sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
[linux-2.6-block.git] / kernel / sched / rt.c
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 int sched_rr_timeslice = RR_TIMESLICE;
12
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15 struct rt_bandwidth def_rt_bandwidth;
16
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19         struct rt_bandwidth *rt_b =
20                 container_of(timer, struct rt_bandwidth, rt_period_timer);
21         int idle = 0;
22         int overrun;
23
24         raw_spin_lock(&rt_b->rt_runtime_lock);
25         for (;;) {
26                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27                 if (!overrun)
28                         break;
29
30                 raw_spin_unlock(&rt_b->rt_runtime_lock);
31                 idle = do_sched_rt_period_timer(rt_b, overrun);
32                 raw_spin_lock(&rt_b->rt_runtime_lock);
33         }
34         if (idle)
35                 rt_b->rt_period_active = 0;
36         raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43         rt_b->rt_period = ns_to_ktime(period);
44         rt_b->rt_runtime = runtime;
45
46         raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48         hrtimer_init(&rt_b->rt_period_timer,
49                         CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50         rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56                 return;
57
58         raw_spin_lock(&rt_b->rt_runtime_lock);
59         if (!rt_b->rt_period_active) {
60                 rt_b->rt_period_active = 1;
61                 hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62                 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63         }
64         raw_spin_unlock(&rt_b->rt_runtime_lock);
65 }
66
67 #ifdef CONFIG_SMP
68 static void push_irq_work_func(struct irq_work *work);
69 #endif
70
71 void init_rt_rq(struct rt_rq *rt_rq)
72 {
73         struct rt_prio_array *array;
74         int i;
75
76         array = &rt_rq->active;
77         for (i = 0; i < MAX_RT_PRIO; i++) {
78                 INIT_LIST_HEAD(array->queue + i);
79                 __clear_bit(i, array->bitmap);
80         }
81         /* delimiter for bitsearch: */
82         __set_bit(MAX_RT_PRIO, array->bitmap);
83
84 #if defined CONFIG_SMP
85         rt_rq->highest_prio.curr = MAX_RT_PRIO;
86         rt_rq->highest_prio.next = MAX_RT_PRIO;
87         rt_rq->rt_nr_migratory = 0;
88         rt_rq->overloaded = 0;
89         plist_head_init(&rt_rq->pushable_tasks);
90
91 #ifdef HAVE_RT_PUSH_IPI
92         rt_rq->push_flags = 0;
93         rt_rq->push_cpu = nr_cpu_ids;
94         raw_spin_lock_init(&rt_rq->push_lock);
95         init_irq_work(&rt_rq->push_work, push_irq_work_func);
96 #endif
97 #endif /* CONFIG_SMP */
98         /* We start is dequeued state, because no RT tasks are queued */
99         rt_rq->rt_queued = 0;
100
101         rt_rq->rt_time = 0;
102         rt_rq->rt_throttled = 0;
103         rt_rq->rt_runtime = 0;
104         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110         hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120         return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125         return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130         return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135         struct rt_rq *rt_rq = rt_se->rt_rq;
136
137         return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142         int i;
143
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147         for_each_possible_cpu(i) {
148                 if (tg->rt_rq)
149                         kfree(tg->rt_rq[i]);
150                 if (tg->rt_se)
151                         kfree(tg->rt_se[i]);
152         }
153
154         kfree(tg->rt_rq);
155         kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159                 struct sched_rt_entity *rt_se, int cpu,
160                 struct sched_rt_entity *parent)
161 {
162         struct rq *rq = cpu_rq(cpu);
163
164         rt_rq->highest_prio.curr = MAX_RT_PRIO;
165         rt_rq->rt_nr_boosted = 0;
166         rt_rq->rq = rq;
167         rt_rq->tg = tg;
168
169         tg->rt_rq[cpu] = rt_rq;
170         tg->rt_se[cpu] = rt_se;
171
172         if (!rt_se)
173                 return;
174
175         if (!parent)
176                 rt_se->rt_rq = &rq->rt;
177         else
178                 rt_se->rt_rq = parent->my_q;
179
180         rt_se->my_q = rt_rq;
181         rt_se->parent = parent;
182         INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187         struct rt_rq *rt_rq;
188         struct sched_rt_entity *rt_se;
189         int i;
190
191         tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192         if (!tg->rt_rq)
193                 goto err;
194         tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195         if (!tg->rt_se)
196                 goto err;
197
198         init_rt_bandwidth(&tg->rt_bandwidth,
199                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201         for_each_possible_cpu(i) {
202                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_rq)
205                         goto err;
206
207                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_se)
210                         goto err_free_rq;
211
212                 init_rt_rq(rt_rq);
213                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215         }
216
217         return 1;
218
219 err_free_rq:
220         kfree(rt_rq);
221 err:
222         return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231         return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236         return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241         struct task_struct *p = rt_task_of(rt_se);
242
243         return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248         struct rq *rq = rq_of_rt_se(rt_se);
249
250         return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257         return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static void pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267         /* Try to pull RT tasks here if we lower this rq's prio */
268         return rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273         return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278         if (!rq->online)
279                 return;
280
281         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282         /*
283          * Make sure the mask is visible before we set
284          * the overload count. That is checked to determine
285          * if we should look at the mask. It would be a shame
286          * if we looked at the mask, but the mask was not
287          * updated yet.
288          *
289          * Matched by the barrier in pull_rt_task().
290          */
291         smp_wmb();
292         atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297         if (!rq->online)
298                 return;
299
300         /* the order here really doesn't matter */
301         atomic_dec(&rq->rd->rto_count);
302         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308                 if (!rt_rq->overloaded) {
309                         rt_set_overload(rq_of_rt_rq(rt_rq));
310                         rt_rq->overloaded = 1;
311                 }
312         } else if (rt_rq->overloaded) {
313                 rt_clear_overload(rq_of_rt_rq(rt_rq));
314                 rt_rq->overloaded = 0;
315         }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320         struct task_struct *p;
321
322         if (!rt_entity_is_task(rt_se))
323                 return;
324
325         p = rt_task_of(rt_se);
326         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328         rt_rq->rt_nr_total++;
329         if (p->nr_cpus_allowed > 1)
330                 rt_rq->rt_nr_migratory++;
331
332         update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337         struct task_struct *p;
338
339         if (!rt_entity_is_task(rt_se))
340                 return;
341
342         p = rt_task_of(rt_se);
343         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345         rt_rq->rt_nr_total--;
346         if (p->nr_cpus_allowed > 1)
347                 rt_rq->rt_nr_migratory--;
348
349         update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354         return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362
363 static inline void queue_push_tasks(struct rq *rq)
364 {
365         if (!has_pushable_tasks(rq))
366                 return;
367
368         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370
371 static inline void queue_pull_task(struct rq *rq)
372 {
373         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379         plist_node_init(&p->pushable_tasks, p->prio);
380         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382         /* Update the highest prio pushable task */
383         if (p->prio < rq->rt.highest_prio.next)
384                 rq->rt.highest_prio.next = p->prio;
385 }
386
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391         /* Update the new highest prio pushable task */
392         if (has_pushable_tasks(rq)) {
393                 p = plist_first_entry(&rq->rt.pushable_tasks,
394                                       struct task_struct, pushable_tasks);
395                 rq->rt.highest_prio.next = p->prio;
396         } else
397                 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399
400 #else
401
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422         return false;
423 }
424
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428
429 static inline void queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439         return !list_empty(&rt_se->run_list);
440 }
441
442 #ifdef CONFIG_RT_GROUP_SCHED
443
444 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445 {
446         if (!rt_rq->tg)
447                 return RUNTIME_INF;
448
449         return rt_rq->rt_runtime;
450 }
451
452 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453 {
454         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455 }
456
457 typedef struct task_group *rt_rq_iter_t;
458
459 static inline struct task_group *next_task_group(struct task_group *tg)
460 {
461         do {
462                 tg = list_entry_rcu(tg->list.next,
463                         typeof(struct task_group), list);
464         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465
466         if (&tg->list == &task_groups)
467                 tg = NULL;
468
469         return tg;
470 }
471
472 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
473         for (iter = container_of(&task_groups, typeof(*iter), list);    \
474                 (iter = next_task_group(iter)) &&                       \
475                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
476
477 #define for_each_sched_rt_entity(rt_se) \
478         for (; rt_se; rt_se = rt_se->parent)
479
480 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481 {
482         return rt_se->my_q;
483 }
484
485 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487
488 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489 {
490         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491         struct rq *rq = rq_of_rt_rq(rt_rq);
492         struct sched_rt_entity *rt_se;
493
494         int cpu = cpu_of(rq);
495
496         rt_se = rt_rq->tg->rt_se[cpu];
497
498         if (rt_rq->rt_nr_running) {
499                 if (!rt_se)
500                         enqueue_top_rt_rq(rt_rq);
501                 else if (!on_rt_rq(rt_se))
502                         enqueue_rt_entity(rt_se, false);
503
504                 if (rt_rq->highest_prio.curr < curr->prio)
505                         resched_curr(rq);
506         }
507 }
508
509 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510 {
511         struct sched_rt_entity *rt_se;
512         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513
514         rt_se = rt_rq->tg->rt_se[cpu];
515
516         if (!rt_se)
517                 dequeue_top_rt_rq(rt_rq);
518         else if (on_rt_rq(rt_se))
519                 dequeue_rt_entity(rt_se);
520 }
521
522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526
527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529         struct rt_rq *rt_rq = group_rt_rq(rt_se);
530         struct task_struct *p;
531
532         if (rt_rq)
533                 return !!rt_rq->rt_nr_boosted;
534
535         p = rt_task_of(rt_se);
536         return p->prio != p->normal_prio;
537 }
538
539 #ifdef CONFIG_SMP
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542         return this_rq()->rd->span;
543 }
544 #else
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547         return cpu_online_mask;
548 }
549 #endif
550
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559         return &rt_rq->tg->rt_bandwidth;
560 }
561
562 #else /* !CONFIG_RT_GROUP_SCHED */
563
564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566         return rt_rq->rt_runtime;
567 }
568
569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571         return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573
574 typedef struct rt_rq *rt_rq_iter_t;
575
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579 #define for_each_sched_rt_entity(rt_se) \
580         for (; rt_se; rt_se = NULL)
581
582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584         return NULL;
585 }
586
587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589         struct rq *rq = rq_of_rt_rq(rt_rq);
590
591         if (!rt_rq->rt_nr_running)
592                 return;
593
594         enqueue_top_rt_rq(rt_rq);
595         resched_curr(rq);
596 }
597
598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600         dequeue_top_rt_rq(rt_rq);
601 }
602
603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605         return rt_rq->rt_throttled;
606 }
607
608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610         return cpu_online_mask;
611 }
612
613 static inline
614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616         return &cpu_rq(cpu)->rt;
617 }
618
619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621         return &def_rt_bandwidth;
622 }
623
624 #endif /* CONFIG_RT_GROUP_SCHED */
625
626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630         return (hrtimer_active(&rt_b->rt_period_timer) ||
631                 rt_rq->rt_time < rt_b->rt_runtime);
632 }
633
634 #ifdef CONFIG_SMP
635 /*
636  * We ran out of runtime, see if we can borrow some from our neighbours.
637  */
638 static int do_balance_runtime(struct rt_rq *rt_rq)
639 {
640         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642         int i, weight, more = 0;
643         u64 rt_period;
644
645         weight = cpumask_weight(rd->span);
646
647         raw_spin_lock(&rt_b->rt_runtime_lock);
648         rt_period = ktime_to_ns(rt_b->rt_period);
649         for_each_cpu(i, rd->span) {
650                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651                 s64 diff;
652
653                 if (iter == rt_rq)
654                         continue;
655
656                 raw_spin_lock(&iter->rt_runtime_lock);
657                 /*
658                  * Either all rqs have inf runtime and there's nothing to steal
659                  * or __disable_runtime() below sets a specific rq to inf to
660                  * indicate its been disabled and disalow stealing.
661                  */
662                 if (iter->rt_runtime == RUNTIME_INF)
663                         goto next;
664
665                 /*
666                  * From runqueues with spare time, take 1/n part of their
667                  * spare time, but no more than our period.
668                  */
669                 diff = iter->rt_runtime - iter->rt_time;
670                 if (diff > 0) {
671                         diff = div_u64((u64)diff, weight);
672                         if (rt_rq->rt_runtime + diff > rt_period)
673                                 diff = rt_period - rt_rq->rt_runtime;
674                         iter->rt_runtime -= diff;
675                         rt_rq->rt_runtime += diff;
676                         more = 1;
677                         if (rt_rq->rt_runtime == rt_period) {
678                                 raw_spin_unlock(&iter->rt_runtime_lock);
679                                 break;
680                         }
681                 }
682 next:
683                 raw_spin_unlock(&iter->rt_runtime_lock);
684         }
685         raw_spin_unlock(&rt_b->rt_runtime_lock);
686
687         return more;
688 }
689
690 /*
691  * Ensure this RQ takes back all the runtime it lend to its neighbours.
692  */
693 static void __disable_runtime(struct rq *rq)
694 {
695         struct root_domain *rd = rq->rd;
696         rt_rq_iter_t iter;
697         struct rt_rq *rt_rq;
698
699         if (unlikely(!scheduler_running))
700                 return;
701
702         for_each_rt_rq(rt_rq, iter, rq) {
703                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
704                 s64 want;
705                 int i;
706
707                 raw_spin_lock(&rt_b->rt_runtime_lock);
708                 raw_spin_lock(&rt_rq->rt_runtime_lock);
709                 /*
710                  * Either we're all inf and nobody needs to borrow, or we're
711                  * already disabled and thus have nothing to do, or we have
712                  * exactly the right amount of runtime to take out.
713                  */
714                 if (rt_rq->rt_runtime == RUNTIME_INF ||
715                                 rt_rq->rt_runtime == rt_b->rt_runtime)
716                         goto balanced;
717                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
718
719                 /*
720                  * Calculate the difference between what we started out with
721                  * and what we current have, that's the amount of runtime
722                  * we lend and now have to reclaim.
723                  */
724                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
725
726                 /*
727                  * Greedy reclaim, take back as much as we can.
728                  */
729                 for_each_cpu(i, rd->span) {
730                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
731                         s64 diff;
732
733                         /*
734                          * Can't reclaim from ourselves or disabled runqueues.
735                          */
736                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
737                                 continue;
738
739                         raw_spin_lock(&iter->rt_runtime_lock);
740                         if (want > 0) {
741                                 diff = min_t(s64, iter->rt_runtime, want);
742                                 iter->rt_runtime -= diff;
743                                 want -= diff;
744                         } else {
745                                 iter->rt_runtime -= want;
746                                 want -= want;
747                         }
748                         raw_spin_unlock(&iter->rt_runtime_lock);
749
750                         if (!want)
751                                 break;
752                 }
753
754                 raw_spin_lock(&rt_rq->rt_runtime_lock);
755                 /*
756                  * We cannot be left wanting - that would mean some runtime
757                  * leaked out of the system.
758                  */
759                 BUG_ON(want);
760 balanced:
761                 /*
762                  * Disable all the borrow logic by pretending we have inf
763                  * runtime - in which case borrowing doesn't make sense.
764                  */
765                 rt_rq->rt_runtime = RUNTIME_INF;
766                 rt_rq->rt_throttled = 0;
767                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
768                 raw_spin_unlock(&rt_b->rt_runtime_lock);
769
770                 /* Make rt_rq available for pick_next_task() */
771                 sched_rt_rq_enqueue(rt_rq);
772         }
773 }
774
775 static void __enable_runtime(struct rq *rq)
776 {
777         rt_rq_iter_t iter;
778         struct rt_rq *rt_rq;
779
780         if (unlikely(!scheduler_running))
781                 return;
782
783         /*
784          * Reset each runqueue's bandwidth settings
785          */
786         for_each_rt_rq(rt_rq, iter, rq) {
787                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
788
789                 raw_spin_lock(&rt_b->rt_runtime_lock);
790                 raw_spin_lock(&rt_rq->rt_runtime_lock);
791                 rt_rq->rt_runtime = rt_b->rt_runtime;
792                 rt_rq->rt_time = 0;
793                 rt_rq->rt_throttled = 0;
794                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
795                 raw_spin_unlock(&rt_b->rt_runtime_lock);
796         }
797 }
798
799 static int balance_runtime(struct rt_rq *rt_rq)
800 {
801         int more = 0;
802
803         if (!sched_feat(RT_RUNTIME_SHARE))
804                 return more;
805
806         if (rt_rq->rt_time > rt_rq->rt_runtime) {
807                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
808                 more = do_balance_runtime(rt_rq);
809                 raw_spin_lock(&rt_rq->rt_runtime_lock);
810         }
811
812         return more;
813 }
814 #else /* !CONFIG_SMP */
815 static inline int balance_runtime(struct rt_rq *rt_rq)
816 {
817         return 0;
818 }
819 #endif /* CONFIG_SMP */
820
821 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
822 {
823         int i, idle = 1, throttled = 0;
824         const struct cpumask *span;
825
826         span = sched_rt_period_mask();
827 #ifdef CONFIG_RT_GROUP_SCHED
828         /*
829          * FIXME: isolated CPUs should really leave the root task group,
830          * whether they are isolcpus or were isolated via cpusets, lest
831          * the timer run on a CPU which does not service all runqueues,
832          * potentially leaving other CPUs indefinitely throttled.  If
833          * isolation is really required, the user will turn the throttle
834          * off to kill the perturbations it causes anyway.  Meanwhile,
835          * this maintains functionality for boot and/or troubleshooting.
836          */
837         if (rt_b == &root_task_group.rt_bandwidth)
838                 span = cpu_online_mask;
839 #endif
840         for_each_cpu(i, span) {
841                 int enqueue = 0;
842                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
843                 struct rq *rq = rq_of_rt_rq(rt_rq);
844
845                 raw_spin_lock(&rq->lock);
846                 if (rt_rq->rt_time) {
847                         u64 runtime;
848
849                         raw_spin_lock(&rt_rq->rt_runtime_lock);
850                         if (rt_rq->rt_throttled)
851                                 balance_runtime(rt_rq);
852                         runtime = rt_rq->rt_runtime;
853                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
854                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
855                                 rt_rq->rt_throttled = 0;
856                                 enqueue = 1;
857
858                                 /*
859                                  * When we're idle and a woken (rt) task is
860                                  * throttled check_preempt_curr() will set
861                                  * skip_update and the time between the wakeup
862                                  * and this unthrottle will get accounted as
863                                  * 'runtime'.
864                                  */
865                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
866                                         rq_clock_skip_update(rq, false);
867                         }
868                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
869                                 idle = 0;
870                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
871                 } else if (rt_rq->rt_nr_running) {
872                         idle = 0;
873                         if (!rt_rq_throttled(rt_rq))
874                                 enqueue = 1;
875                 }
876                 if (rt_rq->rt_throttled)
877                         throttled = 1;
878
879                 if (enqueue)
880                         sched_rt_rq_enqueue(rt_rq);
881                 raw_spin_unlock(&rq->lock);
882         }
883
884         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
885                 return 1;
886
887         return idle;
888 }
889
890 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
891 {
892 #ifdef CONFIG_RT_GROUP_SCHED
893         struct rt_rq *rt_rq = group_rt_rq(rt_se);
894
895         if (rt_rq)
896                 return rt_rq->highest_prio.curr;
897 #endif
898
899         return rt_task_of(rt_se)->prio;
900 }
901
902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
903 {
904         u64 runtime = sched_rt_runtime(rt_rq);
905
906         if (rt_rq->rt_throttled)
907                 return rt_rq_throttled(rt_rq);
908
909         if (runtime >= sched_rt_period(rt_rq))
910                 return 0;
911
912         balance_runtime(rt_rq);
913         runtime = sched_rt_runtime(rt_rq);
914         if (runtime == RUNTIME_INF)
915                 return 0;
916
917         if (rt_rq->rt_time > runtime) {
918                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919
920                 /*
921                  * Don't actually throttle groups that have no runtime assigned
922                  * but accrue some time due to boosting.
923                  */
924                 if (likely(rt_b->rt_runtime)) {
925                         rt_rq->rt_throttled = 1;
926                         printk_deferred_once("sched: RT throttling activated\n");
927                 } else {
928                         /*
929                          * In case we did anyway, make it go away,
930                          * replenishment is a joke, since it will replenish us
931                          * with exactly 0 ns.
932                          */
933                         rt_rq->rt_time = 0;
934                 }
935
936                 if (rt_rq_throttled(rt_rq)) {
937                         sched_rt_rq_dequeue(rt_rq);
938                         return 1;
939                 }
940         }
941
942         return 0;
943 }
944
945 /*
946  * Update the current task's runtime statistics. Skip current tasks that
947  * are not in our scheduling class.
948  */
949 static void update_curr_rt(struct rq *rq)
950 {
951         struct task_struct *curr = rq->curr;
952         struct sched_rt_entity *rt_se = &curr->rt;
953         u64 delta_exec;
954
955         if (curr->sched_class != &rt_sched_class)
956                 return;
957
958         delta_exec = rq_clock_task(rq) - curr->se.exec_start;
959         if (unlikely((s64)delta_exec <= 0))
960                 return;
961
962         schedstat_set(curr->se.statistics.exec_max,
963                       max(curr->se.statistics.exec_max, delta_exec));
964
965         curr->se.sum_exec_runtime += delta_exec;
966         account_group_exec_runtime(curr, delta_exec);
967
968         curr->se.exec_start = rq_clock_task(rq);
969         cpuacct_charge(curr, delta_exec);
970
971         sched_rt_avg_update(rq, delta_exec);
972
973         if (!rt_bandwidth_enabled())
974                 return;
975
976         for_each_sched_rt_entity(rt_se) {
977                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
978
979                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
980                         raw_spin_lock(&rt_rq->rt_runtime_lock);
981                         rt_rq->rt_time += delta_exec;
982                         if (sched_rt_runtime_exceeded(rt_rq))
983                                 resched_curr(rq);
984                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
985                 }
986         }
987 }
988
989 static void
990 dequeue_top_rt_rq(struct rt_rq *rt_rq)
991 {
992         struct rq *rq = rq_of_rt_rq(rt_rq);
993
994         BUG_ON(&rq->rt != rt_rq);
995
996         if (!rt_rq->rt_queued)
997                 return;
998
999         BUG_ON(!rq->nr_running);
1000
1001         sub_nr_running(rq, rt_rq->rt_nr_running);
1002         rt_rq->rt_queued = 0;
1003 }
1004
1005 static void
1006 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1007 {
1008         struct rq *rq = rq_of_rt_rq(rt_rq);
1009
1010         BUG_ON(&rq->rt != rt_rq);
1011
1012         if (rt_rq->rt_queued)
1013                 return;
1014         if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1015                 return;
1016
1017         add_nr_running(rq, rt_rq->rt_nr_running);
1018         rt_rq->rt_queued = 1;
1019 }
1020
1021 #if defined CONFIG_SMP
1022
1023 static void
1024 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1025 {
1026         struct rq *rq = rq_of_rt_rq(rt_rq);
1027
1028 #ifdef CONFIG_RT_GROUP_SCHED
1029         /*
1030          * Change rq's cpupri only if rt_rq is the top queue.
1031          */
1032         if (&rq->rt != rt_rq)
1033                 return;
1034 #endif
1035         if (rq->online && prio < prev_prio)
1036                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1037 }
1038
1039 static void
1040 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1041 {
1042         struct rq *rq = rq_of_rt_rq(rt_rq);
1043
1044 #ifdef CONFIG_RT_GROUP_SCHED
1045         /*
1046          * Change rq's cpupri only if rt_rq is the top queue.
1047          */
1048         if (&rq->rt != rt_rq)
1049                 return;
1050 #endif
1051         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1052                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1053 }
1054
1055 #else /* CONFIG_SMP */
1056
1057 static inline
1058 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1059 static inline
1060 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1061
1062 #endif /* CONFIG_SMP */
1063
1064 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1065 static void
1066 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1067 {
1068         int prev_prio = rt_rq->highest_prio.curr;
1069
1070         if (prio < prev_prio)
1071                 rt_rq->highest_prio.curr = prio;
1072
1073         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1074 }
1075
1076 static void
1077 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1078 {
1079         int prev_prio = rt_rq->highest_prio.curr;
1080
1081         if (rt_rq->rt_nr_running) {
1082
1083                 WARN_ON(prio < prev_prio);
1084
1085                 /*
1086                  * This may have been our highest task, and therefore
1087                  * we may have some recomputation to do
1088                  */
1089                 if (prio == prev_prio) {
1090                         struct rt_prio_array *array = &rt_rq->active;
1091
1092                         rt_rq->highest_prio.curr =
1093                                 sched_find_first_bit(array->bitmap);
1094                 }
1095
1096         } else
1097                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1098
1099         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1100 }
1101
1102 #else
1103
1104 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1105 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1106
1107 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1108
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110
1111 static void
1112 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113 {
1114         if (rt_se_boosted(rt_se))
1115                 rt_rq->rt_nr_boosted++;
1116
1117         if (rt_rq->tg)
1118                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1119 }
1120
1121 static void
1122 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1123 {
1124         if (rt_se_boosted(rt_se))
1125                 rt_rq->rt_nr_boosted--;
1126
1127         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1128 }
1129
1130 #else /* CONFIG_RT_GROUP_SCHED */
1131
1132 static void
1133 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1134 {
1135         start_rt_bandwidth(&def_rt_bandwidth);
1136 }
1137
1138 static inline
1139 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1140
1141 #endif /* CONFIG_RT_GROUP_SCHED */
1142
1143 static inline
1144 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1145 {
1146         struct rt_rq *group_rq = group_rt_rq(rt_se);
1147
1148         if (group_rq)
1149                 return group_rq->rt_nr_running;
1150         else
1151                 return 1;
1152 }
1153
1154 static inline
1155 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157         int prio = rt_se_prio(rt_se);
1158
1159         WARN_ON(!rt_prio(prio));
1160         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1161
1162         inc_rt_prio(rt_rq, prio);
1163         inc_rt_migration(rt_se, rt_rq);
1164         inc_rt_group(rt_se, rt_rq);
1165 }
1166
1167 static inline
1168 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1169 {
1170         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1171         WARN_ON(!rt_rq->rt_nr_running);
1172         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1173
1174         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1175         dec_rt_migration(rt_se, rt_rq);
1176         dec_rt_group(rt_se, rt_rq);
1177 }
1178
1179 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1180 {
1181         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1182         struct rt_prio_array *array = &rt_rq->active;
1183         struct rt_rq *group_rq = group_rt_rq(rt_se);
1184         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1185
1186         /*
1187          * Don't enqueue the group if its throttled, or when empty.
1188          * The latter is a consequence of the former when a child group
1189          * get throttled and the current group doesn't have any other
1190          * active members.
1191          */
1192         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1193                 return;
1194
1195         if (head)
1196                 list_add(&rt_se->run_list, queue);
1197         else
1198                 list_add_tail(&rt_se->run_list, queue);
1199         __set_bit(rt_se_prio(rt_se), array->bitmap);
1200
1201         inc_rt_tasks(rt_se, rt_rq);
1202 }
1203
1204 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1205 {
1206         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1207         struct rt_prio_array *array = &rt_rq->active;
1208
1209         list_del_init(&rt_se->run_list);
1210         if (list_empty(array->queue + rt_se_prio(rt_se)))
1211                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1212
1213         dec_rt_tasks(rt_se, rt_rq);
1214 }
1215
1216 /*
1217  * Because the prio of an upper entry depends on the lower
1218  * entries, we must remove entries top - down.
1219  */
1220 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1221 {
1222         struct sched_rt_entity *back = NULL;
1223
1224         for_each_sched_rt_entity(rt_se) {
1225                 rt_se->back = back;
1226                 back = rt_se;
1227         }
1228
1229         dequeue_top_rt_rq(rt_rq_of_se(back));
1230
1231         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1232                 if (on_rt_rq(rt_se))
1233                         __dequeue_rt_entity(rt_se);
1234         }
1235 }
1236
1237 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1238 {
1239         struct rq *rq = rq_of_rt_se(rt_se);
1240
1241         dequeue_rt_stack(rt_se);
1242         for_each_sched_rt_entity(rt_se)
1243                 __enqueue_rt_entity(rt_se, head);
1244         enqueue_top_rt_rq(&rq->rt);
1245 }
1246
1247 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1248 {
1249         struct rq *rq = rq_of_rt_se(rt_se);
1250
1251         dequeue_rt_stack(rt_se);
1252
1253         for_each_sched_rt_entity(rt_se) {
1254                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1255
1256                 if (rt_rq && rt_rq->rt_nr_running)
1257                         __enqueue_rt_entity(rt_se, false);
1258         }
1259         enqueue_top_rt_rq(&rq->rt);
1260 }
1261
1262 /*
1263  * Adding/removing a task to/from a priority array:
1264  */
1265 static void
1266 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1267 {
1268         struct sched_rt_entity *rt_se = &p->rt;
1269
1270         if (flags & ENQUEUE_WAKEUP)
1271                 rt_se->timeout = 0;
1272
1273         enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1274
1275         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1276                 enqueue_pushable_task(rq, p);
1277 }
1278
1279 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1280 {
1281         struct sched_rt_entity *rt_se = &p->rt;
1282
1283         update_curr_rt(rq);
1284         dequeue_rt_entity(rt_se);
1285
1286         dequeue_pushable_task(rq, p);
1287 }
1288
1289 /*
1290  * Put task to the head or the end of the run list without the overhead of
1291  * dequeue followed by enqueue.
1292  */
1293 static void
1294 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1295 {
1296         if (on_rt_rq(rt_se)) {
1297                 struct rt_prio_array *array = &rt_rq->active;
1298                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1299
1300                 if (head)
1301                         list_move(&rt_se->run_list, queue);
1302                 else
1303                         list_move_tail(&rt_se->run_list, queue);
1304         }
1305 }
1306
1307 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1308 {
1309         struct sched_rt_entity *rt_se = &p->rt;
1310         struct rt_rq *rt_rq;
1311
1312         for_each_sched_rt_entity(rt_se) {
1313                 rt_rq = rt_rq_of_se(rt_se);
1314                 requeue_rt_entity(rt_rq, rt_se, head);
1315         }
1316 }
1317
1318 static void yield_task_rt(struct rq *rq)
1319 {
1320         requeue_task_rt(rq, rq->curr, 0);
1321 }
1322
1323 #ifdef CONFIG_SMP
1324 static int find_lowest_rq(struct task_struct *task);
1325
1326 static int
1327 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1328 {
1329         struct task_struct *curr;
1330         struct rq *rq;
1331
1332         /* For anything but wake ups, just return the task_cpu */
1333         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1334                 goto out;
1335
1336         rq = cpu_rq(cpu);
1337
1338         rcu_read_lock();
1339         curr = READ_ONCE(rq->curr); /* unlocked access */
1340
1341         /*
1342          * If the current task on @p's runqueue is an RT task, then
1343          * try to see if we can wake this RT task up on another
1344          * runqueue. Otherwise simply start this RT task
1345          * on its current runqueue.
1346          *
1347          * We want to avoid overloading runqueues. If the woken
1348          * task is a higher priority, then it will stay on this CPU
1349          * and the lower prio task should be moved to another CPU.
1350          * Even though this will probably make the lower prio task
1351          * lose its cache, we do not want to bounce a higher task
1352          * around just because it gave up its CPU, perhaps for a
1353          * lock?
1354          *
1355          * For equal prio tasks, we just let the scheduler sort it out.
1356          *
1357          * Otherwise, just let it ride on the affined RQ and the
1358          * post-schedule router will push the preempted task away
1359          *
1360          * This test is optimistic, if we get it wrong the load-balancer
1361          * will have to sort it out.
1362          */
1363         if (curr && unlikely(rt_task(curr)) &&
1364             (curr->nr_cpus_allowed < 2 ||
1365              curr->prio <= p->prio)) {
1366                 int target = find_lowest_rq(p);
1367
1368                 /*
1369                  * Don't bother moving it if the destination CPU is
1370                  * not running a lower priority task.
1371                  */
1372                 if (target != -1 &&
1373                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1374                         cpu = target;
1375         }
1376         rcu_read_unlock();
1377
1378 out:
1379         return cpu;
1380 }
1381
1382 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1383 {
1384         /*
1385          * Current can't be migrated, useless to reschedule,
1386          * let's hope p can move out.
1387          */
1388         if (rq->curr->nr_cpus_allowed == 1 ||
1389             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1390                 return;
1391
1392         /*
1393          * p is migratable, so let's not schedule it and
1394          * see if it is pushed or pulled somewhere else.
1395          */
1396         if (p->nr_cpus_allowed != 1
1397             && cpupri_find(&rq->rd->cpupri, p, NULL))
1398                 return;
1399
1400         /*
1401          * There appears to be other cpus that can accept
1402          * current and none to run 'p', so lets reschedule
1403          * to try and push current away:
1404          */
1405         requeue_task_rt(rq, p, 1);
1406         resched_curr(rq);
1407 }
1408
1409 #endif /* CONFIG_SMP */
1410
1411 /*
1412  * Preempt the current task with a newly woken task if needed:
1413  */
1414 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1415 {
1416         if (p->prio < rq->curr->prio) {
1417                 resched_curr(rq);
1418                 return;
1419         }
1420
1421 #ifdef CONFIG_SMP
1422         /*
1423          * If:
1424          *
1425          * - the newly woken task is of equal priority to the current task
1426          * - the newly woken task is non-migratable while current is migratable
1427          * - current will be preempted on the next reschedule
1428          *
1429          * we should check to see if current can readily move to a different
1430          * cpu.  If so, we will reschedule to allow the push logic to try
1431          * to move current somewhere else, making room for our non-migratable
1432          * task.
1433          */
1434         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1435                 check_preempt_equal_prio(rq, p);
1436 #endif
1437 }
1438
1439 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1440                                                    struct rt_rq *rt_rq)
1441 {
1442         struct rt_prio_array *array = &rt_rq->active;
1443         struct sched_rt_entity *next = NULL;
1444         struct list_head *queue;
1445         int idx;
1446
1447         idx = sched_find_first_bit(array->bitmap);
1448         BUG_ON(idx >= MAX_RT_PRIO);
1449
1450         queue = array->queue + idx;
1451         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1452
1453         return next;
1454 }
1455
1456 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1457 {
1458         struct sched_rt_entity *rt_se;
1459         struct task_struct *p;
1460         struct rt_rq *rt_rq  = &rq->rt;
1461
1462         do {
1463                 rt_se = pick_next_rt_entity(rq, rt_rq);
1464                 BUG_ON(!rt_se);
1465                 rt_rq = group_rt_rq(rt_se);
1466         } while (rt_rq);
1467
1468         p = rt_task_of(rt_se);
1469         p->se.exec_start = rq_clock_task(rq);
1470
1471         return p;
1472 }
1473
1474 static struct task_struct *
1475 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1476 {
1477         struct task_struct *p;
1478         struct rt_rq *rt_rq = &rq->rt;
1479
1480         if (need_pull_rt_task(rq, prev)) {
1481                 pull_rt_task(rq);
1482                 /*
1483                  * pull_rt_task() can drop (and re-acquire) rq->lock; this
1484                  * means a dl or stop task can slip in, in which case we need
1485                  * to re-start task selection.
1486                  */
1487                 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1488                              rq->dl.dl_nr_running))
1489                         return RETRY_TASK;
1490         }
1491
1492         /*
1493          * We may dequeue prev's rt_rq in put_prev_task().
1494          * So, we update time before rt_nr_running check.
1495          */
1496         if (prev->sched_class == &rt_sched_class)
1497                 update_curr_rt(rq);
1498
1499         if (!rt_rq->rt_queued)
1500                 return NULL;
1501
1502         put_prev_task(rq, prev);
1503
1504         p = _pick_next_task_rt(rq);
1505
1506         /* The running task is never eligible for pushing */
1507         dequeue_pushable_task(rq, p);
1508
1509         queue_push_tasks(rq);
1510
1511         return p;
1512 }
1513
1514 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1515 {
1516         update_curr_rt(rq);
1517
1518         /*
1519          * The previous task needs to be made eligible for pushing
1520          * if it is still active
1521          */
1522         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1523                 enqueue_pushable_task(rq, p);
1524 }
1525
1526 #ifdef CONFIG_SMP
1527
1528 /* Only try algorithms three times */
1529 #define RT_MAX_TRIES 3
1530
1531 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1532 {
1533         if (!task_running(rq, p) &&
1534             cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1535                 return 1;
1536         return 0;
1537 }
1538
1539 /*
1540  * Return the highest pushable rq's task, which is suitable to be executed
1541  * on the cpu, NULL otherwise
1542  */
1543 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1544 {
1545         struct plist_head *head = &rq->rt.pushable_tasks;
1546         struct task_struct *p;
1547
1548         if (!has_pushable_tasks(rq))
1549                 return NULL;
1550
1551         plist_for_each_entry(p, head, pushable_tasks) {
1552                 if (pick_rt_task(rq, p, cpu))
1553                         return p;
1554         }
1555
1556         return NULL;
1557 }
1558
1559 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1560
1561 static int find_lowest_rq(struct task_struct *task)
1562 {
1563         struct sched_domain *sd;
1564         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1565         int this_cpu = smp_processor_id();
1566         int cpu      = task_cpu(task);
1567
1568         /* Make sure the mask is initialized first */
1569         if (unlikely(!lowest_mask))
1570                 return -1;
1571
1572         if (task->nr_cpus_allowed == 1)
1573                 return -1; /* No other targets possible */
1574
1575         if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1576                 return -1; /* No targets found */
1577
1578         /*
1579          * At this point we have built a mask of cpus representing the
1580          * lowest priority tasks in the system.  Now we want to elect
1581          * the best one based on our affinity and topology.
1582          *
1583          * We prioritize the last cpu that the task executed on since
1584          * it is most likely cache-hot in that location.
1585          */
1586         if (cpumask_test_cpu(cpu, lowest_mask))
1587                 return cpu;
1588
1589         /*
1590          * Otherwise, we consult the sched_domains span maps to figure
1591          * out which cpu is logically closest to our hot cache data.
1592          */
1593         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1594                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1595
1596         rcu_read_lock();
1597         for_each_domain(cpu, sd) {
1598                 if (sd->flags & SD_WAKE_AFFINE) {
1599                         int best_cpu;
1600
1601                         /*
1602                          * "this_cpu" is cheaper to preempt than a
1603                          * remote processor.
1604                          */
1605                         if (this_cpu != -1 &&
1606                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1607                                 rcu_read_unlock();
1608                                 return this_cpu;
1609                         }
1610
1611                         best_cpu = cpumask_first_and(lowest_mask,
1612                                                      sched_domain_span(sd));
1613                         if (best_cpu < nr_cpu_ids) {
1614                                 rcu_read_unlock();
1615                                 return best_cpu;
1616                         }
1617                 }
1618         }
1619         rcu_read_unlock();
1620
1621         /*
1622          * And finally, if there were no matches within the domains
1623          * just give the caller *something* to work with from the compatible
1624          * locations.
1625          */
1626         if (this_cpu != -1)
1627                 return this_cpu;
1628
1629         cpu = cpumask_any(lowest_mask);
1630         if (cpu < nr_cpu_ids)
1631                 return cpu;
1632         return -1;
1633 }
1634
1635 /* Will lock the rq it finds */
1636 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1637 {
1638         struct rq *lowest_rq = NULL;
1639         int tries;
1640         int cpu;
1641
1642         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1643                 cpu = find_lowest_rq(task);
1644
1645                 if ((cpu == -1) || (cpu == rq->cpu))
1646                         break;
1647
1648                 lowest_rq = cpu_rq(cpu);
1649
1650                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1651                         /*
1652                          * Target rq has tasks of equal or higher priority,
1653                          * retrying does not release any lock and is unlikely
1654                          * to yield a different result.
1655                          */
1656                         lowest_rq = NULL;
1657                         break;
1658                 }
1659
1660                 /* if the prio of this runqueue changed, try again */
1661                 if (double_lock_balance(rq, lowest_rq)) {
1662                         /*
1663                          * We had to unlock the run queue. In
1664                          * the mean time, task could have
1665                          * migrated already or had its affinity changed.
1666                          * Also make sure that it wasn't scheduled on its rq.
1667                          */
1668                         if (unlikely(task_rq(task) != rq ||
1669                                      !cpumask_test_cpu(lowest_rq->cpu,
1670                                                        tsk_cpus_allowed(task)) ||
1671                                      task_running(rq, task) ||
1672                                      !task_on_rq_queued(task))) {
1673
1674                                 double_unlock_balance(rq, lowest_rq);
1675                                 lowest_rq = NULL;
1676                                 break;
1677                         }
1678                 }
1679
1680                 /* If this rq is still suitable use it. */
1681                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1682                         break;
1683
1684                 /* try again */
1685                 double_unlock_balance(rq, lowest_rq);
1686                 lowest_rq = NULL;
1687         }
1688
1689         return lowest_rq;
1690 }
1691
1692 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1693 {
1694         struct task_struct *p;
1695
1696         if (!has_pushable_tasks(rq))
1697                 return NULL;
1698
1699         p = plist_first_entry(&rq->rt.pushable_tasks,
1700                               struct task_struct, pushable_tasks);
1701
1702         BUG_ON(rq->cpu != task_cpu(p));
1703         BUG_ON(task_current(rq, p));
1704         BUG_ON(p->nr_cpus_allowed <= 1);
1705
1706         BUG_ON(!task_on_rq_queued(p));
1707         BUG_ON(!rt_task(p));
1708
1709         return p;
1710 }
1711
1712 /*
1713  * If the current CPU has more than one RT task, see if the non
1714  * running task can migrate over to a CPU that is running a task
1715  * of lesser priority.
1716  */
1717 static int push_rt_task(struct rq *rq)
1718 {
1719         struct task_struct *next_task;
1720         struct rq *lowest_rq;
1721         int ret = 0;
1722
1723         if (!rq->rt.overloaded)
1724                 return 0;
1725
1726         next_task = pick_next_pushable_task(rq);
1727         if (!next_task)
1728                 return 0;
1729
1730 retry:
1731         if (unlikely(next_task == rq->curr)) {
1732                 WARN_ON(1);
1733                 return 0;
1734         }
1735
1736         /*
1737          * It's possible that the next_task slipped in of
1738          * higher priority than current. If that's the case
1739          * just reschedule current.
1740          */
1741         if (unlikely(next_task->prio < rq->curr->prio)) {
1742                 resched_curr(rq);
1743                 return 0;
1744         }
1745
1746         /* We might release rq lock */
1747         get_task_struct(next_task);
1748
1749         /* find_lock_lowest_rq locks the rq if found */
1750         lowest_rq = find_lock_lowest_rq(next_task, rq);
1751         if (!lowest_rq) {
1752                 struct task_struct *task;
1753                 /*
1754                  * find_lock_lowest_rq releases rq->lock
1755                  * so it is possible that next_task has migrated.
1756                  *
1757                  * We need to make sure that the task is still on the same
1758                  * run-queue and is also still the next task eligible for
1759                  * pushing.
1760                  */
1761                 task = pick_next_pushable_task(rq);
1762                 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1763                         /*
1764                          * The task hasn't migrated, and is still the next
1765                          * eligible task, but we failed to find a run-queue
1766                          * to push it to.  Do not retry in this case, since
1767                          * other cpus will pull from us when ready.
1768                          */
1769                         goto out;
1770                 }
1771
1772                 if (!task)
1773                         /* No more tasks, just exit */
1774                         goto out;
1775
1776                 /*
1777                  * Something has shifted, try again.
1778                  */
1779                 put_task_struct(next_task);
1780                 next_task = task;
1781                 goto retry;
1782         }
1783
1784         deactivate_task(rq, next_task, 0);
1785         set_task_cpu(next_task, lowest_rq->cpu);
1786         activate_task(lowest_rq, next_task, 0);
1787         ret = 1;
1788
1789         resched_curr(lowest_rq);
1790
1791         double_unlock_balance(rq, lowest_rq);
1792
1793 out:
1794         put_task_struct(next_task);
1795
1796         return ret;
1797 }
1798
1799 static void push_rt_tasks(struct rq *rq)
1800 {
1801         /* push_rt_task will return true if it moved an RT */
1802         while (push_rt_task(rq))
1803                 ;
1804 }
1805
1806 #ifdef HAVE_RT_PUSH_IPI
1807 /*
1808  * The search for the next cpu always starts at rq->cpu and ends
1809  * when we reach rq->cpu again. It will never return rq->cpu.
1810  * This returns the next cpu to check, or nr_cpu_ids if the loop
1811  * is complete.
1812  *
1813  * rq->rt.push_cpu holds the last cpu returned by this function,
1814  * or if this is the first instance, it must hold rq->cpu.
1815  */
1816 static int rto_next_cpu(struct rq *rq)
1817 {
1818         int prev_cpu = rq->rt.push_cpu;
1819         int cpu;
1820
1821         cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1822
1823         /*
1824          * If the previous cpu is less than the rq's CPU, then it already
1825          * passed the end of the mask, and has started from the beginning.
1826          * We end if the next CPU is greater or equal to rq's CPU.
1827          */
1828         if (prev_cpu < rq->cpu) {
1829                 if (cpu >= rq->cpu)
1830                         return nr_cpu_ids;
1831
1832         } else if (cpu >= nr_cpu_ids) {
1833                 /*
1834                  * We passed the end of the mask, start at the beginning.
1835                  * If the result is greater or equal to the rq's CPU, then
1836                  * the loop is finished.
1837                  */
1838                 cpu = cpumask_first(rq->rd->rto_mask);
1839                 if (cpu >= rq->cpu)
1840                         return nr_cpu_ids;
1841         }
1842         rq->rt.push_cpu = cpu;
1843
1844         /* Return cpu to let the caller know if the loop is finished or not */
1845         return cpu;
1846 }
1847
1848 static int find_next_push_cpu(struct rq *rq)
1849 {
1850         struct rq *next_rq;
1851         int cpu;
1852
1853         while (1) {
1854                 cpu = rto_next_cpu(rq);
1855                 if (cpu >= nr_cpu_ids)
1856                         break;
1857                 next_rq = cpu_rq(cpu);
1858
1859                 /* Make sure the next rq can push to this rq */
1860                 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1861                         break;
1862         }
1863
1864         return cpu;
1865 }
1866
1867 #define RT_PUSH_IPI_EXECUTING           1
1868 #define RT_PUSH_IPI_RESTART             2
1869
1870 static void tell_cpu_to_push(struct rq *rq)
1871 {
1872         int cpu;
1873
1874         if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1875                 raw_spin_lock(&rq->rt.push_lock);
1876                 /* Make sure it's still executing */
1877                 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1878                         /*
1879                          * Tell the IPI to restart the loop as things have
1880                          * changed since it started.
1881                          */
1882                         rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1883                         raw_spin_unlock(&rq->rt.push_lock);
1884                         return;
1885                 }
1886                 raw_spin_unlock(&rq->rt.push_lock);
1887         }
1888
1889         /* When here, there's no IPI going around */
1890
1891         rq->rt.push_cpu = rq->cpu;
1892         cpu = find_next_push_cpu(rq);
1893         if (cpu >= nr_cpu_ids)
1894                 return;
1895
1896         rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1897
1898         irq_work_queue_on(&rq->rt.push_work, cpu);
1899 }
1900
1901 /* Called from hardirq context */
1902 static void try_to_push_tasks(void *arg)
1903 {
1904         struct rt_rq *rt_rq = arg;
1905         struct rq *rq, *src_rq;
1906         int this_cpu;
1907         int cpu;
1908
1909         this_cpu = rt_rq->push_cpu;
1910
1911         /* Paranoid check */
1912         BUG_ON(this_cpu != smp_processor_id());
1913
1914         rq = cpu_rq(this_cpu);
1915         src_rq = rq_of_rt_rq(rt_rq);
1916
1917 again:
1918         if (has_pushable_tasks(rq)) {
1919                 raw_spin_lock(&rq->lock);
1920                 push_rt_task(rq);
1921                 raw_spin_unlock(&rq->lock);
1922         }
1923
1924         /* Pass the IPI to the next rt overloaded queue */
1925         raw_spin_lock(&rt_rq->push_lock);
1926         /*
1927          * If the source queue changed since the IPI went out,
1928          * we need to restart the search from that CPU again.
1929          */
1930         if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1931                 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1932                 rt_rq->push_cpu = src_rq->cpu;
1933         }
1934
1935         cpu = find_next_push_cpu(src_rq);
1936
1937         if (cpu >= nr_cpu_ids)
1938                 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1939         raw_spin_unlock(&rt_rq->push_lock);
1940
1941         if (cpu >= nr_cpu_ids)
1942                 return;
1943
1944         /*
1945          * It is possible that a restart caused this CPU to be
1946          * chosen again. Don't bother with an IPI, just see if we
1947          * have more to push.
1948          */
1949         if (unlikely(cpu == rq->cpu))
1950                 goto again;
1951
1952         /* Try the next RT overloaded CPU */
1953         irq_work_queue_on(&rt_rq->push_work, cpu);
1954 }
1955
1956 static void push_irq_work_func(struct irq_work *work)
1957 {
1958         struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1959
1960         try_to_push_tasks(rt_rq);
1961 }
1962 #endif /* HAVE_RT_PUSH_IPI */
1963
1964 static void pull_rt_task(struct rq *this_rq)
1965 {
1966         int this_cpu = this_rq->cpu, cpu;
1967         bool resched = false;
1968         struct task_struct *p;
1969         struct rq *src_rq;
1970
1971         if (likely(!rt_overloaded(this_rq)))
1972                 return;
1973
1974         /*
1975          * Match the barrier from rt_set_overloaded; this guarantees that if we
1976          * see overloaded we must also see the rto_mask bit.
1977          */
1978         smp_rmb();
1979
1980 #ifdef HAVE_RT_PUSH_IPI
1981         if (sched_feat(RT_PUSH_IPI)) {
1982                 tell_cpu_to_push(this_rq);
1983                 return;
1984         }
1985 #endif
1986
1987         for_each_cpu(cpu, this_rq->rd->rto_mask) {
1988                 if (this_cpu == cpu)
1989                         continue;
1990
1991                 src_rq = cpu_rq(cpu);
1992
1993                 /*
1994                  * Don't bother taking the src_rq->lock if the next highest
1995                  * task is known to be lower-priority than our current task.
1996                  * This may look racy, but if this value is about to go
1997                  * logically higher, the src_rq will push this task away.
1998                  * And if its going logically lower, we do not care
1999                  */
2000                 if (src_rq->rt.highest_prio.next >=
2001                     this_rq->rt.highest_prio.curr)
2002                         continue;
2003
2004                 /*
2005                  * We can potentially drop this_rq's lock in
2006                  * double_lock_balance, and another CPU could
2007                  * alter this_rq
2008                  */
2009                 double_lock_balance(this_rq, src_rq);
2010
2011                 /*
2012                  * We can pull only a task, which is pushable
2013                  * on its rq, and no others.
2014                  */
2015                 p = pick_highest_pushable_task(src_rq, this_cpu);
2016
2017                 /*
2018                  * Do we have an RT task that preempts
2019                  * the to-be-scheduled task?
2020                  */
2021                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2022                         WARN_ON(p == src_rq->curr);
2023                         WARN_ON(!task_on_rq_queued(p));
2024
2025                         /*
2026                          * There's a chance that p is higher in priority
2027                          * than what's currently running on its cpu.
2028                          * This is just that p is wakeing up and hasn't
2029                          * had a chance to schedule. We only pull
2030                          * p if it is lower in priority than the
2031                          * current task on the run queue
2032                          */
2033                         if (p->prio < src_rq->curr->prio)
2034                                 goto skip;
2035
2036                         resched = true;
2037
2038                         deactivate_task(src_rq, p, 0);
2039                         set_task_cpu(p, this_cpu);
2040                         activate_task(this_rq, p, 0);
2041                         /*
2042                          * We continue with the search, just in
2043                          * case there's an even higher prio task
2044                          * in another runqueue. (low likelihood
2045                          * but possible)
2046                          */
2047                 }
2048 skip:
2049                 double_unlock_balance(this_rq, src_rq);
2050         }
2051
2052         if (resched)
2053                 resched_curr(this_rq);
2054 }
2055
2056 /*
2057  * If we are not running and we are not going to reschedule soon, we should
2058  * try to push tasks away now
2059  */
2060 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2061 {
2062         if (!task_running(rq, p) &&
2063             !test_tsk_need_resched(rq->curr) &&
2064             has_pushable_tasks(rq) &&
2065             p->nr_cpus_allowed > 1 &&
2066             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2067             (rq->curr->nr_cpus_allowed < 2 ||
2068              rq->curr->prio <= p->prio))
2069                 push_rt_tasks(rq);
2070 }
2071
2072 static void set_cpus_allowed_rt(struct task_struct *p,
2073                                 const struct cpumask *new_mask)
2074 {
2075         struct rq *rq;
2076         int weight;
2077
2078         BUG_ON(!rt_task(p));
2079
2080         if (!task_on_rq_queued(p))
2081                 return;
2082
2083         weight = cpumask_weight(new_mask);
2084
2085         /*
2086          * Only update if the process changes its state from whether it
2087          * can migrate or not.
2088          */
2089         if ((p->nr_cpus_allowed > 1) == (weight > 1))
2090                 return;
2091
2092         rq = task_rq(p);
2093
2094         /*
2095          * The process used to be able to migrate OR it can now migrate
2096          */
2097         if (weight <= 1) {
2098                 if (!task_current(rq, p))
2099                         dequeue_pushable_task(rq, p);
2100                 BUG_ON(!rq->rt.rt_nr_migratory);
2101                 rq->rt.rt_nr_migratory--;
2102         } else {
2103                 if (!task_current(rq, p))
2104                         enqueue_pushable_task(rq, p);
2105                 rq->rt.rt_nr_migratory++;
2106         }
2107
2108         update_rt_migration(&rq->rt);
2109 }
2110
2111 /* Assumes rq->lock is held */
2112 static void rq_online_rt(struct rq *rq)
2113 {
2114         if (rq->rt.overloaded)
2115                 rt_set_overload(rq);
2116
2117         __enable_runtime(rq);
2118
2119         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2120 }
2121
2122 /* Assumes rq->lock is held */
2123 static void rq_offline_rt(struct rq *rq)
2124 {
2125         if (rq->rt.overloaded)
2126                 rt_clear_overload(rq);
2127
2128         __disable_runtime(rq);
2129
2130         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2131 }
2132
2133 /*
2134  * When switch from the rt queue, we bring ourselves to a position
2135  * that we might want to pull RT tasks from other runqueues.
2136  */
2137 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2138 {
2139         /*
2140          * If there are other RT tasks then we will reschedule
2141          * and the scheduling of the other RT tasks will handle
2142          * the balancing. But if we are the last RT task
2143          * we may need to handle the pulling of RT tasks
2144          * now.
2145          */
2146         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2147                 return;
2148
2149         queue_pull_task(rq);
2150 }
2151
2152 void __init init_sched_rt_class(void)
2153 {
2154         unsigned int i;
2155
2156         for_each_possible_cpu(i) {
2157                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2158                                         GFP_KERNEL, cpu_to_node(i));
2159         }
2160 }
2161 #endif /* CONFIG_SMP */
2162
2163 /*
2164  * When switching a task to RT, we may overload the runqueue
2165  * with RT tasks. In this case we try to push them off to
2166  * other runqueues.
2167  */
2168 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2169 {
2170         /*
2171          * If we are already running, then there's nothing
2172          * that needs to be done. But if we are not running
2173          * we may need to preempt the current running task.
2174          * If that current running task is also an RT task
2175          * then see if we can move to another run queue.
2176          */
2177         if (task_on_rq_queued(p) && rq->curr != p) {
2178 #ifdef CONFIG_SMP
2179                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2180                         queue_push_tasks(rq);
2181 #else
2182                 if (p->prio < rq->curr->prio)
2183                         resched_curr(rq);
2184 #endif /* CONFIG_SMP */
2185         }
2186 }
2187
2188 /*
2189  * Priority of the task has changed. This may cause
2190  * us to initiate a push or pull.
2191  */
2192 static void
2193 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2194 {
2195         if (!task_on_rq_queued(p))
2196                 return;
2197
2198         if (rq->curr == p) {
2199 #ifdef CONFIG_SMP
2200                 /*
2201                  * If our priority decreases while running, we
2202                  * may need to pull tasks to this runqueue.
2203                  */
2204                 if (oldprio < p->prio)
2205                         queue_pull_task(rq);
2206
2207                 /*
2208                  * If there's a higher priority task waiting to run
2209                  * then reschedule.
2210                  */
2211                 if (p->prio > rq->rt.highest_prio.curr)
2212                         resched_curr(rq);
2213 #else
2214                 /* For UP simply resched on drop of prio */
2215                 if (oldprio < p->prio)
2216                         resched_curr(rq);
2217 #endif /* CONFIG_SMP */
2218         } else {
2219                 /*
2220                  * This task is not running, but if it is
2221                  * greater than the current running task
2222                  * then reschedule.
2223                  */
2224                 if (p->prio < rq->curr->prio)
2225                         resched_curr(rq);
2226         }
2227 }
2228
2229 static void watchdog(struct rq *rq, struct task_struct *p)
2230 {
2231         unsigned long soft, hard;
2232
2233         /* max may change after cur was read, this will be fixed next tick */
2234         soft = task_rlimit(p, RLIMIT_RTTIME);
2235         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2236
2237         if (soft != RLIM_INFINITY) {
2238                 unsigned long next;
2239
2240                 if (p->rt.watchdog_stamp != jiffies) {
2241                         p->rt.timeout++;
2242                         p->rt.watchdog_stamp = jiffies;
2243                 }
2244
2245                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2246                 if (p->rt.timeout > next)
2247                         p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2248         }
2249 }
2250
2251 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2252 {
2253         struct sched_rt_entity *rt_se = &p->rt;
2254
2255         update_curr_rt(rq);
2256
2257         watchdog(rq, p);
2258
2259         /*
2260          * RR tasks need a special form of timeslice management.
2261          * FIFO tasks have no timeslices.
2262          */
2263         if (p->policy != SCHED_RR)
2264                 return;
2265
2266         if (--p->rt.time_slice)
2267                 return;
2268
2269         p->rt.time_slice = sched_rr_timeslice;
2270
2271         /*
2272          * Requeue to the end of queue if we (and all of our ancestors) are not
2273          * the only element on the queue
2274          */
2275         for_each_sched_rt_entity(rt_se) {
2276                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2277                         requeue_task_rt(rq, p, 0);
2278                         resched_curr(rq);
2279                         return;
2280                 }
2281         }
2282 }
2283
2284 static void set_curr_task_rt(struct rq *rq)
2285 {
2286         struct task_struct *p = rq->curr;
2287
2288         p->se.exec_start = rq_clock_task(rq);
2289
2290         /* The running task is never eligible for pushing */
2291         dequeue_pushable_task(rq, p);
2292 }
2293
2294 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2295 {
2296         /*
2297          * Time slice is 0 for SCHED_FIFO tasks
2298          */
2299         if (task->policy == SCHED_RR)
2300                 return sched_rr_timeslice;
2301         else
2302                 return 0;
2303 }
2304
2305 const struct sched_class rt_sched_class = {
2306         .next                   = &fair_sched_class,
2307         .enqueue_task           = enqueue_task_rt,
2308         .dequeue_task           = dequeue_task_rt,
2309         .yield_task             = yield_task_rt,
2310
2311         .check_preempt_curr     = check_preempt_curr_rt,
2312
2313         .pick_next_task         = pick_next_task_rt,
2314         .put_prev_task          = put_prev_task_rt,
2315
2316 #ifdef CONFIG_SMP
2317         .select_task_rq         = select_task_rq_rt,
2318
2319         .set_cpus_allowed       = set_cpus_allowed_rt,
2320         .rq_online              = rq_online_rt,
2321         .rq_offline             = rq_offline_rt,
2322         .task_woken             = task_woken_rt,
2323         .switched_from          = switched_from_rt,
2324 #endif
2325
2326         .set_curr_task          = set_curr_task_rt,
2327         .task_tick              = task_tick_rt,
2328
2329         .get_rr_interval        = get_rr_interval_rt,
2330
2331         .prio_changed           = prio_changed_rt,
2332         .switched_to            = switched_to_rt,
2333
2334         .update_curr            = update_curr_rt,
2335 };
2336
2337 #ifdef CONFIG_SCHED_DEBUG
2338 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2339
2340 void print_rt_stats(struct seq_file *m, int cpu)
2341 {
2342         rt_rq_iter_t iter;
2343         struct rt_rq *rt_rq;
2344
2345         rcu_read_lock();
2346         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2347                 print_rt_rq(m, cpu, rt_rq);
2348         rcu_read_unlock();
2349 }
2350 #endif /* CONFIG_SCHED_DEBUG */