b1c9b05bf26f4192acbf2d2e3f8fbcdf9904ea06
[linux-2.6-block.git] / mm / hmm.c
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40
41 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
42 {
43         struct hmm *hmm = READ_ONCE(mm->hmm);
44
45         if (hmm && kref_get_unless_zero(&hmm->kref))
46                 return hmm;
47
48         return NULL;
49 }
50
51 /**
52  * hmm_get_or_create - register HMM against an mm (HMM internal)
53  *
54  * @mm: mm struct to attach to
55  * Returns: returns an HMM object, either by referencing the existing
56  *          (per-process) object, or by creating a new one.
57  *
58  * This is not intended to be used directly by device drivers. If mm already
59  * has an HMM struct then it get a reference on it and returns it. Otherwise
60  * it allocates an HMM struct, initializes it, associate it with the mm and
61  * returns it.
62  */
63 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
64 {
65         struct hmm *hmm = mm_get_hmm(mm);
66         bool cleanup = false;
67
68         if (hmm)
69                 return hmm;
70
71         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
72         if (!hmm)
73                 return NULL;
74         init_waitqueue_head(&hmm->wq);
75         INIT_LIST_HEAD(&hmm->mirrors);
76         init_rwsem(&hmm->mirrors_sem);
77         hmm->mmu_notifier.ops = NULL;
78         INIT_LIST_HEAD(&hmm->ranges);
79         mutex_init(&hmm->lock);
80         kref_init(&hmm->kref);
81         hmm->notifiers = 0;
82         hmm->dead = false;
83         hmm->mm = mm;
84
85         spin_lock(&mm->page_table_lock);
86         if (!mm->hmm)
87                 mm->hmm = hmm;
88         else
89                 cleanup = true;
90         spin_unlock(&mm->page_table_lock);
91
92         if (cleanup)
93                 goto error;
94
95         /*
96          * We should only get here if hold the mmap_sem in write mode ie on
97          * registration of first mirror through hmm_mirror_register()
98          */
99         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
100         if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
101                 goto error_mm;
102
103         return hmm;
104
105 error_mm:
106         spin_lock(&mm->page_table_lock);
107         if (mm->hmm == hmm)
108                 mm->hmm = NULL;
109         spin_unlock(&mm->page_table_lock);
110 error:
111         kfree(hmm);
112         return NULL;
113 }
114
115 static void hmm_free(struct kref *kref)
116 {
117         struct hmm *hmm = container_of(kref, struct hmm, kref);
118         struct mm_struct *mm = hmm->mm;
119
120         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
121
122         spin_lock(&mm->page_table_lock);
123         if (mm->hmm == hmm)
124                 mm->hmm = NULL;
125         spin_unlock(&mm->page_table_lock);
126
127         kfree(hmm);
128 }
129
130 static inline void hmm_put(struct hmm *hmm)
131 {
132         kref_put(&hmm->kref, hmm_free);
133 }
134
135 void hmm_mm_destroy(struct mm_struct *mm)
136 {
137         struct hmm *hmm;
138
139         spin_lock(&mm->page_table_lock);
140         hmm = mm_get_hmm(mm);
141         mm->hmm = NULL;
142         if (hmm) {
143                 hmm->mm = NULL;
144                 hmm->dead = true;
145                 spin_unlock(&mm->page_table_lock);
146                 hmm_put(hmm);
147                 return;
148         }
149
150         spin_unlock(&mm->page_table_lock);
151 }
152
153 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
154 {
155         struct hmm *hmm = mm_get_hmm(mm);
156         struct hmm_mirror *mirror;
157         struct hmm_range *range;
158
159         /* Report this HMM as dying. */
160         hmm->dead = true;
161
162         /* Wake-up everyone waiting on any range. */
163         mutex_lock(&hmm->lock);
164         list_for_each_entry(range, &hmm->ranges, list) {
165                 range->valid = false;
166         }
167         wake_up_all(&hmm->wq);
168         mutex_unlock(&hmm->lock);
169
170         down_write(&hmm->mirrors_sem);
171         mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
172                                           list);
173         while (mirror) {
174                 list_del_init(&mirror->list);
175                 if (mirror->ops->release) {
176                         /*
177                          * Drop mirrors_sem so callback can wait on any pending
178                          * work that might itself trigger mmu_notifier callback
179                          * and thus would deadlock with us.
180                          */
181                         up_write(&hmm->mirrors_sem);
182                         mirror->ops->release(mirror);
183                         down_write(&hmm->mirrors_sem);
184                 }
185                 mirror = list_first_entry_or_null(&hmm->mirrors,
186                                                   struct hmm_mirror, list);
187         }
188         up_write(&hmm->mirrors_sem);
189
190         hmm_put(hmm);
191 }
192
193 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
194                         const struct mmu_notifier_range *nrange)
195 {
196         struct hmm *hmm = mm_get_hmm(nrange->mm);
197         struct hmm_mirror *mirror;
198         struct hmm_update update;
199         struct hmm_range *range;
200         int ret = 0;
201
202         VM_BUG_ON(!hmm);
203
204         update.start = nrange->start;
205         update.end = nrange->end;
206         update.event = HMM_UPDATE_INVALIDATE;
207         update.blockable = nrange->blockable;
208
209         if (nrange->blockable)
210                 mutex_lock(&hmm->lock);
211         else if (!mutex_trylock(&hmm->lock)) {
212                 ret = -EAGAIN;
213                 goto out;
214         }
215         hmm->notifiers++;
216         list_for_each_entry(range, &hmm->ranges, list) {
217                 if (update.end < range->start || update.start >= range->end)
218                         continue;
219
220                 range->valid = false;
221         }
222         mutex_unlock(&hmm->lock);
223
224         if (nrange->blockable)
225                 down_read(&hmm->mirrors_sem);
226         else if (!down_read_trylock(&hmm->mirrors_sem)) {
227                 ret = -EAGAIN;
228                 goto out;
229         }
230         list_for_each_entry(mirror, &hmm->mirrors, list) {
231                 int ret;
232
233                 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
234                 if (!update.blockable && ret == -EAGAIN) {
235                         up_read(&hmm->mirrors_sem);
236                         ret = -EAGAIN;
237                         goto out;
238                 }
239         }
240         up_read(&hmm->mirrors_sem);
241
242 out:
243         hmm_put(hmm);
244         return ret;
245 }
246
247 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
248                         const struct mmu_notifier_range *nrange)
249 {
250         struct hmm *hmm = mm_get_hmm(nrange->mm);
251
252         VM_BUG_ON(!hmm);
253
254         mutex_lock(&hmm->lock);
255         hmm->notifiers--;
256         if (!hmm->notifiers) {
257                 struct hmm_range *range;
258
259                 list_for_each_entry(range, &hmm->ranges, list) {
260                         if (range->valid)
261                                 continue;
262                         range->valid = true;
263                 }
264                 wake_up_all(&hmm->wq);
265         }
266         mutex_unlock(&hmm->lock);
267
268         hmm_put(hmm);
269 }
270
271 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
272         .release                = hmm_release,
273         .invalidate_range_start = hmm_invalidate_range_start,
274         .invalidate_range_end   = hmm_invalidate_range_end,
275 };
276
277 /*
278  * hmm_mirror_register() - register a mirror against an mm
279  *
280  * @mirror: new mirror struct to register
281  * @mm: mm to register against
282  *
283  * To start mirroring a process address space, the device driver must register
284  * an HMM mirror struct.
285  *
286  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
287  */
288 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
289 {
290         /* Sanity check */
291         if (!mm || !mirror || !mirror->ops)
292                 return -EINVAL;
293
294         mirror->hmm = hmm_get_or_create(mm);
295         if (!mirror->hmm)
296                 return -ENOMEM;
297
298         down_write(&mirror->hmm->mirrors_sem);
299         list_add(&mirror->list, &mirror->hmm->mirrors);
300         up_write(&mirror->hmm->mirrors_sem);
301
302         return 0;
303 }
304 EXPORT_SYMBOL(hmm_mirror_register);
305
306 /*
307  * hmm_mirror_unregister() - unregister a mirror
308  *
309  * @mirror: new mirror struct to register
310  *
311  * Stop mirroring a process address space, and cleanup.
312  */
313 void hmm_mirror_unregister(struct hmm_mirror *mirror)
314 {
315         struct hmm *hmm = READ_ONCE(mirror->hmm);
316
317         if (hmm == NULL)
318                 return;
319
320         down_write(&hmm->mirrors_sem);
321         list_del_init(&mirror->list);
322         /* To protect us against double unregister ... */
323         mirror->hmm = NULL;
324         up_write(&hmm->mirrors_sem);
325
326         hmm_put(hmm);
327 }
328 EXPORT_SYMBOL(hmm_mirror_unregister);
329
330 struct hmm_vma_walk {
331         struct hmm_range        *range;
332         struct dev_pagemap      *pgmap;
333         unsigned long           last;
334         bool                    fault;
335         bool                    block;
336 };
337
338 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
339                             bool write_fault, uint64_t *pfn)
340 {
341         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
342         struct hmm_vma_walk *hmm_vma_walk = walk->private;
343         struct hmm_range *range = hmm_vma_walk->range;
344         struct vm_area_struct *vma = walk->vma;
345         vm_fault_t ret;
346
347         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
348         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
349         ret = handle_mm_fault(vma, addr, flags);
350         if (ret & VM_FAULT_RETRY)
351                 return -EAGAIN;
352         if (ret & VM_FAULT_ERROR) {
353                 *pfn = range->values[HMM_PFN_ERROR];
354                 return -EFAULT;
355         }
356
357         return -EBUSY;
358 }
359
360 static int hmm_pfns_bad(unsigned long addr,
361                         unsigned long end,
362                         struct mm_walk *walk)
363 {
364         struct hmm_vma_walk *hmm_vma_walk = walk->private;
365         struct hmm_range *range = hmm_vma_walk->range;
366         uint64_t *pfns = range->pfns;
367         unsigned long i;
368
369         i = (addr - range->start) >> PAGE_SHIFT;
370         for (; addr < end; addr += PAGE_SIZE, i++)
371                 pfns[i] = range->values[HMM_PFN_ERROR];
372
373         return 0;
374 }
375
376 /*
377  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
378  * @start: range virtual start address (inclusive)
379  * @end: range virtual end address (exclusive)
380  * @fault: should we fault or not ?
381  * @write_fault: write fault ?
382  * @walk: mm_walk structure
383  * Returns: 0 on success, -EBUSY after page fault, or page fault error
384  *
385  * This function will be called whenever pmd_none() or pte_none() returns true,
386  * or whenever there is no page directory covering the virtual address range.
387  */
388 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
389                               bool fault, bool write_fault,
390                               struct mm_walk *walk)
391 {
392         struct hmm_vma_walk *hmm_vma_walk = walk->private;
393         struct hmm_range *range = hmm_vma_walk->range;
394         uint64_t *pfns = range->pfns;
395         unsigned long i, page_size;
396
397         hmm_vma_walk->last = addr;
398         page_size = hmm_range_page_size(range);
399         i = (addr - range->start) >> range->page_shift;
400
401         for (; addr < end; addr += page_size, i++) {
402                 pfns[i] = range->values[HMM_PFN_NONE];
403                 if (fault || write_fault) {
404                         int ret;
405
406                         ret = hmm_vma_do_fault(walk, addr, write_fault,
407                                                &pfns[i]);
408                         if (ret != -EBUSY)
409                                 return ret;
410                 }
411         }
412
413         return (fault || write_fault) ? -EBUSY : 0;
414 }
415
416 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
417                                       uint64_t pfns, uint64_t cpu_flags,
418                                       bool *fault, bool *write_fault)
419 {
420         struct hmm_range *range = hmm_vma_walk->range;
421
422         if (!hmm_vma_walk->fault)
423                 return;
424
425         /*
426          * So we not only consider the individual per page request we also
427          * consider the default flags requested for the range. The API can
428          * be use in 2 fashions. The first one where the HMM user coalesce
429          * multiple page fault into one request and set flags per pfns for
430          * of those faults. The second one where the HMM user want to pre-
431          * fault a range with specific flags. For the latter one it is a
432          * waste to have the user pre-fill the pfn arrays with a default
433          * flags value.
434          */
435         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
436
437         /* We aren't ask to do anything ... */
438         if (!(pfns & range->flags[HMM_PFN_VALID]))
439                 return;
440         /* If this is device memory than only fault if explicitly requested */
441         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
442                 /* Do we fault on device memory ? */
443                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
444                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
445                         *fault = true;
446                 }
447                 return;
448         }
449
450         /* If CPU page table is not valid then we need to fault */
451         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
452         /* Need to write fault ? */
453         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
454             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
455                 *write_fault = true;
456                 *fault = true;
457         }
458 }
459
460 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
461                                  const uint64_t *pfns, unsigned long npages,
462                                  uint64_t cpu_flags, bool *fault,
463                                  bool *write_fault)
464 {
465         unsigned long i;
466
467         if (!hmm_vma_walk->fault) {
468                 *fault = *write_fault = false;
469                 return;
470         }
471
472         *fault = *write_fault = false;
473         for (i = 0; i < npages; ++i) {
474                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
475                                    fault, write_fault);
476                 if ((*write_fault))
477                         return;
478         }
479 }
480
481 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
482                              struct mm_walk *walk)
483 {
484         struct hmm_vma_walk *hmm_vma_walk = walk->private;
485         struct hmm_range *range = hmm_vma_walk->range;
486         bool fault, write_fault;
487         unsigned long i, npages;
488         uint64_t *pfns;
489
490         i = (addr - range->start) >> PAGE_SHIFT;
491         npages = (end - addr) >> PAGE_SHIFT;
492         pfns = &range->pfns[i];
493         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
494                              0, &fault, &write_fault);
495         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
496 }
497
498 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
499 {
500         if (pmd_protnone(pmd))
501                 return 0;
502         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
503                                 range->flags[HMM_PFN_WRITE] :
504                                 range->flags[HMM_PFN_VALID];
505 }
506
507 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
508 {
509         if (!pud_present(pud))
510                 return 0;
511         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
512                                 range->flags[HMM_PFN_WRITE] :
513                                 range->flags[HMM_PFN_VALID];
514 }
515
516 static int hmm_vma_handle_pmd(struct mm_walk *walk,
517                               unsigned long addr,
518                               unsigned long end,
519                               uint64_t *pfns,
520                               pmd_t pmd)
521 {
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523         struct hmm_vma_walk *hmm_vma_walk = walk->private;
524         struct hmm_range *range = hmm_vma_walk->range;
525         unsigned long pfn, npages, i;
526         bool fault, write_fault;
527         uint64_t cpu_flags;
528
529         npages = (end - addr) >> PAGE_SHIFT;
530         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
531         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
532                              &fault, &write_fault);
533
534         if (pmd_protnone(pmd) || fault || write_fault)
535                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
536
537         pfn = pmd_pfn(pmd) + pte_index(addr);
538         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
539                 if (pmd_devmap(pmd)) {
540                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
541                                               hmm_vma_walk->pgmap);
542                         if (unlikely(!hmm_vma_walk->pgmap))
543                                 return -EBUSY;
544                 }
545                 pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
546         }
547         if (hmm_vma_walk->pgmap) {
548                 put_dev_pagemap(hmm_vma_walk->pgmap);
549                 hmm_vma_walk->pgmap = NULL;
550         }
551         hmm_vma_walk->last = end;
552         return 0;
553 #else
554         /* If THP is not enabled then we should never reach that code ! */
555         return -EINVAL;
556 #endif
557 }
558
559 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
560 {
561         if (pte_none(pte) || !pte_present(pte))
562                 return 0;
563         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
564                                 range->flags[HMM_PFN_WRITE] :
565                                 range->flags[HMM_PFN_VALID];
566 }
567
568 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
569                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
570                               uint64_t *pfn)
571 {
572         struct hmm_vma_walk *hmm_vma_walk = walk->private;
573         struct hmm_range *range = hmm_vma_walk->range;
574         struct vm_area_struct *vma = walk->vma;
575         bool fault, write_fault;
576         uint64_t cpu_flags;
577         pte_t pte = *ptep;
578         uint64_t orig_pfn = *pfn;
579
580         *pfn = range->values[HMM_PFN_NONE];
581         fault = write_fault = false;
582
583         if (pte_none(pte)) {
584                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
585                                    &fault, &write_fault);
586                 if (fault || write_fault)
587                         goto fault;
588                 return 0;
589         }
590
591         if (!pte_present(pte)) {
592                 swp_entry_t entry = pte_to_swp_entry(pte);
593
594                 if (!non_swap_entry(entry)) {
595                         if (fault || write_fault)
596                                 goto fault;
597                         return 0;
598                 }
599
600                 /*
601                  * This is a special swap entry, ignore migration, use
602                  * device and report anything else as error.
603                  */
604                 if (is_device_private_entry(entry)) {
605                         cpu_flags = range->flags[HMM_PFN_VALID] |
606                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
607                         cpu_flags |= is_write_device_private_entry(entry) ?
608                                 range->flags[HMM_PFN_WRITE] : 0;
609                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
610                                            &fault, &write_fault);
611                         if (fault || write_fault)
612                                 goto fault;
613                         *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
614                         *pfn |= cpu_flags;
615                         return 0;
616                 }
617
618                 if (is_migration_entry(entry)) {
619                         if (fault || write_fault) {
620                                 pte_unmap(ptep);
621                                 hmm_vma_walk->last = addr;
622                                 migration_entry_wait(vma->vm_mm,
623                                                      pmdp, addr);
624                                 return -EBUSY;
625                         }
626                         return 0;
627                 }
628
629                 /* Report error for everything else */
630                 *pfn = range->values[HMM_PFN_ERROR];
631                 return -EFAULT;
632         } else {
633                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
634                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
635                                    &fault, &write_fault);
636         }
637
638         if (fault || write_fault)
639                 goto fault;
640
641         if (pte_devmap(pte)) {
642                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
643                                               hmm_vma_walk->pgmap);
644                 if (unlikely(!hmm_vma_walk->pgmap))
645                         return -EBUSY;
646         } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
647                 *pfn = range->values[HMM_PFN_SPECIAL];
648                 return -EFAULT;
649         }
650
651         *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
652         return 0;
653
654 fault:
655         if (hmm_vma_walk->pgmap) {
656                 put_dev_pagemap(hmm_vma_walk->pgmap);
657                 hmm_vma_walk->pgmap = NULL;
658         }
659         pte_unmap(ptep);
660         /* Fault any virtual address we were asked to fault */
661         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
662 }
663
664 static int hmm_vma_walk_pmd(pmd_t *pmdp,
665                             unsigned long start,
666                             unsigned long end,
667                             struct mm_walk *walk)
668 {
669         struct hmm_vma_walk *hmm_vma_walk = walk->private;
670         struct hmm_range *range = hmm_vma_walk->range;
671         struct vm_area_struct *vma = walk->vma;
672         uint64_t *pfns = range->pfns;
673         unsigned long addr = start, i;
674         pte_t *ptep;
675         pmd_t pmd;
676
677
678 again:
679         pmd = READ_ONCE(*pmdp);
680         if (pmd_none(pmd))
681                 return hmm_vma_walk_hole(start, end, walk);
682
683         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
684                 return hmm_pfns_bad(start, end, walk);
685
686         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
687                 bool fault, write_fault;
688                 unsigned long npages;
689                 uint64_t *pfns;
690
691                 i = (addr - range->start) >> PAGE_SHIFT;
692                 npages = (end - addr) >> PAGE_SHIFT;
693                 pfns = &range->pfns[i];
694
695                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
696                                      0, &fault, &write_fault);
697                 if (fault || write_fault) {
698                         hmm_vma_walk->last = addr;
699                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
700                         return -EBUSY;
701                 }
702                 return 0;
703         } else if (!pmd_present(pmd))
704                 return hmm_pfns_bad(start, end, walk);
705
706         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
707                 /*
708                  * No need to take pmd_lock here, even if some other threads
709                  * is splitting the huge pmd we will get that event through
710                  * mmu_notifier callback.
711                  *
712                  * So just read pmd value and check again its a transparent
713                  * huge or device mapping one and compute corresponding pfn
714                  * values.
715                  */
716                 pmd = pmd_read_atomic(pmdp);
717                 barrier();
718                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
719                         goto again;
720
721                 i = (addr - range->start) >> PAGE_SHIFT;
722                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
723         }
724
725         /*
726          * We have handled all the valid case above ie either none, migration,
727          * huge or transparent huge. At this point either it is a valid pmd
728          * entry pointing to pte directory or it is a bad pmd that will not
729          * recover.
730          */
731         if (pmd_bad(pmd))
732                 return hmm_pfns_bad(start, end, walk);
733
734         ptep = pte_offset_map(pmdp, addr);
735         i = (addr - range->start) >> PAGE_SHIFT;
736         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
737                 int r;
738
739                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
740                 if (r) {
741                         /* hmm_vma_handle_pte() did unmap pte directory */
742                         hmm_vma_walk->last = addr;
743                         return r;
744                 }
745         }
746         if (hmm_vma_walk->pgmap) {
747                 /*
748                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
749                  * so that we can leverage get_dev_pagemap() optimization which
750                  * will not re-take a reference on a pgmap if we already have
751                  * one.
752                  */
753                 put_dev_pagemap(hmm_vma_walk->pgmap);
754                 hmm_vma_walk->pgmap = NULL;
755         }
756         pte_unmap(ptep - 1);
757
758         hmm_vma_walk->last = addr;
759         return 0;
760 }
761
762 static int hmm_vma_walk_pud(pud_t *pudp,
763                             unsigned long start,
764                             unsigned long end,
765                             struct mm_walk *walk)
766 {
767         struct hmm_vma_walk *hmm_vma_walk = walk->private;
768         struct hmm_range *range = hmm_vma_walk->range;
769         unsigned long addr = start, next;
770         pmd_t *pmdp;
771         pud_t pud;
772         int ret;
773
774 again:
775         pud = READ_ONCE(*pudp);
776         if (pud_none(pud))
777                 return hmm_vma_walk_hole(start, end, walk);
778
779         if (pud_huge(pud) && pud_devmap(pud)) {
780                 unsigned long i, npages, pfn;
781                 uint64_t *pfns, cpu_flags;
782                 bool fault, write_fault;
783
784                 if (!pud_present(pud))
785                         return hmm_vma_walk_hole(start, end, walk);
786
787                 i = (addr - range->start) >> PAGE_SHIFT;
788                 npages = (end - addr) >> PAGE_SHIFT;
789                 pfns = &range->pfns[i];
790
791                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
792                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
793                                      cpu_flags, &fault, &write_fault);
794                 if (fault || write_fault)
795                         return hmm_vma_walk_hole_(addr, end, fault,
796                                                 write_fault, walk);
797
798 #ifdef CONFIG_HUGETLB_PAGE
799                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
800                 for (i = 0; i < npages; ++i, ++pfn) {
801                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
802                                               hmm_vma_walk->pgmap);
803                         if (unlikely(!hmm_vma_walk->pgmap))
804                                 return -EBUSY;
805                         pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
806                 }
807                 if (hmm_vma_walk->pgmap) {
808                         put_dev_pagemap(hmm_vma_walk->pgmap);
809                         hmm_vma_walk->pgmap = NULL;
810                 }
811                 hmm_vma_walk->last = end;
812                 return 0;
813 #else
814                 return -EINVAL;
815 #endif
816         }
817
818         split_huge_pud(walk->vma, pudp, addr);
819         if (pud_none(*pudp))
820                 goto again;
821
822         pmdp = pmd_offset(pudp, addr);
823         do {
824                 next = pmd_addr_end(addr, end);
825                 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
826                 if (ret)
827                         return ret;
828         } while (pmdp++, addr = next, addr != end);
829
830         return 0;
831 }
832
833 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
834                                       unsigned long start, unsigned long end,
835                                       struct mm_walk *walk)
836 {
837 #ifdef CONFIG_HUGETLB_PAGE
838         unsigned long addr = start, i, pfn, mask, size, pfn_inc;
839         struct hmm_vma_walk *hmm_vma_walk = walk->private;
840         struct hmm_range *range = hmm_vma_walk->range;
841         struct vm_area_struct *vma = walk->vma;
842         struct hstate *h = hstate_vma(vma);
843         uint64_t orig_pfn, cpu_flags;
844         bool fault, write_fault;
845         spinlock_t *ptl;
846         pte_t entry;
847         int ret = 0;
848
849         size = 1UL << huge_page_shift(h);
850         mask = size - 1;
851         if (range->page_shift != PAGE_SHIFT) {
852                 /* Make sure we are looking at full page. */
853                 if (start & mask)
854                         return -EINVAL;
855                 if (end < (start + size))
856                         return -EINVAL;
857                 pfn_inc = size >> PAGE_SHIFT;
858         } else {
859                 pfn_inc = 1;
860                 size = PAGE_SIZE;
861         }
862
863
864         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
865         entry = huge_ptep_get(pte);
866
867         i = (start - range->start) >> range->page_shift;
868         orig_pfn = range->pfns[i];
869         range->pfns[i] = range->values[HMM_PFN_NONE];
870         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
871         fault = write_fault = false;
872         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
873                            &fault, &write_fault);
874         if (fault || write_fault) {
875                 ret = -ENOENT;
876                 goto unlock;
877         }
878
879         pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
880         for (; addr < end; addr += size, i++, pfn += pfn_inc)
881                 range->pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
882         hmm_vma_walk->last = end;
883
884 unlock:
885         spin_unlock(ptl);
886
887         if (ret == -ENOENT)
888                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
889
890         return ret;
891 #else /* CONFIG_HUGETLB_PAGE */
892         return -EINVAL;
893 #endif
894 }
895
896 static void hmm_pfns_clear(struct hmm_range *range,
897                            uint64_t *pfns,
898                            unsigned long addr,
899                            unsigned long end)
900 {
901         for (; addr < end; addr += PAGE_SIZE, pfns++)
902                 *pfns = range->values[HMM_PFN_NONE];
903 }
904
905 /*
906  * hmm_range_register() - start tracking change to CPU page table over a range
907  * @range: range
908  * @mm: the mm struct for the range of virtual address
909  * @start: start virtual address (inclusive)
910  * @end: end virtual address (exclusive)
911  * @page_shift: expect page shift for the range
912  * Returns 0 on success, -EFAULT if the address space is no longer valid
913  *
914  * Track updates to the CPU page table see include/linux/hmm.h
915  */
916 int hmm_range_register(struct hmm_range *range,
917                        struct mm_struct *mm,
918                        unsigned long start,
919                        unsigned long end,
920                        unsigned page_shift)
921 {
922         unsigned long mask = ((1UL << page_shift) - 1UL);
923
924         range->valid = false;
925         range->hmm = NULL;
926
927         if ((start & mask) || (end & mask))
928                 return -EINVAL;
929         if (start >= end)
930                 return -EINVAL;
931
932         range->page_shift = page_shift;
933         range->start = start;
934         range->end = end;
935
936         range->hmm = hmm_get_or_create(mm);
937         if (!range->hmm)
938                 return -EFAULT;
939
940         /* Check if hmm_mm_destroy() was call. */
941         if (range->hmm->mm == NULL || range->hmm->dead) {
942                 hmm_put(range->hmm);
943                 return -EFAULT;
944         }
945
946         /* Initialize range to track CPU page table update */
947         mutex_lock(&range->hmm->lock);
948
949         list_add_rcu(&range->list, &range->hmm->ranges);
950
951         /*
952          * If there are any concurrent notifiers we have to wait for them for
953          * the range to be valid (see hmm_range_wait_until_valid()).
954          */
955         if (!range->hmm->notifiers)
956                 range->valid = true;
957         mutex_unlock(&range->hmm->lock);
958
959         return 0;
960 }
961 EXPORT_SYMBOL(hmm_range_register);
962
963 /*
964  * hmm_range_unregister() - stop tracking change to CPU page table over a range
965  * @range: range
966  *
967  * Range struct is used to track updates to the CPU page table after a call to
968  * hmm_range_register(). See include/linux/hmm.h for how to use it.
969  */
970 void hmm_range_unregister(struct hmm_range *range)
971 {
972         /* Sanity check this really should not happen. */
973         if (range->hmm == NULL || range->end <= range->start)
974                 return;
975
976         mutex_lock(&range->hmm->lock);
977         list_del_rcu(&range->list);
978         mutex_unlock(&range->hmm->lock);
979
980         /* Drop reference taken by hmm_range_register() */
981         range->valid = false;
982         hmm_put(range->hmm);
983         range->hmm = NULL;
984 }
985 EXPORT_SYMBOL(hmm_range_unregister);
986
987 /*
988  * hmm_range_snapshot() - snapshot CPU page table for a range
989  * @range: range
990  * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
991  *          permission (for instance asking for write and range is read only),
992  *          -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
993  *          vma or it is illegal to access that range), number of valid pages
994  *          in range->pfns[] (from range start address).
995  *
996  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
997  * validity is tracked by range struct. See in include/linux/hmm.h for example
998  * on how to use.
999  */
1000 long hmm_range_snapshot(struct hmm_range *range)
1001 {
1002         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1003         unsigned long start = range->start, end;
1004         struct hmm_vma_walk hmm_vma_walk;
1005         struct hmm *hmm = range->hmm;
1006         struct vm_area_struct *vma;
1007         struct mm_walk mm_walk;
1008
1009         /* Check if hmm_mm_destroy() was call. */
1010         if (hmm->mm == NULL || hmm->dead)
1011                 return -EFAULT;
1012
1013         do {
1014                 /* If range is no longer valid force retry. */
1015                 if (!range->valid)
1016                         return -EAGAIN;
1017
1018                 vma = find_vma(hmm->mm, start);
1019                 if (vma == NULL || (vma->vm_flags & device_vma))
1020                         return -EFAULT;
1021
1022                 if (is_vm_hugetlb_page(vma)) {
1023                         struct hstate *h = hstate_vma(vma);
1024
1025                         if (huge_page_shift(h) != range->page_shift &&
1026                             range->page_shift != PAGE_SHIFT)
1027                                 return -EINVAL;
1028                 } else {
1029                         if (range->page_shift != PAGE_SHIFT)
1030                                 return -EINVAL;
1031                 }
1032
1033                 if (!(vma->vm_flags & VM_READ)) {
1034                         /*
1035                          * If vma do not allow read access, then assume that it
1036                          * does not allow write access, either. HMM does not
1037                          * support architecture that allow write without read.
1038                          */
1039                         hmm_pfns_clear(range, range->pfns,
1040                                 range->start, range->end);
1041                         return -EPERM;
1042                 }
1043
1044                 range->vma = vma;
1045                 hmm_vma_walk.pgmap = NULL;
1046                 hmm_vma_walk.last = start;
1047                 hmm_vma_walk.fault = false;
1048                 hmm_vma_walk.range = range;
1049                 mm_walk.private = &hmm_vma_walk;
1050                 end = min(range->end, vma->vm_end);
1051
1052                 mm_walk.vma = vma;
1053                 mm_walk.mm = vma->vm_mm;
1054                 mm_walk.pte_entry = NULL;
1055                 mm_walk.test_walk = NULL;
1056                 mm_walk.hugetlb_entry = NULL;
1057                 mm_walk.pud_entry = hmm_vma_walk_pud;
1058                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1059                 mm_walk.pte_hole = hmm_vma_walk_hole;
1060                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1061
1062                 walk_page_range(start, end, &mm_walk);
1063                 start = end;
1064         } while (start < range->end);
1065
1066         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1067 }
1068 EXPORT_SYMBOL(hmm_range_snapshot);
1069
1070 /*
1071  * hmm_range_fault() - try to fault some address in a virtual address range
1072  * @range: range being faulted
1073  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1074  * Returns: number of valid pages in range->pfns[] (from range start
1075  *          address). This may be zero. If the return value is negative,
1076  *          then one of the following values may be returned:
1077  *
1078  *           -EINVAL  invalid arguments or mm or virtual address are in an
1079  *                    invalid vma (for instance device file vma).
1080  *           -ENOMEM: Out of memory.
1081  *           -EPERM:  Invalid permission (for instance asking for write and
1082  *                    range is read only).
1083  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1084  *                    happens if block argument is false.
1085  *           -EBUSY:  If the the range is being invalidated and you should wait
1086  *                    for invalidation to finish.
1087  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1088  *                    that range), number of valid pages in range->pfns[] (from
1089  *                    range start address).
1090  *
1091  * This is similar to a regular CPU page fault except that it will not trigger
1092  * any memory migration if the memory being faulted is not accessible by CPUs
1093  * and caller does not ask for migration.
1094  *
1095  * On error, for one virtual address in the range, the function will mark the
1096  * corresponding HMM pfn entry with an error flag.
1097  */
1098 long hmm_range_fault(struct hmm_range *range, bool block)
1099 {
1100         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1101         unsigned long start = range->start, end;
1102         struct hmm_vma_walk hmm_vma_walk;
1103         struct hmm *hmm = range->hmm;
1104         struct vm_area_struct *vma;
1105         struct mm_walk mm_walk;
1106         int ret;
1107
1108         /* Check if hmm_mm_destroy() was call. */
1109         if (hmm->mm == NULL || hmm->dead)
1110                 return -EFAULT;
1111
1112         do {
1113                 /* If range is no longer valid force retry. */
1114                 if (!range->valid) {
1115                         up_read(&hmm->mm->mmap_sem);
1116                         return -EAGAIN;
1117                 }
1118
1119                 vma = find_vma(hmm->mm, start);
1120                 if (vma == NULL || (vma->vm_flags & device_vma))
1121                         return -EFAULT;
1122
1123                 if (is_vm_hugetlb_page(vma)) {
1124                         if (huge_page_shift(hstate_vma(vma)) !=
1125                             range->page_shift &&
1126                             range->page_shift != PAGE_SHIFT)
1127                                 return -EINVAL;
1128                 } else {
1129                         if (range->page_shift != PAGE_SHIFT)
1130                                 return -EINVAL;
1131                 }
1132
1133                 if (!(vma->vm_flags & VM_READ)) {
1134                         /*
1135                          * If vma do not allow read access, then assume that it
1136                          * does not allow write access, either. HMM does not
1137                          * support architecture that allow write without read.
1138                          */
1139                         hmm_pfns_clear(range, range->pfns,
1140                                 range->start, range->end);
1141                         return -EPERM;
1142                 }
1143
1144                 range->vma = vma;
1145                 hmm_vma_walk.pgmap = NULL;
1146                 hmm_vma_walk.last = start;
1147                 hmm_vma_walk.fault = true;
1148                 hmm_vma_walk.block = block;
1149                 hmm_vma_walk.range = range;
1150                 mm_walk.private = &hmm_vma_walk;
1151                 end = min(range->end, vma->vm_end);
1152
1153                 mm_walk.vma = vma;
1154                 mm_walk.mm = vma->vm_mm;
1155                 mm_walk.pte_entry = NULL;
1156                 mm_walk.test_walk = NULL;
1157                 mm_walk.hugetlb_entry = NULL;
1158                 mm_walk.pud_entry = hmm_vma_walk_pud;
1159                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1160                 mm_walk.pte_hole = hmm_vma_walk_hole;
1161                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1162
1163                 do {
1164                         ret = walk_page_range(start, end, &mm_walk);
1165                         start = hmm_vma_walk.last;
1166
1167                         /* Keep trying while the range is valid. */
1168                 } while (ret == -EBUSY && range->valid);
1169
1170                 if (ret) {
1171                         unsigned long i;
1172
1173                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1174                         hmm_pfns_clear(range, &range->pfns[i],
1175                                 hmm_vma_walk.last, range->end);
1176                         return ret;
1177                 }
1178                 start = end;
1179
1180         } while (start < range->end);
1181
1182         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1183 }
1184 EXPORT_SYMBOL(hmm_range_fault);
1185 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1186
1187
1188 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1189 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1190                                        unsigned long addr)
1191 {
1192         struct page *page;
1193
1194         page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1195         if (!page)
1196                 return NULL;
1197         lock_page(page);
1198         return page;
1199 }
1200 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1201
1202
1203 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1204 {
1205         struct hmm_devmem *devmem;
1206
1207         devmem = container_of(ref, struct hmm_devmem, ref);
1208         complete(&devmem->completion);
1209 }
1210
1211 static void hmm_devmem_ref_exit(void *data)
1212 {
1213         struct percpu_ref *ref = data;
1214         struct hmm_devmem *devmem;
1215
1216         devmem = container_of(ref, struct hmm_devmem, ref);
1217         wait_for_completion(&devmem->completion);
1218         percpu_ref_exit(ref);
1219 }
1220
1221 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1222 {
1223         percpu_ref_kill(ref);
1224 }
1225
1226 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1227                             unsigned long addr,
1228                             const struct page *page,
1229                             unsigned int flags,
1230                             pmd_t *pmdp)
1231 {
1232         struct hmm_devmem *devmem = page->pgmap->data;
1233
1234         return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1235 }
1236
1237 static void hmm_devmem_free(struct page *page, void *data)
1238 {
1239         struct hmm_devmem *devmem = data;
1240
1241         page->mapping = NULL;
1242
1243         devmem->ops->free(devmem, page);
1244 }
1245
1246 /*
1247  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1248  *
1249  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1250  * @device: device struct to bind the resource too
1251  * @size: size in bytes of the device memory to add
1252  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1253  *
1254  * This function first finds an empty range of physical address big enough to
1255  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1256  * in turn allocates struct pages. It does not do anything beyond that; all
1257  * events affecting the memory will go through the various callbacks provided
1258  * by hmm_devmem_ops struct.
1259  *
1260  * Device driver should call this function during device initialization and
1261  * is then responsible of memory management. HMM only provides helpers.
1262  */
1263 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1264                                   struct device *device,
1265                                   unsigned long size)
1266 {
1267         struct hmm_devmem *devmem;
1268         resource_size_t addr;
1269         void *result;
1270         int ret;
1271
1272         dev_pagemap_get_ops();
1273
1274         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1275         if (!devmem)
1276                 return ERR_PTR(-ENOMEM);
1277
1278         init_completion(&devmem->completion);
1279         devmem->pfn_first = -1UL;
1280         devmem->pfn_last = -1UL;
1281         devmem->resource = NULL;
1282         devmem->device = device;
1283         devmem->ops = ops;
1284
1285         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1286                               0, GFP_KERNEL);
1287         if (ret)
1288                 return ERR_PTR(ret);
1289
1290         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1291         if (ret)
1292                 return ERR_PTR(ret);
1293
1294         size = ALIGN(size, PA_SECTION_SIZE);
1295         addr = min((unsigned long)iomem_resource.end,
1296                    (1UL << MAX_PHYSMEM_BITS) - 1);
1297         addr = addr - size + 1UL;
1298
1299         /*
1300          * FIXME add a new helper to quickly walk resource tree and find free
1301          * range
1302          *
1303          * FIXME what about ioport_resource resource ?
1304          */
1305         for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1306                 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1307                 if (ret != REGION_DISJOINT)
1308                         continue;
1309
1310                 devmem->resource = devm_request_mem_region(device, addr, size,
1311                                                            dev_name(device));
1312                 if (!devmem->resource)
1313                         return ERR_PTR(-ENOMEM);
1314                 break;
1315         }
1316         if (!devmem->resource)
1317                 return ERR_PTR(-ERANGE);
1318
1319         devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1320         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1321         devmem->pfn_last = devmem->pfn_first +
1322                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1323         devmem->page_fault = hmm_devmem_fault;
1324
1325         devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1326         devmem->pagemap.res = *devmem->resource;
1327         devmem->pagemap.page_free = hmm_devmem_free;
1328         devmem->pagemap.altmap_valid = false;
1329         devmem->pagemap.ref = &devmem->ref;
1330         devmem->pagemap.data = devmem;
1331         devmem->pagemap.kill = hmm_devmem_ref_kill;
1332
1333         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1334         if (IS_ERR(result))
1335                 return result;
1336         return devmem;
1337 }
1338 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1339
1340 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1341                                            struct device *device,
1342                                            struct resource *res)
1343 {
1344         struct hmm_devmem *devmem;
1345         void *result;
1346         int ret;
1347
1348         if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1349                 return ERR_PTR(-EINVAL);
1350
1351         dev_pagemap_get_ops();
1352
1353         devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1354         if (!devmem)
1355                 return ERR_PTR(-ENOMEM);
1356
1357         init_completion(&devmem->completion);
1358         devmem->pfn_first = -1UL;
1359         devmem->pfn_last = -1UL;
1360         devmem->resource = res;
1361         devmem->device = device;
1362         devmem->ops = ops;
1363
1364         ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1365                               0, GFP_KERNEL);
1366         if (ret)
1367                 return ERR_PTR(ret);
1368
1369         ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1370                         &devmem->ref);
1371         if (ret)
1372                 return ERR_PTR(ret);
1373
1374         devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1375         devmem->pfn_last = devmem->pfn_first +
1376                            (resource_size(devmem->resource) >> PAGE_SHIFT);
1377         devmem->page_fault = hmm_devmem_fault;
1378
1379         devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1380         devmem->pagemap.res = *devmem->resource;
1381         devmem->pagemap.page_free = hmm_devmem_free;
1382         devmem->pagemap.altmap_valid = false;
1383         devmem->pagemap.ref = &devmem->ref;
1384         devmem->pagemap.data = devmem;
1385         devmem->pagemap.kill = hmm_devmem_ref_kill;
1386
1387         result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1388         if (IS_ERR(result))
1389                 return result;
1390         return devmem;
1391 }
1392 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1393
1394 /*
1395  * A device driver that wants to handle multiple devices memory through a
1396  * single fake device can use hmm_device to do so. This is purely a helper
1397  * and it is not needed to make use of any HMM functionality.
1398  */
1399 #define HMM_DEVICE_MAX 256
1400
1401 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1402 static DEFINE_SPINLOCK(hmm_device_lock);
1403 static struct class *hmm_device_class;
1404 static dev_t hmm_device_devt;
1405
1406 static void hmm_device_release(struct device *device)
1407 {
1408         struct hmm_device *hmm_device;
1409
1410         hmm_device = container_of(device, struct hmm_device, device);
1411         spin_lock(&hmm_device_lock);
1412         clear_bit(hmm_device->minor, hmm_device_mask);
1413         spin_unlock(&hmm_device_lock);
1414
1415         kfree(hmm_device);
1416 }
1417
1418 struct hmm_device *hmm_device_new(void *drvdata)
1419 {
1420         struct hmm_device *hmm_device;
1421
1422         hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1423         if (!hmm_device)
1424                 return ERR_PTR(-ENOMEM);
1425
1426         spin_lock(&hmm_device_lock);
1427         hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1428         if (hmm_device->minor >= HMM_DEVICE_MAX) {
1429                 spin_unlock(&hmm_device_lock);
1430                 kfree(hmm_device);
1431                 return ERR_PTR(-EBUSY);
1432         }
1433         set_bit(hmm_device->minor, hmm_device_mask);
1434         spin_unlock(&hmm_device_lock);
1435
1436         dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1437         hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1438                                         hmm_device->minor);
1439         hmm_device->device.release = hmm_device_release;
1440         dev_set_drvdata(&hmm_device->device, drvdata);
1441         hmm_device->device.class = hmm_device_class;
1442         device_initialize(&hmm_device->device);
1443
1444         return hmm_device;
1445 }
1446 EXPORT_SYMBOL(hmm_device_new);
1447
1448 void hmm_device_put(struct hmm_device *hmm_device)
1449 {
1450         put_device(&hmm_device->device);
1451 }
1452 EXPORT_SYMBOL(hmm_device_put);
1453
1454 static int __init hmm_init(void)
1455 {
1456         int ret;
1457
1458         ret = alloc_chrdev_region(&hmm_device_devt, 0,
1459                                   HMM_DEVICE_MAX,
1460                                   "hmm_device");
1461         if (ret)
1462                 return ret;
1463
1464         hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1465         if (IS_ERR(hmm_device_class)) {
1466                 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1467                 return PTR_ERR(hmm_device_class);
1468         }
1469         return 0;
1470 }
1471
1472 device_initcall(hmm_init);
1473 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */