aio: async page waiting
[linux-block.git] / kernel / wait.c
1 /*
2  * Generic waiting primitives.
3  *
4  * (C) 2004 William Irwin, Oracle
5  */
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/wait.h>
11 #include <linux/hash.h>
12
13 void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key)
14 {
15         spin_lock_init(&q->lock);
16         lockdep_set_class(&q->lock, key);
17         INIT_LIST_HEAD(&q->task_list);
18 }
19
20 EXPORT_SYMBOL(__init_waitqueue_head);
21
22 void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
23 {
24         unsigned long flags;
25
26         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
27         spin_lock_irqsave(&q->lock, flags);
28         __add_wait_queue(q, wait);
29         spin_unlock_irqrestore(&q->lock, flags);
30 }
31 EXPORT_SYMBOL(add_wait_queue);
32
33 void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
34 {
35         unsigned long flags;
36
37         wait->flags |= WQ_FLAG_EXCLUSIVE;
38         spin_lock_irqsave(&q->lock, flags);
39         __add_wait_queue_tail(q, wait);
40         spin_unlock_irqrestore(&q->lock, flags);
41 }
42 EXPORT_SYMBOL(add_wait_queue_exclusive);
43
44 void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
45 {
46         unsigned long flags;
47
48         spin_lock_irqsave(&q->lock, flags);
49         __remove_wait_queue(q, wait);
50         spin_unlock_irqrestore(&q->lock, flags);
51 }
52 EXPORT_SYMBOL(remove_wait_queue);
53
54
55 /*
56  * Note: we use "set_current_state()" _after_ the wait-queue add,
57  * because we need a memory barrier there on SMP, so that any
58  * wake-function that tests for the wait-queue being active
59  * will be guaranteed to see waitqueue addition _or_ subsequent
60  * tests in this thread will see the wakeup having taken place.
61  *
62  * The spin_unlock() itself is semi-permeable and only protects
63  * one way (it only protects stuff inside the critical region and
64  * stops them from bleeding out - it would still allow subsequent
65  * loads to move into the critical region).
66  */
67 void
68 prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
69 {
70         unsigned long flags;
71
72         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
73         spin_lock_irqsave(&q->lock, flags);
74         if (list_empty(&wait->task_list))
75                 __add_wait_queue(q, wait);
76         if (is_sync_wait(wait))
77                 set_current_state(state);
78         spin_unlock_irqrestore(&q->lock, flags);
79 }
80 EXPORT_SYMBOL(prepare_to_wait);
81
82 void
83 prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
84 {
85         unsigned long flags;
86
87         wait->flags |= WQ_FLAG_EXCLUSIVE;
88         spin_lock_irqsave(&q->lock, flags);
89         if (list_empty(&wait->task_list))
90                 __add_wait_queue_tail(q, wait);
91         if (is_sync_wait(wait))
92                 set_current_state(state);
93         spin_unlock_irqrestore(&q->lock, flags);
94 }
95 EXPORT_SYMBOL(prepare_to_wait_exclusive);
96
97 /*
98  * finish_wait - clean up after waiting in a queue
99  * @q: waitqueue waited on
100  * @wait: wait descriptor
101  *
102  * Sets current thread back to running state and removes
103  * the wait descriptor from the given waitqueue if still
104  * queued.
105  */
106 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
107 {
108         unsigned long flags;
109
110         __set_current_state(TASK_RUNNING);
111         /*
112          * We can check for list emptiness outside the lock
113          * IFF:
114          *  - we use the "careful" check that verifies both
115          *    the next and prev pointers, so that there cannot
116          *    be any half-pending updates in progress on other
117          *    CPU's that we haven't seen yet (and that might
118          *    still change the stack area.
119          * and
120          *  - all other users take the lock (ie we can only
121          *    have _one_ other CPU that looks at or modifies
122          *    the list).
123          */
124         if (!list_empty_careful(&wait->task_list)) {
125                 spin_lock_irqsave(&q->lock, flags);
126                 list_del_init(&wait->task_list);
127                 spin_unlock_irqrestore(&q->lock, flags);
128         }
129 }
130 EXPORT_SYMBOL(finish_wait);
131
132 /*
133  * abort_exclusive_wait - abort exclusive waiting in a queue
134  * @q: waitqueue waited on
135  * @wait: wait descriptor
136  * @state: runstate of the waiter to be woken
137  * @key: key to identify a wait bit queue or %NULL
138  *
139  * Sets current thread back to running state and removes
140  * the wait descriptor from the given waitqueue if still
141  * queued.
142  *
143  * Wakes up the next waiter if the caller is concurrently
144  * woken up through the queue.
145  *
146  * This prevents waiter starvation where an exclusive waiter
147  * aborts and is woken up concurrently and noone wakes up
148  * the next waiter.
149  */
150 void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait,
151                         unsigned int mode, void *key)
152 {
153         unsigned long flags;
154
155         __set_current_state(TASK_RUNNING);
156         spin_lock_irqsave(&q->lock, flags);
157         if (!list_empty(&wait->task_list))
158                 list_del_init(&wait->task_list);
159         else if (waitqueue_active(q))
160                 __wake_up_locked_key(q, mode, key);
161         spin_unlock_irqrestore(&q->lock, flags);
162 }
163 EXPORT_SYMBOL(abort_exclusive_wait);
164
165 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
166 {
167         int ret = default_wake_function(wait, mode, sync, key);
168
169         if (ret)
170                 list_del_init(&wait->task_list);
171         return ret;
172 }
173 EXPORT_SYMBOL(autoremove_wake_function);
174
175 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
176 {
177         struct wait_bit_key *key = arg;
178         struct wait_bit_queue *wait_bit
179                 = container_of(wait, struct wait_bit_queue, wait);
180
181         if (wait_bit->key.flags != key->flags ||
182                         wait_bit->key.bit_nr != key->bit_nr ||
183                         test_bit(key->bit_nr, key->flags))
184                 return 0;
185         else
186                 return autoremove_wake_function(wait, mode, sync, key);
187 }
188 EXPORT_SYMBOL(wake_bit_function);
189
190 /*
191  * To allow interruptible waiting and asynchronous (i.e. nonblocking)
192  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
193  * permitted return codes. Nonzero return codes halt waiting and return.
194  */
195 int __sched
196 __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
197                         int (*action)(void *), unsigned mode)
198 {
199         int ret = 0;
200
201         do {
202                 prepare_to_wait(wq, &q->wait, mode);
203                 if (test_bit(q->key.bit_nr, q->key.flags)) {
204                         ret = (*action)(q->key.flags);
205                         if (ret)
206                                 break;
207                 }
208                 if (!is_sync_wait(&q->wait))
209                         ret = -EIOCBRETRY;
210         } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
211         finish_wait(wq, &q->wait);
212         return ret;
213 }
214 EXPORT_SYMBOL(__wait_on_bit);
215
216 int __sched out_of_line_wait_on_bit(void *word, int bit,
217                                         int (*action)(void *), unsigned mode)
218 {
219         wait_queue_head_t *wq = bit_waitqueue(word, bit);
220         DEFINE_WAIT_BIT(wait, word, bit);
221
222         return __wait_on_bit(wq, &wait, action, mode);
223 }
224 EXPORT_SYMBOL(out_of_line_wait_on_bit);
225
226 int __sched
227 __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
228                         int (*action)(void *), unsigned mode)
229 {
230         do {
231                 int ret;
232
233                 prepare_to_wait_exclusive(wq, &q->wait, mode);
234                 if (!test_bit(q->key.bit_nr, q->key.flags))
235                         continue;
236                 ret = action(q->key.flags);
237                 if (!ret) {
238                         if (!is_sync_wait(&q->wait))
239                                 ret = -EIOCBRETRY;
240                         else
241                                 continue;
242                 }
243                 abort_exclusive_wait(wq, &q->wait, mode, &q->key);
244                 return ret;
245         } while (test_and_set_bit(q->key.bit_nr, q->key.flags));
246         finish_wait(wq, &q->wait);
247         return 0;
248 }
249 EXPORT_SYMBOL(__wait_on_bit_lock);
250
251 int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
252                                         int (*action)(void *), unsigned mode)
253 {
254         wait_queue_head_t *wq = bit_waitqueue(word, bit);
255         DEFINE_WAIT_BIT(wait, word, bit);
256
257         return __wait_on_bit_lock(wq, &wait, action, mode);
258 }
259 EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
260
261 void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
262 {
263         struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
264         if (waitqueue_active(wq))
265                 __wake_up(wq, TASK_NORMAL, 1, &key);
266 }
267 EXPORT_SYMBOL(__wake_up_bit);
268
269 /**
270  * wake_up_bit - wake up a waiter on a bit
271  * @word: the word being waited on, a kernel virtual address
272  * @bit: the bit of the word being waited on
273  *
274  * There is a standard hashed waitqueue table for generic use. This
275  * is the part of the hashtable's accessor API that wakes up waiters
276  * on a bit. For instance, if one were to have waiters on a bitflag,
277  * one would call wake_up_bit() after clearing the bit.
278  *
279  * In order for this to function properly, as it uses waitqueue_active()
280  * internally, some kind of memory barrier must be done prior to calling
281  * this. Typically, this will be smp_mb__after_clear_bit(), but in some
282  * cases where bitflags are manipulated non-atomically under a lock, one
283  * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
284  * because spin_unlock() does not guarantee a memory barrier.
285  */
286 void wake_up_bit(void *word, int bit)
287 {
288         __wake_up_bit(bit_waitqueue(word, bit), word, bit);
289 }
290 EXPORT_SYMBOL(wake_up_bit);
291
292 wait_queue_head_t *bit_waitqueue(void *word, int bit)
293 {
294         const int shift = BITS_PER_LONG == 32 ? 5 : 6;
295         const struct zone *zone = page_zone(virt_to_page(word));
296         unsigned long val = (unsigned long)word << shift | bit;
297
298         return &zone->wait_table[hash_long(val, zone->wait_table_bits)];
299 }
300 EXPORT_SYMBOL(bit_waitqueue);