held when pte is null.
4246                  */
4247                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4248                                       huge_page_size(h));
4249                 if (pte)
4250                         ptl = huge_pte_lock(h, mm, pte);
4251                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4252
4253                 /*
4254                  * When coredumping, it suits get_dump_page if we just return
4255                  * an error where there's an empty slot with no huge pagecache
4256                  * to back it.  This way, we avoid allocating a hugepage, and
4257                  * the sparse dumpfile avoids allocating disk blocks, but its
4258                  * huge holes still show up with zeroes where they need to be.
4259                  */
4260                 if (absent && (flags & FOLL_DUMP) &&
4261                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4262                         if (pte)
4263                                 spin_unlock(ptl);
4264                         remainder = 0;
4265                         break;
4266                 }
4267
4268                 /*
4269                  * We need call hugetlb_fault for both hugepages under migration
4270                  * (in which case hugetlb_fault waits for the migration,) and
4271                  * hwpoisoned hugepages (in which case we need to prevent the
4272                  * caller from accessing to them.) In order to do this, we use
4273                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4274                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4275                  * both cases, and because we can't follow correct pages
4276                  * directly from any kind of swap entries.
4277                  */
4278                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4279                     ((flags & FOLL_WRITE) &&
4280                       !huge_pte_write(huge_ptep_get(pte)))) {
4281                         vm_fault_t ret;
4282                         unsigned int fault_flags = 0;
4283
4284                         if (pte)
4285                                 spin_unlock(ptl);
4286                         if (flags & FOLL_WRITE)
4287                                 fault_flags |= FAULT_FLAG_WRITE;
4288                         if (nonblocking)
4289                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4290                         if (flags & FOLL_NOWAIT)
4291                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4292                                         FAULT_FLAG_RETRY_NOWAIT;
4293                         if (flags & FOLL_TRIED) {
4294                                 VM_WARN_ON_ONCE(fault_flags &
4295                                                 FAULT_FLAG_ALLOW_RETRY);
4296                                 fault_flags |= FAULT_FLAG_TRIED;
4297                         }
4298                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4299                         if (ret & VM_FAULT_ERROR) {
4300                                 err = vm_fault_to_errno(ret, flags);
4301                                 remainder = 0;
4302                                 break;
4303                         }
4304                         if (ret & VM_FAULT_RETRY) {
4305                                 if (nonblocking &&
4306                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4307                                         *nonblocking = 0;
4308                                 *nr_pages = 0;
4309                                 /*
4310                                  * VM_FAULT_RETRY must not return an
4311                                  * error, it will return zero
4312                                  * instead.
4313                                  *
4314                                  * No need to update "position" as the
4315                                  * caller will not check it after
4316                                  * *nr_pages is set to 0.
4317                                  */
4318                                 return i;
4319                         }
4320                         continue;
4321                 }
4322
4323                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4324                 page = pte_page(huge_ptep_get(pte));
4325
4326                 /*
4327                  * Instead of doing 'try_get_page()' below in the same_page
4328                  * loop, just check the count once here.
4329                  */
4330                 if (unlikely(page_count(page) <= 0)) {
4331                         if (pages) {
4332                                 spin_unlock(ptl);
4333                                 remainder = 0;
4334                                 err = -ENOMEM;
4335                                 break;
4336                         }
4337                 }
4338 same_page:
4339                 if (pages) {
4340                         pages[i] = mem_map_offset(page, pfn_offset);
4341                         get_page(pages[i]);
4342                 }
4343
4344                 if (vmas)
4345                         vmas[i] = vma;
4346
4347                 vaddr += PAGE_SIZE;
4348                 ++pfn_offset;
4349                 --remainder;
4350                 ++i;
4351                 if (vaddr < vma->vm_end && remainder &&
4352                                 pfn_offset < pages_per_huge_page(h)) {
4353                         /*
4354                          * We use pfn_offset to avoid touching the pageframes
4355                          * of this compound page.
4356                          */
4357                         goto same_page;
4358                 }
4359                 spin_unlock(ptl);
4360         }
4361         *nr_pages = remainder;
4362         /*
4363          * setting position is actually required only if remainder is
4364          * not zero but it's faster not to add a "if (remainder)"
4365          * branch.
4366          */
4367         *position = vaddr;
4368
4369         return i ? i : err;
4370 }
4371
4372 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4373 /*
4374  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4375  * implement this.
4376  */
4377 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4378 #endif
4379
4380 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4381                 unsigned long address, unsigned long end, pgprot_t newprot)
4382 {
4383         struct mm_struct *mm = vma->vm_mm;
4384         unsigned long start = address;
4385         pte_t *ptep;
4386         pte_t pte;
4387         struct hstate *h = hstate_vma(vma);
4388         unsigned long pages = 0;
4389         bool shared_pmd = false;
4390         struct mmu_notifier_range range;
4391
4392         /*
4393          * In the case of shared PMDs, the area to flush could be beyond
4394          * start/end.  Set range.start/range.end to cover the maximum possible
4395          * range if PMD sharing is possible.
4396          */
4397         mmu_notifier_range_init(&range, mm, start, end);
4398         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4399
4400         BUG_ON(address >= end);
4401         flush_cache_range(vma, range.start, range.end);
4402
4403         mmu_notifier_invalidate_range_start(&range);
4404         i_mmap_lock_write(vma->vm_file->f_mapping);
4405         for (; address < end; address += huge_page_size(h)) {
4406                 spinlock_t *ptl;
4407                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4408                 if (!ptep)
4409                         continue;
4410                 ptl = huge_pte_lock(h, mm, ptep);
4411                 if (huge_pmd_unshare(mm, &address, ptep)) {
4412                         pages++;
4413                         spin_unlock(ptl);
4414                         shared_pmd = true;
4415                         continue;
4416                 }
4417                 pte = huge_ptep_get(ptep);
4418                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4419                         spin_unlock(ptl);
4420                         continue;
4421                 }
4422                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4423                         swp_entry_t entry = pte_to_swp_entry(pte);
4424
4425                         if (is_write_migration_entry(entry)) {
4426                                 pte_t newpte;
4427
4428                                 make_migration_entry_read(&entry);
4429                                 newpte = swp_entry_to_pte(entry);
4430                                 set_huge_swap_pte_at(mm, address, ptep,
4431                                                      newpte, huge_page_size(h));
4432                                 pages++;
4433                         }
4434                         spin_unlock(ptl);
4435                         continue;
4436                 }
4437                 if (!huge_pte_none(pte)) {
4438                         pte_t old_pte;
4439
4440                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4441                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4442                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4443                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4444                         pages++;
4445                 }
4446                 spin_unlock(ptl);
4447         }
4448         /*
4449          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4450          * may have cleared our pud entry and done put_page on the page table:
4451          * once we release i_mmap_rwsem, another task can do the final put_page
4452          * and that page table be reused and filled with junk.  If we actually
4453          * did unshare a page of pmds, flush the range corresponding to the pud.
4454          */
4455         if (shared_pmd)
4456                 flush_hugetlb_tlb_range(vma, range.start, range.end);
4457         else
4458                 flush_hugetlb_tlb_range(vma, start, end);
4459         /*
4460          * No need to call mmu_notifier_invalidate_range() we are downgrading
4461          * page table protection not changing it to point to a new page.
4462          *
4463          * See Documentation/vm/mmu_notifier.rst
4464          */
4465         i_mmap_unlock_write(vma->vm_file->f_mapping);
4466         mmu_notifier_invalidate_range_end(&range);
4467
4468         return pages << h->order;
4469 }
4470
4471 int hugetlb_reserve_pages(struct inode *inode,
4472                                         long from, long to,
4473                                         struct vm_area_struct *vma,
4474                                         vm_flags_t vm_flags)
4475 {
4476         long ret, chg;
4477         struct hstate *h = hstate_inode(inode);
4478         struct hugepage_subpool *spool = subpool_inode(inode);
4479         struct resv_map *resv_map;
4480         long gbl_reserve;
4481
4482         /* This should never happen */
4483         if (from > to) {
4484                 VM_WARN(1, "%s called with a negative range\n", __func__);
4485                 return -EINVAL;
4486         }
4487
4488         /*
4489          * Only apply hugepage reservation if asked. At fault time, an
4490          * attempt will be made for VM_NORESERVE to allocate a page
4491          * without using reserves
4492          */
4493         if (vm_flags & VM_NORESERVE)
4494                 return 0;
4495
4496         /*
4497          * Shared mappings base their reservation on the number of pages that
4498          * are already allocated on behalf of the file. Private mappings need
4499          * to reserve the full area even if read-only as mprotect() may be
4500          * called to make the mapping read-write. Assume !vma is a shm mapping
4501          */
4502         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4503                 resv_map = inode_resv_map(inode);
4504
4505                 chg = region_chg(resv_map, from, to);
4506
4507         } else {
4508                 resv_map = resv_map_alloc();
4509                 if (!resv_map)
4510                         return -ENOMEM;
4511
4512                 chg = to - from;
4513
4514                 set_vma_resv_map(vma, resv_map);
4515                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4516         }
4517
4518         if (chg < 0) {
4519                 ret = chg;
4520                 goto out_err;
4521         }
4522
4523         /*
4524          * There must be enough pages in the subpool for the mapping. If
4525          * the subpool has a minimum size, there may be some global
4526          * reservations already in place (gbl_reserve).
4527          */
4528         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4529         if (gbl_reserve < 0) {
4530                 ret = -ENOSPC;
4531                 goto out_err;
4532         }
4533
4534         /*
4535          * Check enough hugepages are available for the reservation.
4536          * Hand the pages back to the subpool if there are not
4537          */
4538         ret = hugetlb_acct_memory(h, gbl_reserve);
4539         if (ret < 0) {
4540                 /* put back original number of pages, chg */
4541                 (void)hugepage_subpool_put_pages(spool, chg);
4542                 goto out_err;
4543         }
4544
4545         /*
4546          * Account for the reservations made. Shared mappings record regions
4547          * that have reservations as they are shared by multiple VMAs.
4548          * When the last VMA disappears, the region map says how much
4549          * the reservation was and the page cache tells how much of
4550          * the reservation was consumed. Private mappings are per-VMA and
4551          * only the consumed reservations are tracked. When the VMA
4552          * disappears, the original reservation is the VMA size and the
4553          * consumed reservations are stored in the map. Hence, nothing
4554          * else has to be done for private mappings here
4555          */
4556         if (!vma || vma->vm_flags & VM_MAYSHARE) {
4557                 long add = region_add(resv_map, from, to);
4558
4559                 if (unlikely(chg > add)) {
4560                         /*
4561                          * pages in this range were added to the reserve
4562                          * map between region_chg and region_add.  This
4563                          * indicates a race with alloc_huge_page.  Adjust
4564                          * the subpool and reserve counts modified above
4565                          * based on the difference.
4566                          */
4567                         long rsv_adjust;
4568
4569                         rsv_adjust = hugepage_subpool_put_pages(spool,
4570                                                                 chg - add);
4571                         hugetlb_acct_memory(h, -rsv_adjust);
4572                 }
4573         }
4574         return 0;
4575 out_err:
4576         if (!vma || vma->vm_flags & VM_MAYSHARE)
4577                 /* Don't call region_abort if region_chg failed */
4578                 if (chg >= 0)
4579                         region_abort(resv_map, from, to);
4580         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4581                 kref_put(&resv_map->refs, resv_map_release);
4582         return ret;
4583 }
4584
4585 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4586                                                                 long freed)
4587 {
4588         struct hstate *h = hstate_inode(inode);
4589         struct resv_map *resv_map = inode_resv_map(inode);
4590         long chg = 0;
4591         struct hugepage_subpool *spool = subpool_inode(inode);
4592         long gbl_reserve;
4593
4594         if (resv_map) {
4595                 chg = region_del(resv_map, start, end);
4596                 /*
4597                  * region_del() can fail in the rare case where a region
4598                  * must be split and another region descriptor can not be
4599                  * allocated.  If end == LONG_MAX, it will not fail.
4600                  */
4601                 if (chg < 0)
4602                         return chg;
4603         }
4604
4605         spin_lock(&inode->i_lock);
4606         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4607         spin_unlock(&inode->i_lock);
4608
4609         /*
4610          * If the subpool has a minimum size, the number of global
4611          * reservations to be released may be adjusted.
4612          */
4613         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4614         hugetlb_acct_memory(h, -gbl_reserve);
4615
4616         return 0;
4617 }
4618
4619 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4620 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4621                                 struct vm_area_struct *vma,
4622                                 unsigned long addr, pgoff_t idx)
4623 {
4624         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4625                                 svma->vm_start;
4626         unsigned long sbase = saddr & PUD_MASK;
4627         unsigned long s_end = sbase + PUD_SIZE;
4628
4629         /* Allow segments to share if only one is marked locked */
4630         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4631         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4632
4633         /*
4634          * match the virtual addresses, permission and the alignment of the
4635          * page table page.
4636          */
4637         if (pmd_index(addr) != pmd_index(saddr) ||
4638             vm_flags != svm_flags ||
4639             sbase < svma->vm_start || svma->vm_end < s_end)
4640                 return 0;
4641
4642         return saddr;
4643 }
4644
4645 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4646 {
4647         unsigned long base = addr & PUD_MASK;
4648         unsigned long end = base + PUD_SIZE;
4649
4650         /*
4651          * check on proper vm_flags and page table alignment
4652          */
4653         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4654                 return true;
4655         return false;
4656 }
4657
4658 /*
4659  * Determine if start,end range within vma could be mapped by shared pmd.
4660  * If yes, adjust start and end to cover range associated with possible
4661  * shared pmd mappings.
4662  */
4663 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4664                                 unsigned long *start, unsigned long *end)
4665 {
4666         unsigned long check_addr = *start;
4667
4668         if (!(vma->vm_flags & VM_MAYSHARE))
4669                 return;
4670
4671         for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4672                 unsigned long a_start = check_addr & PUD_MASK;
4673                 unsigned long a_end = a_start + PUD_SIZE;
4674
4675                 /*
4676                  * If sharing is possible, adjust start/end if necessary.
4677                  */
4678                 if (range_in_vma(vma, a_start, a_end)) {
4679                         if (a_start < *start)
4680                                 *start = a_start;
4681                         if (a_end > *end)
4682                                 *end = a_end;
4683                 }
4684         }
4685 }
4686
4687 /*
4688  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4689  * and returns the corresponding pte. While this is not necessary for the
4690  * !shared pmd case because we can allocate the pmd later as well, it makes the
4691  * code much cleaner. pmd allocation is essential for the shared case because
4692  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4693  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4694  * bad pmd for sharing.
4695  */
4696 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4697 {
4698         struct vm_area_struct *vma = find_vma(mm, addr);
4699         struct address_space *mapping = vma->vm_file->f_mapping;
4700         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4701                         vma->vm_pgoff;
4702         struct vm_area_struct *svma;
4703         unsigned long saddr;
4704         pte_t *spte = NULL;
4705         pte_t *pte;
4706         spinlock_t *ptl;
4707
4708         if (!vma_shareable(vma, addr))
4709                 return (pte_t *)pmd_alloc(mm, pud, addr);
4710
4711         i_mmap_lock_write(mapping);
4712         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4713                 if (svma == vma)
4714                         continue;
4715
4716                 saddr = page_table_shareable(svma, vma, addr, idx);
4717                 if (saddr) {
4718                         spte = huge_pte_offset(svma->vm_mm, saddr,
4719                                                vma_mmu_pagesize(svma));
4720                         if (spte) {
4721                                 get_page(virt_to_page(spte));
4722                                 break;
4723                         }
4724                 }
4725         }
4726
4727         if (!spte)
4728                 goto out;
4729
4730         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4731         if (pud_none(*pud)) {
4732                 pud_populate(mm, pud,
4733                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4734                 mm_inc_nr_pmds(mm);
4735         } else {
4736                 put_page(virt_to_page(spte));
4737         }
4738         spin_unlock(ptl);
4739 out:
4740         pte = (pte_t *)pmd_alloc(mm, pud, addr);
4741         i_mmap_unlock_write(mapping);
4742         return pte;
4743 }
4744
4745 /*
4746  * unmap huge page backed by shared pte.
4747  *
4748  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
4749  * indicated by page_count > 1, unmap is achieved by clearing pud and
4750  * decrementing the ref count. If count == 1, the pte page is not shared.
4751  *
4752  * called with page table lock held.
4753  *
4754  * returns: 1 successfully unmapped a shared pte page
4755  *          0 the underlying pte page is not shared, or it is the last user
4756  */
4757 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4758 {
4759         pgd_t *pgd = pgd_offset(mm, *addr);
4760         p4d_t *p4d = p4d_offset(pgd, *addr);
4761         pud_t *pud = pud_offset(p4d, *addr);
4762
4763         BUG_ON(page_count(virt_to_page(ptep)) == 0);
4764         if (page_count(virt_to_page(ptep)) == 1)
4765                 return 0;
4766
4767         pud_clear(pud);
4768         put_page(virt_to_page(ptep));
4769         mm_dec_nr_pmds(mm);
4770         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4771         return 1;
4772 }
4773 #define want_pmd_share()        (1)
4774 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4775 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4776 {
4777         return NULL;
4778 }
4779
4780 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4781 {
4782         return 0;
4783 }
4784
4785 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4786                                 unsigned long *start, unsigned long *end)
4787 {
4788 }
4789 #define want_pmd_share()        (0)
4790 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4791
4792 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4793 pte_t *huge_pte_alloc(struct mm_struct *mm,
4794                         unsigned long addr, unsigned long sz)
4795 {
4796         pgd_t *pgd;
4797         p4d_t *p4d;
4798         pud_t *pud;
4799         pte_t *pte = NULL;
4800
4801         pgd = pgd_offset(mm, addr);
4802         p4d = p4d_alloc(mm, pgd, addr);
4803         if (!p4d)
4804                 return NULL;
4805         pud = pud_alloc(mm, p4d, addr);
4806         if (pud) {
4807                 if (sz == PUD_SIZE) {
4808                         pte = (pte_t *)pud;
4809                 } else {
4810                         BUG_ON(sz != PMD_SIZE);
4811                         if (want_pmd_share() && pud_none(*pud))
4812                                 pte = huge_pmd_share(mm, addr, pud);
4813                         else
4814                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4815                 }
4816         }
4817         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4818
4819         return pte;
4820 }
4821
4822 /*
4823  * huge_pte_offset() - Walk the page table to resolve the hugepage
4824  * entry at address @addr
4825  *
4826  * Return: Pointer to page table or swap entry (PUD or PMD) for
4827  * address @addr, or NULL if a p*d_none() entry is encountered and the
4828  * size @sz doesn't match the hugepage size at this level of the page
4829  * table.
4830  */
4831 pte_t *huge_pte_offset(struct mm_struct *mm,
4832                        unsigned long addr, unsigned long sz)
4833 {
4834         pgd_t *pgd;
4835         p4d_t *p4d;
4836         pud_t *pud;
4837         pmd_t *pmd;
4838
4839         pgd = pgd_offset(mm, addr);
4840         if (!pgd_present(*pgd))
4841                 return NULL;
4842         p4d = p4d_offset(pgd, addr);
4843         if (!p4d_present(*p4d))
4844                 return NULL;
4845
4846         pud = pud_offset(p4d, addr);
4847         if (sz != PUD_SIZE && pud_none(*pud))
4848                 return NULL;
4849         /* hugepage or swap? */
4850         if (pud_huge(*pud) || !pud_present(*pud))
4851                 return (pte_t *)pud;
4852
4853         pmd = pmd_offset(pud, addr);
4854         if (sz != PMD_SIZE && pmd_none(*pmd))
4855                 return NULL;
4856         /* hugepage or swap? */
4857         if (pmd_huge(*pmd) || !pmd_present(*pmd))
4858                 return (pte_t *)pmd;
4859
4860         return NULL;
4861 }
4862
4863 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4864
4865 /*
4866  * These functions are overwritable if your architecture needs its own
4867  * behavior.
4868  */
4869 struct page * __weak
4870 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4871                               int write)
4872 {
4873         return ERR_PTR(-EINVAL);
4874 }
4875
4876 struct page * __weak
4877 follow_huge_pd(struct vm_area_struct *vma,
4878                unsigned long address, hugepd_t hpd, int flags, int pdshift)
4879 {
4880         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4881         return NULL;
4882 }
4883
4884 struct page * __weak
4885 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4886                 pmd_t *pmd, int flags)
4887 {
4888         struct page *page = NULL;
4889         spinlock_t *ptl;
4890         pte_t pte;
4891 retry:
4892         ptl = pmd_lockptr(mm, pmd);
4893         spin_lock(ptl);
4894         /*
4895          * make sure that the address range covered by this pmd is not
4896          * unmapped from other threads.
4897          */
4898         if (!pmd_huge(*pmd))
4899                 goto out;
4900         pte = huge_ptep_get((pte_t *)pmd);
4901         if (pte_present(pte)) {
4902                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4903                 if (flags & FOLL_GET)
4904                         get_page(page);
4905         } else {
4906                 if (is_hugetlb_entry_migration(pte)) {
4907                         spin_unlock(ptl);
4908                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4909                         goto retry;
4910                 }
4911                 /*
4912                  * hwpoisoned entry is treated as no_page_table in
4913                  * follow_page_mask().
4914                  */
4915         }
4916 out:
4917         spin_unlock(ptl);
4918         return page;
4919 }
4920
4921 struct page * __weak
4922 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4923                 pud_t *pud, int flags)
4924 {
4925         if (flags & FOLL_GET)
4926                 return NULL;
4927
4928         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4929 }
4930
4931 struct page * __weak
4932 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4933 {
4934         if (flags & FOLL_GET)
4935                 return NULL;
4936
4937         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4938 }
4939
4940 bool isolate_huge_page(struct page *page, struct list_head *list)
4941 {
4942         bool ret = true;
4943
4944         VM_BUG_ON_PAGE(!PageHead(page), page);
4945         spin_lock(&hugetlb_lock);
4946         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4947                 ret = false;
4948                 goto unlock;
4949         }
4950         clear_page_huge_active(page);
4951         list_move_tail(&page->lru, list);
4952 unlock:
4953         spin_unlock(&hugetlb_lock);
4954         return ret;
4955 }
4956
4957 void putback_active_hugepage(struct page *page)
4958 {
4959         VM_BUG_ON_PAGE(!PageHead(page), page);
4960         spin_lock(&hugetlb_lock);
4961         set_page_huge_active(page);
4962         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4963         spin_unlock(&hugetlb_lock);
4964         put_page(page);
4965 }
4966
4967 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4968 {
4969         struct hstate *h = page_hstate(oldpage);
4970
4971         hugetlb_cgroup_migrate(oldpage, newpage);
4972         set_page_owner_migrate_reason(newpage, reason);
4973
4974         /*
4975          * transfer temporary state of the new huge page. This is
4976          * reverse to other transitions because the newpage is going to
4977          * be final while the old one will be freed so it takes over
4978          * the temporary status.
4979          *
4980          * Also note that we have to transfer the per-node surplus state
4981          * here as well otherwise the global surplus count will not match
4982          * the per-node's.
4983          */
4984         if (PageHugeTemporary(newpage)) {
4985                 int old_nid = page_to_nid(oldpage);
4986                 int new_nid = page_to_nid(newpage);
4987
4988                 SetPageHugeTemporary(oldpage);
4989                 ClearPageHugeTemporary(newpage);
4990
4991                 spin_lock(&hugetlb_lock);
4992                 if (h->surplus_huge_pages_node[old_nid]) {
4993                         h->surplus_huge_pages_node[old_nid]--;
4994                         h->surplus_huge_pages_node[new_nid]++;
4995                 }
4996                 spin_unlock(&hugetlb_lock);
4997         }
4998 }