mm/gup: replace get_user_pages_longterm() with FOLL_LONGTERM
[linux-2.6-block.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242                                                         bool check_target)
243 {
244         struct page *page = pfn_to_online_page(pfn);
245         struct page *block_page;
246         struct page *end_page;
247         unsigned long block_pfn;
248
249         if (!page)
250                 return false;
251         if (zone != page_zone(page))
252                 return false;
253         if (pageblock_skip_persistent(page))
254                 return false;
255
256         /*
257          * If skip is already cleared do no further checking once the
258          * restart points have been set.
259          */
260         if (check_source && check_target && !get_pageblock_skip(page))
261                 return true;
262
263         /*
264          * If clearing skip for the target scanner, do not select a
265          * non-movable pageblock as the starting point.
266          */
267         if (!check_source && check_target &&
268             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269                 return false;
270
271         /* Ensure the start of the pageblock or zone is online and valid */
272         block_pfn = pageblock_start_pfn(pfn);
273         block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274         if (block_page) {
275                 page = block_page;
276                 pfn = block_pfn;
277         }
278
279         /* Ensure the end of the pageblock or zone is online and valid */
280         block_pfn += pageblock_nr_pages;
281         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282         end_page = pfn_to_online_page(block_pfn);
283         if (!end_page)
284                 return false;
285
286         /*
287          * Only clear the hint if a sample indicates there is either a
288          * free page or an LRU page in the block. One or other condition
289          * is necessary for the block to be a migration source/target.
290          */
291         do {
292                 if (pfn_valid_within(pfn)) {
293                         if (check_source && PageLRU(page)) {
294                                 clear_pageblock_skip(page);
295                                 return true;
296                         }
297
298                         if (check_target && PageBuddy(page)) {
299                                 clear_pageblock_skip(page);
300                                 return true;
301                         }
302                 }
303
304                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306         } while (page < end_page);
307
308         return false;
309 }
310
311 /*
312  * This function is called to clear all cached information on pageblocks that
313  * should be skipped for page isolation when the migrate and free page scanner
314  * meet.
315  */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318         unsigned long migrate_pfn = zone->zone_start_pfn;
319         unsigned long free_pfn = zone_end_pfn(zone) - 1;
320         unsigned long reset_migrate = free_pfn;
321         unsigned long reset_free = migrate_pfn;
322         bool source_set = false;
323         bool free_set = false;
324
325         if (!zone->compact_blockskip_flush)
326                 return;
327
328         zone->compact_blockskip_flush = false;
329
330         /*
331          * Walk the zone and update pageblock skip information. Source looks
332          * for PageLRU while target looks for PageBuddy. When the scanner
333          * is found, both PageBuddy and PageLRU are checked as the pageblock
334          * is suitable as both source and target.
335          */
336         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337                                         free_pfn -= pageblock_nr_pages) {
338                 cond_resched();
339
340                 /* Update the migrate PFN */
341                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342                     migrate_pfn < reset_migrate) {
343                         source_set = true;
344                         reset_migrate = migrate_pfn;
345                         zone->compact_init_migrate_pfn = reset_migrate;
346                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
347                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
348                 }
349
350                 /* Update the free PFN */
351                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352                     free_pfn > reset_free) {
353                         free_set = true;
354                         reset_free = free_pfn;
355                         zone->compact_init_free_pfn = reset_free;
356                         zone->compact_cached_free_pfn = reset_free;
357                 }
358         }
359
360         /* Leave no distance if no suitable block was reset */
361         if (reset_migrate >= reset_free) {
362                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364                 zone->compact_cached_free_pfn = free_pfn;
365         }
366 }
367
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370         int zoneid;
371
372         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373                 struct zone *zone = &pgdat->node_zones[zoneid];
374                 if (!populated_zone(zone))
375                         continue;
376
377                 /* Only flush if a full compaction finished recently */
378                 if (zone->compact_blockskip_flush)
379                         __reset_isolation_suitable(zone);
380         }
381 }
382
383 /*
384  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385  * locks are not required for read/writers. Returns true if it was already set.
386  */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388                                                         unsigned long pfn)
389 {
390         bool skip;
391
392         /* Do no update if skip hint is being ignored */
393         if (cc->ignore_skip_hint)
394                 return false;
395
396         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397                 return false;
398
399         skip = get_pageblock_skip(page);
400         if (!skip && !cc->no_set_skip_hint)
401                 set_pageblock_skip(page);
402
403         return skip;
404 }
405
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408         struct zone *zone = cc->zone;
409
410         pfn = pageblock_end_pfn(pfn);
411
412         /* Set for isolation rather than compaction */
413         if (cc->no_set_skip_hint)
414                 return;
415
416         if (pfn > zone->compact_cached_migrate_pfn[0])
417                 zone->compact_cached_migrate_pfn[0] = pfn;
418         if (cc->mode != MIGRATE_ASYNC &&
419             pfn > zone->compact_cached_migrate_pfn[1])
420                 zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422
423 /*
424  * If no pages were isolated then mark this pageblock to be skipped in the
425  * future. The information is later cleared by __reset_isolation_suitable().
426  */
427 static void update_pageblock_skip(struct compact_control *cc,
428                         struct page *page, unsigned long pfn)
429 {
430         struct zone *zone = cc->zone;
431
432         if (cc->no_set_skip_hint)
433                 return;
434
435         if (!page)
436                 return;
437
438         set_pageblock_skip(page);
439
440         /* Update where async and sync compaction should restart */
441         if (pfn < zone->compact_cached_free_pfn)
442                 zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446                                         struct page *page)
447 {
448         return true;
449 }
450
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453         return false;
454 }
455
456 static inline void update_pageblock_skip(struct compact_control *cc,
457                         struct page *page, unsigned long pfn)
458 {
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466                                                         unsigned long pfn)
467 {
468         return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482                                                 struct compact_control *cc)
483 {
484         /* Track if the lock is contended in async mode */
485         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486                 if (spin_trylock_irqsave(lock, *flags))
487                         return true;
488
489                 cc->contended = true;
490         }
491
492         spin_lock_irqsave(lock, *flags);
493         return true;
494 }
495
496 /*
497  * Compaction requires the taking of some coarse locks that are potentially
498  * very heavily contended. The lock should be periodically unlocked to avoid
499  * having disabled IRQs for a long time, even when there is nobody waiting on
500  * the lock. It might also be that allowing the IRQs will result in
501  * need_resched() becoming true. If scheduling is needed, async compaction
502  * aborts. Sync compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending, or
507  *              async compaction due to need_resched()
508  * Returns false when compaction can continue (sync compaction might have
509  *              scheduled)
510  */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512                 unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514         if (*locked) {
515                 spin_unlock_irqrestore(lock, flags);
516                 *locked = false;
517         }
518
519         if (fatal_signal_pending(current)) {
520                 cc->contended = true;
521                 return true;
522         }
523
524         cond_resched();
525
526         return false;
527 }
528
529 /*
530  * Isolate free pages onto a private freelist. If @strict is true, will abort
531  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532  * (even though it may still end up isolating some pages).
533  */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535                                 unsigned long *start_pfn,
536                                 unsigned long end_pfn,
537                                 struct list_head *freelist,
538                                 unsigned int stride,
539                                 bool strict)
540 {
541         int nr_scanned = 0, total_isolated = 0;
542         struct page *cursor;
543         unsigned long flags = 0;
544         bool locked = false;
545         unsigned long blockpfn = *start_pfn;
546         unsigned int order;
547
548         /* Strict mode is for isolation, speed is secondary */
549         if (strict)
550                 stride = 1;
551
552         cursor = pfn_to_page(blockpfn);
553
554         /* Isolate free pages. */
555         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556                 int isolated;
557                 struct page *page = cursor;
558
559                 /*
560                  * Periodically drop the lock (if held) regardless of its
561                  * contention, to give chance to IRQs. Abort if fatal signal
562                  * pending or async compaction detects need_resched()
563                  */
564                 if (!(blockpfn % SWAP_CLUSTER_MAX)
565                     && compact_unlock_should_abort(&cc->zone->lock, flags,
566                                                                 &locked, cc))
567                         break;
568
569                 nr_scanned++;
570                 if (!pfn_valid_within(blockpfn))
571                         goto isolate_fail;
572
573                 /*
574                  * For compound pages such as THP and hugetlbfs, we can save
575                  * potentially a lot of iterations if we skip them at once.
576                  * The check is racy, but we can consider only valid values
577                  * and the only danger is skipping too much.
578                  */
579                 if (PageCompound(page)) {
580                         const unsigned int order = compound_order(page);
581
582                         if (likely(order < MAX_ORDER)) {
583                                 blockpfn += (1UL << order) - 1;
584                                 cursor += (1UL << order) - 1;
585                         }
586                         goto isolate_fail;
587                 }
588
589                 if (!PageBuddy(page))
590                         goto isolate_fail;
591
592                 /*
593                  * If we already hold the lock, we can skip some rechecking.
594                  * Note that if we hold the lock now, checked_pageblock was
595                  * already set in some previous iteration (or strict is true),
596                  * so it is correct to skip the suitable migration target
597                  * recheck as well.
598                  */
599                 if (!locked) {
600                         locked = compact_lock_irqsave(&cc->zone->lock,
601                                                                 &flags, cc);
602
603                         /* Recheck this is a buddy page under lock */
604                         if (!PageBuddy(page))
605                                 goto isolate_fail;
606                 }
607
608                 /* Found a free page, will break it into order-0 pages */
609                 order = page_order(page);
610                 isolated = __isolate_free_page(page, order);
611                 if (!isolated)
612                         break;
613                 set_page_private(page, order);
614
615                 total_isolated += isolated;
616                 cc->nr_freepages += isolated;
617                 list_add_tail(&page->lru, freelist);
618
619                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620                         blockpfn += isolated;
621                         break;
622                 }
623                 /* Advance to the end of split page */
624                 blockpfn += isolated - 1;
625                 cursor += isolated - 1;
626                 continue;
627
628 isolate_fail:
629                 if (strict)
630                         break;
631                 else
632                         continue;
633
634         }
635
636         if (locked)
637                 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639         /*
640          * There is a tiny chance that we have read bogus compound_order(),
641          * so be careful to not go outside of the pageblock.
642          */
643         if (unlikely(blockpfn > end_pfn))
644                 blockpfn = end_pfn;
645
646         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647                                         nr_scanned, total_isolated);
648
649         /* Record how far we have got within the block */
650         *start_pfn = blockpfn;
651
652         /*
653          * If strict isolation is requested by CMA then check that all the
654          * pages requested were isolated. If there were any failures, 0 is
655          * returned and CMA will fail.
656          */
657         if (strict && blockpfn < end_pfn)
658                 total_isolated = 0;
659
660         cc->total_free_scanned += nr_scanned;
661         if (total_isolated)
662                 count_compact_events(COMPACTISOLATED, total_isolated);
663         return total_isolated;
664 }
665
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682                         unsigned long start_pfn, unsigned long end_pfn)
683 {
684         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685         LIST_HEAD(freelist);
686
687         pfn = start_pfn;
688         block_start_pfn = pageblock_start_pfn(pfn);
689         if (block_start_pfn < cc->zone->zone_start_pfn)
690                 block_start_pfn = cc->zone->zone_start_pfn;
691         block_end_pfn = pageblock_end_pfn(pfn);
692
693         for (; pfn < end_pfn; pfn += isolated,
694                                 block_start_pfn = block_end_pfn,
695                                 block_end_pfn += pageblock_nr_pages) {
696                 /* Protect pfn from changing by isolate_freepages_block */
697                 unsigned long isolate_start_pfn = pfn;
698
699                 block_end_pfn = min(block_end_pfn, end_pfn);
700
701                 /*
702                  * pfn could pass the block_end_pfn if isolated freepage
703                  * is more than pageblock order. In this case, we adjust
704                  * scanning range to right one.
705                  */
706                 if (pfn >= block_end_pfn) {
707                         block_start_pfn = pageblock_start_pfn(pfn);
708                         block_end_pfn = pageblock_end_pfn(pfn);
709                         block_end_pfn = min(block_end_pfn, end_pfn);
710                 }
711
712                 if (!pageblock_pfn_to_page(block_start_pfn,
713                                         block_end_pfn, cc->zone))
714                         break;
715
716                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717                                         block_end_pfn, &freelist, 0, true);
718
719                 /*
720                  * In strict mode, isolate_freepages_block() returns 0 if
721                  * there are any holes in the block (ie. invalid PFNs or
722                  * non-free pages).
723                  */
724                 if (!isolated)
725                         break;
726
727                 /*
728                  * If we managed to isolate pages, it is always (1 << n) *
729                  * pageblock_nr_pages for some non-negative n.  (Max order
730                  * page may span two pageblocks).
731                  */
732         }
733
734         /* __isolate_free_page() does not map the pages */
735         split_map_pages(&freelist);
736
737         if (pfn < end_pfn) {
738                 /* Loop terminated early, cleanup. */
739                 release_freepages(&freelist);
740                 return 0;
741         }
742
743         /* We don't use freelists for anything. */
744         return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750         unsigned long active, inactive, isolated;
751
752         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753                         node_page_state(pgdat, NR_INACTIVE_ANON);
754         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755                         node_page_state(pgdat, NR_ACTIVE_ANON);
756         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757                         node_page_state(pgdat, NR_ISOLATED_ANON);
758
759         return isolated > (inactive + active) / 2;
760 }
761
762 /**
763  * isolate_migratepages_block() - isolate all migrate-able pages within
764  *                                a single pageblock
765  * @cc:         Compaction control structure.
766  * @low_pfn:    The first PFN to isolate
767  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
768  * @isolate_mode: Isolation mode to be used.
769  *
770  * Isolate all pages that can be migrated from the range specified by
771  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772  * Returns zero if there is a fatal signal pending, otherwise PFN of the
773  * first page that was not scanned (which may be both less, equal to or more
774  * than end_pfn).
775  *
776  * The pages are isolated on cc->migratepages list (not required to be empty),
777  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778  * is neither read nor updated.
779  */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782                         unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784         pg_data_t *pgdat = cc->zone->zone_pgdat;
785         unsigned long nr_scanned = 0, nr_isolated = 0;
786         struct lruvec *lruvec;
787         unsigned long flags = 0;
788         bool locked = false;
789         struct page *page = NULL, *valid_page = NULL;
790         unsigned long start_pfn = low_pfn;
791         bool skip_on_failure = false;
792         unsigned long next_skip_pfn = 0;
793         bool skip_updated = false;
794
795         /*
796          * Ensure that there are not too many pages isolated from the LRU
797          * list by either parallel reclaimers or compaction. If there are,
798          * delay for some time until fewer pages are isolated
799          */
800         while (unlikely(too_many_isolated(pgdat))) {
801                 /* async migration should just abort */
802                 if (cc->mode == MIGRATE_ASYNC)
803                         return 0;
804
805                 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807                 if (fatal_signal_pending(current))
808                         return 0;
809         }
810
811         cond_resched();
812
813         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814                 skip_on_failure = true;
815                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816         }
817
818         /* Time to isolate some pages for migration */
819         for (; low_pfn < end_pfn; low_pfn++) {
820
821                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822                         /*
823                          * We have isolated all migration candidates in the
824                          * previous order-aligned block, and did not skip it due
825                          * to failure. We should migrate the pages now and
826                          * hopefully succeed compaction.
827                          */
828                         if (nr_isolated)
829                                 break;
830
831                         /*
832                          * We failed to isolate in the previous order-aligned
833                          * block. Set the new boundary to the end of the
834                          * current block. Note we can't simply increase
835                          * next_skip_pfn by 1 << order, as low_pfn might have
836                          * been incremented by a higher number due to skipping
837                          * a compound or a high-order buddy page in the
838                          * previous loop iteration.
839                          */
840                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841                 }
842
843                 /*
844                  * Periodically drop the lock (if held) regardless of its
845                  * contention, to give chance to IRQs. Abort async compaction
846                  * if contended.
847                  */
848                 if (!(low_pfn % SWAP_CLUSTER_MAX)
849                     && compact_unlock_should_abort(&pgdat->lru_lock,
850                                             flags, &locked, cc))
851                         break;
852
853                 if (!pfn_valid_within(low_pfn))
854                         goto isolate_fail;
855                 nr_scanned++;
856
857                 page = pfn_to_page(low_pfn);
858
859                 /*
860                  * Check if the pageblock has already been marked skipped.
861                  * Only the aligned PFN is checked as the caller isolates
862                  * COMPACT_CLUSTER_MAX at a time so the second call must
863                  * not falsely conclude that the block should be skipped.
864                  */
865                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
866                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
867                                 low_pfn = end_pfn;
868                                 goto isolate_abort;
869                         }
870                         valid_page = page;
871                 }
872
873                 /*
874                  * Skip if free. We read page order here without zone lock
875                  * which is generally unsafe, but the race window is small and
876                  * the worst thing that can happen is that we skip some
877                  * potential isolation targets.
878                  */
879                 if (PageBuddy(page)) {
880                         unsigned long freepage_order = page_order_unsafe(page);
881
882                         /*
883                          * Without lock, we cannot be sure that what we got is
884                          * a valid page order. Consider only values in the
885                          * valid order range to prevent low_pfn overflow.
886                          */
887                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
888                                 low_pfn += (1UL << freepage_order) - 1;
889                         continue;
890                 }
891
892                 /*
893                  * Regardless of being on LRU, compound pages such as THP and
894                  * hugetlbfs are not to be compacted. We can potentially save
895                  * a lot of iterations if we skip them at once. The check is
896                  * racy, but we can consider only valid values and the only
897                  * danger is skipping too much.
898                  */
899                 if (PageCompound(page)) {
900                         const unsigned int order = compound_order(page);
901
902                         if (likely(order < MAX_ORDER))
903                                 low_pfn += (1UL << order) - 1;
904                         goto isolate_fail;
905                 }
906
907                 /*
908                  * Check may be lockless but that's ok as we recheck later.
909                  * It's possible to migrate LRU and non-lru movable pages.
910                  * Skip any other type of page
911                  */
912                 if (!PageLRU(page)) {
913                         /*
914                          * __PageMovable can return false positive so we need
915                          * to verify it under page_lock.
916                          */
917                         if (unlikely(__PageMovable(page)) &&
918                                         !PageIsolated(page)) {
919                                 if (locked) {
920                                         spin_unlock_irqrestore(&pgdat->lru_lock,
921                                                                         flags);
922                                         locked = false;
923                                 }
924
925                                 if (!isolate_movable_page(page, isolate_mode))
926                                         goto isolate_success;
927                         }
928
929                         goto isolate_fail;
930                 }
931
932                 /*
933                  * Migration will fail if an anonymous page is pinned in memory,
934                  * so avoid taking lru_lock and isolating it unnecessarily in an
935                  * admittedly racy check.
936                  */
937                 if (!page_mapping(page) &&
938                     page_count(page) > page_mapcount(page))
939                         goto isolate_fail;
940
941                 /*
942                  * Only allow to migrate anonymous pages in GFP_NOFS context
943                  * because those do not depend on fs locks.
944                  */
945                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
946                         goto isolate_fail;
947
948                 /* If we already hold the lock, we can skip some rechecking */
949                 if (!locked) {
950                         locked = compact_lock_irqsave(&pgdat->lru_lock,
951                                                                 &flags, cc);
952
953                         /* Try get exclusive access under lock */
954                         if (!skip_updated) {
955                                 skip_updated = true;
956                                 if (test_and_set_skip(cc, page, low_pfn))
957                                         goto isolate_abort;
958                         }
959
960                         /* Recheck PageLRU and PageCompound under lock */
961                         if (!PageLRU(page))
962                                 goto isolate_fail;
963
964                         /*
965                          * Page become compound since the non-locked check,
966                          * and it's on LRU. It can only be a THP so the order
967                          * is safe to read and it's 0 for tail pages.
968                          */
969                         if (unlikely(PageCompound(page))) {
970                                 low_pfn += (1UL << compound_order(page)) - 1;
971                                 goto isolate_fail;
972                         }
973                 }
974
975                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
976
977                 /* Try isolate the page */
978                 if (__isolate_lru_page(page, isolate_mode) != 0)
979                         goto isolate_fail;
980
981                 VM_BUG_ON_PAGE(PageCompound(page), page);
982
983                 /* Successfully isolated */
984                 del_page_from_lru_list(page, lruvec, page_lru(page));
985                 inc_node_page_state(page,
986                                 NR_ISOLATED_ANON + page_is_file_cache(page));
987
988 isolate_success:
989                 list_add(&page->lru, &cc->migratepages);
990                 cc->nr_migratepages++;
991                 nr_isolated++;
992
993                 /*
994                  * Avoid isolating too much unless this block is being
995                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
996                  * or a lock is contended. For contention, isolate quickly to
997                  * potentially remove one source of contention.
998                  */
999                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000                     !cc->rescan && !cc->contended) {
1001                         ++low_pfn;
1002                         break;
1003                 }
1004
1005                 continue;
1006 isolate_fail:
1007                 if (!skip_on_failure)
1008                         continue;
1009
1010                 /*
1011                  * We have isolated some pages, but then failed. Release them
1012                  * instead of migrating, as we cannot form the cc->order buddy
1013                  * page anyway.
1014                  */
1015                 if (nr_isolated) {
1016                         if (locked) {
1017                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018                                 locked = false;
1019                         }
1020                         putback_movable_pages(&cc->migratepages);
1021                         cc->nr_migratepages = 0;
1022                         nr_isolated = 0;
1023                 }
1024
1025                 if (low_pfn < next_skip_pfn) {
1026                         low_pfn = next_skip_pfn - 1;
1027                         /*
1028                          * The check near the loop beginning would have updated
1029                          * next_skip_pfn too, but this is a bit simpler.
1030                          */
1031                         next_skip_pfn += 1UL << cc->order;
1032                 }
1033         }
1034
1035         /*
1036          * The PageBuddy() check could have potentially brought us outside
1037          * the range to be scanned.
1038          */
1039         if (unlikely(low_pfn > end_pfn))
1040                 low_pfn = end_pfn;
1041
1042 isolate_abort:
1043         if (locked)
1044                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046         /*
1047          * Updated the cached scanner pfn once the pageblock has been scanned
1048          * Pages will either be migrated in which case there is no point
1049          * scanning in the near future or migration failed in which case the
1050          * failure reason may persist. The block is marked for skipping if
1051          * there were no pages isolated in the block or if the block is
1052          * rescanned twice in a row.
1053          */
1054         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055                 if (valid_page && !skip_updated)
1056                         set_pageblock_skip(valid_page);
1057                 update_cached_migrate(cc, low_pfn);
1058         }
1059
1060         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061                                                 nr_scanned, nr_isolated);
1062
1063         cc->total_migrate_scanned += nr_scanned;
1064         if (nr_isolated)
1065                 count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067         return low_pfn;
1068 }
1069
1070 /**
1071  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072  * @cc:        Compaction control structure.
1073  * @start_pfn: The first PFN to start isolating.
1074  * @end_pfn:   The one-past-last PFN.
1075  *
1076  * Returns zero if isolation fails fatally due to e.g. pending signal.
1077  * Otherwise, function returns one-past-the-last PFN of isolated page
1078  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079  */
1080 unsigned long
1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082                                                         unsigned long end_pfn)
1083 {
1084         unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086         /* Scan block by block. First and last block may be incomplete */
1087         pfn = start_pfn;
1088         block_start_pfn = pageblock_start_pfn(pfn);
1089         if (block_start_pfn < cc->zone->zone_start_pfn)
1090                 block_start_pfn = cc->zone->zone_start_pfn;
1091         block_end_pfn = pageblock_end_pfn(pfn);
1092
1093         for (; pfn < end_pfn; pfn = block_end_pfn,
1094                                 block_start_pfn = block_end_pfn,
1095                                 block_end_pfn += pageblock_nr_pages) {
1096
1097                 block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099                 if (!pageblock_pfn_to_page(block_start_pfn,
1100                                         block_end_pfn, cc->zone))
1101                         continue;
1102
1103                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104                                                         ISOLATE_UNEVICTABLE);
1105
1106                 if (!pfn)
1107                         break;
1108
1109                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110                         break;
1111         }
1112
1113         return pfn;
1114 }
1115
1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117 #ifdef CONFIG_COMPACTION
1118
1119 static bool suitable_migration_source(struct compact_control *cc,
1120                                                         struct page *page)
1121 {
1122         int block_mt;
1123
1124         if (pageblock_skip_persistent(page))
1125                 return false;
1126
1127         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128                 return true;
1129
1130         block_mt = get_pageblock_migratetype(page);
1131
1132         if (cc->migratetype == MIGRATE_MOVABLE)
1133                 return is_migrate_movable(block_mt);
1134         else
1135                 return block_mt == cc->migratetype;
1136 }
1137
1138 /* Returns true if the page is within a block suitable for migration to */
1139 static bool suitable_migration_target(struct compact_control *cc,
1140                                                         struct page *page)
1141 {
1142         /* If the page is a large free page, then disallow migration */
1143         if (PageBuddy(page)) {
1144                 /*
1145                  * We are checking page_order without zone->lock taken. But
1146                  * the only small danger is that we skip a potentially suitable
1147                  * pageblock, so it's not worth to check order for valid range.
1148                  */
1149                 if (page_order_unsafe(page) >= pageblock_order)
1150                         return false;
1151         }
1152
1153         if (cc->ignore_block_suitable)
1154                 return true;
1155
1156         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157         if (is_migrate_movable(get_pageblock_migratetype(page)))
1158                 return true;
1159
1160         /* Otherwise skip the block */
1161         return false;
1162 }
1163
1164 static inline unsigned int
1165 freelist_scan_limit(struct compact_control *cc)
1166 {
1167         return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
1168 }
1169
1170 /*
1171  * Test whether the free scanner has reached the same or lower pageblock than
1172  * the migration scanner, and compaction should thus terminate.
1173  */
1174 static inline bool compact_scanners_met(struct compact_control *cc)
1175 {
1176         return (cc->free_pfn >> pageblock_order)
1177                 <= (cc->migrate_pfn >> pageblock_order);
1178 }
1179
1180 /*
1181  * Used when scanning for a suitable migration target which scans freelists
1182  * in reverse. Reorders the list such as the unscanned pages are scanned
1183  * first on the next iteration of the free scanner
1184  */
1185 static void
1186 move_freelist_head(struct list_head *freelist, struct page *freepage)
1187 {
1188         LIST_HEAD(sublist);
1189
1190         if (!list_is_last(freelist, &freepage->lru)) {
1191                 list_cut_before(&sublist, freelist, &freepage->lru);
1192                 if (!list_empty(&sublist))
1193                         list_splice_tail(&sublist, freelist);
1194         }
1195 }
1196
1197 /*
1198  * Similar to move_freelist_head except used by the migration scanner
1199  * when scanning forward. It's possible for these list operations to
1200  * move against each other if they search the free list exactly in
1201  * lockstep.
1202  */
1203 static void
1204 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1205 {
1206         LIST_HEAD(sublist);
1207
1208         if (!list_is_first(freelist, &freepage->lru)) {
1209                 list_cut_position(&sublist, freelist, &freepage->lru);
1210                 if (!list_empty(&sublist))
1211                         list_splice_tail(&sublist, freelist);
1212         }
1213 }
1214
1215 static void
1216 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1217 {
1218         unsigned long start_pfn, end_pfn;
1219         struct page *page = pfn_to_page(pfn);
1220
1221         /* Do not search around if there are enough pages already */
1222         if (cc->nr_freepages >= cc->nr_migratepages)
1223                 return;
1224
1225         /* Minimise scanning during async compaction */
1226         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1227                 return;
1228
1229         /* Pageblock boundaries */
1230         start_pfn = pageblock_start_pfn(pfn);
1231         end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));
1232
1233         /* Scan before */
1234         if (start_pfn != pfn) {
1235                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1236                 if (cc->nr_freepages >= cc->nr_migratepages)
1237                         return;
1238         }
1239
1240         /* Scan after */
1241         start_pfn = pfn + nr_isolated;
1242         if (start_pfn != end_pfn)
1243                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1244
1245         /* Skip this pageblock in the future as it's full or nearly full */
1246         if (cc->nr_freepages < cc->nr_migratepages)
1247                 set_pageblock_skip(page);
1248 }
1249
1250 /* Search orders in round-robin fashion */
1251 static int next_search_order(struct compact_control *cc, int order)
1252 {
1253         order--;
1254         if (order < 0)
1255                 order = cc->order - 1;
1256
1257         /* Search wrapped around? */
1258         if (order == cc->search_order) {
1259                 cc->search_order--;
1260                 if (cc->search_order < 0)
1261                         cc->search_order = cc->order - 1;
1262                 return -1;
1263         }
1264
1265         return order;
1266 }
1267
1268 static unsigned long
1269 fast_isolate_freepages(struct compact_control *cc)
1270 {
1271         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1272         unsigned int nr_scanned = 0;
1273         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1274         unsigned long nr_isolated = 0;
1275         unsigned long distance;
1276         struct page *page = NULL;
1277         bool scan_start = false;
1278         int order;
1279
1280         /* Full compaction passes in a negative order */
1281         if (cc->order <= 0)
1282                 return cc->free_pfn;
1283
1284         /*
1285          * If starting the scan, use a deeper search and use the highest
1286          * PFN found if a suitable one is not found.
1287          */
1288         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1289                 limit = pageblock_nr_pages >> 1;
1290                 scan_start = true;
1291         }
1292
1293         /*
1294          * Preferred point is in the top quarter of the scan space but take
1295          * a pfn from the top half if the search is problematic.
1296          */
1297         distance = (cc->free_pfn - cc->migrate_pfn);
1298         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1299         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1300
1301         if (WARN_ON_ONCE(min_pfn > low_pfn))
1302                 low_pfn = min_pfn;
1303
1304         /*
1305          * Search starts from the last successful isolation order or the next
1306          * order to search after a previous failure
1307          */
1308         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1309
1310         for (order = cc->search_order;
1311              !page && order >= 0;
1312              order = next_search_order(cc, order)) {
1313                 struct free_area *area = &cc->zone->free_area[order];
1314                 struct list_head *freelist;
1315                 struct page *freepage;
1316                 unsigned long flags;
1317                 unsigned int order_scanned = 0;
1318
1319                 if (!area->nr_free)
1320                         continue;
1321
1322                 spin_lock_irqsave(&cc->zone->lock, flags);
1323                 freelist = &area->free_list[MIGRATE_MOVABLE];
1324                 list_for_each_entry_reverse(freepage, freelist, lru) {
1325                         unsigned long pfn;
1326
1327                         order_scanned++;
1328                         nr_scanned++;
1329                         pfn = page_to_pfn(freepage);
1330
1331                         if (pfn >= highest)
1332                                 highest = pageblock_start_pfn(pfn);
1333
1334                         if (pfn >= low_pfn) {
1335                                 cc->fast_search_fail = 0;
1336                                 cc->search_order = order;
1337                                 page = freepage;
1338                                 break;
1339                         }
1340
1341                         if (pfn >= min_pfn && pfn > high_pfn) {
1342                                 high_pfn = pfn;
1343
1344                                 /* Shorten the scan if a candidate is found */
1345                                 limit >>= 1;
1346                         }
1347
1348                         if (order_scanned >= limit)
1349                                 break;
1350                 }
1351
1352                 /* Use a minimum pfn if a preferred one was not found */
1353                 if (!page && high_pfn) {
1354                         page = pfn_to_page(high_pfn);
1355
1356                         /* Update freepage for the list reorder below */
1357                         freepage = page;
1358                 }
1359
1360                 /* Reorder to so a future search skips recent pages */
1361                 move_freelist_head(freelist, freepage);
1362
1363                 /* Isolate the page if available */
1364                 if (page) {
1365                         if (__isolate_free_page(page, order)) {
1366                                 set_page_private(page, order);
1367                                 nr_isolated = 1 << order;
1368                                 cc->nr_freepages += nr_isolated;
1369                                 list_add_tail(&page->lru, &cc->freepages);
1370                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1371                         } else {
1372                                 /* If isolation fails, abort the search */
1373                                 order = cc->search_order + 1;
1374                                 page = NULL;
1375                         }
1376                 }
1377
1378                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1379
1380                 /*
1381                  * Smaller scan on next order so the total scan ig related
1382                  * to freelist_scan_limit.
1383                  */
1384                 if (order_scanned >= limit)
1385                         limit = min(1U, limit >> 1);
1386         }
1387
1388         if (!page) {
1389                 cc->fast_search_fail++;
1390                 if (scan_start) {
1391                         /*
1392                          * Use the highest PFN found above min. If one was
1393                          * not found, be pessemistic for direct compaction
1394                          * and use the min mark.
1395                          */
1396                         if (highest) {
1397                                 page = pfn_to_page(highest);
1398                                 cc->free_pfn = highest;
1399                         } else {
1400                                 if (cc->direct_compaction) {
1401                                         page = pfn_to_page(min_pfn);
1402                                         cc->free_pfn = min_pfn;
1403                                 }
1404                         }
1405                 }
1406         }
1407
1408         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1409                 highest -= pageblock_nr_pages;
1410                 cc->zone->compact_cached_free_pfn = highest;
1411         }
1412
1413         cc->total_free_scanned += nr_scanned;
1414         if (!page)
1415                 return cc->free_pfn;
1416
1417         low_pfn = page_to_pfn(page);
1418         fast_isolate_around(cc, low_pfn, nr_isolated);
1419         return low_pfn;
1420 }
1421
1422 /*
1423  * Based on information in the current compact_control, find blocks
1424  * suitable for isolating free pages from and then isolate them.
1425  */
1426 static void isolate_freepages(struct compact_control *cc)
1427 {
1428         struct zone *zone = cc->zone;
1429         struct page *page;
1430         unsigned long block_start_pfn;  /* start of current pageblock */
1431         unsigned long isolate_start_pfn; /* exact pfn we start at */
1432         unsigned long block_end_pfn;    /* end of current pageblock */
1433         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1434         struct list_head *freelist = &cc->freepages;
1435         unsigned int stride;
1436
1437         /* Try a small search of the free lists for a candidate */
1438         isolate_start_pfn = fast_isolate_freepages(cc);
1439         if (cc->nr_freepages)
1440                 goto splitmap;
1441
1442         /*
1443          * Initialise the free scanner. The starting point is where we last
1444          * successfully isolated from, zone-cached value, or the end of the
1445          * zone when isolating for the first time. For looping we also need
1446          * this pfn aligned down to the pageblock boundary, because we do
1447          * block_start_pfn -= pageblock_nr_pages in the for loop.
1448          * For ending point, take care when isolating in last pageblock of a
1449          * a zone which ends in the middle of a pageblock.
1450          * The low boundary is the end of the pageblock the migration scanner
1451          * is using.
1452          */
1453         isolate_start_pfn = cc->free_pfn;
1454         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1455         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1456                                                 zone_end_pfn(zone));
1457         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1458         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1459
1460         /*
1461          * Isolate free pages until enough are available to migrate the
1462          * pages on cc->migratepages. We stop searching if the migrate
1463          * and free page scanners meet or enough free pages are isolated.
1464          */
1465         for (; block_start_pfn >= low_pfn;
1466                                 block_end_pfn = block_start_pfn,
1467                                 block_start_pfn -= pageblock_nr_pages,
1468                                 isolate_start_pfn = block_start_pfn) {
1469                 unsigned long nr_isolated;
1470
1471                 /*
1472                  * This can iterate a massively long zone without finding any
1473                  * suitable migration targets, so periodically check resched.
1474                  */
1475                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1476                         cond_resched();
1477
1478                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1479                                                                         zone);
1480                 if (!page)
1481                         continue;
1482
1483                 /* Check the block is suitable for migration */
1484                 if (!suitable_migration_target(cc, page))
1485                         continue;
1486
1487                 /* If isolation recently failed, do not retry */
1488                 if (!isolation_suitable(cc, page))
1489                         continue;
1490
1491                 /* Found a block suitable for isolating free pages from. */
1492                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1493                                         block_end_pfn, freelist, stride, false);
1494
1495                 /* Update the skip hint if the full pageblock was scanned */
1496                 if (isolate_start_pfn == block_end_pfn)
1497                         update_pageblock_skip(cc, page, block_start_pfn);
1498
1499                 /* Are enough freepages isolated? */
1500                 if (cc->nr_freepages >= cc->nr_migratepages) {
1501                         if (isolate_start_pfn >= block_end_pfn) {
1502                                 /*
1503                                  * Restart at previous pageblock if more
1504                                  * freepages can be isolated next time.
1505                                  */
1506                                 isolate_start_pfn =
1507                                         block_start_pfn - pageblock_nr_pages;
1508                         }
1509                         break;
1510                 } else if (isolate_start_pfn < block_end_pfn) {
1511                         /*
1512                          * If isolation failed early, do not continue
1513                          * needlessly.
1514                          */
1515                         break;
1516                 }
1517
1518                 /* Adjust stride depending on isolation */
1519                 if (nr_isolated) {
1520                         stride = 1;
1521                         continue;
1522                 }
1523                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1524         }
1525
1526         /*
1527          * Record where the free scanner will restart next time. Either we
1528          * broke from the loop and set isolate_start_pfn based on the last
1529          * call to isolate_freepages_block(), or we met the migration scanner
1530          * and the loop terminated due to isolate_start_pfn < low_pfn
1531          */
1532         cc->free_pfn = isolate_start_pfn;
1533
1534 splitmap:
1535         /* __isolate_free_page() does not map the pages */
1536         split_map_pages(freelist);
1537 }
1538
1539 /*
1540  * This is a migrate-callback that "allocates" freepages by taking pages
1541  * from the isolated freelists in the block we are migrating to.
1542  */
1543 static struct page *compaction_alloc(struct page *migratepage,
1544                                         unsigned long data)
1545 {
1546         struct compact_control *cc = (struct compact_control *)data;
1547         struct page *freepage;
1548
1549         if (list_empty(&cc->freepages)) {
1550                 isolate_freepages(cc);
1551
1552                 if (list_empty(&cc->freepages))
1553                         return NULL;
1554         }
1555
1556         freepage = list_entry(cc->freepages.next, struct page, lru);
1557         list_del(&freepage->lru);
1558         cc->nr_freepages--;
1559
1560         return freepage;
1561 }
1562
1563 /*
1564  * This is a migrate-callback that "frees" freepages back to the isolated
1565  * freelist.  All pages on the freelist are from the same zone, so there is no
1566  * special handling needed for NUMA.
1567  */
1568 static void compaction_free(struct page *page, unsigned long data)
1569 {
1570         struct compact_control *cc = (struct compact_control *)data;
1571
1572         list_add(&page->lru, &cc->freepages);
1573         cc->nr_freepages++;
1574 }
1575
1576 /* possible outcome of isolate_migratepages */
1577 typedef enum {
1578         ISOLATE_ABORT,          /* Abort compaction now */
1579         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1580         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1581 } isolate_migrate_t;
1582
1583 /*
1584  * Allow userspace to control policy on scanning the unevictable LRU for
1585  * compactable pages.
1586  */
1587 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1588
1589 static inline void
1590 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1591 {
1592         if (cc->fast_start_pfn == ULONG_MAX)
1593                 return;
1594
1595         if (!cc->fast_start_pfn)
1596                 cc->fast_start_pfn = pfn;
1597
1598         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1599 }
1600
1601 static inline unsigned long
1602 reinit_migrate_pfn(struct compact_control *cc)
1603 {
1604         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1605                 return cc->migrate_pfn;
1606
1607         cc->migrate_pfn = cc->fast_start_pfn;
1608         cc->fast_start_pfn = ULONG_MAX;
1609
1610         return cc->migrate_pfn;
1611 }
1612
1613 /*
1614  * Briefly search the free lists for a migration source that already has
1615  * some free pages to reduce the number of pages that need migration
1616  * before a pageblock is free.
1617  */
1618 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1619 {
1620         unsigned int limit = freelist_scan_limit(cc);
1621         unsigned int nr_scanned = 0;
1622         unsigned long distance;
1623         unsigned long pfn = cc->migrate_pfn;
1624         unsigned long high_pfn;
1625         int order;
1626
1627         /* Skip hints are relied on to avoid repeats on the fast search */
1628         if (cc->ignore_skip_hint)
1629                 return pfn;
1630
1631         /*
1632          * If the migrate_pfn is not at the start of a zone or the start
1633          * of a pageblock then assume this is a continuation of a previous
1634          * scan restarted due to COMPACT_CLUSTER_MAX.
1635          */
1636         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1637                 return pfn;
1638
1639         /*
1640          * For smaller orders, just linearly scan as the number of pages
1641          * to migrate should be relatively small and does not necessarily
1642          * justify freeing up a large block for a small allocation.
1643          */
1644         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1645                 return pfn;
1646
1647         /*
1648          * Only allow kcompactd and direct requests for movable pages to
1649          * quickly clear out a MOVABLE pageblock for allocation. This
1650          * reduces the risk that a large movable pageblock is freed for
1651          * an unmovable/reclaimable small allocation.
1652          */
1653         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1654                 return pfn;
1655
1656         /*
1657          * When starting the migration scanner, pick any pageblock within the
1658          * first half of the search space. Otherwise try and pick a pageblock
1659          * within the first eighth to reduce the chances that a migration
1660          * target later becomes a source.
1661          */
1662         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1663         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1664                 distance >>= 2;
1665         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1666
1667         for (order = cc->order - 1;
1668              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1669              order--) {
1670                 struct free_area *area = &cc->zone->free_area[order];
1671                 struct list_head *freelist;
1672                 unsigned long flags;
1673                 struct page *freepage;
1674
1675                 if (!area->nr_free)
1676                         continue;
1677
1678                 spin_lock_irqsave(&cc->zone->lock, flags);
1679                 freelist = &area->free_list[MIGRATE_MOVABLE];
1680                 list_for_each_entry(freepage, freelist, lru) {
1681                         unsigned long free_pfn;
1682
1683                         nr_scanned++;
1684                         free_pfn = page_to_pfn(freepage);
1685                         if (free_pfn < high_pfn) {
1686                                 /*
1687                                  * Avoid if skipped recently. Ideally it would
1688                                  * move to the tail but even safe iteration of
1689                                  * the list assumes an entry is deleted, not
1690                                  * reordered.
1691                                  */
1692                                 if (get_pageblock_skip(freepage)) {
1693                                         if (list_is_last(freelist, &freepage->lru))
1694                                                 break;
1695
1696                                         continue;
1697                                 }
1698
1699                                 /* Reorder to so a future search skips recent pages */
1700                                 move_freelist_tail(freelist, freepage);
1701
1702                                 update_fast_start_pfn(cc, free_pfn);
1703                                 pfn = pageblock_start_pfn(free_pfn);
1704                                 cc->fast_search_fail = 0;
1705                                 set_pageblock_skip(freepage);
1706                                 break;
1707                         }
1708
1709                         if (nr_scanned >= limit) {
1710                                 cc->fast_search_fail++;
1711                                 move_freelist_tail(freelist, freepage);
1712                                 break;
1713                         }
1714                 }
1715                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1716         }
1717
1718         cc->total_migrate_scanned += nr_scanned;
1719
1720         /*
1721          * If fast scanning failed then use a cached entry for a page block
1722          * that had free pages as the basis for starting a linear scan.
1723          */
1724         if (pfn == cc->migrate_pfn)
1725                 pfn = reinit_migrate_pfn(cc);
1726
1727         return pfn;
1728 }
1729
1730 /*
1731  * Isolate all pages that can be migrated from the first suitable block,
1732  * starting at the block pointed to by the migrate scanner pfn within
1733  * compact_control.
1734  */
1735 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1736                                         struct compact_control *cc)
1737 {
1738         unsigned long block_start_pfn;
1739         unsigned long block_end_pfn;
1740         unsigned long low_pfn;
1741         struct page *page;
1742         const isolate_mode_t isolate_mode =
1743                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1744                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1745         bool fast_find_block;
1746
1747         /*
1748          * Start at where we last stopped, or beginning of the zone as
1749          * initialized by compact_zone(). The first failure will use
1750          * the lowest PFN as the starting point for linear scanning.
1751          */
1752         low_pfn = fast_find_migrateblock(cc);
1753         block_start_pfn = pageblock_start_pfn(low_pfn);
1754         if (block_start_pfn < zone->zone_start_pfn)
1755                 block_start_pfn = zone->zone_start_pfn;
1756
1757         /*
1758          * fast_find_migrateblock marks a pageblock skipped so to avoid
1759          * the isolation_suitable check below, check whether the fast
1760          * search was successful.
1761          */
1762         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1763
1764         /* Only scan within a pageblock boundary */
1765         block_end_pfn = pageblock_end_pfn(low_pfn);
1766
1767         /*
1768          * Iterate over whole pageblocks until we find the first suitable.
1769          * Do not cross the free scanner.
1770          */
1771         for (; block_end_pfn <= cc->free_pfn;
1772                         fast_find_block = false,
1773                         low_pfn = block_end_pfn,
1774                         block_start_pfn = block_end_pfn,
1775                         block_end_pfn += pageblock_nr_pages) {
1776
1777                 /*
1778                  * This can potentially iterate a massively long zone with
1779                  * many pageblocks unsuitable, so periodically check if we
1780                  * need to schedule.
1781                  */
1782                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1783                         cond_resched();
1784
1785                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786                                                                         zone);
1787                 if (!page)
1788                         continue;
1789
1790                 /*
1791                  * If isolation recently failed, do not retry. Only check the
1792                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1793                  * to be visited multiple times. Assume skip was checked
1794                  * before making it "skip" so other compaction instances do
1795                  * not scan the same block.
1796                  */
1797                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1798                     !fast_find_block && !isolation_suitable(cc, page))
1799                         continue;
1800
1801                 /*
1802                  * For async compaction, also only scan in MOVABLE blocks
1803                  * without huge pages. Async compaction is optimistic to see
1804                  * if the minimum amount of work satisfies the allocation.
1805                  * The cached PFN is updated as it's possible that all
1806                  * remaining blocks between source and target are unsuitable
1807                  * and the compaction scanners fail to meet.
1808                  */
1809                 if (!suitable_migration_source(cc, page)) {
1810                         update_cached_migrate(cc, block_end_pfn);
1811                         continue;
1812                 }
1813
1814                 /* Perform the isolation */
1815                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1816                                                 block_end_pfn, isolate_mode);
1817
1818                 if (!low_pfn)
1819                         return ISOLATE_ABORT;
1820
1821                 /*
1822                  * Either we isolated something and proceed with migration. Or
1823                  * we failed and compact_zone should decide if we should
1824                  * continue or not.
1825                  */
1826                 break;
1827         }
1828
1829         /* Record where migration scanner will be restarted. */
1830         cc->migrate_pfn = low_pfn;
1831
1832         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1833 }
1834
1835 /*
1836  * order == -1 is expected when compacting via
1837  * /proc/sys/vm/compact_memory
1838  */
1839 static inline bool is_via_compact_memory(int order)
1840 {
1841         return order == -1;
1842 }
1843
1844 static enum compact_result __compact_finished(struct compact_control *cc)
1845 {
1846         unsigned int order;
1847         const int migratetype = cc->migratetype;
1848         int ret;
1849
1850         /* Compaction run completes if the migrate and free scanner meet */
1851         if (compact_scanners_met(cc)) {
1852                 /* Let the next compaction start anew. */
1853                 reset_cached_positions(cc->zone);
1854
1855                 /*
1856                  * Mark that the PG_migrate_skip information should be cleared
1857                  * by kswapd when it goes to sleep. kcompactd does not set the
1858                  * flag itself as the decision to be clear should be directly
1859                  * based on an allocation request.
1860                  */
1861                 if (cc->direct_compaction)
1862                         cc->zone->compact_blockskip_flush = true;
1863
1864                 if (cc->whole_zone)
1865                         return COMPACT_COMPLETE;
1866                 else
1867                         return COMPACT_PARTIAL_SKIPPED;
1868         }
1869
1870         if (is_via_compact_memory(cc->order))
1871                 return COMPACT_CONTINUE;
1872
1873         /*
1874          * Always finish scanning a pageblock to reduce the possibility of
1875          * fallbacks in the future. This is particularly important when
1876          * migration source is unmovable/reclaimable but it's not worth
1877          * special casing.
1878          */
1879         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1880                 return COMPACT_CONTINUE;
1881
1882         /* Direct compactor: Is a suitable page free? */
1883         ret = COMPACT_NO_SUITABLE_PAGE;
1884         for (order = cc->order; order < MAX_ORDER; order++) {
1885                 struct free_area *area = &cc->zone->free_area[order];
1886                 bool can_steal;
1887
1888                 /* Job done if page is free of the right migratetype */
1889                 if (!list_empty(&area->free_list[migratetype]))
1890                         return COMPACT_SUCCESS;
1891
1892 #ifdef CONFIG_CMA
1893                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1894                 if (migratetype == MIGRATE_MOVABLE &&
1895                         !list_empty(&area->free_list[MIGRATE_CMA]))
1896                         return COMPACT_SUCCESS;
1897 #endif
1898                 /*
1899                  * Job done if allocation would steal freepages from
1900                  * other migratetype buddy lists.
1901                  */
1902                 if (find_suitable_fallback(area, order, migratetype,
1903                                                 true, &can_steal) != -1) {
1904
1905                         /* movable pages are OK in any pageblock */
1906                         if (migratetype == MIGRATE_MOVABLE)
1907                                 return COMPACT_SUCCESS;
1908
1909                         /*
1910                          * We are stealing for a non-movable allocation. Make
1911                          * sure we finish compacting the current pageblock
1912                          * first so it is as free as possible and we won't
1913                          * have to steal another one soon. This only applies
1914                          * to sync compaction, as async compaction operates
1915                          * on pageblocks of the same migratetype.
1916                          */
1917                         if (cc->mode == MIGRATE_ASYNC ||
1918                                         IS_ALIGNED(cc->migrate_pfn,
1919                                                         pageblock_nr_pages)) {
1920                                 return COMPACT_SUCCESS;
1921                         }
1922
1923                         ret = COMPACT_CONTINUE;
1924                         break;
1925                 }
1926         }
1927
1928         if (cc->contended || fatal_signal_pending(current))
1929                 ret = COMPACT_CONTENDED;
1930
1931         return ret;
1932 }
1933
1934 static enum compact_result compact_finished(struct compact_control *cc)
1935 {
1936         int ret;
1937
1938         ret = __compact_finished(cc);
1939         trace_mm_compaction_finished(cc->zone, cc->order, ret);
1940         if (ret == COMPACT_NO_SUITABLE_PAGE)
1941                 ret = COMPACT_CONTINUE;
1942
1943         return ret;
1944 }
1945
1946 /*
1947  * compaction_suitable: Is this suitable to run compaction on this zone now?
1948  * Returns
1949  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1950  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1951  *   COMPACT_CONTINUE - If compaction should run now
1952  */
1953 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1954                                         unsigned int alloc_flags,
1955                                         int classzone_idx,
1956                                         unsigned long wmark_target)
1957 {
1958         unsigned long watermark;
1959
1960         if (is_via_compact_memory(order))
1961                 return COMPACT_CONTINUE;
1962
1963         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1964         /*
1965          * If watermarks for high-order allocation are already met, there
1966          * should be no need for compaction at all.
1967          */
1968         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1969                                                                 alloc_flags))
1970                 return COMPACT_SUCCESS;
1971
1972         /*
1973          * Watermarks for order-0 must be met for compaction to be able to
1974          * isolate free pages for migration targets. This means that the
1975          * watermark and alloc_flags have to match, or be more pessimistic than
1976          * the check in __isolate_free_page(). We don't use the direct
1977          * compactor's alloc_flags, as they are not relevant for freepage
1978          * isolation. We however do use the direct compactor's classzone_idx to
1979          * skip over zones where lowmem reserves would prevent allocation even
1980          * if compaction succeeds.
1981          * For costly orders, we require low watermark instead of min for
1982          * compaction to proceed to increase its chances.
1983          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1984          * suitable migration targets
1985          */
1986         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1987                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1988         watermark += compact_gap(order);
1989         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1990                                                 ALLOC_CMA, wmark_target))
1991                 return COMPACT_SKIPPED;
1992
1993         return COMPACT_CONTINUE;
1994 }
1995
1996 enum compact_result compaction_suitable(struct zone *zone, int order,
1997                                         unsigned int alloc_flags,
1998                                         int classzone_idx)
1999 {
2000         enum compact_result ret;
2001         int fragindex;
2002
2003         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2004                                     zone_page_state(zone, NR_FREE_PAGES));
2005         /*
2006          * fragmentation index determines if allocation failures are due to
2007          * low memory or external fragmentation
2008          *
2009          * index of -1000 would imply allocations might succeed depending on
2010          * watermarks, but we already failed the high-order watermark check
2011          * index towards 0 implies failure is due to lack of memory
2012          * index towards 1000 implies failure is due to fragmentation
2013          *
2014          * Only compact if a failure would be due to fragmentation. Also
2015          * ignore fragindex for non-costly orders where the alternative to
2016          * a successful reclaim/compaction is OOM. Fragindex and the
2017          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2018          * excessive compaction for costly orders, but it should not be at the
2019          * expense of system stability.
2020          */
2021         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2022                 fragindex = fragmentation_index(zone, order);
2023                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2024                         ret = COMPACT_NOT_SUITABLE_ZONE;
2025         }
2026
2027         trace_mm_compaction_suitable(zone, order, ret);
2028         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2029                 ret = COMPACT_SKIPPED;
2030
2031         return ret;
2032 }
2033
2034 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2035                 int alloc_flags)
2036 {
2037         struct zone *zone;
2038         struct zoneref *z;
2039
2040         /*
2041          * Make sure at least one zone would pass __compaction_suitable if we continue
2042          * retrying the reclaim.
2043          */
2044         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2045                                         ac->nodemask) {
2046                 unsigned long available;
2047                 enum compact_result compact_result;
2048
2049                 /*
2050                  * Do not consider all the reclaimable memory because we do not
2051                  * want to trash just for a single high order allocation which
2052                  * is even not guaranteed to appear even if __compaction_suitable
2053                  * is happy about the watermark check.
2054                  */
2055                 available = zone_reclaimable_pages(zone) / order;
2056                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2057                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2058                                 ac_classzone_idx(ac), available);
2059                 if (compact_result != COMPACT_SKIPPED)
2060                         return true;
2061         }
2062
2063         return false;
2064 }
2065
2066 static enum compact_result
2067 compact_zone(struct compact_control *cc, struct capture_control *capc)
2068 {
2069         enum compact_result ret;
2070         unsigned long start_pfn = cc->zone->zone_start_pfn;
2071         unsigned long end_pfn = zone_end_pfn(cc->zone);
2072         unsigned long last_migrated_pfn;
2073         const bool sync = cc->mode != MIGRATE_ASYNC;
2074         bool update_cached;
2075
2076         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2077         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2078                                                         cc->classzone_idx);
2079         /* Compaction is likely to fail */
2080         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2081                 return ret;
2082
2083         /* huh, compaction_suitable is returning something unexpected */
2084         VM_BUG_ON(ret != COMPACT_CONTINUE);
2085
2086         /*
2087          * Clear pageblock skip if there were failures recently and compaction
2088          * is about to be retried after being deferred.
2089          */
2090         if (compaction_restarting(cc->zone, cc->order))
2091                 __reset_isolation_suitable(cc->zone);
2092
2093         /*
2094          * Setup to move all movable pages to the end of the zone. Used cached
2095          * information on where the scanners should start (unless we explicitly
2096          * want to compact the whole zone), but check that it is initialised
2097          * by ensuring the values are within zone boundaries.
2098          */
2099         cc->fast_start_pfn = 0;
2100         if (cc->whole_zone) {
2101                 cc->migrate_pfn = start_pfn;
2102                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2103         } else {
2104                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2105                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2106                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2107                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2109                 }
2110                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2111                         cc->migrate_pfn = start_pfn;
2112                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2113                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2114                 }
2115
2116                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2117                         cc->whole_zone = true;
2118         }
2119
2120         last_migrated_pfn = 0;
2121
2122         /*
2123          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2124          * the basis that some migrations will fail in ASYNC mode. However,
2125          * if the cached PFNs match and pageblocks are skipped due to having
2126          * no isolation candidates, then the sync state does not matter.
2127          * Until a pageblock with isolation candidates is found, keep the
2128          * cached PFNs in sync to avoid revisiting the same blocks.
2129          */
2130         update_cached = !sync &&
2131                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2132
2133         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2134                                 cc->free_pfn, end_pfn, sync);
2135
2136         migrate_prep_local();
2137
2138         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2139                 int err;
2140                 unsigned long start_pfn = cc->migrate_pfn;
2141
2142                 /*
2143                  * Avoid multiple rescans which can happen if a page cannot be
2144                  * isolated (dirty/writeback in async mode) or if the migrated
2145                  * pages are being allocated before the pageblock is cleared.
2146                  * The first rescan will capture the entire pageblock for
2147                  * migration. If it fails, it'll be marked skip and scanning
2148                  * will proceed as normal.
2149                  */
2150                 cc->rescan = false;
2151                 if (pageblock_start_pfn(last_migrated_pfn) ==
2152                     pageblock_start_pfn(start_pfn)) {
2153                         cc->rescan = true;
2154                 }
2155
2156                 switch (isolate_migratepages(cc->zone, cc)) {
2157                 case ISOLATE_ABORT:
2158                         ret = COMPACT_CONTENDED;
2159                         putback_movable_pages(&cc->migratepages);
2160                         cc->nr_migratepages = 0;
2161                         last_migrated_pfn = 0;
2162                         goto out;
2163                 case ISOLATE_NONE:
2164                         if (update_cached) {
2165                                 cc->zone->compact_cached_migrate_pfn[1] =
2166                                         cc->zone->compact_cached_migrate_pfn[0];
2167                         }
2168
2169                         /*
2170                          * We haven't isolated and migrated anything, but
2171                          * there might still be unflushed migrations from
2172                          * previous cc->order aligned block.
2173                          */
2174                         goto check_drain;
2175                 case ISOLATE_SUCCESS:
2176                         update_cached = false;
2177                         last_migrated_pfn = start_pfn;
2178                         ;
2179                 }
2180
2181                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2182                                 compaction_free, (unsigned long)cc, cc->mode,
2183                                 MR_COMPACTION);
2184
2185                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2186                                                         &cc->migratepages);
2187
2188                 /* All pages were either migrated or will be released */
2189                 cc->nr_migratepages = 0;
2190                 if (err) {
2191                         putback_movable_pages(&cc->migratepages);
2192                         /*
2193                          * migrate_pages() may return -ENOMEM when scanners meet
2194                          * and we want compact_finished() to detect it
2195                          */
2196                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2197                                 ret = COMPACT_CONTENDED;
2198                                 goto out;
2199                         }
2200                         /*
2201                          * We failed to migrate at least one page in the current
2202                          * order-aligned block, so skip the rest of it.
2203                          */
2204                         if (cc->direct_compaction &&
2205                                                 (cc->mode == MIGRATE_ASYNC)) {
2206                                 cc->migrate_pfn = block_end_pfn(
2207                                                 cc->migrate_pfn - 1, cc->order);
2208                                 /* Draining pcplists is useless in this case */
2209                                 last_migrated_pfn = 0;
2210                         }
2211                 }
2212
2213 check_drain:
2214                 /*
2215                  * Has the migration scanner moved away from the previous
2216                  * cc->order aligned block where we migrated from? If yes,
2217                  * flush the pages that were freed, so that they can merge and
2218                  * compact_finished() can detect immediately if allocation
2219                  * would succeed.
2220                  */
2221                 if (cc->order > 0 && last_migrated_pfn) {
2222                         int cpu;
2223                         unsigned long current_block_start =
2224                                 block_start_pfn(cc->migrate_pfn, cc->order);
2225
2226                         if (last_migrated_pfn < current_block_start) {
2227                                 cpu = get_cpu();
2228                                 lru_add_drain_cpu(cpu);
2229                                 drain_local_pages(cc->zone);
2230                                 put_cpu();
2231                                 /* No more flushing until we migrate again */
2232                                 last_migrated_pfn = 0;
2233                         }
2234                 }
2235
2236                 /* Stop if a page has been captured */
2237                 if (capc && capc->page) {
2238                         ret = COMPACT_SUCCESS;
2239                         break;
2240                 }
2241         }
2242
2243 out:
2244         /*
2245          * Release free pages and update where the free scanner should restart,
2246          * so we don't leave any returned pages behind in the next attempt.
2247          */
2248         if (cc->nr_freepages > 0) {
2249                 unsigned long free_pfn = release_freepages(&cc->freepages);
2250
2251                 cc->nr_freepages = 0;
2252                 VM_BUG_ON(free_pfn == 0);
2253                 /* The cached pfn is always the first in a pageblock */
2254                 free_pfn = pageblock_start_pfn(free_pfn);
2255                 /*
2256                  * Only go back, not forward. The cached pfn might have been
2257                  * already reset to zone end in compact_finished()
2258                  */
2259                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2260                         cc->zone->compact_cached_free_pfn = free_pfn;
2261         }
2262
2263         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2264         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2265
2266         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2267                                 cc->free_pfn, end_pfn, sync, ret);
2268
2269         return ret;
2270 }
2271
2272 static enum compact_result compact_zone_order(struct zone *zone, int order,
2273                 gfp_t gfp_mask, enum compact_priority prio,
2274                 unsigned int alloc_flags, int classzone_idx,
2275                 struct page **capture)
2276 {
2277         enum compact_result ret;
2278         struct compact_control cc = {
2279                 .nr_freepages = 0,
2280                 .nr_migratepages = 0,
2281                 .total_migrate_scanned = 0,
2282                 .total_free_scanned = 0,
2283                 .order = order,
2284                 .search_order = order,
2285                 .gfp_mask = gfp_mask,
2286                 .zone = zone,
2287                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2288                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2289                 .alloc_flags = alloc_flags,
2290                 .classzone_idx = classzone_idx,
2291                 .direct_compaction = true,
2292                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2293                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2294                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2295         };
2296         struct capture_control capc = {
2297                 .cc = &cc,
2298                 .page = NULL,
2299         };
2300
2301         if (capture)
2302                 current->capture_control = &capc;
2303         INIT_LIST_HEAD(&cc.freepages);
2304         INIT_LIST_HEAD(&cc.migratepages);
2305
2306         ret = compact_zone(&cc, &capc);
2307
2308         VM_BUG_ON(!list_empty(&cc.freepages));
2309         VM_BUG_ON(!list_empty(&cc.migratepages));
2310
2311         *capture = capc.page;
2312         current->capture_control = NULL;
2313
2314         return ret;
2315 }
2316
2317 int sysctl_extfrag_threshold = 500;
2318
2319 /**
2320  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2321  * @gfp_mask: The GFP mask of the current allocation
2322  * @order: The order of the current allocation
2323  * @alloc_flags: The allocation flags of the current allocation
2324  * @ac: The context of current allocation
2325  * @prio: Determines how hard direct compaction should try to succeed
2326  *
2327  * This is the main entry point for direct page compaction.
2328  */
2329 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2330                 unsigned int alloc_flags, const struct alloc_context *ac,
2331                 enum compact_priority prio, struct page **capture)
2332 {
2333         int may_perform_io = gfp_mask & __GFP_IO;
2334         struct zoneref *z;
2335         struct zone *zone;
2336         enum compact_result rc = COMPACT_SKIPPED;
2337
2338         /*
2339          * Check if the GFP flags allow compaction - GFP_NOIO is really
2340          * tricky context because the migration might require IO
2341          */
2342         if (!may_perform_io)
2343                 return COMPACT_SKIPPED;
2344
2345         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2346
2347         /* Compact each zone in the list */
2348         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2349                                                                 ac->nodemask) {
2350                 enum compact_result status;
2351
2352                 if (prio > MIN_COMPACT_PRIORITY
2353                                         && compaction_deferred(zone, order)) {
2354                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2355                         continue;
2356                 }
2357
2358                 status = compact_zone_order(zone, order, gfp_mask, prio,
2359                                 alloc_flags, ac_classzone_idx(ac), capture);
2360                 rc = max(status, rc);
2361
2362                 /* The allocation should succeed, stop compacting */
2363                 if (status == COMPACT_SUCCESS) {
2364                         /*
2365                          * We think the allocation will succeed in this zone,
2366                          * but it is not certain, hence the false. The caller
2367                          * will repeat this with true if allocation indeed
2368                          * succeeds in this zone.
2369                          */
2370                         compaction_defer_reset(zone, order, false);
2371
2372                         break;
2373                 }
2374
2375                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2376                                         status == COMPACT_PARTIAL_SKIPPED))
2377                         /*
2378                          * We think that allocation won't succeed in this zone
2379                          * so we defer compaction there. If it ends up
2380                          * succeeding after all, it will be reset.
2381                          */
2382                         defer_compaction(zone, order);
2383
2384                 /*
2385                  * We might have stopped compacting due to need_resched() in
2386                  * async compaction, or due to a fatal signal detected. In that
2387                  * case do not try further zones
2388                  */
2389                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2390                                         || fatal_signal_pending(current))
2391                         break;
2392         }
2393
2394         return rc;
2395 }
2396
2397
2398 /* Compact all zones within a node */
2399 static void compact_node(int nid)
2400 {
2401         pg_data_t *pgdat = NODE_DATA(nid);
2402         int zoneid;
2403         struct zone *zone;
2404         struct compact_control cc = {
2405                 .order = -1,
2406                 .total_migrate_scanned = 0,
2407                 .total_free_scanned = 0,
2408                 .mode = MIGRATE_SYNC,
2409                 .ignore_skip_hint = true,
2410                 .whole_zone = true,
2411                 .gfp_mask = GFP_KERNEL,
2412         };
2413
2414
2415         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2416
2417                 zone = &pgdat->node_zones[zoneid];
2418                 if (!populated_zone(zone))
2419                         continue;
2420
2421                 cc.nr_freepages = 0;
2422                 cc.nr_migratepages = 0;
2423                 cc.zone = zone;
2424                 INIT_LIST_HEAD(&cc.freepages);
2425                 INIT_LIST_HEAD(&cc.migratepages);
2426
2427                 compact_zone(&cc, NULL);
2428
2429                 VM_BUG_ON(!list_empty(&cc.freepages));
2430                 VM_BUG_ON(!list_empty(&cc.migratepages));
2431         }
2432 }
2433
2434 /* Compact all nodes in the system */
2435 static void compact_nodes(void)
2436 {
2437         int nid;
2438
2439         /* Flush pending updates to the LRU lists */
2440         lru_add_drain_all();
2441
2442         for_each_online_node(nid)
2443                 compact_node(nid);
2444 }
2445
2446 /* The written value is actually unused, all memory is compacted */
2447 int sysctl_compact_memory;
2448
2449 /*
2450  * This is the entry point for compacting all nodes via
2451  * /proc/sys/vm/compact_memory
2452  */
2453 int sysctl_compaction_handler(struct ctl_table *table, int write,
2454                         void __user *buffer, size_t *length, loff_t *ppos)
2455 {
2456         if (write)
2457                 compact_nodes();
2458
2459         return 0;
2460 }
2461
2462 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2463 static ssize_t sysfs_compact_node(struct device *dev,
2464                         struct device_attribute *attr,
2465                         const char *buf, size_t count)
2466 {
2467         int nid = dev->id;
2468
2469         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2470                 /* Flush pending updates to the LRU lists */
2471                 lru_add_drain_all();
2472
2473                 compact_node(nid);
2474         }
2475
2476         return count;
2477 }
2478 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2479
2480 int compaction_register_node(struct node *node)
2481 {
2482         return device_create_file(&node->dev, &dev_attr_compact);
2483 }
2484
2485 void compaction_unregister_node(struct node *node)
2486 {
2487         return device_remove_file(&node->dev, &dev_attr_compact);
2488 }
2489 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2490
2491 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2492 {
2493         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2494 }
2495
2496 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2497 {
2498         int zoneid;
2499         struct zone *zone;
2500         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2501
2502         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2503                 zone = &pgdat->node_zones[zoneid];
2504
2505                 if (!populated_zone(zone))
2506                         continue;
2507
2508                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2509                                         classzone_idx) == COMPACT_CONTINUE)
2510                         return true;
2511         }
2512
2513         return false;
2514 }
2515
2516 static void kcompactd_do_work(pg_data_t *pgdat)
2517 {
2518         /*
2519          * With no special task, compact all zones so that a page of requested
2520          * order is allocatable.
2521          */
2522         int zoneid;
2523         struct zone *zone;
2524         struct compact_control cc = {
2525                 .order = pgdat->kcompactd_max_order,
2526                 .search_order = pgdat->kcompactd_max_order,
2527                 .total_migrate_scanned = 0,
2528                 .total_free_scanned = 0,
2529                 .classzone_idx = pgdat->kcompactd_classzone_idx,
2530                 .mode = MIGRATE_SYNC_LIGHT,
2531                 .ignore_skip_hint = false,
2532                 .gfp_mask = GFP_KERNEL,
2533         };
2534         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2535                                                         cc.classzone_idx);
2536         count_compact_event(KCOMPACTD_WAKE);
2537
2538         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2539                 int status;
2540
2541                 zone = &pgdat->node_zones[zoneid];
2542                 if (!populated_zone(zone))
2543                         continue;
2544
2545                 if (compaction_deferred(zone, cc.order))
2546                         continue;
2547
2548                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2549                                                         COMPACT_CONTINUE)
2550                         continue;
2551
2552                 cc.nr_freepages = 0;
2553                 cc.nr_migratepages = 0;
2554                 cc.total_migrate_scanned = 0;
2555                 cc.total_free_scanned = 0;
2556                 cc.zone = zone;
2557                 INIT_LIST_HEAD(&cc.freepages);
2558                 INIT_LIST_HEAD(&cc.migratepages);
2559
2560                 if (kthread_should_stop())
2561                         return;
2562                 status = compact_zone(&cc, NULL);
2563
2564                 if (status == COMPACT_SUCCESS) {
2565                         compaction_defer_reset(zone, cc.order, false);
2566                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2567                         /*
2568                          * Buddy pages may become stranded on pcps that could
2569                          * otherwise coalesce on the zone's free area for
2570                          * order >= cc.order.  This is ratelimited by the
2571                          * upcoming deferral.
2572                          */
2573                         drain_all_pages(zone);
2574
2575                         /*
2576                          * We use sync migration mode here, so we defer like
2577                          * sync direct compaction does.
2578                          */
2579                         defer_compaction(zone, cc.order);
2580                 }
2581
2582                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2583                                      cc.total_migrate_scanned);
2584                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2585                                      cc.total_free_scanned);
2586
2587                 VM_BUG_ON(!list_empty(&cc.freepages));
2588                 VM_BUG_ON(!list_empty(&cc.migratepages));
2589         }
2590
2591         /*
2592          * Regardless of success, we are done until woken up next. But remember
2593          * the requested order/classzone_idx in case it was higher/tighter than
2594          * our current ones
2595          */
2596         if (pgdat->kcompactd_max_order <= cc.order)
2597                 pgdat->kcompactd_max_order = 0;
2598         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2599                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2600 }
2601
2602 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2603 {
2604         if (!order)
2605                 return;
2606
2607         if (pgdat->kcompactd_max_order < order)
2608                 pgdat->kcompactd_max_order = order;
2609
2610         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2611                 pgdat->kcompactd_classzone_idx = classzone_idx;
2612
2613         /*
2614          * Pairs with implicit barrier in wait_event_freezable()
2615          * such that wakeups are not missed.
2616          */
2617         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2618                 return;
2619
2620         if (!kcompactd_node_suitable(pgdat))
2621                 return;
2622
2623         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2624                                                         classzone_idx);
2625         wake_up_interruptible(&pgdat->kcompactd_wait);
2626 }
2627
2628 /*
2629  * The background compaction daemon, started as a kernel thread
2630  * from the init process.
2631  */
2632 static int kcompactd(void *p)
2633 {
2634         pg_data_t *pgdat = (pg_data_t*)p;
2635         struct task_struct *tsk = current;
2636
2637         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2638
2639         if (!cpumask_empty(cpumask))
2640                 set_cpus_allowed_ptr(tsk, cpumask);
2641
2642         set_freezable();
2643
2644         pgdat->kcompactd_max_order = 0;
2645         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2646
2647         while (!kthread_should_stop()) {
2648                 unsigned long pflags;
2649
2650                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2651                 wait_event_freezable(pgdat->kcompactd_wait,
2652                                 kcompactd_work_requested(pgdat));
2653
2654                 psi_memstall_enter(&pflags);
2655                 kcompactd_do_work(pgdat);
2656                 psi_memstall_leave(&pflags);
2657         }
2658
2659         return 0;
2660 }
2661
2662 /*
2663  * This kcompactd start function will be called by init and node-hot-add.
2664  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2665  */
2666 int kcompactd_run(int nid)
2667 {
2668         pg_data_t *pgdat = NODE_DATA(nid);
2669         int ret = 0;
2670
2671         if (pgdat->kcompactd)
2672                 return 0;
2673
2674         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2675         if (IS_ERR(pgdat->kcompactd)) {
2676                 pr_err("Failed to start kcompactd on node %d\n", nid);
2677                 ret = PTR_ERR(pgdat->kcompactd);
2678                 pgdat->kcompactd = NULL;
2679         }
2680         return ret;
2681 }
2682
2683 /*
2684  * Called by memory hotplug when all memory in a node is offlined. Caller must
2685  * hold mem_hotplug_begin/end().
2686  */
2687 void kcompactd_stop(int nid)
2688 {
2689         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2690
2691         if (kcompactd) {
2692                 kthread_stop(kcompactd);
2693                 NODE_DATA(nid)->kcompactd = NULL;
2694         }
2695 }
2696
2697 /*
2698  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2699  * not required for correctness. So if the last cpu in a node goes
2700  * away, we get changed to run anywhere: as the first one comes back,
2701  * restore their cpu bindings.
2702  */
2703 static int kcompactd_cpu_online(unsigned int cpu)
2704 {
2705         int nid;
2706
2707         for_each_node_state(nid, N_MEMORY) {
2708                 pg_data_t *pgdat = NODE_DATA(nid);
2709                 const struct cpumask *mask;
2710
2711                 mask = cpumask_of_node(pgdat->node_id);
2712
2713                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2714                         /* One of our CPUs online: restore mask */
2715                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2716         }
2717         return 0;
2718 }
2719
2720 static int __init kcompactd_init(void)
2721 {
2722         int nid;
2723         int ret;
2724
2725         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2726                                         "mm/compaction:online",
2727                                         kcompactd_cpu_online, NULL);
2728         if (ret < 0) {
2729                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2730                 return ret;
2731         }
2732
2733         for_each_node_state(nid, N_MEMORY)
2734                 kcompactd_run(nid);
2735         return 0;
2736 }
2737 subsys_initcall(kcompactd_init)
2738
2739 #endif /* CONFIG_COMPACTION */