Merge tag 'asoc-v5.4-2' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[linux-2.6-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242                                                         bool check_target)
243 {
244         struct page *page = pfn_to_online_page(pfn);
245         struct page *block_page;
246         struct page *end_page;
247         unsigned long block_pfn;
248
249         if (!page)
250                 return false;
251         if (zone != page_zone(page))
252                 return false;
253         if (pageblock_skip_persistent(page))
254                 return false;
255
256         /*
257          * If skip is already cleared do no further checking once the
258          * restart points have been set.
259          */
260         if (check_source && check_target && !get_pageblock_skip(page))
261                 return true;
262
263         /*
264          * If clearing skip for the target scanner, do not select a
265          * non-movable pageblock as the starting point.
266          */
267         if (!check_source && check_target &&
268             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269                 return false;
270
271         /* Ensure the start of the pageblock or zone is online and valid */
272         block_pfn = pageblock_start_pfn(pfn);
273         block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274         if (block_page) {
275                 page = block_page;
276                 pfn = block_pfn;
277         }
278
279         /* Ensure the end of the pageblock or zone is online and valid */
280         block_pfn += pageblock_nr_pages;
281         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282         end_page = pfn_to_online_page(block_pfn);
283         if (!end_page)
284                 return false;
285
286         /*
287          * Only clear the hint if a sample indicates there is either a
288          * free page or an LRU page in the block. One or other condition
289          * is necessary for the block to be a migration source/target.
290          */
291         do {
292                 if (pfn_valid_within(pfn)) {
293                         if (check_source && PageLRU(page)) {
294                                 clear_pageblock_skip(page);
295                                 return true;
296                         }
297
298                         if (check_target && PageBuddy(page)) {
299                                 clear_pageblock_skip(page);
300                                 return true;
301                         }
302                 }
303
304                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306         } while (page < end_page);
307
308         return false;
309 }
310
311 /*
312  * This function is called to clear all cached information on pageblocks that
313  * should be skipped for page isolation when the migrate and free page scanner
314  * meet.
315  */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318         unsigned long migrate_pfn = zone->zone_start_pfn;
319         unsigned long free_pfn = zone_end_pfn(zone) - 1;
320         unsigned long reset_migrate = free_pfn;
321         unsigned long reset_free = migrate_pfn;
322         bool source_set = false;
323         bool free_set = false;
324
325         if (!zone->compact_blockskip_flush)
326                 return;
327
328         zone->compact_blockskip_flush = false;
329
330         /*
331          * Walk the zone and update pageblock skip information. Source looks
332          * for PageLRU while target looks for PageBuddy. When the scanner
333          * is found, both PageBuddy and PageLRU are checked as the pageblock
334          * is suitable as both source and target.
335          */
336         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337                                         free_pfn -= pageblock_nr_pages) {
338                 cond_resched();
339
340                 /* Update the migrate PFN */
341                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342                     migrate_pfn < reset_migrate) {
343                         source_set = true;
344                         reset_migrate = migrate_pfn;
345                         zone->compact_init_migrate_pfn = reset_migrate;
346                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
347                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
348                 }
349
350                 /* Update the free PFN */
351                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352                     free_pfn > reset_free) {
353                         free_set = true;
354                         reset_free = free_pfn;
355                         zone->compact_init_free_pfn = reset_free;
356                         zone->compact_cached_free_pfn = reset_free;
357                 }
358         }
359
360         /* Leave no distance if no suitable block was reset */
361         if (reset_migrate >= reset_free) {
362                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364                 zone->compact_cached_free_pfn = free_pfn;
365         }
366 }
367
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370         int zoneid;
371
372         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373                 struct zone *zone = &pgdat->node_zones[zoneid];
374                 if (!populated_zone(zone))
375                         continue;
376
377                 /* Only flush if a full compaction finished recently */
378                 if (zone->compact_blockskip_flush)
379                         __reset_isolation_suitable(zone);
380         }
381 }
382
383 /*
384  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385  * locks are not required for read/writers. Returns true if it was already set.
386  */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388                                                         unsigned long pfn)
389 {
390         bool skip;
391
392         /* Do no update if skip hint is being ignored */
393         if (cc->ignore_skip_hint)
394                 return false;
395
396         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397                 return false;
398
399         skip = get_pageblock_skip(page);
400         if (!skip && !cc->no_set_skip_hint)
401                 set_pageblock_skip(page);
402
403         return skip;
404 }
405
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408         struct zone *zone = cc->zone;
409
410         pfn = pageblock_end_pfn(pfn);
411
412         /* Set for isolation rather than compaction */
413         if (cc->no_set_skip_hint)
414                 return;
415
416         if (pfn > zone->compact_cached_migrate_pfn[0])
417                 zone->compact_cached_migrate_pfn[0] = pfn;
418         if (cc->mode != MIGRATE_ASYNC &&
419             pfn > zone->compact_cached_migrate_pfn[1])
420                 zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422
423 /*
424  * If no pages were isolated then mark this pageblock to be skipped in the
425  * future. The information is later cleared by __reset_isolation_suitable().
426  */
427 static void update_pageblock_skip(struct compact_control *cc,
428                         struct page *page, unsigned long pfn)
429 {
430         struct zone *zone = cc->zone;
431
432         if (cc->no_set_skip_hint)
433                 return;
434
435         if (!page)
436                 return;
437
438         set_pageblock_skip(page);
439
440         /* Update where async and sync compaction should restart */
441         if (pfn < zone->compact_cached_free_pfn)
442                 zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446                                         struct page *page)
447 {
448         return true;
449 }
450
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453         return false;
454 }
455
456 static inline void update_pageblock_skip(struct compact_control *cc,
457                         struct page *page, unsigned long pfn)
458 {
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466                                                         unsigned long pfn)
467 {
468         return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482                                                 struct compact_control *cc)
483 {
484         /* Track if the lock is contended in async mode */
485         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486                 if (spin_trylock_irqsave(lock, *flags))
487                         return true;
488
489                 cc->contended = true;
490         }
491
492         spin_lock_irqsave(lock, *flags);
493         return true;
494 }
495
496 /*
497  * Compaction requires the taking of some coarse locks that are potentially
498  * very heavily contended. The lock should be periodically unlocked to avoid
499  * having disabled IRQs for a long time, even when there is nobody waiting on
500  * the lock. It might also be that allowing the IRQs will result in
501  * need_resched() becoming true. If scheduling is needed, async compaction
502  * aborts. Sync compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending, or
507  *              async compaction due to need_resched()
508  * Returns false when compaction can continue (sync compaction might have
509  *              scheduled)
510  */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512                 unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514         if (*locked) {
515                 spin_unlock_irqrestore(lock, flags);
516                 *locked = false;
517         }
518
519         if (fatal_signal_pending(current)) {
520                 cc->contended = true;
521                 return true;
522         }
523
524         cond_resched();
525
526         return false;
527 }
528
529 /*
530  * Isolate free pages onto a private freelist. If @strict is true, will abort
531  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532  * (even though it may still end up isolating some pages).
533  */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535                                 unsigned long *start_pfn,
536                                 unsigned long end_pfn,
537                                 struct list_head *freelist,
538                                 unsigned int stride,
539                                 bool strict)
540 {
541         int nr_scanned = 0, total_isolated = 0;
542         struct page *cursor;
543         unsigned long flags = 0;
544         bool locked = false;
545         unsigned long blockpfn = *start_pfn;
546         unsigned int order;
547
548         /* Strict mode is for isolation, speed is secondary */
549         if (strict)
550                 stride = 1;
551
552         cursor = pfn_to_page(blockpfn);
553
554         /* Isolate free pages. */
555         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556                 int isolated;
557                 struct page *page = cursor;
558
559                 /*
560                  * Periodically drop the lock (if held) regardless of its
561                  * contention, to give chance to IRQs. Abort if fatal signal
562                  * pending or async compaction detects need_resched()
563                  */
564                 if (!(blockpfn % SWAP_CLUSTER_MAX)
565                     && compact_unlock_should_abort(&cc->zone->lock, flags,
566                                                                 &locked, cc))
567                         break;
568
569                 nr_scanned++;
570                 if (!pfn_valid_within(blockpfn))
571                         goto isolate_fail;
572
573                 /*
574                  * For compound pages such as THP and hugetlbfs, we can save
575                  * potentially a lot of iterations if we skip them at once.
576                  * The check is racy, but we can consider only valid values
577                  * and the only danger is skipping too much.
578                  */
579                 if (PageCompound(page)) {
580                         const unsigned int order = compound_order(page);
581
582                         if (likely(order < MAX_ORDER)) {
583                                 blockpfn += (1UL << order) - 1;
584                                 cursor += (1UL << order) - 1;
585                         }
586                         goto isolate_fail;
587                 }
588
589                 if (!PageBuddy(page))
590                         goto isolate_fail;
591
592                 /*
593                  * If we already hold the lock, we can skip some rechecking.
594                  * Note that if we hold the lock now, checked_pageblock was
595                  * already set in some previous iteration (or strict is true),
596                  * so it is correct to skip the suitable migration target
597                  * recheck as well.
598                  */
599                 if (!locked) {
600                         locked = compact_lock_irqsave(&cc->zone->lock,
601                                                                 &flags, cc);
602
603                         /* Recheck this is a buddy page under lock */
604                         if (!PageBuddy(page))
605                                 goto isolate_fail;
606                 }
607
608                 /* Found a free page, will break it into order-0 pages */
609                 order = page_order(page);
610                 isolated = __isolate_free_page(page, order);
611                 if (!isolated)
612                         break;
613                 set_page_private(page, order);
614
615                 total_isolated += isolated;
616                 cc->nr_freepages += isolated;
617                 list_add_tail(&page->lru, freelist);
618
619                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620                         blockpfn += isolated;
621                         break;
622                 }
623                 /* Advance to the end of split page */
624                 blockpfn += isolated - 1;
625                 cursor += isolated - 1;
626                 continue;
627
628 isolate_fail:
629                 if (strict)
630                         break;
631                 else
632                         continue;
633
634         }
635
636         if (locked)
637                 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639         /*
640          * There is a tiny chance that we have read bogus compound_order(),
641          * so be careful to not go outside of the pageblock.
642          */
643         if (unlikely(blockpfn > end_pfn))
644                 blockpfn = end_pfn;
645
646         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647                                         nr_scanned, total_isolated);
648
649         /* Record how far we have got within the block */
650         *start_pfn = blockpfn;
651
652         /*
653          * If strict isolation is requested by CMA then check that all the
654          * pages requested were isolated. If there were any failures, 0 is
655          * returned and CMA will fail.
656          */
657         if (strict && blockpfn < end_pfn)
658                 total_isolated = 0;
659
660         cc->total_free_scanned += nr_scanned;
661         if (total_isolated)
662                 count_compact_events(COMPACTISOLATED, total_isolated);
663         return total_isolated;
664 }
665
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682                         unsigned long start_pfn, unsigned long end_pfn)
683 {
684         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685         LIST_HEAD(freelist);
686
687         pfn = start_pfn;
688         block_start_pfn = pageblock_start_pfn(pfn);
689         if (block_start_pfn < cc->zone->zone_start_pfn)
690                 block_start_pfn = cc->zone->zone_start_pfn;
691         block_end_pfn = pageblock_end_pfn(pfn);
692
693         for (; pfn < end_pfn; pfn += isolated,
694                                 block_start_pfn = block_end_pfn,
695                                 block_end_pfn += pageblock_nr_pages) {
696                 /* Protect pfn from changing by isolate_freepages_block */
697                 unsigned long isolate_start_pfn = pfn;
698
699                 block_end_pfn = min(block_end_pfn, end_pfn);
700
701                 /*
702                  * pfn could pass the block_end_pfn if isolated freepage
703                  * is more than pageblock order. In this case, we adjust
704                  * scanning range to right one.
705                  */
706                 if (pfn >= block_end_pfn) {
707                         block_start_pfn = pageblock_start_pfn(pfn);
708                         block_end_pfn = pageblock_end_pfn(pfn);
709                         block_end_pfn = min(block_end_pfn, end_pfn);
710                 }
711
712                 if (!pageblock_pfn_to_page(block_start_pfn,
713                                         block_end_pfn, cc->zone))
714                         break;
715
716                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717                                         block_end_pfn, &freelist, 0, true);
718
719                 /*
720                  * In strict mode, isolate_freepages_block() returns 0 if
721                  * there are any holes in the block (ie. invalid PFNs or
722                  * non-free pages).
723                  */
724                 if (!isolated)
725                         break;
726
727                 /*
728                  * If we managed to isolate pages, it is always (1 << n) *
729                  * pageblock_nr_pages for some non-negative n.  (Max order
730                  * page may span two pageblocks).
731                  */
732         }
733
734         /* __isolate_free_page() does not map the pages */
735         split_map_pages(&freelist);
736
737         if (pfn < end_pfn) {
738                 /* Loop terminated early, cleanup. */
739                 release_freepages(&freelist);
740                 return 0;
741         }
742
743         /* We don't use freelists for anything. */
744         return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750         unsigned long active, inactive, isolated;
751
752         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753                         node_page_state(pgdat, NR_INACTIVE_ANON);
754         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755                         node_page_state(pgdat, NR_ACTIVE_ANON);
756         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757                         node_page_state(pgdat, NR_ISOLATED_ANON);
758
759         return isolated > (inactive + active) / 2;
760 }
761
762 /**
763  * isolate_migratepages_block() - isolate all migrate-able pages within
764  *                                a single pageblock
765  * @cc:         Compaction control structure.
766  * @low_pfn:    The first PFN to isolate
767  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
768  * @isolate_mode: Isolation mode to be used.
769  *
770  * Isolate all pages that can be migrated from the range specified by
771  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772  * Returns zero if there is a fatal signal pending, otherwise PFN of the
773  * first page that was not scanned (which may be both less, equal to or more
774  * than end_pfn).
775  *
776  * The pages are isolated on cc->migratepages list (not required to be empty),
777  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778  * is neither read nor updated.
779  */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782                         unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784         pg_data_t *pgdat = cc->zone->zone_pgdat;
785         unsigned long nr_scanned = 0, nr_isolated = 0;
786         struct lruvec *lruvec;
787         unsigned long flags = 0;
788         bool locked = false;
789         struct page *page = NULL, *valid_page = NULL;
790         unsigned long start_pfn = low_pfn;
791         bool skip_on_failure = false;
792         unsigned long next_skip_pfn = 0;
793         bool skip_updated = false;
794
795         /*
796          * Ensure that there are not too many pages isolated from the LRU
797          * list by either parallel reclaimers or compaction. If there are,
798          * delay for some time until fewer pages are isolated
799          */
800         while (unlikely(too_many_isolated(pgdat))) {
801                 /* async migration should just abort */
802                 if (cc->mode == MIGRATE_ASYNC)
803                         return 0;
804
805                 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807                 if (fatal_signal_pending(current))
808                         return 0;
809         }
810
811         cond_resched();
812
813         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814                 skip_on_failure = true;
815                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816         }
817
818         /* Time to isolate some pages for migration */
819         for (; low_pfn < end_pfn; low_pfn++) {
820
821                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822                         /*
823                          * We have isolated all migration candidates in the
824                          * previous order-aligned block, and did not skip it due
825                          * to failure. We should migrate the pages now and
826                          * hopefully succeed compaction.
827                          */
828                         if (nr_isolated)
829                                 break;
830
831                         /*
832                          * We failed to isolate in the previous order-aligned
833                          * block. Set the new boundary to the end of the
834                          * current block. Note we can't simply increase
835                          * next_skip_pfn by 1 << order, as low_pfn might have
836                          * been incremented by a higher number due to skipping
837                          * a compound or a high-order buddy page in the
838                          * previous loop iteration.
839                          */
840                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841                 }
842
843                 /*
844                  * Periodically drop the lock (if held) regardless of its
845                  * contention, to give chance to IRQs. Abort completely if
846                  * a fatal signal is pending.
847                  */
848                 if (!(low_pfn % SWAP_CLUSTER_MAX)
849                     && compact_unlock_should_abort(&pgdat->lru_lock,
850                                             flags, &locked, cc)) {
851                         low_pfn = 0;
852                         goto fatal_pending;
853                 }
854
855                 if (!pfn_valid_within(low_pfn))
856                         goto isolate_fail;
857                 nr_scanned++;
858
859                 page = pfn_to_page(low_pfn);
860
861                 /*
862                  * Check if the pageblock has already been marked skipped.
863                  * Only the aligned PFN is checked as the caller isolates
864                  * COMPACT_CLUSTER_MAX at a time so the second call must
865                  * not falsely conclude that the block should be skipped.
866                  */
867                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
868                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
869                                 low_pfn = end_pfn;
870                                 goto isolate_abort;
871                         }
872                         valid_page = page;
873                 }
874
875                 /*
876                  * Skip if free. We read page order here without zone lock
877                  * which is generally unsafe, but the race window is small and
878                  * the worst thing that can happen is that we skip some
879                  * potential isolation targets.
880                  */
881                 if (PageBuddy(page)) {
882                         unsigned long freepage_order = page_order_unsafe(page);
883
884                         /*
885                          * Without lock, we cannot be sure that what we got is
886                          * a valid page order. Consider only values in the
887                          * valid order range to prevent low_pfn overflow.
888                          */
889                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
890                                 low_pfn += (1UL << freepage_order) - 1;
891                         continue;
892                 }
893
894                 /*
895                  * Regardless of being on LRU, compound pages such as THP and
896                  * hugetlbfs are not to be compacted. We can potentially save
897                  * a lot of iterations if we skip them at once. The check is
898                  * racy, but we can consider only valid values and the only
899                  * danger is skipping too much.
900                  */
901                 if (PageCompound(page)) {
902                         const unsigned int order = compound_order(page);
903
904                         if (likely(order < MAX_ORDER))
905                                 low_pfn += (1UL << order) - 1;
906                         goto isolate_fail;
907                 }
908
909                 /*
910                  * Check may be lockless but that's ok as we recheck later.
911                  * It's possible to migrate LRU and non-lru movable pages.
912                  * Skip any other type of page
913                  */
914                 if (!PageLRU(page)) {
915                         /*
916                          * __PageMovable can return false positive so we need
917                          * to verify it under page_lock.
918                          */
919                         if (unlikely(__PageMovable(page)) &&
920                                         !PageIsolated(page)) {
921                                 if (locked) {
922                                         spin_unlock_irqrestore(&pgdat->lru_lock,
923                                                                         flags);
924                                         locked = false;
925                                 }
926
927                                 if (!isolate_movable_page(page, isolate_mode))
928                                         goto isolate_success;
929                         }
930
931                         goto isolate_fail;
932                 }
933
934                 /*
935                  * Migration will fail if an anonymous page is pinned in memory,
936                  * so avoid taking lru_lock and isolating it unnecessarily in an
937                  * admittedly racy check.
938                  */
939                 if (!page_mapping(page) &&
940                     page_count(page) > page_mapcount(page))
941                         goto isolate_fail;
942
943                 /*
944                  * Only allow to migrate anonymous pages in GFP_NOFS context
945                  * because those do not depend on fs locks.
946                  */
947                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
948                         goto isolate_fail;
949
950                 /* If we already hold the lock, we can skip some rechecking */
951                 if (!locked) {
952                         locked = compact_lock_irqsave(&pgdat->lru_lock,
953                                                                 &flags, cc);
954
955                         /* Try get exclusive access under lock */
956                         if (!skip_updated) {
957                                 skip_updated = true;
958                                 if (test_and_set_skip(cc, page, low_pfn))
959                                         goto isolate_abort;
960                         }
961
962                         /* Recheck PageLRU and PageCompound under lock */
963                         if (!PageLRU(page))
964                                 goto isolate_fail;
965
966                         /*
967                          * Page become compound since the non-locked check,
968                          * and it's on LRU. It can only be a THP so the order
969                          * is safe to read and it's 0 for tail pages.
970                          */
971                         if (unlikely(PageCompound(page))) {
972                                 low_pfn += (1UL << compound_order(page)) - 1;
973                                 goto isolate_fail;
974                         }
975                 }
976
977                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
978
979                 /* Try isolate the page */
980                 if (__isolate_lru_page(page, isolate_mode) != 0)
981                         goto isolate_fail;
982
983                 VM_BUG_ON_PAGE(PageCompound(page), page);
984
985                 /* Successfully isolated */
986                 del_page_from_lru_list(page, lruvec, page_lru(page));
987                 inc_node_page_state(page,
988                                 NR_ISOLATED_ANON + page_is_file_cache(page));
989
990 isolate_success:
991                 list_add(&page->lru, &cc->migratepages);
992                 cc->nr_migratepages++;
993                 nr_isolated++;
994
995                 /*
996                  * Avoid isolating too much unless this block is being
997                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
998                  * or a lock is contended. For contention, isolate quickly to
999                  * potentially remove one source of contention.
1000                  */
1001                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1002                     !cc->rescan && !cc->contended) {
1003                         ++low_pfn;
1004                         break;
1005                 }
1006
1007                 continue;
1008 isolate_fail:
1009                 if (!skip_on_failure)
1010                         continue;
1011
1012                 /*
1013                  * We have isolated some pages, but then failed. Release them
1014                  * instead of migrating, as we cannot form the cc->order buddy
1015                  * page anyway.
1016                  */
1017                 if (nr_isolated) {
1018                         if (locked) {
1019                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1020                                 locked = false;
1021                         }
1022                         putback_movable_pages(&cc->migratepages);
1023                         cc->nr_migratepages = 0;
1024                         nr_isolated = 0;
1025                 }
1026
1027                 if (low_pfn < next_skip_pfn) {
1028                         low_pfn = next_skip_pfn - 1;
1029                         /*
1030                          * The check near the loop beginning would have updated
1031                          * next_skip_pfn too, but this is a bit simpler.
1032                          */
1033                         next_skip_pfn += 1UL << cc->order;
1034                 }
1035         }
1036
1037         /*
1038          * The PageBuddy() check could have potentially brought us outside
1039          * the range to be scanned.
1040          */
1041         if (unlikely(low_pfn > end_pfn))
1042                 low_pfn = end_pfn;
1043
1044 isolate_abort:
1045         if (locked)
1046                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1047
1048         /*
1049          * Updated the cached scanner pfn once the pageblock has been scanned
1050          * Pages will either be migrated in which case there is no point
1051          * scanning in the near future or migration failed in which case the
1052          * failure reason may persist. The block is marked for skipping if
1053          * there were no pages isolated in the block or if the block is
1054          * rescanned twice in a row.
1055          */
1056         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1057                 if (valid_page && !skip_updated)
1058                         set_pageblock_skip(valid_page);
1059                 update_cached_migrate(cc, low_pfn);
1060         }
1061
1062         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1063                                                 nr_scanned, nr_isolated);
1064
1065 fatal_pending:
1066         cc->total_migrate_scanned += nr_scanned;
1067         if (nr_isolated)
1068                 count_compact_events(COMPACTISOLATED, nr_isolated);
1069
1070         return low_pfn;
1071 }
1072
1073 /**
1074  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1075  * @cc:        Compaction control structure.
1076  * @start_pfn: The first PFN to start isolating.
1077  * @end_pfn:   The one-past-last PFN.
1078  *
1079  * Returns zero if isolation fails fatally due to e.g. pending signal.
1080  * Otherwise, function returns one-past-the-last PFN of isolated page
1081  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1082  */
1083 unsigned long
1084 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1085                                                         unsigned long end_pfn)
1086 {
1087         unsigned long pfn, block_start_pfn, block_end_pfn;
1088
1089         /* Scan block by block. First and last block may be incomplete */
1090         pfn = start_pfn;
1091         block_start_pfn = pageblock_start_pfn(pfn);
1092         if (block_start_pfn < cc->zone->zone_start_pfn)
1093                 block_start_pfn = cc->zone->zone_start_pfn;
1094         block_end_pfn = pageblock_end_pfn(pfn);
1095
1096         for (; pfn < end_pfn; pfn = block_end_pfn,
1097                                 block_start_pfn = block_end_pfn,
1098                                 block_end_pfn += pageblock_nr_pages) {
1099
1100                 block_end_pfn = min(block_end_pfn, end_pfn);
1101
1102                 if (!pageblock_pfn_to_page(block_start_pfn,
1103                                         block_end_pfn, cc->zone))
1104                         continue;
1105
1106                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1107                                                         ISOLATE_UNEVICTABLE);
1108
1109                 if (!pfn)
1110                         break;
1111
1112                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1113                         break;
1114         }
1115
1116         return pfn;
1117 }
1118
1119 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1120 #ifdef CONFIG_COMPACTION
1121
1122 static bool suitable_migration_source(struct compact_control *cc,
1123                                                         struct page *page)
1124 {
1125         int block_mt;
1126
1127         if (pageblock_skip_persistent(page))
1128                 return false;
1129
1130         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1131                 return true;
1132
1133         block_mt = get_pageblock_migratetype(page);
1134
1135         if (cc->migratetype == MIGRATE_MOVABLE)
1136                 return is_migrate_movable(block_mt);
1137         else
1138                 return block_mt == cc->migratetype;
1139 }
1140
1141 /* Returns true if the page is within a block suitable for migration to */
1142 static bool suitable_migration_target(struct compact_control *cc,
1143                                                         struct page *page)
1144 {
1145         /* If the page is a large free page, then disallow migration */
1146         if (PageBuddy(page)) {
1147                 /*
1148                  * We are checking page_order without zone->lock taken. But
1149                  * the only small danger is that we skip a potentially suitable
1150                  * pageblock, so it's not worth to check order for valid range.
1151                  */
1152                 if (page_order_unsafe(page) >= pageblock_order)
1153                         return false;
1154         }
1155
1156         if (cc->ignore_block_suitable)
1157                 return true;
1158
1159         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1160         if (is_migrate_movable(get_pageblock_migratetype(page)))
1161                 return true;
1162
1163         /* Otherwise skip the block */
1164         return false;
1165 }
1166
1167 static inline unsigned int
1168 freelist_scan_limit(struct compact_control *cc)
1169 {
1170         unsigned short shift = BITS_PER_LONG - 1;
1171
1172         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1173 }
1174
1175 /*
1176  * Test whether the free scanner has reached the same or lower pageblock than
1177  * the migration scanner, and compaction should thus terminate.
1178  */
1179 static inline bool compact_scanners_met(struct compact_control *cc)
1180 {
1181         return (cc->free_pfn >> pageblock_order)
1182                 <= (cc->migrate_pfn >> pageblock_order);
1183 }
1184
1185 /*
1186  * Used when scanning for a suitable migration target which scans freelists
1187  * in reverse. Reorders the list such as the unscanned pages are scanned
1188  * first on the next iteration of the free scanner
1189  */
1190 static void
1191 move_freelist_head(struct list_head *freelist, struct page *freepage)
1192 {
1193         LIST_HEAD(sublist);
1194
1195         if (!list_is_last(freelist, &freepage->lru)) {
1196                 list_cut_before(&sublist, freelist, &freepage->lru);
1197                 if (!list_empty(&sublist))
1198                         list_splice_tail(&sublist, freelist);
1199         }
1200 }
1201
1202 /*
1203  * Similar to move_freelist_head except used by the migration scanner
1204  * when scanning forward. It's possible for these list operations to
1205  * move against each other if they search the free list exactly in
1206  * lockstep.
1207  */
1208 static void
1209 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1210 {
1211         LIST_HEAD(sublist);
1212
1213         if (!list_is_first(freelist, &freepage->lru)) {
1214                 list_cut_position(&sublist, freelist, &freepage->lru);
1215                 if (!list_empty(&sublist))
1216                         list_splice_tail(&sublist, freelist);
1217         }
1218 }
1219
1220 static void
1221 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1222 {
1223         unsigned long start_pfn, end_pfn;
1224         struct page *page = pfn_to_page(pfn);
1225
1226         /* Do not search around if there are enough pages already */
1227         if (cc->nr_freepages >= cc->nr_migratepages)
1228                 return;
1229
1230         /* Minimise scanning during async compaction */
1231         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1232                 return;
1233
1234         /* Pageblock boundaries */
1235         start_pfn = pageblock_start_pfn(pfn);
1236         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1237
1238         /* Scan before */
1239         if (start_pfn != pfn) {
1240                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1241                 if (cc->nr_freepages >= cc->nr_migratepages)
1242                         return;
1243         }
1244
1245         /* Scan after */
1246         start_pfn = pfn + nr_isolated;
1247         if (start_pfn < end_pfn)
1248                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1249
1250         /* Skip this pageblock in the future as it's full or nearly full */
1251         if (cc->nr_freepages < cc->nr_migratepages)
1252                 set_pageblock_skip(page);
1253 }
1254
1255 /* Search orders in round-robin fashion */
1256 static int next_search_order(struct compact_control *cc, int order)
1257 {
1258         order--;
1259         if (order < 0)
1260                 order = cc->order - 1;
1261
1262         /* Search wrapped around? */
1263         if (order == cc->search_order) {
1264                 cc->search_order--;
1265                 if (cc->search_order < 0)
1266                         cc->search_order = cc->order - 1;
1267                 return -1;
1268         }
1269
1270         return order;
1271 }
1272
1273 static unsigned long
1274 fast_isolate_freepages(struct compact_control *cc)
1275 {
1276         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1277         unsigned int nr_scanned = 0;
1278         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1279         unsigned long nr_isolated = 0;
1280         unsigned long distance;
1281         struct page *page = NULL;
1282         bool scan_start = false;
1283         int order;
1284
1285         /* Full compaction passes in a negative order */
1286         if (cc->order <= 0)
1287                 return cc->free_pfn;
1288
1289         /*
1290          * If starting the scan, use a deeper search and use the highest
1291          * PFN found if a suitable one is not found.
1292          */
1293         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1294                 limit = pageblock_nr_pages >> 1;
1295                 scan_start = true;
1296         }
1297
1298         /*
1299          * Preferred point is in the top quarter of the scan space but take
1300          * a pfn from the top half if the search is problematic.
1301          */
1302         distance = (cc->free_pfn - cc->migrate_pfn);
1303         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1304         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1305
1306         if (WARN_ON_ONCE(min_pfn > low_pfn))
1307                 low_pfn = min_pfn;
1308
1309         /*
1310          * Search starts from the last successful isolation order or the next
1311          * order to search after a previous failure
1312          */
1313         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1314
1315         for (order = cc->search_order;
1316              !page && order >= 0;
1317              order = next_search_order(cc, order)) {
1318                 struct free_area *area = &cc->zone->free_area[order];
1319                 struct list_head *freelist;
1320                 struct page *freepage;
1321                 unsigned long flags;
1322                 unsigned int order_scanned = 0;
1323
1324                 if (!area->nr_free)
1325                         continue;
1326
1327                 spin_lock_irqsave(&cc->zone->lock, flags);
1328                 freelist = &area->free_list[MIGRATE_MOVABLE];
1329                 list_for_each_entry_reverse(freepage, freelist, lru) {
1330                         unsigned long pfn;
1331
1332                         order_scanned++;
1333                         nr_scanned++;
1334                         pfn = page_to_pfn(freepage);
1335
1336                         if (pfn >= highest)
1337                                 highest = pageblock_start_pfn(pfn);
1338
1339                         if (pfn >= low_pfn) {
1340                                 cc->fast_search_fail = 0;
1341                                 cc->search_order = order;
1342                                 page = freepage;
1343                                 break;
1344                         }
1345
1346                         if (pfn >= min_pfn && pfn > high_pfn) {
1347                                 high_pfn = pfn;
1348
1349                                 /* Shorten the scan if a candidate is found */
1350                                 limit >>= 1;
1351                         }
1352
1353                         if (order_scanned >= limit)
1354                                 break;
1355                 }
1356
1357                 /* Use a minimum pfn if a preferred one was not found */
1358                 if (!page && high_pfn) {
1359                         page = pfn_to_page(high_pfn);
1360
1361                         /* Update freepage for the list reorder below */
1362                         freepage = page;
1363                 }
1364
1365                 /* Reorder to so a future search skips recent pages */
1366                 move_freelist_head(freelist, freepage);
1367
1368                 /* Isolate the page if available */
1369                 if (page) {
1370                         if (__isolate_free_page(page, order)) {
1371                                 set_page_private(page, order);
1372                                 nr_isolated = 1 << order;
1373                                 cc->nr_freepages += nr_isolated;
1374                                 list_add_tail(&page->lru, &cc->freepages);
1375                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1376                         } else {
1377                                 /* If isolation fails, abort the search */
1378                                 order = cc->search_order + 1;
1379                                 page = NULL;
1380                         }
1381                 }
1382
1383                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1384
1385                 /*
1386                  * Smaller scan on next order so the total scan ig related
1387                  * to freelist_scan_limit.
1388                  */
1389                 if (order_scanned >= limit)
1390                         limit = min(1U, limit >> 1);
1391         }
1392
1393         if (!page) {
1394                 cc->fast_search_fail++;
1395                 if (scan_start) {
1396                         /*
1397                          * Use the highest PFN found above min. If one was
1398                          * not found, be pessemistic for direct compaction
1399                          * and use the min mark.
1400                          */
1401                         if (highest) {
1402                                 page = pfn_to_page(highest);
1403                                 cc->free_pfn = highest;
1404                         } else {
1405                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1406                                         page = pfn_to_page(min_pfn);
1407                                         cc->free_pfn = min_pfn;
1408                                 }
1409                         }
1410                 }
1411         }
1412
1413         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1414                 highest -= pageblock_nr_pages;
1415                 cc->zone->compact_cached_free_pfn = highest;
1416         }
1417
1418         cc->total_free_scanned += nr_scanned;
1419         if (!page)
1420                 return cc->free_pfn;
1421
1422         low_pfn = page_to_pfn(page);
1423         fast_isolate_around(cc, low_pfn, nr_isolated);
1424         return low_pfn;
1425 }
1426
1427 /*
1428  * Based on information in the current compact_control, find blocks
1429  * suitable for isolating free pages from and then isolate them.
1430  */
1431 static void isolate_freepages(struct compact_control *cc)
1432 {
1433         struct zone *zone = cc->zone;
1434         struct page *page;
1435         unsigned long block_start_pfn;  /* start of current pageblock */
1436         unsigned long isolate_start_pfn; /* exact pfn we start at */
1437         unsigned long block_end_pfn;    /* end of current pageblock */
1438         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1439         struct list_head *freelist = &cc->freepages;
1440         unsigned int stride;
1441
1442         /* Try a small search of the free lists for a candidate */
1443         isolate_start_pfn = fast_isolate_freepages(cc);
1444         if (cc->nr_freepages)
1445                 goto splitmap;
1446
1447         /*
1448          * Initialise the free scanner. The starting point is where we last
1449          * successfully isolated from, zone-cached value, or the end of the
1450          * zone when isolating for the first time. For looping we also need
1451          * this pfn aligned down to the pageblock boundary, because we do
1452          * block_start_pfn -= pageblock_nr_pages in the for loop.
1453          * For ending point, take care when isolating in last pageblock of a
1454          * a zone which ends in the middle of a pageblock.
1455          * The low boundary is the end of the pageblock the migration scanner
1456          * is using.
1457          */
1458         isolate_start_pfn = cc->free_pfn;
1459         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1460         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1461                                                 zone_end_pfn(zone));
1462         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1463         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1464
1465         /*
1466          * Isolate free pages until enough are available to migrate the
1467          * pages on cc->migratepages. We stop searching if the migrate
1468          * and free page scanners meet or enough free pages are isolated.
1469          */
1470         for (; block_start_pfn >= low_pfn;
1471                                 block_end_pfn = block_start_pfn,
1472                                 block_start_pfn -= pageblock_nr_pages,
1473                                 isolate_start_pfn = block_start_pfn) {
1474                 unsigned long nr_isolated;
1475
1476                 /*
1477                  * This can iterate a massively long zone without finding any
1478                  * suitable migration targets, so periodically check resched.
1479                  */
1480                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1481                         cond_resched();
1482
1483                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1484                                                                         zone);
1485                 if (!page)
1486                         continue;
1487
1488                 /* Check the block is suitable for migration */
1489                 if (!suitable_migration_target(cc, page))
1490                         continue;
1491
1492                 /* If isolation recently failed, do not retry */
1493                 if (!isolation_suitable(cc, page))
1494                         continue;
1495
1496                 /* Found a block suitable for isolating free pages from. */
1497                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1498                                         block_end_pfn, freelist, stride, false);
1499
1500                 /* Update the skip hint if the full pageblock was scanned */
1501                 if (isolate_start_pfn == block_end_pfn)
1502                         update_pageblock_skip(cc, page, block_start_pfn);
1503
1504                 /* Are enough freepages isolated? */
1505                 if (cc->nr_freepages >= cc->nr_migratepages) {
1506                         if (isolate_start_pfn >= block_end_pfn) {
1507                                 /*
1508                                  * Restart at previous pageblock if more
1509                                  * freepages can be isolated next time.
1510                                  */
1511                                 isolate_start_pfn =
1512                                         block_start_pfn - pageblock_nr_pages;
1513                         }
1514                         break;
1515                 } else if (isolate_start_pfn < block_end_pfn) {
1516                         /*
1517                          * If isolation failed early, do not continue
1518                          * needlessly.
1519                          */
1520                         break;
1521                 }
1522
1523                 /* Adjust stride depending on isolation */
1524                 if (nr_isolated) {
1525                         stride = 1;
1526                         continue;
1527                 }
1528                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1529         }
1530
1531         /*
1532          * Record where the free scanner will restart next time. Either we
1533          * broke from the loop and set isolate_start_pfn based on the last
1534          * call to isolate_freepages_block(), or we met the migration scanner
1535          * and the loop terminated due to isolate_start_pfn < low_pfn
1536          */
1537         cc->free_pfn = isolate_start_pfn;
1538
1539 splitmap:
1540         /* __isolate_free_page() does not map the pages */
1541         split_map_pages(freelist);
1542 }
1543
1544 /*
1545  * This is a migrate-callback that "allocates" freepages by taking pages
1546  * from the isolated freelists in the block we are migrating to.
1547  */
1548 static struct page *compaction_alloc(struct page *migratepage,
1549                                         unsigned long data)
1550 {
1551         struct compact_control *cc = (struct compact_control *)data;
1552         struct page *freepage;
1553
1554         if (list_empty(&cc->freepages)) {
1555                 isolate_freepages(cc);
1556
1557                 if (list_empty(&cc->freepages))
1558                         return NULL;
1559         }
1560
1561         freepage = list_entry(cc->freepages.next, struct page, lru);
1562         list_del(&freepage->lru);
1563         cc->nr_freepages--;
1564
1565         return freepage;
1566 }
1567
1568 /*
1569  * This is a migrate-callback that "frees" freepages back to the isolated
1570  * freelist.  All pages on the freelist are from the same zone, so there is no
1571  * special handling needed for NUMA.
1572  */
1573 static void compaction_free(struct page *page, unsigned long data)
1574 {
1575         struct compact_control *cc = (struct compact_control *)data;
1576
1577         list_add(&page->lru, &cc->freepages);
1578         cc->nr_freepages++;
1579 }
1580
1581 /* possible outcome of isolate_migratepages */
1582 typedef enum {
1583         ISOLATE_ABORT,          /* Abort compaction now */
1584         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1585         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1586 } isolate_migrate_t;
1587
1588 /*
1589  * Allow userspace to control policy on scanning the unevictable LRU for
1590  * compactable pages.
1591  */
1592 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1593
1594 static inline void
1595 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1596 {
1597         if (cc->fast_start_pfn == ULONG_MAX)
1598                 return;
1599
1600         if (!cc->fast_start_pfn)
1601                 cc->fast_start_pfn = pfn;
1602
1603         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1604 }
1605
1606 static inline unsigned long
1607 reinit_migrate_pfn(struct compact_control *cc)
1608 {
1609         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1610                 return cc->migrate_pfn;
1611
1612         cc->migrate_pfn = cc->fast_start_pfn;
1613         cc->fast_start_pfn = ULONG_MAX;
1614
1615         return cc->migrate_pfn;
1616 }
1617
1618 /*
1619  * Briefly search the free lists for a migration source that already has
1620  * some free pages to reduce the number of pages that need migration
1621  * before a pageblock is free.
1622  */
1623 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1624 {
1625         unsigned int limit = freelist_scan_limit(cc);
1626         unsigned int nr_scanned = 0;
1627         unsigned long distance;
1628         unsigned long pfn = cc->migrate_pfn;
1629         unsigned long high_pfn;
1630         int order;
1631
1632         /* Skip hints are relied on to avoid repeats on the fast search */
1633         if (cc->ignore_skip_hint)
1634                 return pfn;
1635
1636         /*
1637          * If the migrate_pfn is not at the start of a zone or the start
1638          * of a pageblock then assume this is a continuation of a previous
1639          * scan restarted due to COMPACT_CLUSTER_MAX.
1640          */
1641         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1642                 return pfn;
1643
1644         /*
1645          * For smaller orders, just linearly scan as the number of pages
1646          * to migrate should be relatively small and does not necessarily
1647          * justify freeing up a large block for a small allocation.
1648          */
1649         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1650                 return pfn;
1651
1652         /*
1653          * Only allow kcompactd and direct requests for movable pages to
1654          * quickly clear out a MOVABLE pageblock for allocation. This
1655          * reduces the risk that a large movable pageblock is freed for
1656          * an unmovable/reclaimable small allocation.
1657          */
1658         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1659                 return pfn;
1660
1661         /*
1662          * When starting the migration scanner, pick any pageblock within the
1663          * first half of the search space. Otherwise try and pick a pageblock
1664          * within the first eighth to reduce the chances that a migration
1665          * target later becomes a source.
1666          */
1667         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1668         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1669                 distance >>= 2;
1670         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1671
1672         for (order = cc->order - 1;
1673              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1674              order--) {
1675                 struct free_area *area = &cc->zone->free_area[order];
1676                 struct list_head *freelist;
1677                 unsigned long flags;
1678                 struct page *freepage;
1679
1680                 if (!area->nr_free)
1681                         continue;
1682
1683                 spin_lock_irqsave(&cc->zone->lock, flags);
1684                 freelist = &area->free_list[MIGRATE_MOVABLE];
1685                 list_for_each_entry(freepage, freelist, lru) {
1686                         unsigned long free_pfn;
1687
1688                         nr_scanned++;
1689                         free_pfn = page_to_pfn(freepage);
1690                         if (free_pfn < high_pfn) {
1691                                 /*
1692                                  * Avoid if skipped recently. Ideally it would
1693                                  * move to the tail but even safe iteration of
1694                                  * the list assumes an entry is deleted, not
1695                                  * reordered.
1696                                  */
1697                                 if (get_pageblock_skip(freepage)) {
1698                                         if (list_is_last(freelist, &freepage->lru))
1699                                                 break;
1700
1701                                         continue;
1702                                 }
1703
1704                                 /* Reorder to so a future search skips recent pages */
1705                                 move_freelist_tail(freelist, freepage);
1706
1707                                 update_fast_start_pfn(cc, free_pfn);
1708                                 pfn = pageblock_start_pfn(free_pfn);
1709                                 cc->fast_search_fail = 0;
1710                                 set_pageblock_skip(freepage);
1711                                 break;
1712                         }
1713
1714                         if (nr_scanned >= limit) {
1715                                 cc->fast_search_fail++;
1716                                 move_freelist_tail(freelist, freepage);
1717                                 break;
1718                         }
1719                 }
1720                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1721         }
1722
1723         cc->total_migrate_scanned += nr_scanned;
1724
1725         /*
1726          * If fast scanning failed then use a cached entry for a page block
1727          * that had free pages as the basis for starting a linear scan.
1728          */
1729         if (pfn == cc->migrate_pfn)
1730                 pfn = reinit_migrate_pfn(cc);
1731
1732         return pfn;
1733 }
1734
1735 /*
1736  * Isolate all pages that can be migrated from the first suitable block,
1737  * starting at the block pointed to by the migrate scanner pfn within
1738  * compact_control.
1739  */
1740 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1741                                         struct compact_control *cc)
1742 {
1743         unsigned long block_start_pfn;
1744         unsigned long block_end_pfn;
1745         unsigned long low_pfn;
1746         struct page *page;
1747         const isolate_mode_t isolate_mode =
1748                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1749                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1750         bool fast_find_block;
1751
1752         /*
1753          * Start at where we last stopped, or beginning of the zone as
1754          * initialized by compact_zone(). The first failure will use
1755          * the lowest PFN as the starting point for linear scanning.
1756          */
1757         low_pfn = fast_find_migrateblock(cc);
1758         block_start_pfn = pageblock_start_pfn(low_pfn);
1759         if (block_start_pfn < zone->zone_start_pfn)
1760                 block_start_pfn = zone->zone_start_pfn;
1761
1762         /*
1763          * fast_find_migrateblock marks a pageblock skipped so to avoid
1764          * the isolation_suitable check below, check whether the fast
1765          * search was successful.
1766          */
1767         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1768
1769         /* Only scan within a pageblock boundary */
1770         block_end_pfn = pageblock_end_pfn(low_pfn);
1771
1772         /*
1773          * Iterate over whole pageblocks until we find the first suitable.
1774          * Do not cross the free scanner.
1775          */
1776         for (; block_end_pfn <= cc->free_pfn;
1777                         fast_find_block = false,
1778                         low_pfn = block_end_pfn,
1779                         block_start_pfn = block_end_pfn,
1780                         block_end_pfn += pageblock_nr_pages) {
1781
1782                 /*
1783                  * This can potentially iterate a massively long zone with
1784                  * many pageblocks unsuitable, so periodically check if we
1785                  * need to schedule.
1786                  */
1787                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1788                         cond_resched();
1789
1790                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1791                                                                         zone);
1792                 if (!page)
1793                         continue;
1794
1795                 /*
1796                  * If isolation recently failed, do not retry. Only check the
1797                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1798                  * to be visited multiple times. Assume skip was checked
1799                  * before making it "skip" so other compaction instances do
1800                  * not scan the same block.
1801                  */
1802                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1803                     !fast_find_block && !isolation_suitable(cc, page))
1804                         continue;
1805
1806                 /*
1807                  * For async compaction, also only scan in MOVABLE blocks
1808                  * without huge pages. Async compaction is optimistic to see
1809                  * if the minimum amount of work satisfies the allocation.
1810                  * The cached PFN is updated as it's possible that all
1811                  * remaining blocks between source and target are unsuitable
1812                  * and the compaction scanners fail to meet.
1813                  */
1814                 if (!suitable_migration_source(cc, page)) {
1815                         update_cached_migrate(cc, block_end_pfn);
1816                         continue;
1817                 }
1818
1819                 /* Perform the isolation */
1820                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1821                                                 block_end_pfn, isolate_mode);
1822
1823                 if (!low_pfn)
1824                         return ISOLATE_ABORT;
1825
1826                 /*
1827                  * Either we isolated something and proceed with migration. Or
1828                  * we failed and compact_zone should decide if we should
1829                  * continue or not.
1830                  */
1831                 break;
1832         }
1833
1834         /* Record where migration scanner will be restarted. */
1835         cc->migrate_pfn = low_pfn;
1836
1837         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1838 }
1839
1840 /*
1841  * order == -1 is expected when compacting via
1842  * /proc/sys/vm/compact_memory
1843  */
1844 static inline bool is_via_compact_memory(int order)
1845 {
1846         return order == -1;
1847 }
1848
1849 static enum compact_result __compact_finished(struct compact_control *cc)
1850 {
1851         unsigned int order;
1852         const int migratetype = cc->migratetype;
1853         int ret;
1854
1855         /* Compaction run completes if the migrate and free scanner meet */
1856         if (compact_scanners_met(cc)) {
1857                 /* Let the next compaction start anew. */
1858                 reset_cached_positions(cc->zone);
1859
1860                 /*
1861                  * Mark that the PG_migrate_skip information should be cleared
1862                  * by kswapd when it goes to sleep. kcompactd does not set the
1863                  * flag itself as the decision to be clear should be directly
1864                  * based on an allocation request.
1865                  */
1866                 if (cc->direct_compaction)
1867                         cc->zone->compact_blockskip_flush = true;
1868
1869                 if (cc->whole_zone)
1870                         return COMPACT_COMPLETE;
1871                 else
1872                         return COMPACT_PARTIAL_SKIPPED;
1873         }
1874
1875         if (is_via_compact_memory(cc->order))
1876                 return COMPACT_CONTINUE;
1877
1878         /*
1879          * Always finish scanning a pageblock to reduce the possibility of
1880          * fallbacks in the future. This is particularly important when
1881          * migration source is unmovable/reclaimable but it's not worth
1882          * special casing.
1883          */
1884         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1885                 return COMPACT_CONTINUE;
1886
1887         /* Direct compactor: Is a suitable page free? */
1888         ret = COMPACT_NO_SUITABLE_PAGE;
1889         for (order = cc->order; order < MAX_ORDER; order++) {
1890                 struct free_area *area = &cc->zone->free_area[order];
1891                 bool can_steal;
1892
1893                 /* Job done if page is free of the right migratetype */
1894                 if (!free_area_empty(area, migratetype))
1895                         return COMPACT_SUCCESS;
1896
1897 #ifdef CONFIG_CMA
1898                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1899                 if (migratetype == MIGRATE_MOVABLE &&
1900                         !free_area_empty(area, MIGRATE_CMA))
1901                         return COMPACT_SUCCESS;
1902 #endif
1903                 /*
1904                  * Job done if allocation would steal freepages from
1905                  * other migratetype buddy lists.
1906                  */
1907                 if (find_suitable_fallback(area, order, migratetype,
1908                                                 true, &can_steal) != -1) {
1909
1910                         /* movable pages are OK in any pageblock */
1911                         if (migratetype == MIGRATE_MOVABLE)
1912                                 return COMPACT_SUCCESS;
1913
1914                         /*
1915                          * We are stealing for a non-movable allocation. Make
1916                          * sure we finish compacting the current pageblock
1917                          * first so it is as free as possible and we won't
1918                          * have to steal another one soon. This only applies
1919                          * to sync compaction, as async compaction operates
1920                          * on pageblocks of the same migratetype.
1921                          */
1922                         if (cc->mode == MIGRATE_ASYNC ||
1923                                         IS_ALIGNED(cc->migrate_pfn,
1924                                                         pageblock_nr_pages)) {
1925                                 return COMPACT_SUCCESS;
1926                         }
1927
1928                         ret = COMPACT_CONTINUE;
1929                         break;
1930                 }
1931         }
1932
1933         if (cc->contended || fatal_signal_pending(current))
1934                 ret = COMPACT_CONTENDED;
1935
1936         return ret;
1937 }
1938
1939 static enum compact_result compact_finished(struct compact_control *cc)
1940 {
1941         int ret;
1942
1943         ret = __compact_finished(cc);
1944         trace_mm_compaction_finished(cc->zone, cc->order, ret);
1945         if (ret == COMPACT_NO_SUITABLE_PAGE)
1946                 ret = COMPACT_CONTINUE;
1947
1948         return ret;
1949 }
1950
1951 /*
1952  * compaction_suitable: Is this suitable to run compaction on this zone now?
1953  * Returns
1954  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1955  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1956  *   COMPACT_CONTINUE - If compaction should run now
1957  */
1958 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1959                                         unsigned int alloc_flags,
1960                                         int classzone_idx,
1961                                         unsigned long wmark_target)
1962 {
1963         unsigned long watermark;
1964
1965         if (is_via_compact_memory(order))
1966                 return COMPACT_CONTINUE;
1967
1968         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1969         /*
1970          * If watermarks for high-order allocation are already met, there
1971          * should be no need for compaction at all.
1972          */
1973         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1974                                                                 alloc_flags))
1975                 return COMPACT_SUCCESS;
1976
1977         /*
1978          * Watermarks for order-0 must be met for compaction to be able to
1979          * isolate free pages for migration targets. This means that the
1980          * watermark and alloc_flags have to match, or be more pessimistic than
1981          * the check in __isolate_free_page(). We don't use the direct
1982          * compactor's alloc_flags, as they are not relevant for freepage
1983          * isolation. We however do use the direct compactor's classzone_idx to
1984          * skip over zones where lowmem reserves would prevent allocation even
1985          * if compaction succeeds.
1986          * For costly orders, we require low watermark instead of min for
1987          * compaction to proceed to increase its chances.
1988          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1989          * suitable migration targets
1990          */
1991         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1992                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1993         watermark += compact_gap(order);
1994         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1995                                                 ALLOC_CMA, wmark_target))
1996                 return COMPACT_SKIPPED;
1997
1998         return COMPACT_CONTINUE;
1999 }
2000
2001 enum compact_result compaction_suitable(struct zone *zone, int order,
2002                                         unsigned int alloc_flags,
2003                                         int classzone_idx)
2004 {
2005         enum compact_result ret;
2006         int fragindex;
2007
2008         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2009                                     zone_page_state(zone, NR_FREE_PAGES));
2010         /*
2011          * fragmentation index determines if allocation failures are due to
2012          * low memory or external fragmentation
2013          *
2014          * index of -1000 would imply allocations might succeed depending on
2015          * watermarks, but we already failed the high-order watermark check
2016          * index towards 0 implies failure is due to lack of memory
2017          * index towards 1000 implies failure is due to fragmentation
2018          *
2019          * Only compact if a failure would be due to fragmentation. Also
2020          * ignore fragindex for non-costly orders where the alternative to
2021          * a successful reclaim/compaction is OOM. Fragindex and the
2022          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2023          * excessive compaction for costly orders, but it should not be at the
2024          * expense of system stability.
2025          */
2026         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2027                 fragindex = fragmentation_index(zone, order);
2028                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2029                         ret = COMPACT_NOT_SUITABLE_ZONE;
2030         }
2031
2032         trace_mm_compaction_suitable(zone, order, ret);
2033         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2034                 ret = COMPACT_SKIPPED;
2035
2036         return ret;
2037 }
2038
2039 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2040                 int alloc_flags)
2041 {
2042         struct zone *zone;
2043         struct zoneref *z;
2044
2045         /*
2046          * Make sure at least one zone would pass __compaction_suitable if we continue
2047          * retrying the reclaim.
2048          */
2049         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2050                                         ac->nodemask) {
2051                 unsigned long available;
2052                 enum compact_result compact_result;
2053
2054                 /*
2055                  * Do not consider all the reclaimable memory because we do not
2056                  * want to trash just for a single high order allocation which
2057                  * is even not guaranteed to appear even if __compaction_suitable
2058                  * is happy about the watermark check.
2059                  */
2060                 available = zone_reclaimable_pages(zone) / order;
2061                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2062                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2063                                 ac_classzone_idx(ac), available);
2064                 if (compact_result != COMPACT_SKIPPED)
2065                         return true;
2066         }
2067
2068         return false;
2069 }
2070
2071 static enum compact_result
2072 compact_zone(struct compact_control *cc, struct capture_control *capc)
2073 {
2074         enum compact_result ret;
2075         unsigned long start_pfn = cc->zone->zone_start_pfn;
2076         unsigned long end_pfn = zone_end_pfn(cc->zone);
2077         unsigned long last_migrated_pfn;
2078         const bool sync = cc->mode != MIGRATE_ASYNC;
2079         bool update_cached;
2080
2081         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2082         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2083                                                         cc->classzone_idx);
2084         /* Compaction is likely to fail */
2085         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2086                 return ret;
2087
2088         /* huh, compaction_suitable is returning something unexpected */
2089         VM_BUG_ON(ret != COMPACT_CONTINUE);
2090
2091         /*
2092          * Clear pageblock skip if there were failures recently and compaction
2093          * is about to be retried after being deferred.
2094          */
2095         if (compaction_restarting(cc->zone, cc->order))
2096                 __reset_isolation_suitable(cc->zone);
2097
2098         /*
2099          * Setup to move all movable pages to the end of the zone. Used cached
2100          * information on where the scanners should start (unless we explicitly
2101          * want to compact the whole zone), but check that it is initialised
2102          * by ensuring the values are within zone boundaries.
2103          */
2104         cc->fast_start_pfn = 0;
2105         if (cc->whole_zone) {
2106                 cc->migrate_pfn = start_pfn;
2107                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108         } else {
2109                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2110                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2111                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2112                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2113                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2114                 }
2115                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2116                         cc->migrate_pfn = start_pfn;
2117                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2118                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2119                 }
2120
2121                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2122                         cc->whole_zone = true;
2123         }
2124
2125         last_migrated_pfn = 0;
2126
2127         /*
2128          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2129          * the basis that some migrations will fail in ASYNC mode. However,
2130          * if the cached PFNs match and pageblocks are skipped due to having
2131          * no isolation candidates, then the sync state does not matter.
2132          * Until a pageblock with isolation candidates is found, keep the
2133          * cached PFNs in sync to avoid revisiting the same blocks.
2134          */
2135         update_cached = !sync &&
2136                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2137
2138         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2139                                 cc->free_pfn, end_pfn, sync);
2140
2141         migrate_prep_local();
2142
2143         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2144                 int err;
2145                 unsigned long start_pfn = cc->migrate_pfn;
2146
2147                 /*
2148                  * Avoid multiple rescans which can happen if a page cannot be
2149                  * isolated (dirty/writeback in async mode) or if the migrated
2150                  * pages are being allocated before the pageblock is cleared.
2151                  * The first rescan will capture the entire pageblock for
2152                  * migration. If it fails, it'll be marked skip and scanning
2153                  * will proceed as normal.
2154                  */
2155                 cc->rescan = false;
2156                 if (pageblock_start_pfn(last_migrated_pfn) ==
2157                     pageblock_start_pfn(start_pfn)) {
2158                         cc->rescan = true;
2159                 }
2160
2161                 switch (isolate_migratepages(cc->zone, cc)) {
2162                 case ISOLATE_ABORT:
2163                         ret = COMPACT_CONTENDED;
2164                         putback_movable_pages(&cc->migratepages);
2165                         cc->nr_migratepages = 0;
2166                         last_migrated_pfn = 0;
2167                         goto out;
2168                 case ISOLATE_NONE:
2169                         if (update_cached) {
2170                                 cc->zone->compact_cached_migrate_pfn[1] =
2171                                         cc->zone->compact_cached_migrate_pfn[0];
2172                         }
2173
2174                         /*
2175                          * We haven't isolated and migrated anything, but
2176                          * there might still be unflushed migrations from
2177                          * previous cc->order aligned block.
2178                          */
2179                         goto check_drain;
2180                 case ISOLATE_SUCCESS:
2181                         update_cached = false;
2182                         last_migrated_pfn = start_pfn;
2183                         ;
2184                 }
2185
2186                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2187                                 compaction_free, (unsigned long)cc, cc->mode,
2188                                 MR_COMPACTION);
2189
2190                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2191                                                         &cc->migratepages);
2192
2193                 /* All pages were either migrated or will be released */
2194                 cc->nr_migratepages = 0;
2195                 if (err) {
2196                         putback_movable_pages(&cc->migratepages);
2197                         /*
2198                          * migrate_pages() may return -ENOMEM when scanners meet
2199                          * and we want compact_finished() to detect it
2200                          */
2201                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2202                                 ret = COMPACT_CONTENDED;
2203                                 goto out;
2204                         }
2205                         /*
2206                          * We failed to migrate at least one page in the current
2207                          * order-aligned block, so skip the rest of it.
2208                          */
2209                         if (cc->direct_compaction &&
2210                                                 (cc->mode == MIGRATE_ASYNC)) {
2211                                 cc->migrate_pfn = block_end_pfn(
2212                                                 cc->migrate_pfn - 1, cc->order);
2213                                 /* Draining pcplists is useless in this case */
2214                                 last_migrated_pfn = 0;
2215                         }
2216                 }
2217
2218 check_drain:
2219                 /*
2220                  * Has the migration scanner moved away from the previous
2221                  * cc->order aligned block where we migrated from? If yes,
2222                  * flush the pages that were freed, so that they can merge and
2223                  * compact_finished() can detect immediately if allocation
2224                  * would succeed.
2225                  */
2226                 if (cc->order > 0 && last_migrated_pfn) {
2227                         int cpu;
2228                         unsigned long current_block_start =
2229                                 block_start_pfn(cc->migrate_pfn, cc->order);
2230
2231                         if (last_migrated_pfn < current_block_start) {
2232                                 cpu = get_cpu();
2233                                 lru_add_drain_cpu(cpu);
2234                                 drain_local_pages(cc->zone);
2235                                 put_cpu();
2236                                 /* No more flushing until we migrate again */
2237                                 last_migrated_pfn = 0;
2238                         }
2239                 }
2240
2241                 /* Stop if a page has been captured */
2242                 if (capc && capc->page) {
2243                         ret = COMPACT_SUCCESS;
2244                         break;
2245                 }
2246         }
2247
2248 out:
2249         /*
2250          * Release free pages and update where the free scanner should restart,
2251          * so we don't leave any returned pages behind in the next attempt.
2252          */
2253         if (cc->nr_freepages > 0) {
2254                 unsigned long free_pfn = release_freepages(&cc->freepages);
2255
2256                 cc->nr_freepages = 0;
2257                 VM_BUG_ON(free_pfn == 0);
2258                 /* The cached pfn is always the first in a pageblock */
2259                 free_pfn = pageblock_start_pfn(free_pfn);
2260                 /*
2261                  * Only go back, not forward. The cached pfn might have been
2262                  * already reset to zone end in compact_finished()
2263                  */
2264                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2265                         cc->zone->compact_cached_free_pfn = free_pfn;
2266         }
2267
2268         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2269         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2270
2271         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2272                                 cc->free_pfn, end_pfn, sync, ret);
2273
2274         return ret;
2275 }
2276
2277 static enum compact_result compact_zone_order(struct zone *zone, int order,
2278                 gfp_t gfp_mask, enum compact_priority prio,
2279                 unsigned int alloc_flags, int classzone_idx,
2280                 struct page **capture)
2281 {
2282         enum compact_result ret;
2283         struct compact_control cc = {
2284                 .nr_freepages = 0,
2285                 .nr_migratepages = 0,
2286                 .total_migrate_scanned = 0,
2287                 .total_free_scanned = 0,
2288                 .order = order,
2289                 .search_order = order,
2290                 .gfp_mask = gfp_mask,
2291                 .zone = zone,
2292                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2293                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2294                 .alloc_flags = alloc_flags,
2295                 .classzone_idx = classzone_idx,
2296                 .direct_compaction = true,
2297                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2298                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2299                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2300         };
2301         struct capture_control capc = {
2302                 .cc = &cc,
2303                 .page = NULL,
2304         };
2305
2306         if (capture)
2307                 current->capture_control = &capc;
2308         INIT_LIST_HEAD(&cc.freepages);
2309         INIT_LIST_HEAD(&cc.migratepages);
2310
2311         ret = compact_zone(&cc, &capc);
2312
2313         VM_BUG_ON(!list_empty(&cc.freepages));
2314         VM_BUG_ON(!list_empty(&cc.migratepages));
2315
2316         *capture = capc.page;
2317         current->capture_control = NULL;
2318
2319         return ret;
2320 }
2321
2322 int sysctl_extfrag_threshold = 500;
2323
2324 /**
2325  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2326  * @gfp_mask: The GFP mask of the current allocation
2327  * @order: The order of the current allocation
2328  * @alloc_flags: The allocation flags of the current allocation
2329  * @ac: The context of current allocation
2330  * @prio: Determines how hard direct compaction should try to succeed
2331  *
2332  * This is the main entry point for direct page compaction.
2333  */
2334 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2335                 unsigned int alloc_flags, const struct alloc_context *ac,
2336                 enum compact_priority prio, struct page **capture)
2337 {
2338         int may_perform_io = gfp_mask & __GFP_IO;
2339         struct zoneref *z;
2340         struct zone *zone;
2341         enum compact_result rc = COMPACT_SKIPPED;
2342
2343         /*
2344          * Check if the GFP flags allow compaction - GFP_NOIO is really
2345          * tricky context because the migration might require IO
2346          */
2347         if (!may_perform_io)
2348                 return COMPACT_SKIPPED;
2349
2350         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2351
2352         /* Compact each zone in the list */
2353         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2354                                                                 ac->nodemask) {
2355                 enum compact_result status;
2356
2357                 if (prio > MIN_COMPACT_PRIORITY
2358                                         && compaction_deferred(zone, order)) {
2359                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2360                         continue;
2361                 }
2362
2363                 status = compact_zone_order(zone, order, gfp_mask, prio,
2364                                 alloc_flags, ac_classzone_idx(ac), capture);
2365                 rc = max(status, rc);
2366
2367                 /* The allocation should succeed, stop compacting */
2368                 if (status == COMPACT_SUCCESS) {
2369                         /*
2370                          * We think the allocation will succeed in this zone,
2371                          * but it is not certain, hence the false. The caller
2372                          * will repeat this with true if allocation indeed
2373                          * succeeds in this zone.
2374                          */
2375                         compaction_defer_reset(zone, order, false);
2376
2377                         break;
2378                 }
2379
2380                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2381                                         status == COMPACT_PARTIAL_SKIPPED))
2382                         /*
2383                          * We think that allocation won't succeed in this zone
2384                          * so we defer compaction there. If it ends up
2385                          * succeeding after all, it will be reset.
2386                          */
2387                         defer_compaction(zone, order);
2388
2389                 /*
2390                  * We might have stopped compacting due to need_resched() in
2391                  * async compaction, or due to a fatal signal detected. In that
2392                  * case do not try further zones
2393                  */
2394                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2395                                         || fatal_signal_pending(current))
2396                         break;
2397         }
2398
2399         return rc;
2400 }
2401
2402
2403 /* Compact all zones within a node */
2404 static void compact_node(int nid)
2405 {
2406         pg_data_t *pgdat = NODE_DATA(nid);
2407         int zoneid;
2408         struct zone *zone;
2409         struct compact_control cc = {
2410                 .order = -1,
2411                 .total_migrate_scanned = 0,
2412                 .total_free_scanned = 0,
2413                 .mode = MIGRATE_SYNC,
2414                 .ignore_skip_hint = true,
2415                 .whole_zone = true,
2416                 .gfp_mask = GFP_KERNEL,
2417         };
2418
2419
2420         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2421
2422                 zone = &pgdat->node_zones[zoneid];
2423                 if (!populated_zone(zone))
2424                         continue;
2425
2426                 cc.nr_freepages = 0;
2427                 cc.nr_migratepages = 0;
2428                 cc.zone = zone;
2429                 INIT_LIST_HEAD(&cc.freepages);
2430                 INIT_LIST_HEAD(&cc.migratepages);
2431
2432                 compact_zone(&cc, NULL);
2433
2434                 VM_BUG_ON(!list_empty(&cc.freepages));
2435                 VM_BUG_ON(!list_empty(&cc.migratepages));
2436         }
2437 }
2438
2439 /* Compact all nodes in the system */
2440 static void compact_nodes(void)
2441 {
2442         int nid;
2443
2444         /* Flush pending updates to the LRU lists */
2445         lru_add_drain_all();
2446
2447         for_each_online_node(nid)
2448                 compact_node(nid);
2449 }
2450
2451 /* The written value is actually unused, all memory is compacted */
2452 int sysctl_compact_memory;
2453
2454 /*
2455  * This is the entry point for compacting all nodes via
2456  * /proc/sys/vm/compact_memory
2457  */
2458 int sysctl_compaction_handler(struct ctl_table *table, int write,
2459                         void __user *buffer, size_t *length, loff_t *ppos)
2460 {
2461         if (write)
2462                 compact_nodes();
2463
2464         return 0;
2465 }
2466
2467 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2468 static ssize_t sysfs_compact_node(struct device *dev,
2469                         struct device_attribute *attr,
2470                         const char *buf, size_t count)
2471 {
2472         int nid = dev->id;
2473
2474         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2475                 /* Flush pending updates to the LRU lists */
2476                 lru_add_drain_all();
2477
2478                 compact_node(nid);
2479         }
2480
2481         return count;
2482 }
2483 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2484
2485 int compaction_register_node(struct node *node)
2486 {
2487         return device_create_file(&node->dev, &dev_attr_compact);
2488 }
2489
2490 void compaction_unregister_node(struct node *node)
2491 {
2492         return device_remove_file(&node->dev, &dev_attr_compact);
2493 }
2494 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2495
2496 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2497 {
2498         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2499 }
2500
2501 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2502 {
2503         int zoneid;
2504         struct zone *zone;
2505         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2506
2507         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2508                 zone = &pgdat->node_zones[zoneid];
2509
2510                 if (!populated_zone(zone))
2511                         continue;
2512
2513                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2514                                         classzone_idx) == COMPACT_CONTINUE)
2515                         return true;
2516         }
2517
2518         return false;
2519 }
2520
2521 static void kcompactd_do_work(pg_data_t *pgdat)
2522 {
2523         /*
2524          * With no special task, compact all zones so that a page of requested
2525          * order is allocatable.
2526          */
2527         int zoneid;
2528         struct zone *zone;
2529         struct compact_control cc = {
2530                 .order = pgdat->kcompactd_max_order,
2531                 .search_order = pgdat->kcompactd_max_order,
2532                 .total_migrate_scanned = 0,
2533                 .total_free_scanned = 0,
2534                 .classzone_idx = pgdat->kcompactd_classzone_idx,
2535                 .mode = MIGRATE_SYNC_LIGHT,
2536                 .ignore_skip_hint = false,
2537                 .gfp_mask = GFP_KERNEL,
2538         };
2539         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2540                                                         cc.classzone_idx);
2541         count_compact_event(KCOMPACTD_WAKE);
2542
2543         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2544                 int status;
2545
2546                 zone = &pgdat->node_zones[zoneid];
2547                 if (!populated_zone(zone))
2548                         continue;
2549
2550                 if (compaction_deferred(zone, cc.order))
2551                         continue;
2552
2553                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2554                                                         COMPACT_CONTINUE)
2555                         continue;
2556
2557                 cc.nr_freepages = 0;
2558                 cc.nr_migratepages = 0;
2559                 cc.total_migrate_scanned = 0;
2560                 cc.total_free_scanned = 0;
2561                 cc.zone = zone;
2562                 INIT_LIST_HEAD(&cc.freepages);
2563                 INIT_LIST_HEAD(&cc.migratepages);
2564
2565                 if (kthread_should_stop())
2566                         return;
2567                 status = compact_zone(&cc, NULL);
2568
2569                 if (status == COMPACT_SUCCESS) {
2570                         compaction_defer_reset(zone, cc.order, false);
2571                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2572                         /*
2573                          * Buddy pages may become stranded on pcps that could
2574                          * otherwise coalesce on the zone's free area for
2575                          * order >= cc.order.  This is ratelimited by the
2576                          * upcoming deferral.
2577                          */
2578                         drain_all_pages(zone);
2579
2580                         /*
2581                          * We use sync migration mode here, so we defer like
2582                          * sync direct compaction does.
2583                          */
2584                         defer_compaction(zone, cc.order);
2585                 }
2586
2587                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2588                                      cc.total_migrate_scanned);
2589                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2590                                      cc.total_free_scanned);
2591
2592                 VM_BUG_ON(!list_empty(&cc.freepages));
2593                 VM_BUG_ON(!list_empty(&cc.migratepages));
2594         }
2595
2596         /*
2597          * Regardless of success, we are done until woken up next. But remember
2598          * the requested order/classzone_idx in case it was higher/tighter than
2599          * our current ones
2600          */
2601         if (pgdat->kcompactd_max_order <= cc.order)
2602                 pgdat->kcompactd_max_order = 0;
2603         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2604                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2605 }
2606
2607 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2608 {
2609         if (!order)
2610                 return;
2611
2612         if (pgdat->kcompactd_max_order < order)
2613                 pgdat->kcompactd_max_order = order;
2614
2615         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2616                 pgdat->kcompactd_classzone_idx = classzone_idx;
2617
2618         /*
2619          * Pairs with implicit barrier in wait_event_freezable()
2620          * such that wakeups are not missed.
2621          */
2622         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2623                 return;
2624
2625         if (!kcompactd_node_suitable(pgdat))
2626                 return;
2627
2628         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2629                                                         classzone_idx);
2630         wake_up_interruptible(&pgdat->kcompactd_wait);
2631 }
2632
2633 /*
2634  * The background compaction daemon, started as a kernel thread
2635  * from the init process.
2636  */
2637 static int kcompactd(void *p)
2638 {
2639         pg_data_t *pgdat = (pg_data_t*)p;
2640         struct task_struct *tsk = current;
2641
2642         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2643
2644         if (!cpumask_empty(cpumask))
2645                 set_cpus_allowed_ptr(tsk, cpumask);
2646
2647         set_freezable();
2648
2649         pgdat->kcompactd_max_order = 0;
2650         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2651
2652         while (!kthread_should_stop()) {
2653                 unsigned long pflags;
2654
2655                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2656                 wait_event_freezable(pgdat->kcompactd_wait,
2657                                 kcompactd_work_requested(pgdat));
2658
2659                 psi_memstall_enter(&pflags);
2660                 kcompactd_do_work(pgdat);
2661                 psi_memstall_leave(&pflags);
2662         }
2663
2664         return 0;
2665 }
2666
2667 /*
2668  * This kcompactd start function will be called by init and node-hot-add.
2669  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2670  */
2671 int kcompactd_run(int nid)
2672 {
2673         pg_data_t *pgdat = NODE_DATA(nid);
2674         int ret = 0;
2675
2676         if (pgdat->kcompactd)
2677                 return 0;
2678
2679         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2680         if (IS_ERR(pgdat->kcompactd)) {
2681                 pr_err("Failed to start kcompactd on node %d\n", nid);
2682                 ret = PTR_ERR(pgdat->kcompactd);
2683                 pgdat->kcompactd = NULL;
2684         }
2685         return ret;
2686 }
2687
2688 /*
2689  * Called by memory hotplug when all memory in a node is offlined. Caller must
2690  * hold mem_hotplug_begin/end().
2691  */
2692 void kcompactd_stop(int nid)
2693 {
2694         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2695
2696         if (kcompactd) {
2697                 kthread_stop(kcompactd);
2698                 NODE_DATA(nid)->kcompactd = NULL;
2699         }
2700 }
2701
2702 /*
2703  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2704  * not required for correctness. So if the last cpu in a node goes
2705  * away, we get changed to run anywhere: as the first one comes back,
2706  * restore their cpu bindings.
2707  */
2708 static int kcompactd_cpu_online(unsigned int cpu)
2709 {
2710         int nid;
2711
2712         for_each_node_state(nid, N_MEMORY) {
2713                 pg_data_t *pgdat = NODE_DATA(nid);
2714                 const struct cpumask *mask;
2715
2716                 mask = cpumask_of_node(pgdat->node_id);
2717
2718                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2719                         /* One of our CPUs online: restore mask */
2720                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2721         }
2722         return 0;
2723 }
2724
2725 static int __init kcompactd_init(void)
2726 {
2727         int nid;
2728         int ret;
2729
2730         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2731                                         "mm/compaction:online",
2732                                         kcompactd_cpu_online, NULL);
2733         if (ret < 0) {
2734                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2735                 return ret;
2736         }
2737
2738         for_each_node_state(nid, N_MEMORY)
2739                 kcompactd_run(nid);
2740         return 0;
2741 }
2742 subsys_initcall(kcompactd_init)
2743
2744 #endif /* CONFIG_COMPACTION */