Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / gup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28         struct dev_pagemap *pgmap;
29         unsigned int page_mask;
30 };
31
32 typedef int (*set_dirty_func_t)(struct page *page);
33
34 static void __put_user_pages_dirty(struct page **pages,
35                                    unsigned long npages,
36                                    set_dirty_func_t sdf)
37 {
38         unsigned long index;
39
40         for (index = 0; index < npages; index++) {
41                 struct page *page = compound_head(pages[index]);
42
43                 /*
44                  * Checking PageDirty at this point may race with
45                  * clear_page_dirty_for_io(), but that's OK. Two key cases:
46                  *
47                  * 1) This code sees the page as already dirty, so it skips
48                  * the call to sdf(). That could happen because
49                  * clear_page_dirty_for_io() called page_mkclean(),
50                  * followed by set_page_dirty(). However, now the page is
51                  * going to get written back, which meets the original
52                  * intention of setting it dirty, so all is well:
53                  * clear_page_dirty_for_io() goes on to call
54                  * TestClearPageDirty(), and write the page back.
55                  *
56                  * 2) This code sees the page as clean, so it calls sdf().
57                  * The page stays dirty, despite being written back, so it
58                  * gets written back again in the next writeback cycle.
59                  * This is harmless.
60                  */
61                 if (!PageDirty(page))
62                         sdf(page);
63
64                 put_user_page(page);
65         }
66 }
67
68 /**
69  * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70  * @pages:  array of pages to be marked dirty and released.
71  * @npages: number of pages in the @pages array.
72  *
73  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74  * variants called on that page.
75  *
76  * For each page in the @pages array, make that page (or its head page, if a
77  * compound page) dirty, if it was previously listed as clean. Then, release
78  * the page using put_user_page().
79  *
80  * Please see the put_user_page() documentation for details.
81  *
82  * set_page_dirty(), which does not lock the page, is used here.
83  * Therefore, it is the caller's responsibility to ensure that this is
84  * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85  *
86  */
87 void put_user_pages_dirty(struct page **pages, unsigned long npages)
88 {
89         __put_user_pages_dirty(pages, npages, set_page_dirty);
90 }
91 EXPORT_SYMBOL(put_user_pages_dirty);
92
93 /**
94  * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95  * @pages:  array of pages to be marked dirty and released.
96  * @npages: number of pages in the @pages array.
97  *
98  * For each page in the @pages array, make that page (or its head page, if a
99  * compound page) dirty, if it was previously listed as clean. Then, release
100  * the page using put_user_page().
101  *
102  * Please see the put_user_page() documentation for details.
103  *
104  * This is just like put_user_pages_dirty(), except that it invokes
105  * set_page_dirty_lock(), instead of set_page_dirty().
106  *
107  */
108 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109 {
110         __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111 }
112 EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114 /**
115  * put_user_pages() - release an array of gup-pinned pages.
116  * @pages:  array of pages to be marked dirty and released.
117  * @npages: number of pages in the @pages array.
118  *
119  * For each page in the @pages array, release the page using put_user_page().
120  *
121  * Please see the put_user_page() documentation for details.
122  */
123 void put_user_pages(struct page **pages, unsigned long npages)
124 {
125         unsigned long index;
126
127         /*
128          * TODO: this can be optimized for huge pages: if a series of pages is
129          * physically contiguous and part of the same compound page, then a
130          * single operation to the head page should suffice.
131          */
132         for (index = 0; index < npages; index++)
133                 put_user_page(pages[index]);
134 }
135 EXPORT_SYMBOL(put_user_pages);
136
137 #ifdef CONFIG_MMU
138 static struct page *no_page_table(struct vm_area_struct *vma,
139                 unsigned int flags)
140 {
141         /*
142          * When core dumping an enormous anonymous area that nobody
143          * has touched so far, we don't want to allocate unnecessary pages or
144          * page tables.  Return error instead of NULL to skip handle_mm_fault,
145          * then get_dump_page() will return NULL to leave a hole in the dump.
146          * But we can only make this optimization where a hole would surely
147          * be zero-filled if handle_mm_fault() actually did handle it.
148          */
149         if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150                 return ERR_PTR(-EFAULT);
151         return NULL;
152 }
153
154 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155                 pte_t *pte, unsigned int flags)
156 {
157         /* No page to get reference */
158         if (flags & FOLL_GET)
159                 return -EFAULT;
160
161         if (flags & FOLL_TOUCH) {
162                 pte_t entry = *pte;
163
164                 if (flags & FOLL_WRITE)
165                         entry = pte_mkdirty(entry);
166                 entry = pte_mkyoung(entry);
167
168                 if (!pte_same(*pte, entry)) {
169                         set_pte_at(vma->vm_mm, address, pte, entry);
170                         update_mmu_cache(vma, address, pte);
171                 }
172         }
173
174         /* Proper page table entry exists, but no corresponding struct page */
175         return -EEXIST;
176 }
177
178 /*
179  * FOLL_FORCE can write to even unwritable pte's, but only
180  * after we've gone through a COW cycle and they are dirty.
181  */
182 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183 {
184         return pte_write(pte) ||
185                 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186 }
187
188 static struct page *follow_page_pte(struct vm_area_struct *vma,
189                 unsigned long address, pmd_t *pmd, unsigned int flags,
190                 struct dev_pagemap **pgmap)
191 {
192         struct mm_struct *mm = vma->vm_mm;
193         struct page *page;
194         spinlock_t *ptl;
195         pte_t *ptep, pte;
196
197 retry:
198         if (unlikely(pmd_bad(*pmd)))
199                 return no_page_table(vma, flags);
200
201         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
202         pte = *ptep;
203         if (!pte_present(pte)) {
204                 swp_entry_t entry;
205                 /*
206                  * KSM's break_ksm() relies upon recognizing a ksm page
207                  * even while it is being migrated, so for that case we
208                  * need migration_entry_wait().
209                  */
210                 if (likely(!(flags & FOLL_MIGRATION)))
211                         goto no_page;
212                 if (pte_none(pte))
213                         goto no_page;
214                 entry = pte_to_swp_entry(pte);
215                 if (!is_migration_entry(entry))
216                         goto no_page;
217                 pte_unmap_unlock(ptep, ptl);
218                 migration_entry_wait(mm, pmd, address);
219                 goto retry;
220         }
221         if ((flags & FOLL_NUMA) && pte_protnone(pte))
222                 goto no_page;
223         if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
224                 pte_unmap_unlock(ptep, ptl);
225                 return NULL;
226         }
227
228         page = vm_normal_page(vma, address, pte);
229         if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230                 /*
231                  * Only return device mapping pages in the FOLL_GET case since
232                  * they are only valid while holding the pgmap reference.
233                  */
234                 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235                 if (*pgmap)
236                         page = pte_page(pte);
237                 else
238                         goto no_page;
239         } else if (unlikely(!page)) {
240                 if (flags & FOLL_DUMP) {
241                         /* Avoid special (like zero) pages in core dumps */
242                         page = ERR_PTR(-EFAULT);
243                         goto out;
244                 }
245
246                 if (is_zero_pfn(pte_pfn(pte))) {
247                         page = pte_page(pte);
248                 } else {
249                         int ret;
250
251                         ret = follow_pfn_pte(vma, address, ptep, flags);
252                         page = ERR_PTR(ret);
253                         goto out;
254                 }
255         }
256
257         if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258                 int ret;
259                 get_page(page);
260                 pte_unmap_unlock(ptep, ptl);
261                 lock_page(page);
262                 ret = split_huge_page(page);
263                 unlock_page(page);
264                 put_page(page);
265                 if (ret)
266                         return ERR_PTR(ret);
267                 goto retry;
268         }
269
270         if (flags & FOLL_GET) {
271                 if (unlikely(!try_get_page(page))) {
272                         page = ERR_PTR(-ENOMEM);
273                         goto out;
274                 }
275         }
276         if (flags & FOLL_TOUCH) {
277                 if ((flags & FOLL_WRITE) &&
278                     !pte_dirty(pte) && !PageDirty(page))
279                         set_page_dirty(page);
280                 /*
281                  * pte_mkyoung() would be more correct here, but atomic care
282                  * is needed to avoid losing the dirty bit: it is easier to use
283                  * mark_page_accessed().
284                  */
285                 mark_page_accessed(page);
286         }
287         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
288                 /* Do not mlock pte-mapped THP */
289                 if (PageTransCompound(page))
290                         goto out;
291
292                 /*
293                  * The preliminary mapping check is mainly to avoid the
294                  * pointless overhead of lock_page on the ZERO_PAGE
295                  * which might bounce very badly if there is contention.
296                  *
297                  * If the page is already locked, we don't need to
298                  * handle it now - vmscan will handle it later if and
299                  * when it attempts to reclaim the page.
300                  */
301                 if (page->mapping && trylock_page(page)) {
302                         lru_add_drain();  /* push cached pages to LRU */
303                         /*
304                          * Because we lock page here, and migration is
305                          * blocked by the pte's page reference, and we
306                          * know the page is still mapped, we don't even
307                          * need to check for file-cache page truncation.
308                          */
309                         mlock_vma_page(page);
310                         unlock_page(page);
311                 }
312         }
313 out:
314         pte_unmap_unlock(ptep, ptl);
315         return page;
316 no_page:
317         pte_unmap_unlock(ptep, ptl);
318         if (!pte_none(pte))
319                 return NULL;
320         return no_page_table(vma, flags);
321 }
322
323 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324                                     unsigned long address, pud_t *pudp,
325                                     unsigned int flags,
326                                     struct follow_page_context *ctx)
327 {
328         pmd_t *pmd, pmdval;
329         spinlock_t *ptl;
330         struct page *page;
331         struct mm_struct *mm = vma->vm_mm;
332
333         pmd = pmd_offset(pudp, address);
334         /*
335          * The READ_ONCE() will stabilize the pmdval in a register or
336          * on the stack so that it will stop changing under the code.
337          */
338         pmdval = READ_ONCE(*pmd);
339         if (pmd_none(pmdval))
340                 return no_page_table(vma, flags);
341         if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
342                 page = follow_huge_pmd(mm, address, pmd, flags);
343                 if (page)
344                         return page;
345                 return no_page_table(vma, flags);
346         }
347         if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
348                 page = follow_huge_pd(vma, address,
349                                       __hugepd(pmd_val(pmdval)), flags,
350                                       PMD_SHIFT);
351                 if (page)
352                         return page;
353                 return no_page_table(vma, flags);
354         }
355 retry:
356         if (!pmd_present(pmdval)) {
357                 if (likely(!(flags & FOLL_MIGRATION)))
358                         return no_page_table(vma, flags);
359                 VM_BUG_ON(thp_migration_supported() &&
360                                   !is_pmd_migration_entry(pmdval));
361                 if (is_pmd_migration_entry(pmdval))
362                         pmd_migration_entry_wait(mm, pmd);
363                 pmdval = READ_ONCE(*pmd);
364                 /*
365                  * MADV_DONTNEED may convert the pmd to null because
366                  * mmap_sem is held in read mode
367                  */
368                 if (pmd_none(pmdval))
369                         return no_page_table(vma, flags);
370                 goto retry;
371         }
372         if (pmd_devmap(pmdval)) {
373                 ptl = pmd_lock(mm, pmd);
374                 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
375                 spin_unlock(ptl);
376                 if (page)
377                         return page;
378         }
379         if (likely(!pmd_trans_huge(pmdval)))
380                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
381
382         if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
383                 return no_page_table(vma, flags);
384
385 retry_locked:
386         ptl = pmd_lock(mm, pmd);
387         if (unlikely(pmd_none(*pmd))) {
388                 spin_unlock(ptl);
389                 return no_page_table(vma, flags);
390         }
391         if (unlikely(!pmd_present(*pmd))) {
392                 spin_unlock(ptl);
393                 if (likely(!(flags & FOLL_MIGRATION)))
394                         return no_page_table(vma, flags);
395                 pmd_migration_entry_wait(mm, pmd);
396                 goto retry_locked;
397         }
398         if (unlikely(!pmd_trans_huge(*pmd))) {
399                 spin_unlock(ptl);
400                 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
401         }
402         if (flags & FOLL_SPLIT) {
403                 int ret;
404                 page = pmd_page(*pmd);
405                 if (is_huge_zero_page(page)) {
406                         spin_unlock(ptl);
407                         ret = 0;
408                         split_huge_pmd(vma, pmd, address);
409                         if (pmd_trans_unstable(pmd))
410                                 ret = -EBUSY;
411                 } else {
412                         if (unlikely(!try_get_page(page))) {
413                                 spin_unlock(ptl);
414                                 return ERR_PTR(-ENOMEM);
415                         }
416                         spin_unlock(ptl);
417                         lock_page(page);
418                         ret = split_huge_page(page);
419                         unlock_page(page);
420                         put_page(page);
421                         if (pmd_none(*pmd))
422                                 return no_page_table(vma, flags);
423                 }
424
425                 return ret ? ERR_PTR(ret) :
426                         follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
427         }
428         page = follow_trans_huge_pmd(vma, address, pmd, flags);
429         spin_unlock(ptl);
430         ctx->page_mask = HPAGE_PMD_NR - 1;
431         return page;
432 }
433
434 static struct page *follow_pud_mask(struct vm_area_struct *vma,
435                                     unsigned long address, p4d_t *p4dp,
436                                     unsigned int flags,
437                                     struct follow_page_context *ctx)
438 {
439         pud_t *pud;
440         spinlock_t *ptl;
441         struct page *page;
442         struct mm_struct *mm = vma->vm_mm;
443
444         pud = pud_offset(p4dp, address);
445         if (pud_none(*pud))
446                 return no_page_table(vma, flags);
447         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448                 page = follow_huge_pud(mm, address, pud, flags);
449                 if (page)
450                         return page;
451                 return no_page_table(vma, flags);
452         }
453         if (is_hugepd(__hugepd(pud_val(*pud)))) {
454                 page = follow_huge_pd(vma, address,
455                                       __hugepd(pud_val(*pud)), flags,
456                                       PUD_SHIFT);
457                 if (page)
458                         return page;
459                 return no_page_table(vma, flags);
460         }
461         if (pud_devmap(*pud)) {
462                 ptl = pud_lock(mm, pud);
463                 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
464                 spin_unlock(ptl);
465                 if (page)
466                         return page;
467         }
468         if (unlikely(pud_bad(*pud)))
469                 return no_page_table(vma, flags);
470
471         return follow_pmd_mask(vma, address, pud, flags, ctx);
472 }
473
474 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475                                     unsigned long address, pgd_t *pgdp,
476                                     unsigned int flags,
477                                     struct follow_page_context *ctx)
478 {
479         p4d_t *p4d;
480         struct page *page;
481
482         p4d = p4d_offset(pgdp, address);
483         if (p4d_none(*p4d))
484                 return no_page_table(vma, flags);
485         BUILD_BUG_ON(p4d_huge(*p4d));
486         if (unlikely(p4d_bad(*p4d)))
487                 return no_page_table(vma, flags);
488
489         if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490                 page = follow_huge_pd(vma, address,
491                                       __hugepd(p4d_val(*p4d)), flags,
492                                       P4D_SHIFT);
493                 if (page)
494                         return page;
495                 return no_page_table(vma, flags);
496         }
497         return follow_pud_mask(vma, address, p4d, flags, ctx);
498 }
499
500 /**
501  * follow_page_mask - look up a page descriptor from a user-virtual address
502  * @vma: vm_area_struct mapping @address
503  * @address: virtual address to look up
504  * @flags: flags modifying lookup behaviour
505  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506  *       pointer to output page_mask
507  *
508  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509  *
510  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512  *
513  * On output, the @ctx->page_mask is set according to the size of the page.
514  *
515  * Return: the mapped (struct page *), %NULL if no mapping exists, or
516  * an error pointer if there is a mapping to something not represented
517  * by a page descriptor (see also vm_normal_page()).
518  */
519 static struct page *follow_page_mask(struct vm_area_struct *vma,
520                               unsigned long address, unsigned int flags,
521                               struct follow_page_context *ctx)
522 {
523         pgd_t *pgd;
524         struct page *page;
525         struct mm_struct *mm = vma->vm_mm;
526
527         ctx->page_mask = 0;
528
529         /* make this handle hugepd */
530         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531         if (!IS_ERR(page)) {
532                 BUG_ON(flags & FOLL_GET);
533                 return page;
534         }
535
536         pgd = pgd_offset(mm, address);
537
538         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539                 return no_page_table(vma, flags);
540
541         if (pgd_huge(*pgd)) {
542                 page = follow_huge_pgd(mm, address, pgd, flags);
543                 if (page)
544                         return page;
545                 return no_page_table(vma, flags);
546         }
547         if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548                 page = follow_huge_pd(vma, address,
549                                       __hugepd(pgd_val(*pgd)), flags,
550                                       PGDIR_SHIFT);
551                 if (page)
552                         return page;
553                 return no_page_table(vma, flags);
554         }
555
556         return follow_p4d_mask(vma, address, pgd, flags, ctx);
557 }
558
559 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560                          unsigned int foll_flags)
561 {
562         struct follow_page_context ctx = { NULL };
563         struct page *page;
564
565         page = follow_page_mask(vma, address, foll_flags, &ctx);
566         if (ctx.pgmap)
567                 put_dev_pagemap(ctx.pgmap);
568         return page;
569 }
570
571 static int get_gate_page(struct mm_struct *mm, unsigned long address,
572                 unsigned int gup_flags, struct vm_area_struct **vma,
573                 struct page **page)
574 {
575         pgd_t *pgd;
576         p4d_t *p4d;
577         pud_t *pud;
578         pmd_t *pmd;
579         pte_t *pte;
580         int ret = -EFAULT;
581
582         /* user gate pages are read-only */
583         if (gup_flags & FOLL_WRITE)
584                 return -EFAULT;
585         if (address > TASK_SIZE)
586                 pgd = pgd_offset_k(address);
587         else
588                 pgd = pgd_offset_gate(mm, address);
589         if (pgd_none(*pgd))
590                 return -EFAULT;
591         p4d = p4d_offset(pgd, address);
592         if (p4d_none(*p4d))
593                 return -EFAULT;
594         pud = pud_offset(p4d, address);
595         if (pud_none(*pud))
596                 return -EFAULT;
597         pmd = pmd_offset(pud, address);
598         if (!pmd_present(*pmd))
599                 return -EFAULT;
600         VM_BUG_ON(pmd_trans_huge(*pmd));
601         pte = pte_offset_map(pmd, address);
602         if (pte_none(*pte))
603                 goto unmap;
604         *vma = get_gate_vma(mm);
605         if (!page)
606                 goto out;
607         *page = vm_normal_page(*vma, address, *pte);
608         if (!*page) {
609                 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
610                         goto unmap;
611                 *page = pte_page(*pte);
612         }
613         if (unlikely(!try_get_page(*page))) {
614                 ret = -ENOMEM;
615                 goto unmap;
616         }
617 out:
618         ret = 0;
619 unmap:
620         pte_unmap(pte);
621         return ret;
622 }
623
624 /*
625  * mmap_sem must be held on entry.  If @nonblocking != NULL and
626  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
627  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
628  */
629 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
630                 unsigned long address, unsigned int *flags, int *nonblocking)
631 {
632         unsigned int fault_flags = 0;
633         vm_fault_t ret;
634
635         /* mlock all present pages, but do not fault in new pages */
636         if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
637                 return -ENOENT;
638         if (*flags & FOLL_WRITE)
639                 fault_flags |= FAULT_FLAG_WRITE;
640         if (*flags & FOLL_REMOTE)
641                 fault_flags |= FAULT_FLAG_REMOTE;
642         if (nonblocking)
643                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
644         if (*flags & FOLL_NOWAIT)
645                 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
646         if (*flags & FOLL_TRIED) {
647                 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
648                 fault_flags |= FAULT_FLAG_TRIED;
649         }
650
651         ret = handle_mm_fault(vma, address, fault_flags);
652         if (ret & VM_FAULT_ERROR) {
653                 int err = vm_fault_to_errno(ret, *flags);
654
655                 if (err)
656                         return err;
657                 BUG();
658         }
659
660         if (tsk) {
661                 if (ret & VM_FAULT_MAJOR)
662                         tsk->maj_flt++;
663                 else
664                         tsk->min_flt++;
665         }
666
667         if (ret & VM_FAULT_RETRY) {
668                 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
669                         *nonblocking = 0;
670                 return -EBUSY;
671         }
672
673         /*
674          * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
675          * necessary, even if maybe_mkwrite decided not to set pte_write. We
676          * can thus safely do subsequent page lookups as if they were reads.
677          * But only do so when looping for pte_write is futile: in some cases
678          * userspace may also be wanting to write to the gotten user page,
679          * which a read fault here might prevent (a readonly page might get
680          * reCOWed by userspace write).
681          */
682         if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
683                 *flags |= FOLL_COW;
684         return 0;
685 }
686
687 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
688 {
689         vm_flags_t vm_flags = vma->vm_flags;
690         int write = (gup_flags & FOLL_WRITE);
691         int foreign = (gup_flags & FOLL_REMOTE);
692
693         if (vm_flags & (VM_IO | VM_PFNMAP))
694                 return -EFAULT;
695
696         if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
697                 return -EFAULT;
698
699         if (write) {
700                 if (!(vm_flags & VM_WRITE)) {
701                         if (!(gup_flags & FOLL_FORCE))
702                                 return -EFAULT;
703                         /*
704                          * We used to let the write,force case do COW in a
705                          * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
706                          * set a breakpoint in a read-only mapping of an
707                          * executable, without corrupting the file (yet only
708                          * when that file had been opened for writing!).
709                          * Anon pages in shared mappings are surprising: now
710                          * just reject it.
711                          */
712                         if (!is_cow_mapping(vm_flags))
713                                 return -EFAULT;
714                 }
715         } else if (!(vm_flags & VM_READ)) {
716                 if (!(gup_flags & FOLL_FORCE))
717                         return -EFAULT;
718                 /*
719                  * Is there actually any vma we can reach here which does not
720                  * have VM_MAYREAD set?
721                  */
722                 if (!(vm_flags & VM_MAYREAD))
723                         return -EFAULT;
724         }
725         /*
726          * gups are always data accesses, not instruction
727          * fetches, so execute=false here
728          */
729         if (!arch_vma_access_permitted(vma, write, false, foreign))
730                 return -EFAULT;
731         return 0;
732 }
733
734 /**
735  * __get_user_pages() - pin user pages in memory
736  * @tsk:        task_struct of target task
737  * @mm:         mm_struct of target mm
738  * @start:      starting user address
739  * @nr_pages:   number of pages from start to pin
740  * @gup_flags:  flags modifying pin behaviour
741  * @pages:      array that receives pointers to the pages pinned.
742  *              Should be at least nr_pages long. Or NULL, if caller
743  *              only intends to ensure the pages are faulted in.
744  * @vmas:       array of pointers to vmas corresponding to each page.
745  *              Or NULL if the caller does not require them.
746  * @nonblocking: whether waiting for disk IO or mmap_sem contention
747  *
748  * Returns number of pages pinned. This may be fewer than the number
749  * requested. If nr_pages is 0 or negative, returns 0. If no pages
750  * were pinned, returns -errno. Each page returned must be released
751  * with a put_page() call when it is finished with. vmas will only
752  * remain valid while mmap_sem is held.
753  *
754  * Must be called with mmap_sem held.  It may be released.  See below.
755  *
756  * __get_user_pages walks a process's page tables and takes a reference to
757  * each struct page that each user address corresponds to at a given
758  * instant. That is, it takes the page that would be accessed if a user
759  * thread accesses the given user virtual address at that instant.
760  *
761  * This does not guarantee that the page exists in the user mappings when
762  * __get_user_pages returns, and there may even be a completely different
763  * page there in some cases (eg. if mmapped pagecache has been invalidated
764  * and subsequently re faulted). However it does guarantee that the page
765  * won't be freed completely. And mostly callers simply care that the page
766  * contains data that was valid *at some point in time*. Typically, an IO
767  * or similar operation cannot guarantee anything stronger anyway because
768  * locks can't be held over the syscall boundary.
769  *
770  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
771  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
772  * appropriate) must be called after the page is finished with, and
773  * before put_page is called.
774  *
775  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
776  * or mmap_sem contention, and if waiting is needed to pin all pages,
777  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
778  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
779  * this case.
780  *
781  * A caller using such a combination of @nonblocking and @gup_flags
782  * must therefore hold the mmap_sem for reading only, and recognize
783  * when it's been released.  Otherwise, it must be held for either
784  * reading or writing and will not be released.
785  *
786  * In most cases, get_user_pages or get_user_pages_fast should be used
787  * instead of __get_user_pages. __get_user_pages should be used only if
788  * you need some special @gup_flags.
789  */
790 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
791                 unsigned long start, unsigned long nr_pages,
792                 unsigned int gup_flags, struct page **pages,
793                 struct vm_area_struct **vmas, int *nonblocking)
794 {
795         long ret = 0, i = 0;
796         struct vm_area_struct *vma = NULL;
797         struct follow_page_context ctx = { NULL };
798
799         if (!nr_pages)
800                 return 0;
801
802         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
803
804         /*
805          * If FOLL_FORCE is set then do not force a full fault as the hinting
806          * fault information is unrelated to the reference behaviour of a task
807          * using the address space
808          */
809         if (!(gup_flags & FOLL_FORCE))
810                 gup_flags |= FOLL_NUMA;
811
812         do {
813                 struct page *page;
814                 unsigned int foll_flags = gup_flags;
815                 unsigned int page_increm;
816
817                 /* first iteration or cross vma bound */
818                 if (!vma || start >= vma->vm_end) {
819                         vma = find_extend_vma(mm, start);
820                         if (!vma && in_gate_area(mm, start)) {
821                                 ret = get_gate_page(mm, start & PAGE_MASK,
822                                                 gup_flags, &vma,
823                                                 pages ? &pages[i] : NULL);
824                                 if (ret)
825                                         goto out;
826                                 ctx.page_mask = 0;
827                                 goto next_page;
828                         }
829
830                         if (!vma || check_vma_flags(vma, gup_flags)) {
831                                 ret = -EFAULT;
832                                 goto out;
833                         }
834                         if (is_vm_hugetlb_page(vma)) {
835                                 i = follow_hugetlb_page(mm, vma, pages, vmas,
836                                                 &start, &nr_pages, i,
837                                                 gup_flags, nonblocking);
838                                 continue;
839                         }
840                 }
841 retry:
842                 /*
843                  * If we have a pending SIGKILL, don't keep faulting pages and
844                  * potentially allocating memory.
845                  */
846                 if (fatal_signal_pending(current)) {
847                         ret = -ERESTARTSYS;
848                         goto out;
849                 }
850                 cond_resched();
851
852                 page = follow_page_mask(vma, start, foll_flags, &ctx);
853                 if (!page) {
854                         ret = faultin_page(tsk, vma, start, &foll_flags,
855                                         nonblocking);
856                         switch (ret) {
857                         case 0:
858                                 goto retry;
859                         case -EBUSY:
860                                 ret = 0;
861                                 /* FALLTHRU */
862                         case -EFAULT:
863                         case -ENOMEM:
864                         case -EHWPOISON:
865                                 goto out;
866                         case -ENOENT:
867                                 goto next_page;
868                         }
869                         BUG();
870                 } else if (PTR_ERR(page) == -EEXIST) {
871                         /*
872                          * Proper page table entry exists, but no corresponding
873                          * struct page.
874                          */
875                         goto next_page;
876                 } else if (IS_ERR(page)) {
877                         ret = PTR_ERR(page);
878                         goto out;
879                 }
880                 if (pages) {
881                         pages[i] = page;
882                         flush_anon_page(vma, page, start);
883                         flush_dcache_page(page);
884                         ctx.page_mask = 0;
885                 }
886 next_page:
887                 if (vmas) {
888                         vmas[i] = vma;
889                         ctx.page_mask = 0;
890                 }
891                 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
892                 if (page_increm > nr_pages)
893                         page_increm = nr_pages;
894                 i += page_increm;
895                 start += page_increm * PAGE_SIZE;
896                 nr_pages -= page_increm;
897         } while (nr_pages);
898 out:
899         if (ctx.pgmap)
900                 put_dev_pagemap(ctx.pgmap);
901         return i ? i : ret;
902 }
903
904 static bool vma_permits_fault(struct vm_area_struct *vma,
905                               unsigned int fault_flags)
906 {
907         bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
908         bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
909         vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
910
911         if (!(vm_flags & vma->vm_flags))
912                 return false;
913
914         /*
915          * The architecture might have a hardware protection
916          * mechanism other than read/write that can deny access.
917          *
918          * gup always represents data access, not instruction
919          * fetches, so execute=false here:
920          */
921         if (!arch_vma_access_permitted(vma, write, false, foreign))
922                 return false;
923
924         return true;
925 }
926
927 /*
928  * fixup_user_fault() - manually resolve a user page fault
929  * @tsk:        the task_struct to use for page fault accounting, or
930  *              NULL if faults are not to be recorded.
931  * @mm:         mm_struct of target mm
932  * @address:    user address
933  * @fault_flags:flags to pass down to handle_mm_fault()
934  * @unlocked:   did we unlock the mmap_sem while retrying, maybe NULL if caller
935  *              does not allow retry
936  *
937  * This is meant to be called in the specific scenario where for locking reasons
938  * we try to access user memory in atomic context (within a pagefault_disable()
939  * section), this returns -EFAULT, and we want to resolve the user fault before
940  * trying again.
941  *
942  * Typically this is meant to be used by the futex code.
943  *
944  * The main difference with get_user_pages() is that this function will
945  * unconditionally call handle_mm_fault() which will in turn perform all the
946  * necessary SW fixup of the dirty and young bits in the PTE, while
947  * get_user_pages() only guarantees to update these in the struct page.
948  *
949  * This is important for some architectures where those bits also gate the
950  * access permission to the page because they are maintained in software.  On
951  * such architectures, gup() will not be enough to make a subsequent access
952  * succeed.
953  *
954  * This function will not return with an unlocked mmap_sem. So it has not the
955  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
956  */
957 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
958                      unsigned long address, unsigned int fault_flags,
959                      bool *unlocked)
960 {
961         struct vm_area_struct *vma;
962         vm_fault_t ret, major = 0;
963
964         if (unlocked)
965                 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
966
967 retry:
968         vma = find_extend_vma(mm, address);
969         if (!vma || address < vma->vm_start)
970                 return -EFAULT;
971
972         if (!vma_permits_fault(vma, fault_flags))
973                 return -EFAULT;
974
975         ret = handle_mm_fault(vma, address, fault_flags);
976         major |= ret & VM_FAULT_MAJOR;
977         if (ret & VM_FAULT_ERROR) {
978                 int err = vm_fault_to_errno(ret, 0);
979
980                 if (err)
981                         return err;
982                 BUG();
983         }
984
985         if (ret & VM_FAULT_RETRY) {
986                 down_read(&mm->mmap_sem);
987                 if (!(fault_flags & FAULT_FLAG_TRIED)) {
988                         *unlocked = true;
989                         fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
990                         fault_flags |= FAULT_FLAG_TRIED;
991                         goto retry;
992                 }
993         }
994
995         if (tsk) {
996                 if (major)
997                         tsk->maj_flt++;
998                 else
999                         tsk->min_flt++;
1000         }
1001         return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(fixup_user_fault);
1004
1005 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1006                                                 struct mm_struct *mm,
1007                                                 unsigned long start,
1008                                                 unsigned long nr_pages,
1009                                                 struct page **pages,
1010                                                 struct vm_area_struct **vmas,
1011                                                 int *locked,
1012                                                 unsigned int flags)
1013 {
1014         long ret, pages_done;
1015         bool lock_dropped;
1016
1017         if (locked) {
1018                 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1019                 BUG_ON(vmas);
1020                 /* check caller initialized locked */
1021                 BUG_ON(*locked != 1);
1022         }
1023
1024         if (pages)
1025                 flags |= FOLL_GET;
1026
1027         pages_done = 0;
1028         lock_dropped = false;
1029         for (;;) {
1030                 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1031                                        vmas, locked);
1032                 if (!locked)
1033                         /* VM_FAULT_RETRY couldn't trigger, bypass */
1034                         return ret;
1035
1036                 /* VM_FAULT_RETRY cannot return errors */
1037                 if (!*locked) {
1038                         BUG_ON(ret < 0);
1039                         BUG_ON(ret >= nr_pages);
1040                 }
1041
1042                 if (ret > 0) {
1043                         nr_pages -= ret;
1044                         pages_done += ret;
1045                         if (!nr_pages)
1046                                 break;
1047                 }
1048                 if (*locked) {
1049                         /*
1050                          * VM_FAULT_RETRY didn't trigger or it was a
1051                          * FOLL_NOWAIT.
1052                          */
1053                         if (!pages_done)
1054                                 pages_done = ret;
1055                         break;
1056                 }
1057                 /*
1058                  * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1059                  * For the prefault case (!pages) we only update counts.
1060                  */
1061                 if (likely(pages))
1062                         pages += ret;
1063                 start += ret << PAGE_SHIFT;
1064
1065                 /*
1066                  * Repeat on the address that fired VM_FAULT_RETRY
1067                  * without FAULT_FLAG_ALLOW_RETRY but with
1068                  * FAULT_FLAG_TRIED.
1069                  */
1070                 *locked = 1;
1071                 lock_dropped = true;
1072                 down_read(&mm->mmap_sem);
1073                 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1074                                        pages, NULL, NULL);
1075                 if (ret != 1) {
1076                         BUG_ON(ret > 1);
1077                         if (!pages_done)
1078                                 pages_done = ret;
1079                         break;
1080                 }
1081                 nr_pages--;
1082                 pages_done++;
1083                 if (!nr_pages)
1084                         break;
1085                 if (likely(pages))
1086                         pages++;
1087                 start += PAGE_SIZE;
1088         }
1089         if (lock_dropped && *locked) {
1090                 /*
1091                  * We must let the caller know we temporarily dropped the lock
1092                  * and so the critical section protected by it was lost.
1093                  */
1094                 up_read(&mm->mmap_sem);
1095                 *locked = 0;
1096         }
1097         return pages_done;
1098 }
1099
1100 /*
1101  * get_user_pages_remote() - pin user pages in memory
1102  * @tsk:        the task_struct to use for page fault accounting, or
1103  *              NULL if faults are not to be recorded.
1104  * @mm:         mm_struct of target mm
1105  * @start:      starting user address
1106  * @nr_pages:   number of pages from start to pin
1107  * @gup_flags:  flags modifying lookup behaviour
1108  * @pages:      array that receives pointers to the pages pinned.
1109  *              Should be at least nr_pages long. Or NULL, if caller
1110  *              only intends to ensure the pages are faulted in.
1111  * @vmas:       array of pointers to vmas corresponding to each page.
1112  *              Or NULL if the caller does not require them.
1113  * @locked:     pointer to lock flag indicating whether lock is held and
1114  *              subsequently whether VM_FAULT_RETRY functionality can be
1115  *              utilised. Lock must initially be held.
1116  *
1117  * Returns number of pages pinned. This may be fewer than the number
1118  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1119  * were pinned, returns -errno. Each page returned must be released
1120  * with a put_page() call when it is finished with. vmas will only
1121  * remain valid while mmap_sem is held.
1122  *
1123  * Must be called with mmap_sem held for read or write.
1124  *
1125  * get_user_pages walks a process's page tables and takes a reference to
1126  * each struct page that each user address corresponds to at a given
1127  * instant. That is, it takes the page that would be accessed if a user
1128  * thread accesses the given user virtual address at that instant.
1129  *
1130  * This does not guarantee that the page exists in the user mappings when
1131  * get_user_pages returns, and there may even be a completely different
1132  * page there in some cases (eg. if mmapped pagecache has been invalidated
1133  * and subsequently re faulted). However it does guarantee that the page
1134  * won't be freed completely. And mostly callers simply care that the page
1135  * contains data that was valid *at some point in time*. Typically, an IO
1136  * or similar operation cannot guarantee anything stronger anyway because
1137  * locks can't be held over the syscall boundary.
1138  *
1139  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1140  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1141  * be called after the page is finished with, and before put_page is called.
1142  *
1143  * get_user_pages is typically used for fewer-copy IO operations, to get a
1144  * handle on the memory by some means other than accesses via the user virtual
1145  * addresses. The pages may be submitted for DMA to devices or accessed via
1146  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1147  * use the correct cache flushing APIs.
1148  *
1149  * See also get_user_pages_fast, for performance critical applications.
1150  *
1151  * get_user_pages should be phased out in favor of
1152  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1153  * should use get_user_pages because it cannot pass
1154  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1155  */
1156 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1157                 unsigned long start, unsigned long nr_pages,
1158                 unsigned int gup_flags, struct page **pages,
1159                 struct vm_area_struct **vmas, int *locked)
1160 {
1161         /*
1162          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1163          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1164          * vmas.  As there are no users of this flag in this call we simply
1165          * disallow this option for now.
1166          */
1167         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1168                 return -EINVAL;
1169
1170         return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1171                                        locked,
1172                                        gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1173 }
1174 EXPORT_SYMBOL(get_user_pages_remote);
1175
1176 /**
1177  * populate_vma_page_range() -  populate a range of pages in the vma.
1178  * @vma:   target vma
1179  * @start: start address
1180  * @end:   end address
1181  * @nonblocking:
1182  *
1183  * This takes care of mlocking the pages too if VM_LOCKED is set.
1184  *
1185  * return 0 on success, negative error code on error.
1186  *
1187  * vma->vm_mm->mmap_sem must be held.
1188  *
1189  * If @nonblocking is NULL, it may be held for read or write and will
1190  * be unperturbed.
1191  *
1192  * If @nonblocking is non-NULL, it must held for read only and may be
1193  * released.  If it's released, *@nonblocking will be set to 0.
1194  */
1195 long populate_vma_page_range(struct vm_area_struct *vma,
1196                 unsigned long start, unsigned long end, int *nonblocking)
1197 {
1198         struct mm_struct *mm = vma->vm_mm;
1199         unsigned long nr_pages = (end - start) / PAGE_SIZE;
1200         int gup_flags;
1201
1202         VM_BUG_ON(start & ~PAGE_MASK);
1203         VM_BUG_ON(end   & ~PAGE_MASK);
1204         VM_BUG_ON_VMA(start < vma->vm_start, vma);
1205         VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1206         VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1207
1208         gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1209         if (vma->vm_flags & VM_LOCKONFAULT)
1210                 gup_flags &= ~FOLL_POPULATE;
1211         /*
1212          * We want to touch writable mappings with a write fault in order
1213          * to break COW, except for shared mappings because these don't COW
1214          * and we would not want to dirty them for nothing.
1215          */
1216         if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1217                 gup_flags |= FOLL_WRITE;
1218
1219         /*
1220          * We want mlock to succeed for regions that have any permissions
1221          * other than PROT_NONE.
1222          */
1223         if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1224                 gup_flags |= FOLL_FORCE;
1225
1226         /*
1227          * We made sure addr is within a VMA, so the following will
1228          * not result in a stack expansion that recurses back here.
1229          */
1230         return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1231                                 NULL, NULL, nonblocking);
1232 }
1233
1234 /*
1235  * __mm_populate - populate and/or mlock pages within a range of address space.
1236  *
1237  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1238  * flags. VMAs must be already marked with the desired vm_flags, and
1239  * mmap_sem must not be held.
1240  */
1241 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1242 {
1243         struct mm_struct *mm = current->mm;
1244         unsigned long end, nstart, nend;
1245         struct vm_area_struct *vma = NULL;
1246         int locked = 0;
1247         long ret = 0;
1248
1249         end = start + len;
1250
1251         for (nstart = start; nstart < end; nstart = nend) {
1252                 /*
1253                  * We want to fault in pages for [nstart; end) address range.
1254                  * Find first corresponding VMA.
1255                  */
1256                 if (!locked) {
1257                         locked = 1;
1258                         down_read(&mm->mmap_sem);
1259                         vma = find_vma(mm, nstart);
1260                 } else if (nstart >= vma->vm_end)
1261                         vma = vma->vm_next;
1262                 if (!vma || vma->vm_start >= end)
1263                         break;
1264                 /*
1265                  * Set [nstart; nend) to intersection of desired address
1266                  * range with the first VMA. Also, skip undesirable VMA types.
1267                  */
1268                 nend = min(end, vma->vm_end);
1269                 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1270                         continue;
1271                 if (nstart < vma->vm_start)
1272                         nstart = vma->vm_start;
1273                 /*
1274                  * Now fault in a range of pages. populate_vma_page_range()
1275                  * double checks the vma flags, so that it won't mlock pages
1276                  * if the vma was already munlocked.
1277                  */
1278                 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1279                 if (ret < 0) {
1280                         if (ignore_errors) {
1281                                 ret = 0;
1282                                 continue;       /* continue at next VMA */
1283                         }
1284                         break;
1285                 }
1286                 nend = nstart + ret * PAGE_SIZE;
1287                 ret = 0;
1288         }
1289         if (locked)
1290                 up_read(&mm->mmap_sem);
1291         return ret;     /* 0 or negative error code */
1292 }
1293
1294 /**
1295  * get_dump_page() - pin user page in memory while writing it to core dump
1296  * @addr: user address
1297  *
1298  * Returns struct page pointer of user page pinned for dump,
1299  * to be freed afterwards by put_page().
1300  *
1301  * Returns NULL on any kind of failure - a hole must then be inserted into
1302  * the corefile, to preserve alignment with its headers; and also returns
1303  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1304  * allowing a hole to be left in the corefile to save diskspace.
1305  *
1306  * Called without mmap_sem, but after all other threads have been killed.
1307  */
1308 #ifdef CONFIG_ELF_CORE
1309 struct page *get_dump_page(unsigned long addr)
1310 {
1311         struct vm_area_struct *vma;
1312         struct page *page;
1313
1314         if (__get_user_pages(current, current->mm, addr, 1,
1315                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1316                              NULL) < 1)
1317                 return NULL;
1318         flush_cache_page(vma, addr, page_to_pfn(page));
1319         return page;
1320 }
1321 #endif /* CONFIG_ELF_CORE */
1322 #else /* CONFIG_MMU */
1323 static long __get_user_pages_locked(struct task_struct *tsk,
1324                 struct mm_struct *mm, unsigned long start,
1325                 unsigned long nr_pages, struct page **pages,
1326                 struct vm_area_struct **vmas, int *locked,
1327                 unsigned int foll_flags)
1328 {
1329         struct vm_area_struct *vma;
1330         unsigned long vm_flags;
1331         int i;
1332
1333         /* calculate required read or write permissions.
1334          * If FOLL_FORCE is set, we only require the "MAY" flags.
1335          */
1336         vm_flags  = (foll_flags & FOLL_WRITE) ?
1337                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1338         vm_flags &= (foll_flags & FOLL_FORCE) ?
1339                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1340
1341         for (i = 0; i < nr_pages; i++) {
1342                 vma = find_vma(mm, start);
1343                 if (!vma)
1344                         goto finish_or_fault;
1345
1346                 /* protect what we can, including chardevs */
1347                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1348                     !(vm_flags & vma->vm_flags))
1349                         goto finish_or_fault;
1350
1351                 if (pages) {
1352                         pages[i] = virt_to_page(start);
1353                         if (pages[i])
1354                                 get_page(pages[i]);
1355                 }
1356                 if (vmas)
1357                         vmas[i] = vma;
1358                 start = (start + PAGE_SIZE) & PAGE_MASK;
1359         }
1360
1361         return i;
1362
1363 finish_or_fault:
1364         return i ? : -EFAULT;
1365 }
1366 #endif /* !CONFIG_MMU */
1367
1368 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1369 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1370 {
1371         long i;
1372         struct vm_area_struct *vma_prev = NULL;
1373
1374         for (i = 0; i < nr_pages; i++) {
1375                 struct vm_area_struct *vma = vmas[i];
1376
1377                 if (vma == vma_prev)
1378                         continue;
1379
1380                 vma_prev = vma;
1381
1382                 if (vma_is_fsdax(vma))
1383                         return true;
1384         }
1385         return false;
1386 }
1387
1388 #ifdef CONFIG_CMA
1389 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1390 {
1391         /*
1392          * We want to make sure we allocate the new page from the same node
1393          * as the source page.
1394          */
1395         int nid = page_to_nid(page);
1396         /*
1397          * Trying to allocate a page for migration. Ignore allocation
1398          * failure warnings. We don't force __GFP_THISNODE here because
1399          * this node here is the node where we have CMA reservation and
1400          * in some case these nodes will have really less non movable
1401          * allocation memory.
1402          */
1403         gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1404
1405         if (PageHighMem(page))
1406                 gfp_mask |= __GFP_HIGHMEM;
1407
1408 #ifdef CONFIG_HUGETLB_PAGE
1409         if (PageHuge(page)) {
1410                 struct hstate *h = page_hstate(page);
1411                 /*
1412                  * We don't want to dequeue from the pool because pool pages will
1413                  * mostly be from the CMA region.
1414                  */
1415                 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1416         }
1417 #endif
1418         if (PageTransHuge(page)) {
1419                 struct page *thp;
1420                 /*
1421                  * ignore allocation failure warnings
1422                  */
1423                 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1424
1425                 /*
1426                  * Remove the movable mask so that we don't allocate from
1427                  * CMA area again.
1428                  */
1429                 thp_gfpmask &= ~__GFP_MOVABLE;
1430                 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1431                 if (!thp)
1432                         return NULL;
1433                 prep_transhuge_page(thp);
1434                 return thp;
1435         }
1436
1437         return __alloc_pages_node(nid, gfp_mask, 0);
1438 }
1439
1440 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1441                                         struct mm_struct *mm,
1442                                         unsigned long start,
1443                                         unsigned long nr_pages,
1444                                         struct page **pages,
1445                                         struct vm_area_struct **vmas,
1446                                         unsigned int gup_flags)
1447 {
1448         unsigned long i;
1449         unsigned long step;
1450         bool drain_allow = true;
1451         bool migrate_allow = true;
1452         LIST_HEAD(cma_page_list);
1453
1454 check_again:
1455         for (i = 0; i < nr_pages;) {
1456
1457                 struct page *head = compound_head(pages[i]);
1458
1459                 /*
1460                  * gup may start from a tail page. Advance step by the left
1461                  * part.
1462                  */
1463                 step = (1 << compound_order(head)) - (pages[i] - head);
1464                 /*
1465                  * If we get a page from the CMA zone, since we are going to
1466                  * be pinning these entries, we might as well move them out
1467                  * of the CMA zone if possible.
1468                  */
1469                 if (is_migrate_cma_page(head)) {
1470                         if (PageHuge(head))
1471                                 isolate_huge_page(head, &cma_page_list);
1472                         else {
1473                                 if (!PageLRU(head) && drain_allow) {
1474                                         lru_add_drain_all();
1475                                         drain_allow = false;
1476                                 }
1477
1478                                 if (!isolate_lru_page(head)) {
1479                                         list_add_tail(&head->lru, &cma_page_list);
1480                                         mod_node_page_state(page_pgdat(head),
1481                                                             NR_ISOLATED_ANON +
1482                                                             page_is_file_cache(head),
1483                                                             hpage_nr_pages(head));
1484                                 }
1485                         }
1486                 }
1487
1488                 i += step;
1489         }
1490
1491         if (!list_empty(&cma_page_list)) {
1492                 /*
1493                  * drop the above get_user_pages reference.
1494                  */
1495                 for (i = 0; i < nr_pages; i++)
1496                         put_page(pages[i]);
1497
1498                 if (migrate_pages(&cma_page_list, new_non_cma_page,
1499                                   NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1500                         /*
1501                          * some of the pages failed migration. Do get_user_pages
1502                          * without migration.
1503                          */
1504                         migrate_allow = false;
1505
1506                         if (!list_empty(&cma_page_list))
1507                                 putback_movable_pages(&cma_page_list);
1508                 }
1509                 /*
1510                  * We did migrate all the pages, Try to get the page references
1511                  * again migrating any new CMA pages which we failed to isolate
1512                  * earlier.
1513                  */
1514                 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1515                                                    pages, vmas, NULL,
1516                                                    gup_flags);
1517
1518                 if ((nr_pages > 0) && migrate_allow) {
1519                         drain_allow = true;
1520                         goto check_again;
1521                 }
1522         }
1523
1524         return nr_pages;
1525 }
1526 #else
1527 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1528                                         struct mm_struct *mm,
1529                                         unsigned long start,
1530                                         unsigned long nr_pages,
1531                                         struct page **pages,
1532                                         struct vm_area_struct **vmas,
1533                                         unsigned int gup_flags)
1534 {
1535         return nr_pages;
1536 }
1537 #endif /* CONFIG_CMA */
1538
1539 /*
1540  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1541  * allows us to process the FOLL_LONGTERM flag.
1542  */
1543 static long __gup_longterm_locked(struct task_struct *tsk,
1544                                   struct mm_struct *mm,
1545                                   unsigned long start,
1546                                   unsigned long nr_pages,
1547                                   struct page **pages,
1548                                   struct vm_area_struct **vmas,
1549                                   unsigned int gup_flags)
1550 {
1551         struct vm_area_struct **vmas_tmp = vmas;
1552         unsigned long flags = 0;
1553         long rc, i;
1554
1555         if (gup_flags & FOLL_LONGTERM) {
1556                 if (!pages)
1557                         return -EINVAL;
1558
1559                 if (!vmas_tmp) {
1560                         vmas_tmp = kcalloc(nr_pages,
1561                                            sizeof(struct vm_area_struct *),
1562                                            GFP_KERNEL);
1563                         if (!vmas_tmp)
1564                                 return -ENOMEM;
1565                 }
1566                 flags = memalloc_nocma_save();
1567         }
1568
1569         rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1570                                      vmas_tmp, NULL, gup_flags);
1571
1572         if (gup_flags & FOLL_LONGTERM) {
1573                 memalloc_nocma_restore(flags);
1574                 if (rc < 0)
1575                         goto out;
1576
1577                 if (check_dax_vmas(vmas_tmp, rc)) {
1578                         for (i = 0; i < rc; i++)
1579                                 put_page(pages[i]);
1580                         rc = -EOPNOTSUPP;
1581                         goto out;
1582                 }
1583
1584                 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1585                                                  vmas_tmp, gup_flags);
1586         }
1587
1588 out:
1589         if (vmas_tmp != vmas)
1590                 kfree(vmas_tmp);
1591         return rc;
1592 }
1593 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1594 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1595                                                   struct mm_struct *mm,
1596                                                   unsigned long start,
1597                                                   unsigned long nr_pages,
1598                                                   struct page **pages,
1599                                                   struct vm_area_struct **vmas,
1600                                                   unsigned int flags)
1601 {
1602         return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1603                                        NULL, flags);
1604 }
1605 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1606
1607 /*
1608  * This is the same as get_user_pages_remote(), just with a
1609  * less-flexible calling convention where we assume that the task
1610  * and mm being operated on are the current task's and don't allow
1611  * passing of a locked parameter.  We also obviously don't pass
1612  * FOLL_REMOTE in here.
1613  */
1614 long get_user_pages(unsigned long start, unsigned long nr_pages,
1615                 unsigned int gup_flags, struct page **pages,
1616                 struct vm_area_struct **vmas)
1617 {
1618         return __gup_longterm_locked(current, current->mm, start, nr_pages,
1619                                      pages, vmas, gup_flags | FOLL_TOUCH);
1620 }
1621 EXPORT_SYMBOL(get_user_pages);
1622
1623 /*
1624  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1625  * paths better by using either get_user_pages_locked() or
1626  * get_user_pages_unlocked().
1627  *
1628  * get_user_pages_locked() is suitable to replace the form:
1629  *
1630  *      down_read(&mm->mmap_sem);
1631  *      do_something()
1632  *      get_user_pages(tsk, mm, ..., pages, NULL);
1633  *      up_read(&mm->mmap_sem);
1634  *
1635  *  to:
1636  *
1637  *      int locked = 1;
1638  *      down_read(&mm->mmap_sem);
1639  *      do_something()
1640  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1641  *      if (locked)
1642  *          up_read(&mm->mmap_sem);
1643  */
1644 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1645                            unsigned int gup_flags, struct page **pages,
1646                            int *locked)
1647 {
1648         /*
1649          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1650          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1651          * vmas.  As there are no users of this flag in this call we simply
1652          * disallow this option for now.
1653          */
1654         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1655                 return -EINVAL;
1656
1657         return __get_user_pages_locked(current, current->mm, start, nr_pages,
1658                                        pages, NULL, locked,
1659                                        gup_flags | FOLL_TOUCH);
1660 }
1661 EXPORT_SYMBOL(get_user_pages_locked);
1662
1663 /*
1664  * get_user_pages_unlocked() is suitable to replace the form:
1665  *
1666  *      down_read(&mm->mmap_sem);
1667  *      get_user_pages(tsk, mm, ..., pages, NULL);
1668  *      up_read(&mm->mmap_sem);
1669  *
1670  *  with:
1671  *
1672  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1673  *
1674  * It is functionally equivalent to get_user_pages_fast so
1675  * get_user_pages_fast should be used instead if specific gup_flags
1676  * (e.g. FOLL_FORCE) are not required.
1677  */
1678 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1679                              struct page **pages, unsigned int gup_flags)
1680 {
1681         struct mm_struct *mm = current->mm;
1682         int locked = 1;
1683         long ret;
1684
1685         /*
1686          * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1687          * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1688          * vmas.  As there are no users of this flag in this call we simply
1689          * disallow this option for now.
1690          */
1691         if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1692                 return -EINVAL;
1693
1694         down_read(&mm->mmap_sem);
1695         ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1696                                       &locked, gup_flags | FOLL_TOUCH);
1697         if (locked)
1698                 up_read(&mm->mmap_sem);
1699         return ret;
1700 }
1701 EXPORT_SYMBOL(get_user_pages_unlocked);
1702
1703 /*
1704  * Fast GUP
1705  *
1706  * get_user_pages_fast attempts to pin user pages by walking the page
1707  * tables directly and avoids taking locks. Thus the walker needs to be
1708  * protected from page table pages being freed from under it, and should
1709  * block any THP splits.
1710  *
1711  * One way to achieve this is to have the walker disable interrupts, and
1712  * rely on IPIs from the TLB flushing code blocking before the page table
1713  * pages are freed. This is unsuitable for architectures that do not need
1714  * to broadcast an IPI when invalidating TLBs.
1715  *
1716  * Another way to achieve this is to batch up page table containing pages
1717  * belonging to more than one mm_user, then rcu_sched a callback to free those
1718  * pages. Disabling interrupts will allow the fast_gup walker to both block
1719  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1720  * (which is a relatively rare event). The code below adopts this strategy.
1721  *
1722  * Before activating this code, please be aware that the following assumptions
1723  * are currently made:
1724  *
1725  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1726  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1727  *
1728  *  *) ptes can be read atomically by the architecture.
1729  *
1730  *  *) access_ok is sufficient to validate userspace address ranges.
1731  *
1732  * The last two assumptions can be relaxed by the addition of helper functions.
1733  *
1734  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1735  */
1736 #ifdef CONFIG_HAVE_FAST_GUP
1737 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1738 /*
1739  * WARNING: only to be used in the get_user_pages_fast() implementation.
1740  *
1741  * With get_user_pages_fast(), we walk down the pagetables without taking any
1742  * locks.  For this we would like to load the pointers atomically, but sometimes
1743  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1744  * we do have is the guarantee that a PTE will only either go from not present
1745  * to present, or present to not present or both -- it will not switch to a
1746  * completely different present page without a TLB flush in between; something
1747  * that we are blocking by holding interrupts off.
1748  *
1749  * Setting ptes from not present to present goes:
1750  *
1751  *   ptep->pte_high = h;
1752  *   smp_wmb();
1753  *   ptep->pte_low = l;
1754  *
1755  * And present to not present goes:
1756  *
1757  *   ptep->pte_low = 0;
1758  *   smp_wmb();
1759  *   ptep->pte_high = 0;
1760  *
1761  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1762  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1763  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1764  * picked up a changed pte high. We might have gotten rubbish values from
1765  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1766  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1767  * operates on present ptes we're safe.
1768  */
1769 static inline pte_t gup_get_pte(pte_t *ptep)
1770 {
1771         pte_t pte;
1772
1773         do {
1774                 pte.pte_low = ptep->pte_low;
1775                 smp_rmb();
1776                 pte.pte_high = ptep->pte_high;
1777                 smp_rmb();
1778         } while (unlikely(pte.pte_low != ptep->pte_low));
1779
1780         return pte;
1781 }
1782 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1783 /*
1784  * We require that the PTE can be read atomically.
1785  */
1786 static inline pte_t gup_get_pte(pte_t *ptep)
1787 {
1788         return READ_ONCE(*ptep);
1789 }
1790 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1791
1792 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1793                                             struct page **pages)
1794 {
1795         while ((*nr) - nr_start) {
1796                 struct page *page = pages[--(*nr)];
1797
1798                 ClearPageReferenced(page);
1799                 put_page(page);
1800         }
1801 }
1802
1803 /*
1804  * Return the compund head page with ref appropriately incremented,
1805  * or NULL if that failed.
1806  */
1807 static inline struct page *try_get_compound_head(struct page *page, int refs)
1808 {
1809         struct page *head = compound_head(page);
1810         if (WARN_ON_ONCE(page_ref_count(head) < 0))
1811                 return NULL;
1812         if (unlikely(!page_cache_add_speculative(head, refs)))
1813                 return NULL;
1814         return head;
1815 }
1816
1817 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1818 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1819                          unsigned int flags, struct page **pages, int *nr)
1820 {
1821         struct dev_pagemap *pgmap = NULL;
1822         int nr_start = *nr, ret = 0;
1823         pte_t *ptep, *ptem;
1824
1825         ptem = ptep = pte_offset_map(&pmd, addr);
1826         do {
1827                 pte_t pte = gup_get_pte(ptep);
1828                 struct page *head, *page;
1829
1830                 /*
1831                  * Similar to the PMD case below, NUMA hinting must take slow
1832                  * path using the pte_protnone check.
1833                  */
1834                 if (pte_protnone(pte))
1835                         goto pte_unmap;
1836
1837                 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1838                         goto pte_unmap;
1839
1840                 if (pte_devmap(pte)) {
1841                         if (unlikely(flags & FOLL_LONGTERM))
1842                                 goto pte_unmap;
1843
1844                         pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1845                         if (unlikely(!pgmap)) {
1846                                 undo_dev_pagemap(nr, nr_start, pages);
1847                                 goto pte_unmap;
1848                         }
1849                 } else if (pte_special(pte))
1850                         goto pte_unmap;
1851
1852                 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1853                 page = pte_page(pte);
1854
1855                 head = try_get_compound_head(page, 1);
1856                 if (!head)
1857                         goto pte_unmap;
1858
1859                 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1860                         put_page(head);
1861                         goto pte_unmap;
1862                 }
1863
1864                 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1865
1866                 SetPageReferenced(page);
1867                 pages[*nr] = page;
1868                 (*nr)++;
1869
1870         } while (ptep++, addr += PAGE_SIZE, addr != end);
1871
1872         ret = 1;
1873
1874 pte_unmap:
1875         if (pgmap)
1876                 put_dev_pagemap(pgmap);
1877         pte_unmap(ptem);
1878         return ret;
1879 }
1880 #else
1881
1882 /*
1883  * If we can't determine whether or not a pte is special, then fail immediately
1884  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1885  * to be special.
1886  *
1887  * For a futex to be placed on a THP tail page, get_futex_key requires a
1888  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1889  * useful to have gup_huge_pmd even if we can't operate on ptes.
1890  */
1891 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1892                          unsigned int flags, struct page **pages, int *nr)
1893 {
1894         return 0;
1895 }
1896 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1897
1898 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1899 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1900                 unsigned long end, struct page **pages, int *nr)
1901 {
1902         int nr_start = *nr;
1903         struct dev_pagemap *pgmap = NULL;
1904
1905         do {
1906                 struct page *page = pfn_to_page(pfn);
1907
1908                 pgmap = get_dev_pagemap(pfn, pgmap);
1909                 if (unlikely(!pgmap)) {
1910                         undo_dev_pagemap(nr, nr_start, pages);
1911                         return 0;
1912                 }
1913                 SetPageReferenced(page);
1914                 pages[*nr] = page;
1915                 get_page(page);
1916                 (*nr)++;
1917                 pfn++;
1918         } while (addr += PAGE_SIZE, addr != end);
1919
1920         if (pgmap)
1921                 put_dev_pagemap(pgmap);
1922         return 1;
1923 }
1924
1925 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1926                 unsigned long end, struct page **pages, int *nr)
1927 {
1928         unsigned long fault_pfn;
1929         int nr_start = *nr;
1930
1931         fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1932         if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1933                 return 0;
1934
1935         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1936                 undo_dev_pagemap(nr, nr_start, pages);
1937                 return 0;
1938         }
1939         return 1;
1940 }
1941
1942 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1943                 unsigned long end, struct page **pages, int *nr)
1944 {
1945         unsigned long fault_pfn;
1946         int nr_start = *nr;
1947
1948         fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1949         if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1950                 return 0;
1951
1952         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1953                 undo_dev_pagemap(nr, nr_start, pages);
1954                 return 0;
1955         }
1956         return 1;
1957 }
1958 #else
1959 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1960                 unsigned long end, struct page **pages, int *nr)
1961 {
1962         BUILD_BUG();
1963         return 0;
1964 }
1965
1966 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1967                 unsigned long end, struct page **pages, int *nr)
1968 {
1969         BUILD_BUG();
1970         return 0;
1971 }
1972 #endif
1973
1974 #ifdef CONFIG_ARCH_HAS_HUGEPD
1975 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1976                                       unsigned long sz)
1977 {
1978         unsigned long __boundary = (addr + sz) & ~(sz-1);
1979         return (__boundary - 1 < end - 1) ? __boundary : end;
1980 }
1981
1982 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1983                        unsigned long end, int write, struct page **pages, int *nr)
1984 {
1985         unsigned long pte_end;
1986         struct page *head, *page;
1987         pte_t pte;
1988         int refs;
1989
1990         pte_end = (addr + sz) & ~(sz-1);
1991         if (pte_end < end)
1992                 end = pte_end;
1993
1994         pte = READ_ONCE(*ptep);
1995
1996         if (!pte_access_permitted(pte, write))
1997                 return 0;
1998
1999         /* hugepages are never "special" */
2000         VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2001
2002         refs = 0;
2003         head = pte_page(pte);
2004
2005         page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2006         do {
2007                 VM_BUG_ON(compound_head(page) != head);
2008                 pages[*nr] = page;
2009                 (*nr)++;
2010                 page++;
2011                 refs++;
2012         } while (addr += PAGE_SIZE, addr != end);
2013
2014         head = try_get_compound_head(head, refs);
2015         if (!head) {
2016                 *nr -= refs;
2017                 return 0;
2018         }
2019
2020         if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2021                 /* Could be optimized better */
2022                 *nr -= refs;
2023                 while (refs--)
2024                         put_page(head);
2025                 return 0;
2026         }
2027
2028         SetPageReferenced(head);
2029         return 1;
2030 }
2031
2032 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2033                 unsigned int pdshift, unsigned long end, int write,
2034                 struct page **pages, int *nr)
2035 {
2036         pte_t *ptep;
2037         unsigned long sz = 1UL << hugepd_shift(hugepd);
2038         unsigned long next;
2039
2040         ptep = hugepte_offset(hugepd, addr, pdshift);
2041         do {
2042                 next = hugepte_addr_end(addr, end, sz);
2043                 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2044                         return 0;
2045         } while (ptep++, addr = next, addr != end);
2046
2047         return 1;
2048 }
2049 #else
2050 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2051                 unsigned pdshift, unsigned long end, int write,
2052                 struct page **pages, int *nr)
2053 {
2054         return 0;
2055 }
2056 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2057
2058 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2059                 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2060 {
2061         struct page *head, *page;
2062         int refs;
2063
2064         if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2065                 return 0;
2066
2067         if (pmd_devmap(orig)) {
2068                 if (unlikely(flags & FOLL_LONGTERM))
2069                         return 0;
2070                 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2071         }
2072
2073         refs = 0;
2074         page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2075         do {
2076                 pages[*nr] = page;
2077                 (*nr)++;
2078                 page++;
2079                 refs++;
2080         } while (addr += PAGE_SIZE, addr != end);
2081
2082         head = try_get_compound_head(pmd_page(orig), refs);
2083         if (!head) {
2084                 *nr -= refs;
2085                 return 0;
2086         }
2087
2088         if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2089                 *nr -= refs;
2090                 while (refs--)
2091                         put_page(head);
2092                 return 0;
2093         }
2094
2095         SetPageReferenced(head);
2096         return 1;
2097 }
2098
2099 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2100                 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2101 {
2102         struct page *head, *page;
2103         int refs;
2104
2105         if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2106                 return 0;
2107
2108         if (pud_devmap(orig)) {
2109                 if (unlikely(flags & FOLL_LONGTERM))
2110                         return 0;
2111                 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2112         }
2113
2114         refs = 0;
2115         page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2116         do {
2117                 pages[*nr] = page;
2118                 (*nr)++;
2119                 page++;
2120                 refs++;
2121         } while (addr += PAGE_SIZE, addr != end);
2122
2123         head = try_get_compound_head(pud_page(orig), refs);
2124         if (!head) {
2125                 *nr -= refs;
2126                 return 0;
2127         }
2128
2129         if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2130                 *nr -= refs;
2131                 while (refs--)
2132                         put_page(head);
2133                 return 0;
2134         }
2135
2136         SetPageReferenced(head);
2137         return 1;
2138 }
2139
2140 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2141                         unsigned long end, unsigned int flags,
2142                         struct page **pages, int *nr)
2143 {
2144         int refs;
2145         struct page *head, *page;
2146
2147         if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2148                 return 0;
2149
2150         BUILD_BUG_ON(pgd_devmap(orig));
2151         refs = 0;
2152         page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2153         do {
2154                 pages[*nr] = page;
2155                 (*nr)++;
2156                 page++;
2157                 refs++;
2158         } while (addr += PAGE_SIZE, addr != end);
2159
2160         head = try_get_compound_head(pgd_page(orig), refs);
2161         if (!head) {
2162                 *nr -= refs;
2163                 return 0;
2164         }
2165
2166         if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2167                 *nr -= refs;
2168                 while (refs--)
2169                         put_page(head);
2170                 return 0;
2171         }
2172
2173         SetPageReferenced(head);
2174         return 1;
2175 }
2176
2177 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2178                 unsigned int flags, struct page **pages, int *nr)
2179 {
2180         unsigned long next;
2181         pmd_t *pmdp;
2182
2183         pmdp = pmd_offset(&pud, addr);
2184         do {
2185                 pmd_t pmd = READ_ONCE(*pmdp);
2186
2187                 next = pmd_addr_end(addr, end);
2188                 if (!pmd_present(pmd))
2189                         return 0;
2190
2191                 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2192                              pmd_devmap(pmd))) {
2193                         /*
2194                          * NUMA hinting faults need to be handled in the GUP
2195                          * slowpath for accounting purposes and so that they
2196                          * can be serialised against THP migration.
2197                          */
2198                         if (pmd_protnone(pmd))
2199                                 return 0;
2200
2201                         if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2202                                 pages, nr))
2203                                 return 0;
2204
2205                 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2206                         /*
2207                          * architecture have different format for hugetlbfs
2208                          * pmd format and THP pmd format
2209                          */
2210                         if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2211                                          PMD_SHIFT, next, flags, pages, nr))
2212                                 return 0;
2213                 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2214                         return 0;
2215         } while (pmdp++, addr = next, addr != end);
2216
2217         return 1;
2218 }
2219
2220 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2221                          unsigned int flags, struct page **pages, int *nr)
2222 {
2223         unsigned long next;
2224         pud_t *pudp;
2225
2226         pudp = pud_offset(&p4d, addr);
2227         do {
2228                 pud_t pud = READ_ONCE(*pudp);
2229
2230                 next = pud_addr_end(addr, end);
2231                 if (pud_none(pud))
2232                         return 0;
2233                 if (unlikely(pud_huge(pud))) {
2234                         if (!gup_huge_pud(pud, pudp, addr, next, flags,
2235                                           pages, nr))
2236                                 return 0;
2237                 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2238                         if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2239                                          PUD_SHIFT, next, flags, pages, nr))
2240                                 return 0;
2241                 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2242                         return 0;
2243         } while (pudp++, addr = next, addr != end);
2244
2245         return 1;
2246 }
2247
2248 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2249                          unsigned int flags, struct page **pages, int *nr)
2250 {
2251         unsigned long next;
2252         p4d_t *p4dp;
2253
2254         p4dp = p4d_offset(&pgd, addr);
2255         do {
2256                 p4d_t p4d = READ_ONCE(*p4dp);
2257
2258                 next = p4d_addr_end(addr, end);
2259                 if (p4d_none(p4d))
2260                         return 0;
2261                 BUILD_BUG_ON(p4d_huge(p4d));
2262                 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2263                         if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2264                                          P4D_SHIFT, next, flags, pages, nr))
2265                                 return 0;
2266                 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2267                         return 0;
2268         } while (p4dp++, addr = next, addr != end);
2269
2270         return 1;
2271 }
2272
2273 static void gup_pgd_range(unsigned long addr, unsigned long end,
2274                 unsigned int flags, struct page **pages, int *nr)
2275 {
2276         unsigned long next;
2277         pgd_t *pgdp;
2278
2279         pgdp = pgd_offset(current->mm, addr);
2280         do {
2281                 pgd_t pgd = READ_ONCE(*pgdp);
2282
2283                 next = pgd_addr_end(addr, end);
2284                 if (pgd_none(pgd))
2285                         return;
2286                 if (unlikely(pgd_huge(pgd))) {
2287                         if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2288                                           pages, nr))
2289                                 return;
2290                 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2291                         if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2292                                          PGDIR_SHIFT, next, flags, pages, nr))
2293                                 return;
2294                 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2295                         return;
2296         } while (pgdp++, addr = next, addr != end);
2297 }
2298 #else
2299 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2300                 unsigned int flags, struct page **pages, int *nr)
2301 {
2302 }
2303 #endif /* CONFIG_HAVE_FAST_GUP */
2304
2305 #ifndef gup_fast_permitted
2306 /*
2307  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2308  * we need to fall back to the slow version:
2309  */
2310 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2311 {
2312         return true;
2313 }
2314 #endif
2315
2316 /*
2317  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2318  * the regular GUP.
2319  * Note a difference with get_user_pages_fast: this always returns the
2320  * number of pages pinned, 0 if no pages were pinned.
2321  *
2322  * If the architecture does not support this function, simply return with no
2323  * pages pinned.
2324  */
2325 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2326                           struct page **pages)
2327 {
2328         unsigned long len, end;
2329         unsigned long flags;
2330         int nr = 0;
2331
2332         start = untagged_addr(start) & PAGE_MASK;
2333         len = (unsigned long) nr_pages << PAGE_SHIFT;
2334         end = start + len;
2335
2336         if (end <= start)
2337                 return 0;
2338         if (unlikely(!access_ok((void __user *)start, len)))
2339                 return 0;
2340
2341         /*
2342          * Disable interrupts.  We use the nested form as we can already have
2343          * interrupts disabled by get_futex_key.
2344          *
2345          * With interrupts disabled, we block page table pages from being
2346          * freed from under us. See struct mmu_table_batch comments in
2347          * include/asm-generic/tlb.h for more details.
2348          *
2349          * We do not adopt an rcu_read_lock(.) here as we also want to
2350          * block IPIs that come from THPs splitting.
2351          */
2352
2353         if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2354             gup_fast_permitted(start, end)) {
2355                 local_irq_save(flags);
2356                 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2357                 local_irq_restore(flags);
2358         }
2359
2360         return nr;
2361 }
2362 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2363
2364 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2365                                    unsigned int gup_flags, struct page **pages)
2366 {
2367         int ret;
2368
2369         /*
2370          * FIXME: FOLL_LONGTERM does not work with
2371          * get_user_pages_unlocked() (see comments in that function)
2372          */
2373         if (gup_flags & FOLL_LONGTERM) {
2374                 down_read(&current->mm->mmap_sem);
2375                 ret = __gup_longterm_locked(current, current->mm,
2376                                             start, nr_pages,
2377                                             pages, NULL, gup_flags);
2378                 up_read(&current->mm->mmap_sem);
2379         } else {
2380                 ret = get_user_pages_unlocked(start, nr_pages,
2381                                               pages, gup_flags);
2382         }
2383
2384         return ret;
2385 }
2386
2387 /**
2388  * get_user_pages_fast() - pin user pages in memory
2389  * @start:      starting user address
2390  * @nr_pages:   number of pages from start to pin
2391  * @gup_flags:  flags modifying pin behaviour
2392  * @pages:      array that receives pointers to the pages pinned.
2393  *              Should be at least nr_pages long.
2394  *
2395  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2396  * If not successful, it will fall back to taking the lock and
2397  * calling get_user_pages().
2398  *
2399  * Returns number of pages pinned. This may be fewer than the number
2400  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2401  * were pinned, returns -errno.
2402  */
2403 int get_user_pages_fast(unsigned long start, int nr_pages,
2404                         unsigned int gup_flags, struct page **pages)
2405 {
2406         unsigned long addr, len, end;
2407         int nr = 0, ret = 0;
2408
2409         if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2410                 return -EINVAL;
2411
2412         start = untagged_addr(start) & PAGE_MASK;
2413         addr = start;
2414         len = (unsigned long) nr_pages << PAGE_SHIFT;
2415         end = start + len;
2416
2417         if (end <= start)
2418                 return 0;
2419         if (unlikely(!access_ok((void __user *)start, len)))
2420                 return -EFAULT;
2421
2422         if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2423             gup_fast_permitted(start, end)) {
2424                 local_irq_disable();
2425                 gup_pgd_range(addr, end, gup_flags, pages, &nr);
2426                 local_irq_enable();
2427                 ret = nr;
2428         }
2429
2430         if (nr < nr_pages) {
2431                 /* Try to get the remaining pages with get_user_pages */
2432                 start += nr << PAGE_SHIFT;
2433                 pages += nr;
2434
2435                 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2436                                               gup_flags, pages);
2437
2438                 /* Have to be a bit careful with return values */
2439                 if (nr > 0) {
2440                         if (ret < 0)
2441                                 ret = nr;
2442                         else
2443                                 ret += nr;
2444                 }
2445         }
2446
2447         return ret;
2448 }
2449 EXPORT_SYMBOL_GPL(get_user_pages_fast);