5d9e4aab9797cedb6d3036ffd4a7fdc71e579c43
[linux-2.6-block.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device.
225                          */
226                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227                         break;
228                 default:
229                         /* Nothing to do */
230                         ret = 0;
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262         bool local = false;
263
264         /*
265          * Check, if the current cpu is in the mask
266          */
267         if (cpumask_test_cpu(cpu, mask)) {
268                 cpumask_clear_cpu(cpu, mask);
269                 local = true;
270         }
271
272         if (!cpumask_empty(mask)) {
273                 /*
274                  * It might be necessary to actually check whether the devices
275                  * have different broadcast functions. For now, just use the
276                  * one of the first device. This works as long as we have this
277                  * misfeature only on x86 (lapic)
278                  */
279                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
280                 td->evtdev->broadcast(mask);
281         }
282         return local;
283 }
284
285 /*
286  * Periodic broadcast:
287  * - invoke the broadcast handlers
288  */
289 static bool tick_do_periodic_broadcast(void)
290 {
291         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
292         return tick_do_broadcast(tmpmask);
293 }
294
295 /*
296  * Event handler for periodic broadcast ticks
297  */
298 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
299 {
300         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
301         bool bc_local;
302
303         raw_spin_lock(&tick_broadcast_lock);
304         bc_local = tick_do_periodic_broadcast();
305
306         if (dev->state == CLOCK_EVT_STATE_ONESHOT) {
307                 ktime_t next = ktime_add(dev->next_event, tick_period);
308
309                 clockevents_program_event(dev, next, true);
310         }
311         raw_spin_unlock(&tick_broadcast_lock);
312
313         /*
314          * We run the handler of the local cpu after dropping
315          * tick_broadcast_lock because the handler might deadlock when
316          * trying to switch to oneshot mode.
317          */
318         if (bc_local)
319                 td->evtdev->event_handler(td->evtdev);
320 }
321
322 /**
323  * tick_broadcast_control - Enable/disable or force broadcast mode
324  * @mode:       The selected broadcast mode
325  *
326  * Called when the system enters a state where affected tick devices
327  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
328  *
329  * Called with interrupts disabled, so clockevents_lock is not
330  * required here because the local clock event device cannot go away
331  * under us.
332  */
333 void tick_broadcast_control(enum tick_broadcast_mode mode)
334 {
335         struct clock_event_device *bc, *dev;
336         struct tick_device *td;
337         int cpu, bc_stopped;
338
339         td = this_cpu_ptr(&tick_cpu_device);
340         dev = td->evtdev;
341
342         /*
343          * Is the device not affected by the powerstate ?
344          */
345         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
346                 return;
347
348         if (!tick_device_is_functional(dev))
349                 return;
350
351         raw_spin_lock(&tick_broadcast_lock);
352         cpu = smp_processor_id();
353         bc = tick_broadcast_device.evtdev;
354         bc_stopped = cpumask_empty(tick_broadcast_mask);
355
356         switch (mode) {
357         case TICK_BROADCAST_FORCE:
358                 tick_broadcast_forced = 1;
359         case TICK_BROADCAST_ON:
360                 cpumask_set_cpu(cpu, tick_broadcast_on);
361                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
362                         if (tick_broadcast_device.mode ==
363                             TICKDEV_MODE_PERIODIC)
364                                 clockevents_shutdown(dev);
365                 }
366                 break;
367
368         case TICK_BROADCAST_OFF:
369                 if (tick_broadcast_forced)
370                         break;
371                 cpumask_clear_cpu(cpu, tick_broadcast_on);
372                 if (!tick_device_is_functional(dev))
373                         break;
374                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375                         if (tick_broadcast_device.mode ==
376                             TICKDEV_MODE_PERIODIC)
377                                 tick_setup_periodic(dev, 0);
378                 }
379                 break;
380         }
381
382         if (cpumask_empty(tick_broadcast_mask)) {
383                 if (!bc_stopped)
384                         clockevents_shutdown(bc);
385         } else if (bc_stopped) {
386                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
387                         tick_broadcast_start_periodic(bc);
388                 else
389                         tick_broadcast_setup_oneshot(bc);
390         }
391         raw_spin_unlock(&tick_broadcast_lock);
392 }
393 EXPORT_SYMBOL_GPL(tick_broadcast_control);
394
395 /*
396  * Set the periodic handler depending on broadcast on/off
397  */
398 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
399 {
400         if (!broadcast)
401                 dev->event_handler = tick_handle_periodic;
402         else
403                 dev->event_handler = tick_handle_periodic_broadcast;
404 }
405
406 #ifdef CONFIG_HOTPLUG_CPU
407 /*
408  * Remove a CPU from broadcasting
409  */
410 void tick_shutdown_broadcast(unsigned int cpu)
411 {
412         struct clock_event_device *bc;
413         unsigned long flags;
414
415         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416
417         bc = tick_broadcast_device.evtdev;
418         cpumask_clear_cpu(cpu, tick_broadcast_mask);
419         cpumask_clear_cpu(cpu, tick_broadcast_on);
420
421         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422                 if (bc && cpumask_empty(tick_broadcast_mask))
423                         clockevents_shutdown(bc);
424         }
425
426         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 #endif
429
430 void tick_suspend_broadcast(void)
431 {
432         struct clock_event_device *bc;
433         unsigned long flags;
434
435         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436
437         bc = tick_broadcast_device.evtdev;
438         if (bc)
439                 clockevents_shutdown(bc);
440
441         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
442 }
443
444 /*
445  * This is called from tick_resume_local() on a resuming CPU. That's
446  * called from the core resume function, tick_unfreeze() and the magic XEN
447  * resume hackery.
448  *
449  * In none of these cases the broadcast device mode can change and the
450  * bit of the resuming CPU in the broadcast mask is safe as well.
451  */
452 bool tick_resume_check_broadcast(void)
453 {
454         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
455                 return false;
456         else
457                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
458 }
459
460 void tick_resume_broadcast(void)
461 {
462         struct clock_event_device *bc;
463         unsigned long flags;
464
465         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
466
467         bc = tick_broadcast_device.evtdev;
468
469         if (bc) {
470                 clockevents_tick_resume(bc);
471
472                 switch (tick_broadcast_device.mode) {
473                 case TICKDEV_MODE_PERIODIC:
474                         if (!cpumask_empty(tick_broadcast_mask))
475                                 tick_broadcast_start_periodic(bc);
476                         break;
477                 case TICKDEV_MODE_ONESHOT:
478                         if (!cpumask_empty(tick_broadcast_mask))
479                                 tick_resume_broadcast_oneshot(bc);
480                         break;
481                 }
482         }
483         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 }
485
486 #ifdef CONFIG_TICK_ONESHOT
487
488 static cpumask_var_t tick_broadcast_oneshot_mask;
489 static cpumask_var_t tick_broadcast_pending_mask;
490 static cpumask_var_t tick_broadcast_force_mask;
491
492 /*
493  * Exposed for debugging: see timer_list.c
494  */
495 struct cpumask *tick_get_broadcast_oneshot_mask(void)
496 {
497         return tick_broadcast_oneshot_mask;
498 }
499
500 /*
501  * Called before going idle with interrupts disabled. Checks whether a
502  * broadcast event from the other core is about to happen. We detected
503  * that in tick_broadcast_oneshot_control(). The callsite can use this
504  * to avoid a deep idle transition as we are about to get the
505  * broadcast IPI right away.
506  */
507 int tick_check_broadcast_expired(void)
508 {
509         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
510 }
511
512 /*
513  * Set broadcast interrupt affinity
514  */
515 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
516                                         const struct cpumask *cpumask)
517 {
518         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
519                 return;
520
521         if (cpumask_equal(bc->cpumask, cpumask))
522                 return;
523
524         bc->cpumask = cpumask;
525         irq_set_affinity(bc->irq, bc->cpumask);
526 }
527
528 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
529                                     ktime_t expires, int force)
530 {
531         int ret;
532
533         if (bc->state != CLOCK_EVT_STATE_ONESHOT)
534                 clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
535
536         ret = clockevents_program_event(bc, expires, force);
537         if (!ret)
538                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
539         return ret;
540 }
541
542 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
543 {
544         clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
545 }
546
547 /*
548  * Called from irq_enter() when idle was interrupted to reenable the
549  * per cpu device.
550  */
551 void tick_check_oneshot_broadcast_this_cpu(void)
552 {
553         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
554                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
555
556                 /*
557                  * We might be in the middle of switching over from
558                  * periodic to oneshot. If the CPU has not yet
559                  * switched over, leave the device alone.
560                  */
561                 if (td->mode == TICKDEV_MODE_ONESHOT) {
562                         clockevents_set_state(td->evtdev,
563                                               CLOCK_EVT_STATE_ONESHOT);
564                 }
565         }
566 }
567
568 /*
569  * Handle oneshot mode broadcasting
570  */
571 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
572 {
573         struct tick_device *td;
574         ktime_t now, next_event;
575         int cpu, next_cpu = 0;
576
577         raw_spin_lock(&tick_broadcast_lock);
578 again:
579         dev->next_event.tv64 = KTIME_MAX;
580         next_event.tv64 = KTIME_MAX;
581         cpumask_clear(tmpmask);
582         now = ktime_get();
583         /* Find all expired events */
584         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
585                 td = &per_cpu(tick_cpu_device, cpu);
586                 if (td->evtdev->next_event.tv64 <= now.tv64) {
587                         cpumask_set_cpu(cpu, tmpmask);
588                         /*
589                          * Mark the remote cpu in the pending mask, so
590                          * it can avoid reprogramming the cpu local
591                          * timer in tick_broadcast_oneshot_control().
592                          */
593                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
594                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
595                         next_event.tv64 = td->evtdev->next_event.tv64;
596                         next_cpu = cpu;
597                 }
598         }
599
600         /*
601          * Remove the current cpu from the pending mask. The event is
602          * delivered immediately in tick_do_broadcast() !
603          */
604         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
605
606         /* Take care of enforced broadcast requests */
607         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
608         cpumask_clear(tick_broadcast_force_mask);
609
610         /*
611          * Sanity check. Catch the case where we try to broadcast to
612          * offline cpus.
613          */
614         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
615                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
616
617         /*
618          * Wakeup the cpus which have an expired event and handle the
619          * broadcast event of the local cpu.
620          */
621         if (tick_do_broadcast(tmpmask)) {
622                 td = this_cpu_ptr(&tick_cpu_device);
623                 td->evtdev->event_handler(td->evtdev);
624         }
625
626         /*
627          * Two reasons for reprogram:
628          *
629          * - The global event did not expire any CPU local
630          * events. This happens in dyntick mode, as the maximum PIT
631          * delta is quite small.
632          *
633          * - There are pending events on sleeping CPUs which were not
634          * in the event mask
635          */
636         if (next_event.tv64 != KTIME_MAX) {
637                 /*
638                  * Rearm the broadcast device. If event expired,
639                  * repeat the above
640                  */
641                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
642                         goto again;
643         }
644         raw_spin_unlock(&tick_broadcast_lock);
645 }
646
647 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
648 {
649         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
650                 return 0;
651         if (bc->next_event.tv64 == KTIME_MAX)
652                 return 0;
653         return bc->bound_on == cpu ? -EBUSY : 0;
654 }
655
656 static void broadcast_shutdown_local(struct clock_event_device *bc,
657                                      struct clock_event_device *dev)
658 {
659         /*
660          * For hrtimer based broadcasting we cannot shutdown the cpu
661          * local device if our own event is the first one to expire or
662          * if we own the broadcast timer.
663          */
664         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
665                 if (broadcast_needs_cpu(bc, smp_processor_id()))
666                         return;
667                 if (dev->next_event.tv64 < bc->next_event.tv64)
668                         return;
669         }
670         clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
671 }
672
673 /**
674  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
675  * @state:      The target state (enter/exit)
676  *
677  * The system enters/leaves a state, where affected devices might stop
678  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
679  *
680  * Called with interrupts disabled, so clockevents_lock is not
681  * required here because the local clock event device cannot go away
682  * under us.
683  */
684 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
685 {
686         struct clock_event_device *bc, *dev;
687         struct tick_device *td;
688         int cpu, ret = 0;
689         ktime_t now;
690
691         /*
692          * Periodic mode does not care about the enter/exit of power
693          * states
694          */
695         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
696                 return 0;
697
698         /*
699          * We are called with preemtion disabled from the depth of the
700          * idle code, so we can't be moved away.
701          */
702         td = this_cpu_ptr(&tick_cpu_device);
703         dev = td->evtdev;
704
705         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
706                 return 0;
707
708         raw_spin_lock(&tick_broadcast_lock);
709         bc = tick_broadcast_device.evtdev;
710         cpu = smp_processor_id();
711
712         if (state == TICK_BROADCAST_ENTER) {
713                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
714                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
715                         broadcast_shutdown_local(bc, dev);
716                         /*
717                          * We only reprogram the broadcast timer if we
718                          * did not mark ourself in the force mask and
719                          * if the cpu local event is earlier than the
720                          * broadcast event. If the current CPU is in
721                          * the force mask, then we are going to be
722                          * woken by the IPI right away.
723                          */
724                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
725                             dev->next_event.tv64 < bc->next_event.tv64)
726                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
727                 }
728                 /*
729                  * If the current CPU owns the hrtimer broadcast
730                  * mechanism, it cannot go deep idle and we remove the
731                  * CPU from the broadcast mask. We don't have to go
732                  * through the EXIT path as the local timer is not
733                  * shutdown.
734                  */
735                 ret = broadcast_needs_cpu(bc, cpu);
736                 if (ret)
737                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
738         } else {
739                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
740                         clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
741                         /*
742                          * The cpu which was handling the broadcast
743                          * timer marked this cpu in the broadcast
744                          * pending mask and fired the broadcast
745                          * IPI. So we are going to handle the expired
746                          * event anyway via the broadcast IPI
747                          * handler. No need to reprogram the timer
748                          * with an already expired event.
749                          */
750                         if (cpumask_test_and_clear_cpu(cpu,
751                                        tick_broadcast_pending_mask))
752                                 goto out;
753
754                         /*
755                          * Bail out if there is no next event.
756                          */
757                         if (dev->next_event.tv64 == KTIME_MAX)
758                                 goto out;
759                         /*
760                          * If the pending bit is not set, then we are
761                          * either the CPU handling the broadcast
762                          * interrupt or we got woken by something else.
763                          *
764                          * We are not longer in the broadcast mask, so
765                          * if the cpu local expiry time is already
766                          * reached, we would reprogram the cpu local
767                          * timer with an already expired event.
768                          *
769                          * This can lead to a ping-pong when we return
770                          * to idle and therefor rearm the broadcast
771                          * timer before the cpu local timer was able
772                          * to fire. This happens because the forced
773                          * reprogramming makes sure that the event
774                          * will happen in the future and depending on
775                          * the min_delta setting this might be far
776                          * enough out that the ping-pong starts.
777                          *
778                          * If the cpu local next_event has expired
779                          * then we know that the broadcast timer
780                          * next_event has expired as well and
781                          * broadcast is about to be handled. So we
782                          * avoid reprogramming and enforce that the
783                          * broadcast handler, which did not run yet,
784                          * will invoke the cpu local handler.
785                          *
786                          * We cannot call the handler directly from
787                          * here, because we might be in a NOHZ phase
788                          * and we did not go through the irq_enter()
789                          * nohz fixups.
790                          */
791                         now = ktime_get();
792                         if (dev->next_event.tv64 <= now.tv64) {
793                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
794                                 goto out;
795                         }
796                         /*
797                          * We got woken by something else. Reprogram
798                          * the cpu local timer device.
799                          */
800                         tick_program_event(dev->next_event, 1);
801                 }
802         }
803 out:
804         raw_spin_unlock(&tick_broadcast_lock);
805         return ret;
806 }
807 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
808
809 /*
810  * Reset the one shot broadcast for a cpu
811  *
812  * Called with tick_broadcast_lock held
813  */
814 static void tick_broadcast_clear_oneshot(int cpu)
815 {
816         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
817         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
818 }
819
820 static void tick_broadcast_init_next_event(struct cpumask *mask,
821                                            ktime_t expires)
822 {
823         struct tick_device *td;
824         int cpu;
825
826         for_each_cpu(cpu, mask) {
827                 td = &per_cpu(tick_cpu_device, cpu);
828                 if (td->evtdev)
829                         td->evtdev->next_event = expires;
830         }
831 }
832
833 /**
834  * tick_broadcast_setup_oneshot - setup the broadcast device
835  */
836 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
837 {
838         int cpu = smp_processor_id();
839
840         /* Set it up only once ! */
841         if (bc->event_handler != tick_handle_oneshot_broadcast) {
842                 int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
843
844                 bc->event_handler = tick_handle_oneshot_broadcast;
845
846                 /*
847                  * We must be careful here. There might be other CPUs
848                  * waiting for periodic broadcast. We need to set the
849                  * oneshot_mask bits for those and program the
850                  * broadcast device to fire.
851                  */
852                 cpumask_copy(tmpmask, tick_broadcast_mask);
853                 cpumask_clear_cpu(cpu, tmpmask);
854                 cpumask_or(tick_broadcast_oneshot_mask,
855                            tick_broadcast_oneshot_mask, tmpmask);
856
857                 if (was_periodic && !cpumask_empty(tmpmask)) {
858                         clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
859                         tick_broadcast_init_next_event(tmpmask,
860                                                        tick_next_period);
861                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
862                 } else
863                         bc->next_event.tv64 = KTIME_MAX;
864         } else {
865                 /*
866                  * The first cpu which switches to oneshot mode sets
867                  * the bit for all other cpus which are in the general
868                  * (periodic) broadcast mask. So the bit is set and
869                  * would prevent the first broadcast enter after this
870                  * to program the bc device.
871                  */
872                 tick_broadcast_clear_oneshot(cpu);
873         }
874 }
875
876 /*
877  * Select oneshot operating mode for the broadcast device
878  */
879 void tick_broadcast_switch_to_oneshot(void)
880 {
881         struct clock_event_device *bc;
882         unsigned long flags;
883
884         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
885
886         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
887         bc = tick_broadcast_device.evtdev;
888         if (bc)
889                 tick_broadcast_setup_oneshot(bc);
890
891         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
892 }
893
894 #ifdef CONFIG_HOTPLUG_CPU
895 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
896 {
897         struct clock_event_device *bc;
898         unsigned long flags;
899
900         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
901         bc = tick_broadcast_device.evtdev;
902
903         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
904                 /* This moves the broadcast assignment to this CPU: */
905                 clockevents_program_event(bc, bc->next_event, 1);
906         }
907         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
908 }
909
910 /*
911  * Remove a dead CPU from broadcasting
912  */
913 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
914 {
915         unsigned long flags;
916
917         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
918
919         /*
920          * Clear the broadcast masks for the dead cpu, but do not stop
921          * the broadcast device!
922          */
923         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
924         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
925         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
926
927         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
928 }
929 #endif
930
931 /*
932  * Check, whether the broadcast device is in one shot mode
933  */
934 int tick_broadcast_oneshot_active(void)
935 {
936         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
937 }
938
939 /*
940  * Check whether the broadcast device supports oneshot.
941  */
942 bool tick_broadcast_oneshot_available(void)
943 {
944         struct clock_event_device *bc = tick_broadcast_device.evtdev;
945
946         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
947 }
948
949 #endif
950
951 void __init tick_broadcast_init(void)
952 {
953         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
954         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
955         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
956 #ifdef CONFIG_TICK_ONESHOT
957         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
958         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
959         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
960 #endif
961 }