Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / hmm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/mm.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
30
31 /**
32  * hmm_get_or_create - register HMM against an mm (HMM internal)
33  *
34  * @mm: mm struct to attach to
35  * Returns: returns an HMM object, either by referencing the existing
36  *          (per-process) object, or by creating a new one.
37  *
38  * This is not intended to be used directly by device drivers. If mm already
39  * has an HMM struct then it get a reference on it and returns it. Otherwise
40  * it allocates an HMM struct, initializes it, associate it with the mm and
41  * returns it.
42  */
43 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
44 {
45         struct hmm *hmm;
46
47         lockdep_assert_held_write(&mm->mmap_sem);
48
49         /* Abuse the page_table_lock to also protect mm->hmm. */
50         spin_lock(&mm->page_table_lock);
51         hmm = mm->hmm;
52         if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref))
53                 goto out_unlock;
54         spin_unlock(&mm->page_table_lock);
55
56         hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
57         if (!hmm)
58                 return NULL;
59         init_waitqueue_head(&hmm->wq);
60         INIT_LIST_HEAD(&hmm->mirrors);
61         init_rwsem(&hmm->mirrors_sem);
62         hmm->mmu_notifier.ops = NULL;
63         INIT_LIST_HEAD(&hmm->ranges);
64         spin_lock_init(&hmm->ranges_lock);
65         kref_init(&hmm->kref);
66         hmm->notifiers = 0;
67         hmm->mm = mm;
68
69         hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
70         if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
71                 kfree(hmm);
72                 return NULL;
73         }
74
75         mmgrab(hmm->mm);
76
77         /*
78          * We hold the exclusive mmap_sem here so we know that mm->hmm is
79          * still NULL or 0 kref, and is safe to update.
80          */
81         spin_lock(&mm->page_table_lock);
82         mm->hmm = hmm;
83
84 out_unlock:
85         spin_unlock(&mm->page_table_lock);
86         return hmm;
87 }
88
89 static void hmm_free_rcu(struct rcu_head *rcu)
90 {
91         struct hmm *hmm = container_of(rcu, struct hmm, rcu);
92
93         mmdrop(hmm->mm);
94         kfree(hmm);
95 }
96
97 static void hmm_free(struct kref *kref)
98 {
99         struct hmm *hmm = container_of(kref, struct hmm, kref);
100
101         spin_lock(&hmm->mm->page_table_lock);
102         if (hmm->mm->hmm == hmm)
103                 hmm->mm->hmm = NULL;
104         spin_unlock(&hmm->mm->page_table_lock);
105
106         mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm);
107         mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
108 }
109
110 static inline void hmm_put(struct hmm *hmm)
111 {
112         kref_put(&hmm->kref, hmm_free);
113 }
114
115 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
116 {
117         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
118         struct hmm_mirror *mirror;
119
120         /* Bail out if hmm is in the process of being freed */
121         if (!kref_get_unless_zero(&hmm->kref))
122                 return;
123
124         /*
125          * Since hmm_range_register() holds the mmget() lock hmm_release() is
126          * prevented as long as a range exists.
127          */
128         WARN_ON(!list_empty_careful(&hmm->ranges));
129
130         down_read(&hmm->mirrors_sem);
131         list_for_each_entry(mirror, &hmm->mirrors, list) {
132                 /*
133                  * Note: The driver is not allowed to trigger
134                  * hmm_mirror_unregister() from this thread.
135                  */
136                 if (mirror->ops->release)
137                         mirror->ops->release(mirror);
138         }
139         up_read(&hmm->mirrors_sem);
140
141         hmm_put(hmm);
142 }
143
144 static void notifiers_decrement(struct hmm *hmm)
145 {
146         unsigned long flags;
147
148         spin_lock_irqsave(&hmm->ranges_lock, flags);
149         hmm->notifiers--;
150         if (!hmm->notifiers) {
151                 struct hmm_range *range;
152
153                 list_for_each_entry(range, &hmm->ranges, list) {
154                         if (range->valid)
155                                 continue;
156                         range->valid = true;
157                 }
158                 wake_up_all(&hmm->wq);
159         }
160         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
161 }
162
163 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
164                         const struct mmu_notifier_range *nrange)
165 {
166         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
167         struct hmm_mirror *mirror;
168         struct hmm_update update;
169         struct hmm_range *range;
170         unsigned long flags;
171         int ret = 0;
172
173         if (!kref_get_unless_zero(&hmm->kref))
174                 return 0;
175
176         update.start = nrange->start;
177         update.end = nrange->end;
178         update.event = HMM_UPDATE_INVALIDATE;
179         update.blockable = mmu_notifier_range_blockable(nrange);
180
181         spin_lock_irqsave(&hmm->ranges_lock, flags);
182         hmm->notifiers++;
183         list_for_each_entry(range, &hmm->ranges, list) {
184                 if (update.end < range->start || update.start >= range->end)
185                         continue;
186
187                 range->valid = false;
188         }
189         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
190
191         if (mmu_notifier_range_blockable(nrange))
192                 down_read(&hmm->mirrors_sem);
193         else if (!down_read_trylock(&hmm->mirrors_sem)) {
194                 ret = -EAGAIN;
195                 goto out;
196         }
197
198         list_for_each_entry(mirror, &hmm->mirrors, list) {
199                 int rc;
200
201                 rc = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
202                 if (rc) {
203                         if (WARN_ON(update.blockable || rc != -EAGAIN))
204                                 continue;
205                         ret = -EAGAIN;
206                         break;
207                 }
208         }
209         up_read(&hmm->mirrors_sem);
210
211 out:
212         if (ret)
213                 notifiers_decrement(hmm);
214         hmm_put(hmm);
215         return ret;
216 }
217
218 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
219                         const struct mmu_notifier_range *nrange)
220 {
221         struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
222
223         if (!kref_get_unless_zero(&hmm->kref))
224                 return;
225
226         notifiers_decrement(hmm);
227         hmm_put(hmm);
228 }
229
230 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
231         .release                = hmm_release,
232         .invalidate_range_start = hmm_invalidate_range_start,
233         .invalidate_range_end   = hmm_invalidate_range_end,
234 };
235
236 /*
237  * hmm_mirror_register() - register a mirror against an mm
238  *
239  * @mirror: new mirror struct to register
240  * @mm: mm to register against
241  * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
242  *
243  * To start mirroring a process address space, the device driver must register
244  * an HMM mirror struct.
245  */
246 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
247 {
248         lockdep_assert_held_write(&mm->mmap_sem);
249
250         /* Sanity check */
251         if (!mm || !mirror || !mirror->ops)
252                 return -EINVAL;
253
254         mirror->hmm = hmm_get_or_create(mm);
255         if (!mirror->hmm)
256                 return -ENOMEM;
257
258         down_write(&mirror->hmm->mirrors_sem);
259         list_add(&mirror->list, &mirror->hmm->mirrors);
260         up_write(&mirror->hmm->mirrors_sem);
261
262         return 0;
263 }
264 EXPORT_SYMBOL(hmm_mirror_register);
265
266 /*
267  * hmm_mirror_unregister() - unregister a mirror
268  *
269  * @mirror: mirror struct to unregister
270  *
271  * Stop mirroring a process address space, and cleanup.
272  */
273 void hmm_mirror_unregister(struct hmm_mirror *mirror)
274 {
275         struct hmm *hmm = mirror->hmm;
276
277         down_write(&hmm->mirrors_sem);
278         list_del(&mirror->list);
279         up_write(&hmm->mirrors_sem);
280         hmm_put(hmm);
281 }
282 EXPORT_SYMBOL(hmm_mirror_unregister);
283
284 struct hmm_vma_walk {
285         struct hmm_range        *range;
286         struct dev_pagemap      *pgmap;
287         unsigned long           last;
288         bool                    fault;
289         bool                    block;
290 };
291
292 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
293                             bool write_fault, uint64_t *pfn)
294 {
295         unsigned int flags = FAULT_FLAG_REMOTE;
296         struct hmm_vma_walk *hmm_vma_walk = walk->private;
297         struct hmm_range *range = hmm_vma_walk->range;
298         struct vm_area_struct *vma = walk->vma;
299         vm_fault_t ret;
300
301         flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
302         flags |= write_fault ? FAULT_FLAG_WRITE : 0;
303         ret = handle_mm_fault(vma, addr, flags);
304         if (ret & VM_FAULT_RETRY)
305                 return -EAGAIN;
306         if (ret & VM_FAULT_ERROR) {
307                 *pfn = range->values[HMM_PFN_ERROR];
308                 return -EFAULT;
309         }
310
311         return -EBUSY;
312 }
313
314 static int hmm_pfns_bad(unsigned long addr,
315                         unsigned long end,
316                         struct mm_walk *walk)
317 {
318         struct hmm_vma_walk *hmm_vma_walk = walk->private;
319         struct hmm_range *range = hmm_vma_walk->range;
320         uint64_t *pfns = range->pfns;
321         unsigned long i;
322
323         i = (addr - range->start) >> PAGE_SHIFT;
324         for (; addr < end; addr += PAGE_SIZE, i++)
325                 pfns[i] = range->values[HMM_PFN_ERROR];
326
327         return 0;
328 }
329
330 /*
331  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
332  * @start: range virtual start address (inclusive)
333  * @end: range virtual end address (exclusive)
334  * @fault: should we fault or not ?
335  * @write_fault: write fault ?
336  * @walk: mm_walk structure
337  * Return: 0 on success, -EBUSY after page fault, or page fault error
338  *
339  * This function will be called whenever pmd_none() or pte_none() returns true,
340  * or whenever there is no page directory covering the virtual address range.
341  */
342 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
343                               bool fault, bool write_fault,
344                               struct mm_walk *walk)
345 {
346         struct hmm_vma_walk *hmm_vma_walk = walk->private;
347         struct hmm_range *range = hmm_vma_walk->range;
348         uint64_t *pfns = range->pfns;
349         unsigned long i, page_size;
350
351         hmm_vma_walk->last = addr;
352         page_size = hmm_range_page_size(range);
353         i = (addr - range->start) >> range->page_shift;
354
355         for (; addr < end; addr += page_size, i++) {
356                 pfns[i] = range->values[HMM_PFN_NONE];
357                 if (fault || write_fault) {
358                         int ret;
359
360                         ret = hmm_vma_do_fault(walk, addr, write_fault,
361                                                &pfns[i]);
362                         if (ret != -EBUSY)
363                                 return ret;
364                 }
365         }
366
367         return (fault || write_fault) ? -EBUSY : 0;
368 }
369
370 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
371                                       uint64_t pfns, uint64_t cpu_flags,
372                                       bool *fault, bool *write_fault)
373 {
374         struct hmm_range *range = hmm_vma_walk->range;
375
376         if (!hmm_vma_walk->fault)
377                 return;
378
379         /*
380          * So we not only consider the individual per page request we also
381          * consider the default flags requested for the range. The API can
382          * be use in 2 fashions. The first one where the HMM user coalesce
383          * multiple page fault into one request and set flags per pfns for
384          * of those faults. The second one where the HMM user want to pre-
385          * fault a range with specific flags. For the latter one it is a
386          * waste to have the user pre-fill the pfn arrays with a default
387          * flags value.
388          */
389         pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
390
391         /* We aren't ask to do anything ... */
392         if (!(pfns & range->flags[HMM_PFN_VALID]))
393                 return;
394         /* If this is device memory than only fault if explicitly requested */
395         if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
396                 /* Do we fault on device memory ? */
397                 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
398                         *write_fault = pfns & range->flags[HMM_PFN_WRITE];
399                         *fault = true;
400                 }
401                 return;
402         }
403
404         /* If CPU page table is not valid then we need to fault */
405         *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
406         /* Need to write fault ? */
407         if ((pfns & range->flags[HMM_PFN_WRITE]) &&
408             !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
409                 *write_fault = true;
410                 *fault = true;
411         }
412 }
413
414 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
415                                  const uint64_t *pfns, unsigned long npages,
416                                  uint64_t cpu_flags, bool *fault,
417                                  bool *write_fault)
418 {
419         unsigned long i;
420
421         if (!hmm_vma_walk->fault) {
422                 *fault = *write_fault = false;
423                 return;
424         }
425
426         *fault = *write_fault = false;
427         for (i = 0; i < npages; ++i) {
428                 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
429                                    fault, write_fault);
430                 if ((*write_fault))
431                         return;
432         }
433 }
434
435 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
436                              struct mm_walk *walk)
437 {
438         struct hmm_vma_walk *hmm_vma_walk = walk->private;
439         struct hmm_range *range = hmm_vma_walk->range;
440         bool fault, write_fault;
441         unsigned long i, npages;
442         uint64_t *pfns;
443
444         i = (addr - range->start) >> PAGE_SHIFT;
445         npages = (end - addr) >> PAGE_SHIFT;
446         pfns = &range->pfns[i];
447         hmm_range_need_fault(hmm_vma_walk, pfns, npages,
448                              0, &fault, &write_fault);
449         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
450 }
451
452 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
453 {
454         if (pmd_protnone(pmd))
455                 return 0;
456         return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
457                                 range->flags[HMM_PFN_WRITE] :
458                                 range->flags[HMM_PFN_VALID];
459 }
460
461 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
462 {
463         if (!pud_present(pud))
464                 return 0;
465         return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
466                                 range->flags[HMM_PFN_WRITE] :
467                                 range->flags[HMM_PFN_VALID];
468 }
469
470 static int hmm_vma_handle_pmd(struct mm_walk *walk,
471                               unsigned long addr,
472                               unsigned long end,
473                               uint64_t *pfns,
474                               pmd_t pmd)
475 {
476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
477         struct hmm_vma_walk *hmm_vma_walk = walk->private;
478         struct hmm_range *range = hmm_vma_walk->range;
479         unsigned long pfn, npages, i;
480         bool fault, write_fault;
481         uint64_t cpu_flags;
482
483         npages = (end - addr) >> PAGE_SHIFT;
484         cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
485         hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
486                              &fault, &write_fault);
487
488         if (pmd_protnone(pmd) || fault || write_fault)
489                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
490
491         pfn = pmd_pfn(pmd) + pte_index(addr);
492         for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
493                 if (pmd_devmap(pmd)) {
494                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
495                                               hmm_vma_walk->pgmap);
496                         if (unlikely(!hmm_vma_walk->pgmap))
497                                 return -EBUSY;
498                 }
499                 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
500         }
501         if (hmm_vma_walk->pgmap) {
502                 put_dev_pagemap(hmm_vma_walk->pgmap);
503                 hmm_vma_walk->pgmap = NULL;
504         }
505         hmm_vma_walk->last = end;
506         return 0;
507 #else
508         /* If THP is not enabled then we should never reach that code ! */
509         return -EINVAL;
510 #endif
511 }
512
513 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
514 {
515         if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
516                 return 0;
517         return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
518                                 range->flags[HMM_PFN_WRITE] :
519                                 range->flags[HMM_PFN_VALID];
520 }
521
522 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
523                               unsigned long end, pmd_t *pmdp, pte_t *ptep,
524                               uint64_t *pfn)
525 {
526         struct hmm_vma_walk *hmm_vma_walk = walk->private;
527         struct hmm_range *range = hmm_vma_walk->range;
528         struct vm_area_struct *vma = walk->vma;
529         bool fault, write_fault;
530         uint64_t cpu_flags;
531         pte_t pte = *ptep;
532         uint64_t orig_pfn = *pfn;
533
534         *pfn = range->values[HMM_PFN_NONE];
535         fault = write_fault = false;
536
537         if (pte_none(pte)) {
538                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
539                                    &fault, &write_fault);
540                 if (fault || write_fault)
541                         goto fault;
542                 return 0;
543         }
544
545         if (!pte_present(pte)) {
546                 swp_entry_t entry = pte_to_swp_entry(pte);
547
548                 if (!non_swap_entry(entry)) {
549                         if (fault || write_fault)
550                                 goto fault;
551                         return 0;
552                 }
553
554                 /*
555                  * This is a special swap entry, ignore migration, use
556                  * device and report anything else as error.
557                  */
558                 if (is_device_private_entry(entry)) {
559                         cpu_flags = range->flags[HMM_PFN_VALID] |
560                                 range->flags[HMM_PFN_DEVICE_PRIVATE];
561                         cpu_flags |= is_write_device_private_entry(entry) ?
562                                 range->flags[HMM_PFN_WRITE] : 0;
563                         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
564                                            &fault, &write_fault);
565                         if (fault || write_fault)
566                                 goto fault;
567                         *pfn = hmm_device_entry_from_pfn(range,
568                                             swp_offset(entry));
569                         *pfn |= cpu_flags;
570                         return 0;
571                 }
572
573                 if (is_migration_entry(entry)) {
574                         if (fault || write_fault) {
575                                 pte_unmap(ptep);
576                                 hmm_vma_walk->last = addr;
577                                 migration_entry_wait(vma->vm_mm,
578                                                      pmdp, addr);
579                                 return -EBUSY;
580                         }
581                         return 0;
582                 }
583
584                 /* Report error for everything else */
585                 *pfn = range->values[HMM_PFN_ERROR];
586                 return -EFAULT;
587         } else {
588                 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
589                 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
590                                    &fault, &write_fault);
591         }
592
593         if (fault || write_fault)
594                 goto fault;
595
596         if (pte_devmap(pte)) {
597                 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
598                                               hmm_vma_walk->pgmap);
599                 if (unlikely(!hmm_vma_walk->pgmap))
600                         return -EBUSY;
601         } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
602                 *pfn = range->values[HMM_PFN_SPECIAL];
603                 return -EFAULT;
604         }
605
606         *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
607         return 0;
608
609 fault:
610         if (hmm_vma_walk->pgmap) {
611                 put_dev_pagemap(hmm_vma_walk->pgmap);
612                 hmm_vma_walk->pgmap = NULL;
613         }
614         pte_unmap(ptep);
615         /* Fault any virtual address we were asked to fault */
616         return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
617 }
618
619 static int hmm_vma_walk_pmd(pmd_t *pmdp,
620                             unsigned long start,
621                             unsigned long end,
622                             struct mm_walk *walk)
623 {
624         struct hmm_vma_walk *hmm_vma_walk = walk->private;
625         struct hmm_range *range = hmm_vma_walk->range;
626         struct vm_area_struct *vma = walk->vma;
627         uint64_t *pfns = range->pfns;
628         unsigned long addr = start, i;
629         pte_t *ptep;
630         pmd_t pmd;
631
632
633 again:
634         pmd = READ_ONCE(*pmdp);
635         if (pmd_none(pmd))
636                 return hmm_vma_walk_hole(start, end, walk);
637
638         if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
639                 return hmm_pfns_bad(start, end, walk);
640
641         if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
642                 bool fault, write_fault;
643                 unsigned long npages;
644                 uint64_t *pfns;
645
646                 i = (addr - range->start) >> PAGE_SHIFT;
647                 npages = (end - addr) >> PAGE_SHIFT;
648                 pfns = &range->pfns[i];
649
650                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
651                                      0, &fault, &write_fault);
652                 if (fault || write_fault) {
653                         hmm_vma_walk->last = addr;
654                         pmd_migration_entry_wait(vma->vm_mm, pmdp);
655                         return -EBUSY;
656                 }
657                 return 0;
658         } else if (!pmd_present(pmd))
659                 return hmm_pfns_bad(start, end, walk);
660
661         if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
662                 /*
663                  * No need to take pmd_lock here, even if some other threads
664                  * is splitting the huge pmd we will get that event through
665                  * mmu_notifier callback.
666                  *
667                  * So just read pmd value and check again its a transparent
668                  * huge or device mapping one and compute corresponding pfn
669                  * values.
670                  */
671                 pmd = pmd_read_atomic(pmdp);
672                 barrier();
673                 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
674                         goto again;
675
676                 i = (addr - range->start) >> PAGE_SHIFT;
677                 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
678         }
679
680         /*
681          * We have handled all the valid case above ie either none, migration,
682          * huge or transparent huge. At this point either it is a valid pmd
683          * entry pointing to pte directory or it is a bad pmd that will not
684          * recover.
685          */
686         if (pmd_bad(pmd))
687                 return hmm_pfns_bad(start, end, walk);
688
689         ptep = pte_offset_map(pmdp, addr);
690         i = (addr - range->start) >> PAGE_SHIFT;
691         for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
692                 int r;
693
694                 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
695                 if (r) {
696                         /* hmm_vma_handle_pte() did unmap pte directory */
697                         hmm_vma_walk->last = addr;
698                         return r;
699                 }
700         }
701         if (hmm_vma_walk->pgmap) {
702                 /*
703                  * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
704                  * so that we can leverage get_dev_pagemap() optimization which
705                  * will not re-take a reference on a pgmap if we already have
706                  * one.
707                  */
708                 put_dev_pagemap(hmm_vma_walk->pgmap);
709                 hmm_vma_walk->pgmap = NULL;
710         }
711         pte_unmap(ptep - 1);
712
713         hmm_vma_walk->last = addr;
714         return 0;
715 }
716
717 static int hmm_vma_walk_pud(pud_t *pudp,
718                             unsigned long start,
719                             unsigned long end,
720                             struct mm_walk *walk)
721 {
722         struct hmm_vma_walk *hmm_vma_walk = walk->private;
723         struct hmm_range *range = hmm_vma_walk->range;
724         unsigned long addr = start, next;
725         pmd_t *pmdp;
726         pud_t pud;
727         int ret;
728
729 again:
730         pud = READ_ONCE(*pudp);
731         if (pud_none(pud))
732                 return hmm_vma_walk_hole(start, end, walk);
733
734         if (pud_huge(pud) && pud_devmap(pud)) {
735                 unsigned long i, npages, pfn;
736                 uint64_t *pfns, cpu_flags;
737                 bool fault, write_fault;
738
739                 if (!pud_present(pud))
740                         return hmm_vma_walk_hole(start, end, walk);
741
742                 i = (addr - range->start) >> PAGE_SHIFT;
743                 npages = (end - addr) >> PAGE_SHIFT;
744                 pfns = &range->pfns[i];
745
746                 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
747                 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
748                                      cpu_flags, &fault, &write_fault);
749                 if (fault || write_fault)
750                         return hmm_vma_walk_hole_(addr, end, fault,
751                                                 write_fault, walk);
752
753                 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
754                 for (i = 0; i < npages; ++i, ++pfn) {
755                         hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
756                                               hmm_vma_walk->pgmap);
757                         if (unlikely(!hmm_vma_walk->pgmap))
758                                 return -EBUSY;
759                         pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
760                                   cpu_flags;
761                 }
762                 if (hmm_vma_walk->pgmap) {
763                         put_dev_pagemap(hmm_vma_walk->pgmap);
764                         hmm_vma_walk->pgmap = NULL;
765                 }
766                 hmm_vma_walk->last = end;
767                 return 0;
768         }
769
770         split_huge_pud(walk->vma, pudp, addr);
771         if (pud_none(*pudp))
772                 goto again;
773
774         pmdp = pmd_offset(pudp, addr);
775         do {
776                 next = pmd_addr_end(addr, end);
777                 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
778                 if (ret)
779                         return ret;
780         } while (pmdp++, addr = next, addr != end);
781
782         return 0;
783 }
784
785 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
786                                       unsigned long start, unsigned long end,
787                                       struct mm_walk *walk)
788 {
789 #ifdef CONFIG_HUGETLB_PAGE
790         unsigned long addr = start, i, pfn, mask, size, pfn_inc;
791         struct hmm_vma_walk *hmm_vma_walk = walk->private;
792         struct hmm_range *range = hmm_vma_walk->range;
793         struct vm_area_struct *vma = walk->vma;
794         struct hstate *h = hstate_vma(vma);
795         uint64_t orig_pfn, cpu_flags;
796         bool fault, write_fault;
797         spinlock_t *ptl;
798         pte_t entry;
799         int ret = 0;
800
801         size = 1UL << huge_page_shift(h);
802         mask = size - 1;
803         if (range->page_shift != PAGE_SHIFT) {
804                 /* Make sure we are looking at full page. */
805                 if (start & mask)
806                         return -EINVAL;
807                 if (end < (start + size))
808                         return -EINVAL;
809                 pfn_inc = size >> PAGE_SHIFT;
810         } else {
811                 pfn_inc = 1;
812                 size = PAGE_SIZE;
813         }
814
815
816         ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
817         entry = huge_ptep_get(pte);
818
819         i = (start - range->start) >> range->page_shift;
820         orig_pfn = range->pfns[i];
821         range->pfns[i] = range->values[HMM_PFN_NONE];
822         cpu_flags = pte_to_hmm_pfn_flags(range, entry);
823         fault = write_fault = false;
824         hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
825                            &fault, &write_fault);
826         if (fault || write_fault) {
827                 ret = -ENOENT;
828                 goto unlock;
829         }
830
831         pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
832         for (; addr < end; addr += size, i++, pfn += pfn_inc)
833                 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
834                                  cpu_flags;
835         hmm_vma_walk->last = end;
836
837 unlock:
838         spin_unlock(ptl);
839
840         if (ret == -ENOENT)
841                 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
842
843         return ret;
844 #else /* CONFIG_HUGETLB_PAGE */
845         return -EINVAL;
846 #endif
847 }
848
849 static void hmm_pfns_clear(struct hmm_range *range,
850                            uint64_t *pfns,
851                            unsigned long addr,
852                            unsigned long end)
853 {
854         for (; addr < end; addr += PAGE_SIZE, pfns++)
855                 *pfns = range->values[HMM_PFN_NONE];
856 }
857
858 /*
859  * hmm_range_register() - start tracking change to CPU page table over a range
860  * @range: range
861  * @mm: the mm struct for the range of virtual address
862  * @start: start virtual address (inclusive)
863  * @end: end virtual address (exclusive)
864  * @page_shift: expect page shift for the range
865  * Returns 0 on success, -EFAULT if the address space is no longer valid
866  *
867  * Track updates to the CPU page table see include/linux/hmm.h
868  */
869 int hmm_range_register(struct hmm_range *range,
870                        struct hmm_mirror *mirror,
871                        unsigned long start,
872                        unsigned long end,
873                        unsigned page_shift)
874 {
875         unsigned long mask = ((1UL << page_shift) - 1UL);
876         struct hmm *hmm = mirror->hmm;
877         unsigned long flags;
878
879         range->valid = false;
880         range->hmm = NULL;
881
882         if ((start & mask) || (end & mask))
883                 return -EINVAL;
884         if (start >= end)
885                 return -EINVAL;
886
887         range->page_shift = page_shift;
888         range->start = start;
889         range->end = end;
890
891         /* Prevent hmm_release() from running while the range is valid */
892         if (!mmget_not_zero(hmm->mm))
893                 return -EFAULT;
894
895         /* Initialize range to track CPU page table updates. */
896         spin_lock_irqsave(&hmm->ranges_lock, flags);
897
898         range->hmm = hmm;
899         kref_get(&hmm->kref);
900         list_add(&range->list, &hmm->ranges);
901
902         /*
903          * If there are any concurrent notifiers we have to wait for them for
904          * the range to be valid (see hmm_range_wait_until_valid()).
905          */
906         if (!hmm->notifiers)
907                 range->valid = true;
908         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
909
910         return 0;
911 }
912 EXPORT_SYMBOL(hmm_range_register);
913
914 /*
915  * hmm_range_unregister() - stop tracking change to CPU page table over a range
916  * @range: range
917  *
918  * Range struct is used to track updates to the CPU page table after a call to
919  * hmm_range_register(). See include/linux/hmm.h for how to use it.
920  */
921 void hmm_range_unregister(struct hmm_range *range)
922 {
923         struct hmm *hmm = range->hmm;
924         unsigned long flags;
925
926         spin_lock_irqsave(&hmm->ranges_lock, flags);
927         list_del_init(&range->list);
928         spin_unlock_irqrestore(&hmm->ranges_lock, flags);
929
930         /* Drop reference taken by hmm_range_register() */
931         mmput(hmm->mm);
932         hmm_put(hmm);
933
934         /*
935          * The range is now invalid and the ref on the hmm is dropped, so
936          * poison the pointer.  Leave other fields in place, for the caller's
937          * use.
938          */
939         range->valid = false;
940         memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
941 }
942 EXPORT_SYMBOL(hmm_range_unregister);
943
944 /*
945  * hmm_range_snapshot() - snapshot CPU page table for a range
946  * @range: range
947  * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
948  *          permission (for instance asking for write and range is read only),
949  *          -EBUSY if you need to retry, -EFAULT invalid (ie either no valid
950  *          vma or it is illegal to access that range), number of valid pages
951  *          in range->pfns[] (from range start address).
952  *
953  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
954  * validity is tracked by range struct. See in include/linux/hmm.h for example
955  * on how to use.
956  */
957 long hmm_range_snapshot(struct hmm_range *range)
958 {
959         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
960         unsigned long start = range->start, end;
961         struct hmm_vma_walk hmm_vma_walk;
962         struct hmm *hmm = range->hmm;
963         struct vm_area_struct *vma;
964         struct mm_walk mm_walk;
965
966         lockdep_assert_held(&hmm->mm->mmap_sem);
967         do {
968                 /* If range is no longer valid force retry. */
969                 if (!range->valid)
970                         return -EBUSY;
971
972                 vma = find_vma(hmm->mm, start);
973                 if (vma == NULL || (vma->vm_flags & device_vma))
974                         return -EFAULT;
975
976                 if (is_vm_hugetlb_page(vma)) {
977                         if (huge_page_shift(hstate_vma(vma)) !=
978                                     range->page_shift &&
979                             range->page_shift != PAGE_SHIFT)
980                                 return -EINVAL;
981                 } else {
982                         if (range->page_shift != PAGE_SHIFT)
983                                 return -EINVAL;
984                 }
985
986                 if (!(vma->vm_flags & VM_READ)) {
987                         /*
988                          * If vma do not allow read access, then assume that it
989                          * does not allow write access, either. HMM does not
990                          * support architecture that allow write without read.
991                          */
992                         hmm_pfns_clear(range, range->pfns,
993                                 range->start, range->end);
994                         return -EPERM;
995                 }
996
997                 range->vma = vma;
998                 hmm_vma_walk.pgmap = NULL;
999                 hmm_vma_walk.last = start;
1000                 hmm_vma_walk.fault = false;
1001                 hmm_vma_walk.range = range;
1002                 mm_walk.private = &hmm_vma_walk;
1003                 end = min(range->end, vma->vm_end);
1004
1005                 mm_walk.vma = vma;
1006                 mm_walk.mm = vma->vm_mm;
1007                 mm_walk.pte_entry = NULL;
1008                 mm_walk.test_walk = NULL;
1009                 mm_walk.hugetlb_entry = NULL;
1010                 mm_walk.pud_entry = hmm_vma_walk_pud;
1011                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1012                 mm_walk.pte_hole = hmm_vma_walk_hole;
1013                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1014
1015                 walk_page_range(start, end, &mm_walk);
1016                 start = end;
1017         } while (start < range->end);
1018
1019         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1020 }
1021 EXPORT_SYMBOL(hmm_range_snapshot);
1022
1023 /*
1024  * hmm_range_fault() - try to fault some address in a virtual address range
1025  * @range: range being faulted
1026  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1027  * Return: number of valid pages in range->pfns[] (from range start
1028  *          address). This may be zero. If the return value is negative,
1029  *          then one of the following values may be returned:
1030  *
1031  *           -EINVAL  invalid arguments or mm or virtual address are in an
1032  *                    invalid vma (for instance device file vma).
1033  *           -ENOMEM: Out of memory.
1034  *           -EPERM:  Invalid permission (for instance asking for write and
1035  *                    range is read only).
1036  *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1037  *                    happens if block argument is false.
1038  *           -EBUSY:  If the the range is being invalidated and you should wait
1039  *                    for invalidation to finish.
1040  *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1041  *                    that range), number of valid pages in range->pfns[] (from
1042  *                    range start address).
1043  *
1044  * This is similar to a regular CPU page fault except that it will not trigger
1045  * any memory migration if the memory being faulted is not accessible by CPUs
1046  * and caller does not ask for migration.
1047  *
1048  * On error, for one virtual address in the range, the function will mark the
1049  * corresponding HMM pfn entry with an error flag.
1050  */
1051 long hmm_range_fault(struct hmm_range *range, bool block)
1052 {
1053         const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1054         unsigned long start = range->start, end;
1055         struct hmm_vma_walk hmm_vma_walk;
1056         struct hmm *hmm = range->hmm;
1057         struct vm_area_struct *vma;
1058         struct mm_walk mm_walk;
1059         int ret;
1060
1061         lockdep_assert_held(&hmm->mm->mmap_sem);
1062
1063         do {
1064                 /* If range is no longer valid force retry. */
1065                 if (!range->valid)
1066                         return -EBUSY;
1067
1068                 vma = find_vma(hmm->mm, start);
1069                 if (vma == NULL || (vma->vm_flags & device_vma))
1070                         return -EFAULT;
1071
1072                 if (is_vm_hugetlb_page(vma)) {
1073                         if (huge_page_shift(hstate_vma(vma)) !=
1074                             range->page_shift &&
1075                             range->page_shift != PAGE_SHIFT)
1076                                 return -EINVAL;
1077                 } else {
1078                         if (range->page_shift != PAGE_SHIFT)
1079                                 return -EINVAL;
1080                 }
1081
1082                 if (!(vma->vm_flags & VM_READ)) {
1083                         /*
1084                          * If vma do not allow read access, then assume that it
1085                          * does not allow write access, either. HMM does not
1086                          * support architecture that allow write without read.
1087                          */
1088                         hmm_pfns_clear(range, range->pfns,
1089                                 range->start, range->end);
1090                         return -EPERM;
1091                 }
1092
1093                 range->vma = vma;
1094                 hmm_vma_walk.pgmap = NULL;
1095                 hmm_vma_walk.last = start;
1096                 hmm_vma_walk.fault = true;
1097                 hmm_vma_walk.block = block;
1098                 hmm_vma_walk.range = range;
1099                 mm_walk.private = &hmm_vma_walk;
1100                 end = min(range->end, vma->vm_end);
1101
1102                 mm_walk.vma = vma;
1103                 mm_walk.mm = vma->vm_mm;
1104                 mm_walk.pte_entry = NULL;
1105                 mm_walk.test_walk = NULL;
1106                 mm_walk.hugetlb_entry = NULL;
1107                 mm_walk.pud_entry = hmm_vma_walk_pud;
1108                 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1109                 mm_walk.pte_hole = hmm_vma_walk_hole;
1110                 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1111
1112                 do {
1113                         ret = walk_page_range(start, end, &mm_walk);
1114                         start = hmm_vma_walk.last;
1115
1116                         /* Keep trying while the range is valid. */
1117                 } while (ret == -EBUSY && range->valid);
1118
1119                 if (ret) {
1120                         unsigned long i;
1121
1122                         i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1123                         hmm_pfns_clear(range, &range->pfns[i],
1124                                 hmm_vma_walk.last, range->end);
1125                         return ret;
1126                 }
1127                 start = end;
1128
1129         } while (start < range->end);
1130
1131         return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1132 }
1133 EXPORT_SYMBOL(hmm_range_fault);
1134
1135 /**
1136  * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1137  * @range: range being faulted
1138  * @device: device against to dma map page to
1139  * @daddrs: dma address of mapped pages
1140  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1141  * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
1142  *          drop and you need to try again, some other error value otherwise
1143  *
1144  * Note same usage pattern as hmm_range_fault().
1145  */
1146 long hmm_range_dma_map(struct hmm_range *range,
1147                        struct device *device,
1148                        dma_addr_t *daddrs,
1149                        bool block)
1150 {
1151         unsigned long i, npages, mapped;
1152         long ret;
1153
1154         ret = hmm_range_fault(range, block);
1155         if (ret <= 0)
1156                 return ret ? ret : -EBUSY;
1157
1158         npages = (range->end - range->start) >> PAGE_SHIFT;
1159         for (i = 0, mapped = 0; i < npages; ++i) {
1160                 enum dma_data_direction dir = DMA_TO_DEVICE;
1161                 struct page *page;
1162
1163                 /*
1164                  * FIXME need to update DMA API to provide invalid DMA address
1165                  * value instead of a function to test dma address value. This
1166                  * would remove lot of dumb code duplicated accross many arch.
1167                  *
1168                  * For now setting it to 0 here is good enough as the pfns[]
1169                  * value is what is use to check what is valid and what isn't.
1170                  */
1171                 daddrs[i] = 0;
1172
1173                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1174                 if (page == NULL)
1175                         continue;
1176
1177                 /* Check if range is being invalidated */
1178                 if (!range->valid) {
1179                         ret = -EBUSY;
1180                         goto unmap;
1181                 }
1182
1183                 /* If it is read and write than map bi-directional. */
1184                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1185                         dir = DMA_BIDIRECTIONAL;
1186
1187                 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1188                 if (dma_mapping_error(device, daddrs[i])) {
1189                         ret = -EFAULT;
1190                         goto unmap;
1191                 }
1192
1193                 mapped++;
1194         }
1195
1196         return mapped;
1197
1198 unmap:
1199         for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1200                 enum dma_data_direction dir = DMA_TO_DEVICE;
1201                 struct page *page;
1202
1203                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1204                 if (page == NULL)
1205                         continue;
1206
1207                 if (dma_mapping_error(device, daddrs[i]))
1208                         continue;
1209
1210                 /* If it is read and write than map bi-directional. */
1211                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1212                         dir = DMA_BIDIRECTIONAL;
1213
1214                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1215                 mapped--;
1216         }
1217
1218         return ret;
1219 }
1220 EXPORT_SYMBOL(hmm_range_dma_map);
1221
1222 /**
1223  * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1224  * @range: range being unmapped
1225  * @vma: the vma against which the range (optional)
1226  * @device: device against which dma map was done
1227  * @daddrs: dma address of mapped pages
1228  * @dirty: dirty page if it had the write flag set
1229  * Return: number of page unmapped on success, -EINVAL otherwise
1230  *
1231  * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1232  * to the sync_cpu_device_pagetables() callback so that it is safe here to
1233  * call set_page_dirty(). Caller must also take appropriate locks to avoid
1234  * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1235  */
1236 long hmm_range_dma_unmap(struct hmm_range *range,
1237                          struct vm_area_struct *vma,
1238                          struct device *device,
1239                          dma_addr_t *daddrs,
1240                          bool dirty)
1241 {
1242         unsigned long i, npages;
1243         long cpages = 0;
1244
1245         /* Sanity check. */
1246         if (range->end <= range->start)
1247                 return -EINVAL;
1248         if (!daddrs)
1249                 return -EINVAL;
1250         if (!range->pfns)
1251                 return -EINVAL;
1252
1253         npages = (range->end - range->start) >> PAGE_SHIFT;
1254         for (i = 0; i < npages; ++i) {
1255                 enum dma_data_direction dir = DMA_TO_DEVICE;
1256                 struct page *page;
1257
1258                 page = hmm_device_entry_to_page(range, range->pfns[i]);
1259                 if (page == NULL)
1260                         continue;
1261
1262                 /* If it is read and write than map bi-directional. */
1263                 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1264                         dir = DMA_BIDIRECTIONAL;
1265
1266                         /*
1267                          * See comments in function description on why it is
1268                          * safe here to call set_page_dirty()
1269                          */
1270                         if (dirty)
1271                                 set_page_dirty(page);
1272                 }
1273
1274                 /* Unmap and clear pfns/dma address */
1275                 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1276                 range->pfns[i] = range->values[HMM_PFN_NONE];
1277                 /* FIXME see comments in hmm_vma_dma_map() */
1278                 daddrs[i] = 0;
1279                 cpages++;
1280         }
1281
1282         return cpages;
1283 }
1284 EXPORT_SYMBOL(hmm_range_dma_unmap);