0283523de045c62b37b7c868c58732bc3a1859bd
[linux-2.6-block.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 static void tick_broadcast_oneshot_offline(unsigned int cpu);
40 #else
41 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
45 #endif
46
47 /*
48  * Debugging: see timer_list.c
49  */
50 struct tick_device *tick_get_broadcast_device(void)
51 {
52         return &tick_broadcast_device;
53 }
54
55 struct cpumask *tick_get_broadcast_mask(void)
56 {
57         return tick_broadcast_mask;
58 }
59
60 /*
61  * Start the device in periodic mode
62  */
63 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
64 {
65         if (bc)
66                 tick_setup_periodic(bc, 1);
67 }
68
69 /*
70  * Check, if the device can be utilized as broadcast device:
71  */
72 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
73                                         struct clock_event_device *newdev)
74 {
75         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
76             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
77             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
78                 return false;
79
80         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
81             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
82                 return false;
83
84         return !curdev || newdev->rating > curdev->rating;
85 }
86
87 /*
88  * Conditionally install/replace broadcast device
89  */
90 void tick_install_broadcast_device(struct clock_event_device *dev)
91 {
92         struct clock_event_device *cur = tick_broadcast_device.evtdev;
93
94         if (!tick_check_broadcast_device(cur, dev))
95                 return;
96
97         if (!try_module_get(dev->owner))
98                 return;
99
100         clockevents_exchange_device(cur, dev);
101         if (cur)
102                 cur->event_handler = clockevents_handle_noop;
103         tick_broadcast_device.evtdev = dev;
104         if (!cpumask_empty(tick_broadcast_mask))
105                 tick_broadcast_start_periodic(dev);
106         /*
107          * Inform all cpus about this. We might be in a situation
108          * where we did not switch to oneshot mode because the per cpu
109          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
110          * of a oneshot capable broadcast device. Without that
111          * notification the systems stays stuck in periodic mode
112          * forever.
113          */
114         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
115                 tick_clock_notify();
116 }
117
118 /*
119  * Check, if the device is the broadcast device
120  */
121 int tick_is_broadcast_device(struct clock_event_device *dev)
122 {
123         return (dev && tick_broadcast_device.evtdev == dev);
124 }
125
126 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
127 {
128         int ret = -ENODEV;
129
130         if (tick_is_broadcast_device(dev)) {
131                 raw_spin_lock(&tick_broadcast_lock);
132                 ret = __clockevents_update_freq(dev, freq);
133                 raw_spin_unlock(&tick_broadcast_lock);
134         }
135         return ret;
136 }
137
138
139 static void err_broadcast(const struct cpumask *mask)
140 {
141         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
142 }
143
144 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
145 {
146         if (!dev->broadcast)
147                 dev->broadcast = tick_broadcast;
148         if (!dev->broadcast) {
149                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
150                              dev->name);
151                 dev->broadcast = err_broadcast;
152         }
153 }
154
155 /*
156  * Check, if the device is disfunctional and a place holder, which
157  * needs to be handled by the broadcast device.
158  */
159 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
160 {
161         struct clock_event_device *bc = tick_broadcast_device.evtdev;
162         unsigned long flags;
163         int ret = 0;
164
165         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
166
167         /*
168          * Devices might be registered with both periodic and oneshot
169          * mode disabled. This signals, that the device needs to be
170          * operated from the broadcast device and is a placeholder for
171          * the cpu local device.
172          */
173         if (!tick_device_is_functional(dev)) {
174                 dev->event_handler = tick_handle_periodic;
175                 tick_device_setup_broadcast_func(dev);
176                 cpumask_set_cpu(cpu, tick_broadcast_mask);
177                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
178                         tick_broadcast_start_periodic(bc);
179                 else
180                         tick_broadcast_setup_oneshot(bc);
181                 ret = 1;
182         } else {
183                 /*
184                  * Clear the broadcast bit for this cpu if the
185                  * device is not power state affected.
186                  */
187                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
188                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
189                 else
190                         tick_device_setup_broadcast_func(dev);
191
192                 /*
193                  * Clear the broadcast bit if the CPU is not in
194                  * periodic broadcast on state.
195                  */
196                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
197                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
198
199                 switch (tick_broadcast_device.mode) {
200                 case TICKDEV_MODE_ONESHOT:
201                         /*
202                          * If the system is in oneshot mode we can
203                          * unconditionally clear the oneshot mask bit,
204                          * because the CPU is running and therefore
205                          * not in an idle state which causes the power
206                          * state affected device to stop. Let the
207                          * caller initialize the device.
208                          */
209                         tick_broadcast_clear_oneshot(cpu);
210                         ret = 0;
211                         break;
212
213                 case TICKDEV_MODE_PERIODIC:
214                         /*
215                          * If the system is in periodic mode, check
216                          * whether the broadcast device can be
217                          * switched off now.
218                          */
219                         if (cpumask_empty(tick_broadcast_mask) && bc)
220                                 clockevents_shutdown(bc);
221                         /*
222                          * If we kept the cpu in the broadcast mask,
223                          * tell the caller to leave the per cpu device
224                          * in shutdown state. The periodic interrupt
225                          * is delivered by the broadcast device, if
226                          * the broadcast device exists and is not
227                          * hrtimer based.
228                          */
229                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
230                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
231                         break;
232                 default:
233                         break;
234                 }
235         }
236         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
237         return ret;
238 }
239
240 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
241 int tick_receive_broadcast(void)
242 {
243         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
244         struct clock_event_device *evt = td->evtdev;
245
246         if (!evt)
247                 return -ENODEV;
248
249         if (!evt->event_handler)
250                 return -EINVAL;
251
252         evt->event_handler(evt);
253         return 0;
254 }
255 #endif
256
257 /*
258  * Broadcast the event to the cpus, which are set in the mask (mangled).
259  */
260 static bool tick_do_broadcast(struct cpumask *mask)
261 {
262         int cpu = smp_processor_id();
263         struct tick_device *td;
264         bool local = false;
265
266         /*
267          * Check, if the current cpu is in the mask
268          */
269         if (cpumask_test_cpu(cpu, mask)) {
270                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
271
272                 cpumask_clear_cpu(cpu, mask);
273                 /*
274                  * We only run the local handler, if the broadcast
275                  * device is not hrtimer based. Otherwise we run into
276                  * a hrtimer recursion.
277                  *
278                  * local timer_interrupt()
279                  *   local_handler()
280                  *     expire_hrtimers()
281                  *       bc_handler()
282                  *         local_handler()
283                  *           expire_hrtimers()
284                  */
285                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
286         }
287
288         if (!cpumask_empty(mask)) {
289                 /*
290                  * It might be necessary to actually check whether the devices
291                  * have different broadcast functions. For now, just use the
292                  * one of the first device. This works as long as we have this
293                  * misfeature only on x86 (lapic)
294                  */
295                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
296                 td->evtdev->broadcast(mask);
297         }
298         return local;
299 }
300
301 /*
302  * Periodic broadcast:
303  * - invoke the broadcast handlers
304  */
305 static bool tick_do_periodic_broadcast(void)
306 {
307         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
308         return tick_do_broadcast(tmpmask);
309 }
310
311 /*
312  * Event handler for periodic broadcast ticks
313  */
314 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
315 {
316         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
317         bool bc_local;
318
319         raw_spin_lock(&tick_broadcast_lock);
320
321         /* Handle spurious interrupts gracefully */
322         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
323                 raw_spin_unlock(&tick_broadcast_lock);
324                 return;
325         }
326
327         bc_local = tick_do_periodic_broadcast();
328
329         if (clockevent_state_oneshot(dev)) {
330                 ktime_t next = ktime_add(dev->next_event, tick_period);
331
332                 clockevents_program_event(dev, next, true);
333         }
334         raw_spin_unlock(&tick_broadcast_lock);
335
336         /*
337          * We run the handler of the local cpu after dropping
338          * tick_broadcast_lock because the handler might deadlock when
339          * trying to switch to oneshot mode.
340          */
341         if (bc_local)
342                 td->evtdev->event_handler(td->evtdev);
343 }
344
345 /**
346  * tick_broadcast_control - Enable/disable or force broadcast mode
347  * @mode:       The selected broadcast mode
348  *
349  * Called when the system enters a state where affected tick devices
350  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
351  */
352 void tick_broadcast_control(enum tick_broadcast_mode mode)
353 {
354         struct clock_event_device *bc, *dev;
355         struct tick_device *td;
356         int cpu, bc_stopped;
357         unsigned long flags;
358
359         /* Protects also the local clockevent device. */
360         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
361         td = this_cpu_ptr(&tick_cpu_device);
362         dev = td->evtdev;
363
364         /*
365          * Is the device not affected by the powerstate ?
366          */
367         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
368                 goto out;
369
370         if (!tick_device_is_functional(dev))
371                 goto out;
372
373         cpu = smp_processor_id();
374         bc = tick_broadcast_device.evtdev;
375         bc_stopped = cpumask_empty(tick_broadcast_mask);
376
377         switch (mode) {
378         case TICK_BROADCAST_FORCE:
379                 tick_broadcast_forced = 1;
380                 /* fall through */
381         case TICK_BROADCAST_ON:
382                 cpumask_set_cpu(cpu, tick_broadcast_on);
383                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
384                         /*
385                          * Only shutdown the cpu local device, if:
386                          *
387                          * - the broadcast device exists
388                          * - the broadcast device is not a hrtimer based one
389                          * - the broadcast device is in periodic mode to
390                          *   avoid a hickup during switch to oneshot mode
391                          */
392                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
393                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
394                                 clockevents_shutdown(dev);
395                 }
396                 break;
397
398         case TICK_BROADCAST_OFF:
399                 if (tick_broadcast_forced)
400                         break;
401                 cpumask_clear_cpu(cpu, tick_broadcast_on);
402                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
403                         if (tick_broadcast_device.mode ==
404                             TICKDEV_MODE_PERIODIC)
405                                 tick_setup_periodic(dev, 0);
406                 }
407                 break;
408         }
409
410         if (bc) {
411                 if (cpumask_empty(tick_broadcast_mask)) {
412                         if (!bc_stopped)
413                                 clockevents_shutdown(bc);
414                 } else if (bc_stopped) {
415                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
416                                 tick_broadcast_start_periodic(bc);
417                         else
418                                 tick_broadcast_setup_oneshot(bc);
419                 }
420         }
421 out:
422         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423 }
424 EXPORT_SYMBOL_GPL(tick_broadcast_control);
425
426 /*
427  * Set the periodic handler depending on broadcast on/off
428  */
429 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
430 {
431         if (!broadcast)
432                 dev->event_handler = tick_handle_periodic;
433         else
434                 dev->event_handler = tick_handle_periodic_broadcast;
435 }
436
437 #ifdef CONFIG_HOTPLUG_CPU
438 static void tick_shutdown_broadcast(void)
439 {
440         struct clock_event_device *bc = tick_broadcast_device.evtdev;
441
442         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
443                 if (bc && cpumask_empty(tick_broadcast_mask))
444                         clockevents_shutdown(bc);
445         }
446 }
447
448 /*
449  * Remove a CPU from broadcasting
450  */
451 void tick_broadcast_offline(unsigned int cpu)
452 {
453         raw_spin_lock(&tick_broadcast_lock);
454         cpumask_clear_cpu(cpu, tick_broadcast_mask);
455         cpumask_clear_cpu(cpu, tick_broadcast_on);
456         tick_broadcast_oneshot_offline(cpu);
457         tick_shutdown_broadcast();
458         raw_spin_unlock(&tick_broadcast_lock);
459 }
460
461 #endif
462
463 void tick_suspend_broadcast(void)
464 {
465         struct clock_event_device *bc;
466         unsigned long flags;
467
468         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
469
470         bc = tick_broadcast_device.evtdev;
471         if (bc)
472                 clockevents_shutdown(bc);
473
474         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
475 }
476
477 /*
478  * This is called from tick_resume_local() on a resuming CPU. That's
479  * called from the core resume function, tick_unfreeze() and the magic XEN
480  * resume hackery.
481  *
482  * In none of these cases the broadcast device mode can change and the
483  * bit of the resuming CPU in the broadcast mask is safe as well.
484  */
485 bool tick_resume_check_broadcast(void)
486 {
487         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
488                 return false;
489         else
490                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
491 }
492
493 void tick_resume_broadcast(void)
494 {
495         struct clock_event_device *bc;
496         unsigned long flags;
497
498         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
499
500         bc = tick_broadcast_device.evtdev;
501
502         if (bc) {
503                 clockevents_tick_resume(bc);
504
505                 switch (tick_broadcast_device.mode) {
506                 case TICKDEV_MODE_PERIODIC:
507                         if (!cpumask_empty(tick_broadcast_mask))
508                                 tick_broadcast_start_periodic(bc);
509                         break;
510                 case TICKDEV_MODE_ONESHOT:
511                         if (!cpumask_empty(tick_broadcast_mask))
512                                 tick_resume_broadcast_oneshot(bc);
513                         break;
514                 }
515         }
516         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
517 }
518
519 #ifdef CONFIG_TICK_ONESHOT
520
521 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
522 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
523 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
524
525 /*
526  * Exposed for debugging: see timer_list.c
527  */
528 struct cpumask *tick_get_broadcast_oneshot_mask(void)
529 {
530         return tick_broadcast_oneshot_mask;
531 }
532
533 /*
534  * Called before going idle with interrupts disabled. Checks whether a
535  * broadcast event from the other core is about to happen. We detected
536  * that in tick_broadcast_oneshot_control(). The callsite can use this
537  * to avoid a deep idle transition as we are about to get the
538  * broadcast IPI right away.
539  */
540 int tick_check_broadcast_expired(void)
541 {
542         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
543 }
544
545 /*
546  * Set broadcast interrupt affinity
547  */
548 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
549                                         const struct cpumask *cpumask)
550 {
551         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
552                 return;
553
554         if (cpumask_equal(bc->cpumask, cpumask))
555                 return;
556
557         bc->cpumask = cpumask;
558         irq_set_affinity(bc->irq, bc->cpumask);
559 }
560
561 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
562                                      ktime_t expires)
563 {
564         if (!clockevent_state_oneshot(bc))
565                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
566
567         clockevents_program_event(bc, expires, 1);
568         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
569 }
570
571 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
572 {
573         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
574 }
575
576 /*
577  * Called from irq_enter() when idle was interrupted to reenable the
578  * per cpu device.
579  */
580 void tick_check_oneshot_broadcast_this_cpu(void)
581 {
582         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
583                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
584
585                 /*
586                  * We might be in the middle of switching over from
587                  * periodic to oneshot. If the CPU has not yet
588                  * switched over, leave the device alone.
589                  */
590                 if (td->mode == TICKDEV_MODE_ONESHOT) {
591                         clockevents_switch_state(td->evtdev,
592                                               CLOCK_EVT_STATE_ONESHOT);
593                 }
594         }
595 }
596
597 /*
598  * Handle oneshot mode broadcasting
599  */
600 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
601 {
602         struct tick_device *td;
603         ktime_t now, next_event;
604         int cpu, next_cpu = 0;
605         bool bc_local;
606
607         raw_spin_lock(&tick_broadcast_lock);
608         dev->next_event = KTIME_MAX;
609         next_event = KTIME_MAX;
610         cpumask_clear(tmpmask);
611         now = ktime_get();
612         /* Find all expired events */
613         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
614                 /*
615                  * Required for !SMP because for_each_cpu() reports
616                  * unconditionally CPU0 as set on UP kernels.
617                  */
618                 if (!IS_ENABLED(CONFIG_SMP) &&
619                     cpumask_empty(tick_broadcast_oneshot_mask))
620                         break;
621
622                 td = &per_cpu(tick_cpu_device, cpu);
623                 if (td->evtdev->next_event <= now) {
624                         cpumask_set_cpu(cpu, tmpmask);
625                         /*
626                          * Mark the remote cpu in the pending mask, so
627                          * it can avoid reprogramming the cpu local
628                          * timer in tick_broadcast_oneshot_control().
629                          */
630                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
631                 } else if (td->evtdev->next_event < next_event) {
632                         next_event = td->evtdev->next_event;
633                         next_cpu = cpu;
634                 }
635         }
636
637         /*
638          * Remove the current cpu from the pending mask. The event is
639          * delivered immediately in tick_do_broadcast() !
640          */
641         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
642
643         /* Take care of enforced broadcast requests */
644         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
645         cpumask_clear(tick_broadcast_force_mask);
646
647         /*
648          * Sanity check. Catch the case where we try to broadcast to
649          * offline cpus.
650          */
651         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
652                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
653
654         /*
655          * Wakeup the cpus which have an expired event.
656          */
657         bc_local = tick_do_broadcast(tmpmask);
658
659         /*
660          * Two reasons for reprogram:
661          *
662          * - The global event did not expire any CPU local
663          * events. This happens in dyntick mode, as the maximum PIT
664          * delta is quite small.
665          *
666          * - There are pending events on sleeping CPUs which were not
667          * in the event mask
668          */
669         if (next_event != KTIME_MAX)
670                 tick_broadcast_set_event(dev, next_cpu, next_event);
671
672         raw_spin_unlock(&tick_broadcast_lock);
673
674         if (bc_local) {
675                 td = this_cpu_ptr(&tick_cpu_device);
676                 td->evtdev->event_handler(td->evtdev);
677         }
678 }
679
680 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
681 {
682         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
683                 return 0;
684         if (bc->next_event == KTIME_MAX)
685                 return 0;
686         return bc->bound_on == cpu ? -EBUSY : 0;
687 }
688
689 static void broadcast_shutdown_local(struct clock_event_device *bc,
690                                      struct clock_event_device *dev)
691 {
692         /*
693          * For hrtimer based broadcasting we cannot shutdown the cpu
694          * local device if our own event is the first one to expire or
695          * if we own the broadcast timer.
696          */
697         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
698                 if (broadcast_needs_cpu(bc, smp_processor_id()))
699                         return;
700                 if (dev->next_event < bc->next_event)
701                         return;
702         }
703         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
704 }
705
706 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
707 {
708         struct clock_event_device *bc, *dev;
709         int cpu, ret = 0;
710         ktime_t now;
711
712         /*
713          * If there is no broadcast device, tell the caller not to go
714          * into deep idle.
715          */
716         if (!tick_broadcast_device.evtdev)
717                 return -EBUSY;
718
719         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
720
721         raw_spin_lock(&tick_broadcast_lock);
722         bc = tick_broadcast_device.evtdev;
723         cpu = smp_processor_id();
724
725         if (state == TICK_BROADCAST_ENTER) {
726                 /*
727                  * If the current CPU owns the hrtimer broadcast
728                  * mechanism, it cannot go deep idle and we do not add
729                  * the CPU to the broadcast mask. We don't have to go
730                  * through the EXIT path as the local timer is not
731                  * shutdown.
732                  */
733                 ret = broadcast_needs_cpu(bc, cpu);
734                 if (ret)
735                         goto out;
736
737                 /*
738                  * If the broadcast device is in periodic mode, we
739                  * return.
740                  */
741                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
742                         /* If it is a hrtimer based broadcast, return busy */
743                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
744                                 ret = -EBUSY;
745                         goto out;
746                 }
747
748                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
749                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
750
751                         /* Conditionally shut down the local timer. */
752                         broadcast_shutdown_local(bc, dev);
753
754                         /*
755                          * We only reprogram the broadcast timer if we
756                          * did not mark ourself in the force mask and
757                          * if the cpu local event is earlier than the
758                          * broadcast event. If the current CPU is in
759                          * the force mask, then we are going to be
760                          * woken by the IPI right away; we return
761                          * busy, so the CPU does not try to go deep
762                          * idle.
763                          */
764                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
765                                 ret = -EBUSY;
766                         } else if (dev->next_event < bc->next_event) {
767                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
768                                 /*
769                                  * In case of hrtimer broadcasts the
770                                  * programming might have moved the
771                                  * timer to this cpu. If yes, remove
772                                  * us from the broadcast mask and
773                                  * return busy.
774                                  */
775                                 ret = broadcast_needs_cpu(bc, cpu);
776                                 if (ret) {
777                                         cpumask_clear_cpu(cpu,
778                                                 tick_broadcast_oneshot_mask);
779                                 }
780                         }
781                 }
782         } else {
783                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
784                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
785                         /*
786                          * The cpu which was handling the broadcast
787                          * timer marked this cpu in the broadcast
788                          * pending mask and fired the broadcast
789                          * IPI. So we are going to handle the expired
790                          * event anyway via the broadcast IPI
791                          * handler. No need to reprogram the timer
792                          * with an already expired event.
793                          */
794                         if (cpumask_test_and_clear_cpu(cpu,
795                                        tick_broadcast_pending_mask))
796                                 goto out;
797
798                         /*
799                          * Bail out if there is no next event.
800                          */
801                         if (dev->next_event == KTIME_MAX)
802                                 goto out;
803                         /*
804                          * If the pending bit is not set, then we are
805                          * either the CPU handling the broadcast
806                          * interrupt or we got woken by something else.
807                          *
808                          * We are not longer in the broadcast mask, so
809                          * if the cpu local expiry time is already
810                          * reached, we would reprogram the cpu local
811                          * timer with an already expired event.
812                          *
813                          * This can lead to a ping-pong when we return
814                          * to idle and therefor rearm the broadcast
815                          * timer before the cpu local timer was able
816                          * to fire. This happens because the forced
817                          * reprogramming makes sure that the event
818                          * will happen in the future and depending on
819                          * the min_delta setting this might be far
820                          * enough out that the ping-pong starts.
821                          *
822                          * If the cpu local next_event has expired
823                          * then we know that the broadcast timer
824                          * next_event has expired as well and
825                          * broadcast is about to be handled. So we
826                          * avoid reprogramming and enforce that the
827                          * broadcast handler, which did not run yet,
828                          * will invoke the cpu local handler.
829                          *
830                          * We cannot call the handler directly from
831                          * here, because we might be in a NOHZ phase
832                          * and we did not go through the irq_enter()
833                          * nohz fixups.
834                          */
835                         now = ktime_get();
836                         if (dev->next_event <= now) {
837                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
838                                 goto out;
839                         }
840                         /*
841                          * We got woken by something else. Reprogram
842                          * the cpu local timer device.
843                          */
844                         tick_program_event(dev->next_event, 1);
845                 }
846         }
847 out:
848         raw_spin_unlock(&tick_broadcast_lock);
849         return ret;
850 }
851
852 /*
853  * Reset the one shot broadcast for a cpu
854  *
855  * Called with tick_broadcast_lock held
856  */
857 static void tick_broadcast_clear_oneshot(int cpu)
858 {
859         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
860         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
861 }
862
863 static void tick_broadcast_init_next_event(struct cpumask *mask,
864                                            ktime_t expires)
865 {
866         struct tick_device *td;
867         int cpu;
868
869         for_each_cpu(cpu, mask) {
870                 td = &per_cpu(tick_cpu_device, cpu);
871                 if (td->evtdev)
872                         td->evtdev->next_event = expires;
873         }
874 }
875
876 /**
877  * tick_broadcast_setup_oneshot - setup the broadcast device
878  */
879 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
880 {
881         int cpu = smp_processor_id();
882
883         if (!bc)
884                 return;
885
886         /* Set it up only once ! */
887         if (bc->event_handler != tick_handle_oneshot_broadcast) {
888                 int was_periodic = clockevent_state_periodic(bc);
889
890                 bc->event_handler = tick_handle_oneshot_broadcast;
891
892                 /*
893                  * We must be careful here. There might be other CPUs
894                  * waiting for periodic broadcast. We need to set the
895                  * oneshot_mask bits for those and program the
896                  * broadcast device to fire.
897                  */
898                 cpumask_copy(tmpmask, tick_broadcast_mask);
899                 cpumask_clear_cpu(cpu, tmpmask);
900                 cpumask_or(tick_broadcast_oneshot_mask,
901                            tick_broadcast_oneshot_mask, tmpmask);
902
903                 if (was_periodic && !cpumask_empty(tmpmask)) {
904                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
905                         tick_broadcast_init_next_event(tmpmask,
906                                                        tick_next_period);
907                         tick_broadcast_set_event(bc, cpu, tick_next_period);
908                 } else
909                         bc->next_event = KTIME_MAX;
910         } else {
911                 /*
912                  * The first cpu which switches to oneshot mode sets
913                  * the bit for all other cpus which are in the general
914                  * (periodic) broadcast mask. So the bit is set and
915                  * would prevent the first broadcast enter after this
916                  * to program the bc device.
917                  */
918                 tick_broadcast_clear_oneshot(cpu);
919         }
920 }
921
922 /*
923  * Select oneshot operating mode for the broadcast device
924  */
925 void tick_broadcast_switch_to_oneshot(void)
926 {
927         struct clock_event_device *bc;
928         unsigned long flags;
929
930         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
931
932         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
933         bc = tick_broadcast_device.evtdev;
934         if (bc)
935                 tick_broadcast_setup_oneshot(bc);
936
937         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
938 }
939
940 #ifdef CONFIG_HOTPLUG_CPU
941 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
942 {
943         struct clock_event_device *bc;
944         unsigned long flags;
945
946         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
947         bc = tick_broadcast_device.evtdev;
948
949         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
950                 /* This moves the broadcast assignment to this CPU: */
951                 clockevents_program_event(bc, bc->next_event, 1);
952         }
953         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
954 }
955
956 /*
957  * Remove a dying CPU from broadcasting
958  */
959 static void tick_broadcast_oneshot_offline(unsigned int cpu)
960 {
961         /*
962          * Clear the broadcast masks for the dead cpu, but do not stop
963          * the broadcast device!
964          */
965         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
966         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
967         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
968 }
969 #endif
970
971 /*
972  * Check, whether the broadcast device is in one shot mode
973  */
974 int tick_broadcast_oneshot_active(void)
975 {
976         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
977 }
978
979 /*
980  * Check whether the broadcast device supports oneshot.
981  */
982 bool tick_broadcast_oneshot_available(void)
983 {
984         struct clock_event_device *bc = tick_broadcast_device.evtdev;
985
986         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
987 }
988
989 #else
990 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
991 {
992         struct clock_event_device *bc = tick_broadcast_device.evtdev;
993
994         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
995                 return -EBUSY;
996
997         return 0;
998 }
999 #endif
1000
1001 void __init tick_broadcast_init(void)
1002 {
1003         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1004         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1005         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1006 #ifdef CONFIG_TICK_ONESHOT
1007         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1008         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1009         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1010 #endif
1011 }