5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
25 struct kmem_cache *cachep;
26 struct list_head list;
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
34 * creates the kmem cache to allocate pids from.
35 * @nr_ids: the number of numerical ids this pid will have to carry
38 static struct kmem_cache *create_pid_cachep(int nr_ids)
40 struct pid_cache *pcache;
41 struct kmem_cache *cachep;
43 mutex_lock(&pid_caches_mutex);
44 list_for_each_entry(pcache, &pid_caches_lh, list)
45 if (pcache->nr_ids == nr_ids)
48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 cachep = kmem_cache_create(pcache->name,
54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 0, SLAB_HWCACHE_ALIGN, NULL);
59 pcache->nr_ids = nr_ids;
60 pcache->cachep = cachep;
61 list_add(&pcache->list, &pid_caches_lh);
63 mutex_unlock(&pid_caches_mutex);
64 return pcache->cachep;
69 mutex_unlock(&pid_caches_mutex);
73 static void proc_cleanup_work(struct work_struct *work)
75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 pid_ns_release_proc(ns);
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
82 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
84 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
87 static void dec_pid_namespaces(struct ucounts *ucounts)
89 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
92 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
93 struct pid_namespace *parent_pid_ns)
95 struct pid_namespace *ns;
96 unsigned int level = parent_pid_ns->level + 1;
97 struct ucounts *ucounts;
102 if (level > MAX_PID_NS_LEVEL)
104 ucounts = inc_pid_namespaces(user_ns);
109 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
113 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114 if (!ns->pidmap[0].page)
117 ns->pid_cachep = create_pid_cachep(level + 1);
118 if (ns->pid_cachep == NULL)
121 err = ns_alloc_inum(&ns->ns);
124 ns->ns.ops = &pidns_operations;
126 kref_init(&ns->kref);
128 ns->parent = get_pid_ns(parent_pid_ns);
129 ns->user_ns = get_user_ns(user_ns);
130 ns->ucounts = ucounts;
131 ns->nr_hashed = PIDNS_HASH_ADDING;
132 INIT_WORK(&ns->proc_work, proc_cleanup_work);
134 set_bit(0, ns->pidmap[0].page);
135 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
137 for (i = 1; i < PIDMAP_ENTRIES; i++)
138 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
143 kfree(ns->pidmap[0].page);
145 kmem_cache_free(pid_ns_cachep, ns);
147 dec_pid_namespaces(ucounts);
152 static void delayed_free_pidns(struct rcu_head *p)
154 kmem_cache_free(pid_ns_cachep,
155 container_of(p, struct pid_namespace, rcu));
158 static void destroy_pid_namespace(struct pid_namespace *ns)
162 ns_free_inum(&ns->ns);
163 for (i = 0; i < PIDMAP_ENTRIES; i++)
164 kfree(ns->pidmap[i].page);
165 dec_pid_namespaces(ns->ucounts);
166 put_user_ns(ns->user_ns);
167 call_rcu(&ns->rcu, delayed_free_pidns);
170 struct pid_namespace *copy_pid_ns(unsigned long flags,
171 struct user_namespace *user_ns, struct pid_namespace *old_ns)
173 if (!(flags & CLONE_NEWPID))
174 return get_pid_ns(old_ns);
175 if (task_active_pid_ns(current) != old_ns)
176 return ERR_PTR(-EINVAL);
177 return create_pid_namespace(user_ns, old_ns);
180 static void free_pid_ns(struct kref *kref)
182 struct pid_namespace *ns;
184 ns = container_of(kref, struct pid_namespace, kref);
185 destroy_pid_namespace(ns);
188 void put_pid_ns(struct pid_namespace *ns)
190 struct pid_namespace *parent;
192 while (ns != &init_pid_ns) {
194 if (!kref_put(&ns->kref, free_pid_ns))
199 EXPORT_SYMBOL_GPL(put_pid_ns);
201 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
205 struct task_struct *task, *me = current;
206 int init_pids = thread_group_leader(me) ? 1 : 2;
208 /* Don't allow any more processes into the pid namespace */
209 disable_pid_allocation(pid_ns);
212 * Ignore SIGCHLD causing any terminated children to autoreap.
213 * This speeds up the namespace shutdown, plus see the comment
216 spin_lock_irq(&me->sighand->siglock);
217 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
218 spin_unlock_irq(&me->sighand->siglock);
221 * The last thread in the cgroup-init thread group is terminating.
222 * Find remaining pid_ts in the namespace, signal and wait for them
225 * Note: This signals each threads in the namespace - even those that
226 * belong to the same thread group, To avoid this, we would have
227 * to walk the entire tasklist looking a processes in this
228 * namespace, but that could be unnecessarily expensive if the
229 * pid namespace has just a few processes. Or we need to
230 * maintain a tasklist for each pid namespace.
233 read_lock(&tasklist_lock);
234 nr = next_pidmap(pid_ns, 1);
238 task = pid_task(find_vpid(nr), PIDTYPE_PID);
239 if (task && !__fatal_signal_pending(task))
240 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
244 nr = next_pidmap(pid_ns, nr);
246 read_unlock(&tasklist_lock);
249 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
250 * sys_wait4() will also block until our children traced from the
251 * parent namespace are detached and become EXIT_DEAD.
254 clear_thread_flag(TIF_SIGPENDING);
255 rc = sys_wait4(-1, NULL, __WALL, NULL);
256 } while (rc != -ECHILD);
259 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
260 * really care, we could reparent them to the global init. We could
261 * exit and reap ->child_reaper even if it is not the last thread in
262 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
263 * pid_ns can not go away until proc_kill_sb() drops the reference.
265 * But this ns can also have other tasks injected by setns()+fork().
266 * Again, ignoring the user visible semantics we do not really need
267 * to wait until they are all reaped, but they can be reparented to
268 * us and thus we need to ensure that pid->child_reaper stays valid
269 * until they all go away. See free_pid()->wake_up_process().
271 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
275 set_current_state(TASK_UNINTERRUPTIBLE);
276 if (pid_ns->nr_hashed == init_pids)
280 __set_current_state(TASK_RUNNING);
283 current->signal->group_exit_code = pid_ns->reboot;
285 acct_exit_ns(pid_ns);
289 #ifdef CONFIG_CHECKPOINT_RESTORE
290 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
291 void __user *buffer, size_t *lenp, loff_t *ppos)
293 struct pid_namespace *pid_ns = task_active_pid_ns(current);
294 struct ctl_table tmp = *table;
296 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
300 * Writing directly to ns' last_pid field is OK, since this field
301 * is volatile in a living namespace anyway and a code writing to
302 * it should synchronize its usage with external means.
305 tmp.data = &pid_ns->last_pid;
306 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
311 static struct ctl_table pid_ns_ctl_table[] = {
313 .procname = "ns_last_pid",
314 .maxlen = sizeof(int),
315 .mode = 0666, /* permissions are checked in the handler */
316 .proc_handler = pid_ns_ctl_handler,
322 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
323 #endif /* CONFIG_CHECKPOINT_RESTORE */
325 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
327 if (pid_ns == &init_pid_ns)
331 case LINUX_REBOOT_CMD_RESTART2:
332 case LINUX_REBOOT_CMD_RESTART:
333 pid_ns->reboot = SIGHUP;
336 case LINUX_REBOOT_CMD_POWER_OFF:
337 case LINUX_REBOOT_CMD_HALT:
338 pid_ns->reboot = SIGINT;
344 read_lock(&tasklist_lock);
345 force_sig(SIGKILL, pid_ns->child_reaper);
346 read_unlock(&tasklist_lock);
354 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
356 return container_of(ns, struct pid_namespace, ns);
359 static struct ns_common *pidns_get(struct task_struct *task)
361 struct pid_namespace *ns;
364 ns = task_active_pid_ns(task);
369 return ns ? &ns->ns : NULL;
372 static void pidns_put(struct ns_common *ns)
374 put_pid_ns(to_pid_ns(ns));
377 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
379 struct pid_namespace *active = task_active_pid_ns(current);
380 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
382 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
383 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
387 * Only allow entering the current active pid namespace
388 * or a child of the current active pid namespace.
390 * This is required for fork to return a usable pid value and
391 * this maintains the property that processes and their
392 * children can not escape their current pid namespace.
394 if (new->level < active->level)
398 while (ancestor->level > active->level)
399 ancestor = ancestor->parent;
400 if (ancestor != active)
403 put_pid_ns(nsproxy->pid_ns_for_children);
404 nsproxy->pid_ns_for_children = get_pid_ns(new);
408 static struct ns_common *pidns_get_parent(struct ns_common *ns)
410 struct pid_namespace *active = task_active_pid_ns(current);
411 struct pid_namespace *pid_ns, *p;
413 /* See if the parent is in the current namespace */
414 pid_ns = p = to_pid_ns(ns)->parent;
417 return ERR_PTR(-EPERM);
423 return &get_pid_ns(pid_ns)->ns;
426 static struct user_namespace *pidns_owner(struct ns_common *ns)
428 return to_pid_ns(ns)->user_ns;
431 const struct proc_ns_operations pidns_operations = {
433 .type = CLONE_NEWPID,
436 .install = pidns_install,
437 .owner = pidns_owner,
438 .get_parent = pidns_get_parent,
441 static __init int pid_namespaces_init(void)
443 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
445 #ifdef CONFIG_CHECKPOINT_RESTORE
446 register_sysctl_paths(kern_path, pid_ns_ctl_table);
451 __initcall(pid_namespaces_init);