mm: move MAP_SYNC to asm-generic/mman-common.h
[linux-2.6-block.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59         raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63                                         unsigned int __unused)
64 {
65         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70         return &(kretprobe_table_locks[hash].lock);
71 }
72
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84         struct list_head list;
85         kprobe_opcode_t *insns;         /* Page of instruction slots */
86         struct kprobe_insn_cache *cache;
87         int nused;
88         int ngarbage;
89         char slot_used[];
90 };
91
92 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
93         (offsetof(struct kprobe_insn_page, slot_used) + \
94          (sizeof(char) * (slots)))
95
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100
101 enum kprobe_slot_state {
102         SLOT_CLEAN = 0,
103         SLOT_DIRTY = 1,
104         SLOT_USED = 2,
105 };
106
107 void __weak *alloc_insn_page(void)
108 {
109         return module_alloc(PAGE_SIZE);
110 }
111
112 void __weak free_insn_page(void *page)
113 {
114         module_memfree(page);
115 }
116
117 struct kprobe_insn_cache kprobe_insn_slots = {
118         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119         .alloc = alloc_insn_page,
120         .free = free_insn_page,
121         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122         .insn_size = MAX_INSN_SIZE,
123         .nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133         struct kprobe_insn_page *kip;
134         kprobe_opcode_t *slot = NULL;
135
136         /* Since the slot array is not protected by rcu, we need a mutex */
137         mutex_lock(&c->mutex);
138  retry:
139         rcu_read_lock();
140         list_for_each_entry_rcu(kip, &c->pages, list) {
141                 if (kip->nused < slots_per_page(c)) {
142                         int i;
143                         for (i = 0; i < slots_per_page(c); i++) {
144                                 if (kip->slot_used[i] == SLOT_CLEAN) {
145                                         kip->slot_used[i] = SLOT_USED;
146                                         kip->nused++;
147                                         slot = kip->insns + (i * c->insn_size);
148                                         rcu_read_unlock();
149                                         goto out;
150                                 }
151                         }
152                         /* kip->nused is broken. Fix it. */
153                         kip->nused = slots_per_page(c);
154                         WARN_ON(1);
155                 }
156         }
157         rcu_read_unlock();
158
159         /* If there are any garbage slots, collect it and try again. */
160         if (c->nr_garbage && collect_garbage_slots(c) == 0)
161                 goto retry;
162
163         /* All out of space.  Need to allocate a new page. */
164         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165         if (!kip)
166                 goto out;
167
168         /*
169          * Use module_alloc so this page is within +/- 2GB of where the
170          * kernel image and loaded module images reside. This is required
171          * so x86_64 can correctly handle the %rip-relative fixups.
172          */
173         kip->insns = c->alloc();
174         if (!kip->insns) {
175                 kfree(kip);
176                 goto out;
177         }
178         INIT_LIST_HEAD(&kip->list);
179         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180         kip->slot_used[0] = SLOT_USED;
181         kip->nused = 1;
182         kip->ngarbage = 0;
183         kip->cache = c;
184         list_add_rcu(&kip->list, &c->pages);
185         slot = kip->insns;
186 out:
187         mutex_unlock(&c->mutex);
188         return slot;
189 }
190
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194         kip->slot_used[idx] = SLOT_CLEAN;
195         kip->nused--;
196         if (kip->nused == 0) {
197                 /*
198                  * Page is no longer in use.  Free it unless
199                  * it's the last one.  We keep the last one
200                  * so as not to have to set it up again the
201                  * next time somebody inserts a probe.
202                  */
203                 if (!list_is_singular(&kip->list)) {
204                         list_del_rcu(&kip->list);
205                         synchronize_rcu();
206                         kip->cache->free(kip->insns);
207                         kfree(kip);
208                 }
209                 return 1;
210         }
211         return 0;
212 }
213
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216         struct kprobe_insn_page *kip, *next;
217
218         /* Ensure no-one is interrupted on the garbages */
219         synchronize_rcu();
220
221         list_for_each_entry_safe(kip, next, &c->pages, list) {
222                 int i;
223                 if (kip->ngarbage == 0)
224                         continue;
225                 kip->ngarbage = 0;      /* we will collect all garbages */
226                 for (i = 0; i < slots_per_page(c); i++) {
227                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228                                 break;
229                 }
230         }
231         c->nr_garbage = 0;
232         return 0;
233 }
234
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236                       kprobe_opcode_t *slot, int dirty)
237 {
238         struct kprobe_insn_page *kip;
239         long idx;
240
241         mutex_lock(&c->mutex);
242         rcu_read_lock();
243         list_for_each_entry_rcu(kip, &c->pages, list) {
244                 idx = ((long)slot - (long)kip->insns) /
245                         (c->insn_size * sizeof(kprobe_opcode_t));
246                 if (idx >= 0 && idx < slots_per_page(c))
247                         goto out;
248         }
249         /* Could not find this slot. */
250         WARN_ON(1);
251         kip = NULL;
252 out:
253         rcu_read_unlock();
254         /* Mark and sweep: this may sleep */
255         if (kip) {
256                 /* Check double free */
257                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258                 if (dirty) {
259                         kip->slot_used[idx] = SLOT_DIRTY;
260                         kip->ngarbage++;
261                         if (++c->nr_garbage > slots_per_page(c))
262                                 collect_garbage_slots(c);
263                 } else {
264                         collect_one_slot(kip, idx);
265                 }
266         }
267         mutex_unlock(&c->mutex);
268 }
269
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277         struct kprobe_insn_page *kip;
278         bool ret = false;
279
280         rcu_read_lock();
281         list_for_each_entry_rcu(kip, &c->pages, list) {
282                 if (addr >= (unsigned long)kip->insns &&
283                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
284                         ret = true;
285                         break;
286                 }
287         }
288         rcu_read_unlock();
289
290         return ret;
291 }
292
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297         .alloc = alloc_insn_page,
298         .free = free_insn_page,
299         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300         /* .insn_size is initialized later */
301         .nr_garbage = 0,
302 };
303 #endif
304 #endif
305
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309         __this_cpu_write(kprobe_instance, kp);
310 }
311
312 static inline void reset_kprobe_instance(void)
313 {
314         __this_cpu_write(kprobe_instance, NULL);
315 }
316
317 /*
318  * This routine is called either:
319  *      - under the kprobe_mutex - during kprobe_[un]register()
320  *                              OR
321  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325         struct hlist_head *head;
326         struct kprobe *p;
327
328         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329         hlist_for_each_entry_rcu(p, head, hlist) {
330                 if (p->addr == addr)
331                         return p;
332         }
333
334         return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343         return p->pre_handler == aggr_pre_handler;
344 }
345
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350                list_empty(&p->list);
351 }
352
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372         struct kprobe *kp;
373
374         list_for_each_entry_rcu(kp, &p->list, list) {
375                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376                         set_kprobe_instance(kp);
377                         kp->pre_handler(kp, regs);
378                 }
379                 reset_kprobe_instance();
380         }
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387         struct optimized_kprobe *op;
388
389         op = container_of(p, struct optimized_kprobe, kp);
390         arch_remove_optimized_kprobe(op);
391         arch_remove_kprobe(p);
392         kfree(op);
393 }
394
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398         struct optimized_kprobe *op;
399
400         if (kprobe_aggrprobe(p)) {
401                 op = container_of(p, struct optimized_kprobe, kp);
402                 return arch_prepared_optinsn(&op->optinsn);
403         }
404
405         return 0;
406 }
407
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414         if (!kprobe_aggrprobe(p))
415                 return kprobe_disabled(p);
416
417         op = container_of(p, struct optimized_kprobe, kp);
418
419         return kprobe_disabled(p) && list_empty(&op->list);
420 }
421
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425         struct optimized_kprobe *op;
426
427         if (kprobe_aggrprobe(p)) {
428                 op = container_of(p, struct optimized_kprobe, kp);
429                 if (!list_empty(&op->list))
430                         return 1;
431         }
432         return 0;
433 }
434
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441         int i;
442         struct kprobe *p = NULL;
443         struct optimized_kprobe *op;
444
445         /* Don't check i == 0, since that is a breakpoint case. */
446         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447                 p = get_kprobe((void *)(addr - i));
448
449         if (p && kprobe_optready(p)) {
450                 op = container_of(p, struct optimized_kprobe, kp);
451                 if (arch_within_optimized_kprobe(op, addr))
452                         return p;
453         }
454
455         return NULL;
456 }
457
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473         /*
474          * The optimization/unoptimization refers online_cpus via
475          * stop_machine() and cpu-hotplug modifies online_cpus.
476          * And same time, text_mutex will be held in cpu-hotplug and here.
477          * This combination can cause a deadlock (cpu-hotplug try to lock
478          * text_mutex but stop_machine can not be done because online_cpus
479          * has been changed)
480          * To avoid this deadlock, caller must have locked cpu hotplug
481          * for preventing cpu-hotplug outside of text_mutex locking.
482          */
483         lockdep_assert_cpus_held();
484
485         /* Optimization never be done when disarmed */
486         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
487             list_empty(&optimizing_list))
488                 return;
489
490         mutex_lock(&text_mutex);
491         arch_optimize_kprobes(&optimizing_list);
492         mutex_unlock(&text_mutex);
493 }
494
495 /*
496  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497  * if need) kprobes listed on unoptimizing_list.
498  */
499 static void do_unoptimize_kprobes(void)
500 {
501         struct optimized_kprobe *op, *tmp;
502
503         /* See comment in do_optimize_kprobes() */
504         lockdep_assert_cpus_held();
505
506         /* Unoptimization must be done anytime */
507         if (list_empty(&unoptimizing_list))
508                 return;
509
510         mutex_lock(&text_mutex);
511         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512         /* Loop free_list for disarming */
513         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514                 /* Disarm probes if marked disabled */
515                 if (kprobe_disabled(&op->kp))
516                         arch_disarm_kprobe(&op->kp);
517                 if (kprobe_unused(&op->kp)) {
518                         /*
519                          * Remove unused probes from hash list. After waiting
520                          * for synchronization, these probes are reclaimed.
521                          * (reclaiming is done by do_free_cleaned_kprobes.)
522                          */
523                         hlist_del_rcu(&op->kp.hlist);
524                 } else
525                         list_del_init(&op->list);
526         }
527         mutex_unlock(&text_mutex);
528 }
529
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533         struct optimized_kprobe *op, *tmp;
534
535         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536                 list_del_init(&op->list);
537                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538                         /*
539                          * This must not happen, but if there is a kprobe
540                          * still in use, keep it on kprobes hash list.
541                          */
542                         continue;
543                 }
544                 free_aggr_kprobe(&op->kp);
545         }
546 }
547
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557         mutex_lock(&kprobe_mutex);
558         cpus_read_lock();
559         /* Lock modules while optimizing kprobes */
560         mutex_lock(&module_mutex);
561
562         /*
563          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
564          * kprobes before waiting for quiesence period.
565          */
566         do_unoptimize_kprobes();
567
568         /*
569          * Step 2: Wait for quiesence period to ensure all potentially
570          * preempted tasks to have normally scheduled. Because optprobe
571          * may modify multiple instructions, there is a chance that Nth
572          * instruction is preempted. In that case, such tasks can return
573          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
574          * Note that on non-preemptive kernel, this is transparently converted
575          * to synchronoze_sched() to wait for all interrupts to have completed.
576          */
577         synchronize_rcu_tasks();
578
579         /* Step 3: Optimize kprobes after quiesence period */
580         do_optimize_kprobes();
581
582         /* Step 4: Free cleaned kprobes after quiesence period */
583         do_free_cleaned_kprobes();
584
585         mutex_unlock(&module_mutex);
586         cpus_read_unlock();
587         mutex_unlock(&kprobe_mutex);
588
589         /* Step 5: Kick optimizer again if needed */
590         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
591                 kick_kprobe_optimizer();
592 }
593
594 /* Wait for completing optimization and unoptimization */
595 void wait_for_kprobe_optimizer(void)
596 {
597         mutex_lock(&kprobe_mutex);
598
599         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
600                 mutex_unlock(&kprobe_mutex);
601
602                 /* this will also make optimizing_work execute immmediately */
603                 flush_delayed_work(&optimizing_work);
604                 /* @optimizing_work might not have been queued yet, relax */
605                 cpu_relax();
606
607                 mutex_lock(&kprobe_mutex);
608         }
609
610         mutex_unlock(&kprobe_mutex);
611 }
612
613 /* Optimize kprobe if p is ready to be optimized */
614 static void optimize_kprobe(struct kprobe *p)
615 {
616         struct optimized_kprobe *op;
617
618         /* Check if the kprobe is disabled or not ready for optimization. */
619         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
620             (kprobe_disabled(p) || kprobes_all_disarmed))
621                 return;
622
623         /* kprobes with post_handler can not be optimized */
624         if (p->post_handler)
625                 return;
626
627         op = container_of(p, struct optimized_kprobe, kp);
628
629         /* Check there is no other kprobes at the optimized instructions */
630         if (arch_check_optimized_kprobe(op) < 0)
631                 return;
632
633         /* Check if it is already optimized. */
634         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
635                 return;
636         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
637
638         if (!list_empty(&op->list))
639                 /* This is under unoptimizing. Just dequeue the probe */
640                 list_del_init(&op->list);
641         else {
642                 list_add(&op->list, &optimizing_list);
643                 kick_kprobe_optimizer();
644         }
645 }
646
647 /* Short cut to direct unoptimizing */
648 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
649 {
650         lockdep_assert_cpus_held();
651         arch_unoptimize_kprobe(op);
652         if (kprobe_disabled(&op->kp))
653                 arch_disarm_kprobe(&op->kp);
654 }
655
656 /* Unoptimize a kprobe if p is optimized */
657 static void unoptimize_kprobe(struct kprobe *p, bool force)
658 {
659         struct optimized_kprobe *op;
660
661         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
662                 return; /* This is not an optprobe nor optimized */
663
664         op = container_of(p, struct optimized_kprobe, kp);
665         if (!kprobe_optimized(p)) {
666                 /* Unoptimized or unoptimizing case */
667                 if (force && !list_empty(&op->list)) {
668                         /*
669                          * Only if this is unoptimizing kprobe and forced,
670                          * forcibly unoptimize it. (No need to unoptimize
671                          * unoptimized kprobe again :)
672                          */
673                         list_del_init(&op->list);
674                         force_unoptimize_kprobe(op);
675                 }
676                 return;
677         }
678
679         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
680         if (!list_empty(&op->list)) {
681                 /* Dequeue from the optimization queue */
682                 list_del_init(&op->list);
683                 return;
684         }
685         /* Optimized kprobe case */
686         if (force)
687                 /* Forcibly update the code: this is a special case */
688                 force_unoptimize_kprobe(op);
689         else {
690                 list_add(&op->list, &unoptimizing_list);
691                 kick_kprobe_optimizer();
692         }
693 }
694
695 /* Cancel unoptimizing for reusing */
696 static int reuse_unused_kprobe(struct kprobe *ap)
697 {
698         struct optimized_kprobe *op;
699
700         /*
701          * Unused kprobe MUST be on the way of delayed unoptimizing (means
702          * there is still a relative jump) and disabled.
703          */
704         op = container_of(ap, struct optimized_kprobe, kp);
705         WARN_ON_ONCE(list_empty(&op->list));
706         /* Enable the probe again */
707         ap->flags &= ~KPROBE_FLAG_DISABLED;
708         /* Optimize it again (remove from op->list) */
709         if (!kprobe_optready(ap))
710                 return -EINVAL;
711
712         optimize_kprobe(ap);
713         return 0;
714 }
715
716 /* Remove optimized instructions */
717 static void kill_optimized_kprobe(struct kprobe *p)
718 {
719         struct optimized_kprobe *op;
720
721         op = container_of(p, struct optimized_kprobe, kp);
722         if (!list_empty(&op->list))
723                 /* Dequeue from the (un)optimization queue */
724                 list_del_init(&op->list);
725         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
726
727         if (kprobe_unused(p)) {
728                 /* Enqueue if it is unused */
729                 list_add(&op->list, &freeing_list);
730                 /*
731                  * Remove unused probes from the hash list. After waiting
732                  * for synchronization, this probe is reclaimed.
733                  * (reclaiming is done by do_free_cleaned_kprobes().)
734                  */
735                 hlist_del_rcu(&op->kp.hlist);
736         }
737
738         /* Don't touch the code, because it is already freed. */
739         arch_remove_optimized_kprobe(op);
740 }
741
742 static inline
743 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
744 {
745         if (!kprobe_ftrace(p))
746                 arch_prepare_optimized_kprobe(op, p);
747 }
748
749 /* Try to prepare optimized instructions */
750 static void prepare_optimized_kprobe(struct kprobe *p)
751 {
752         struct optimized_kprobe *op;
753
754         op = container_of(p, struct optimized_kprobe, kp);
755         __prepare_optimized_kprobe(op, p);
756 }
757
758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
760 {
761         struct optimized_kprobe *op;
762
763         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
764         if (!op)
765                 return NULL;
766
767         INIT_LIST_HEAD(&op->list);
768         op->kp.addr = p->addr;
769         __prepare_optimized_kprobe(op, p);
770
771         return &op->kp;
772 }
773
774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
775
776 /*
777  * Prepare an optimized_kprobe and optimize it
778  * NOTE: p must be a normal registered kprobe
779  */
780 static void try_to_optimize_kprobe(struct kprobe *p)
781 {
782         struct kprobe *ap;
783         struct optimized_kprobe *op;
784
785         /* Impossible to optimize ftrace-based kprobe */
786         if (kprobe_ftrace(p))
787                 return;
788
789         /* For preparing optimization, jump_label_text_reserved() is called */
790         cpus_read_lock();
791         jump_label_lock();
792         mutex_lock(&text_mutex);
793
794         ap = alloc_aggr_kprobe(p);
795         if (!ap)
796                 goto out;
797
798         op = container_of(ap, struct optimized_kprobe, kp);
799         if (!arch_prepared_optinsn(&op->optinsn)) {
800                 /* If failed to setup optimizing, fallback to kprobe */
801                 arch_remove_optimized_kprobe(op);
802                 kfree(op);
803                 goto out;
804         }
805
806         init_aggr_kprobe(ap, p);
807         optimize_kprobe(ap);    /* This just kicks optimizer thread */
808
809 out:
810         mutex_unlock(&text_mutex);
811         jump_label_unlock();
812         cpus_read_unlock();
813 }
814
815 #ifdef CONFIG_SYSCTL
816 static void optimize_all_kprobes(void)
817 {
818         struct hlist_head *head;
819         struct kprobe *p;
820         unsigned int i;
821
822         mutex_lock(&kprobe_mutex);
823         /* If optimization is already allowed, just return */
824         if (kprobes_allow_optimization)
825                 goto out;
826
827         cpus_read_lock();
828         kprobes_allow_optimization = true;
829         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
830                 head = &kprobe_table[i];
831                 hlist_for_each_entry_rcu(p, head, hlist)
832                         if (!kprobe_disabled(p))
833                                 optimize_kprobe(p);
834         }
835         cpus_read_unlock();
836         printk(KERN_INFO "Kprobes globally optimized\n");
837 out:
838         mutex_unlock(&kprobe_mutex);
839 }
840
841 static void unoptimize_all_kprobes(void)
842 {
843         struct hlist_head *head;
844         struct kprobe *p;
845         unsigned int i;
846
847         mutex_lock(&kprobe_mutex);
848         /* If optimization is already prohibited, just return */
849         if (!kprobes_allow_optimization) {
850                 mutex_unlock(&kprobe_mutex);
851                 return;
852         }
853
854         cpus_read_lock();
855         kprobes_allow_optimization = false;
856         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
857                 head = &kprobe_table[i];
858                 hlist_for_each_entry_rcu(p, head, hlist) {
859                         if (!kprobe_disabled(p))
860                                 unoptimize_kprobe(p, false);
861                 }
862         }
863         cpus_read_unlock();
864         mutex_unlock(&kprobe_mutex);
865
866         /* Wait for unoptimizing completion */
867         wait_for_kprobe_optimizer();
868         printk(KERN_INFO "Kprobes globally unoptimized\n");
869 }
870
871 static DEFINE_MUTEX(kprobe_sysctl_mutex);
872 int sysctl_kprobes_optimization;
873 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
874                                       void __user *buffer, size_t *length,
875                                       loff_t *ppos)
876 {
877         int ret;
878
879         mutex_lock(&kprobe_sysctl_mutex);
880         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
881         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
882
883         if (sysctl_kprobes_optimization)
884                 optimize_all_kprobes();
885         else
886                 unoptimize_all_kprobes();
887         mutex_unlock(&kprobe_sysctl_mutex);
888
889         return ret;
890 }
891 #endif /* CONFIG_SYSCTL */
892
893 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
894 static void __arm_kprobe(struct kprobe *p)
895 {
896         struct kprobe *_p;
897
898         /* Check collision with other optimized kprobes */
899         _p = get_optimized_kprobe((unsigned long)p->addr);
900         if (unlikely(_p))
901                 /* Fallback to unoptimized kprobe */
902                 unoptimize_kprobe(_p, true);
903
904         arch_arm_kprobe(p);
905         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
906 }
907
908 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
909 static void __disarm_kprobe(struct kprobe *p, bool reopt)
910 {
911         struct kprobe *_p;
912
913         /* Try to unoptimize */
914         unoptimize_kprobe(p, kprobes_all_disarmed);
915
916         if (!kprobe_queued(p)) {
917                 arch_disarm_kprobe(p);
918                 /* If another kprobe was blocked, optimize it. */
919                 _p = get_optimized_kprobe((unsigned long)p->addr);
920                 if (unlikely(_p) && reopt)
921                         optimize_kprobe(_p);
922         }
923         /* TODO: reoptimize others after unoptimized this probe */
924 }
925
926 #else /* !CONFIG_OPTPROBES */
927
928 #define optimize_kprobe(p)                      do {} while (0)
929 #define unoptimize_kprobe(p, f)                 do {} while (0)
930 #define kill_optimized_kprobe(p)                do {} while (0)
931 #define prepare_optimized_kprobe(p)             do {} while (0)
932 #define try_to_optimize_kprobe(p)               do {} while (0)
933 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
934 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
935 #define kprobe_disarmed(p)                      kprobe_disabled(p)
936 #define wait_for_kprobe_optimizer()             do {} while (0)
937
938 static int reuse_unused_kprobe(struct kprobe *ap)
939 {
940         /*
941          * If the optimized kprobe is NOT supported, the aggr kprobe is
942          * released at the same time that the last aggregated kprobe is
943          * unregistered.
944          * Thus there should be no chance to reuse unused kprobe.
945          */
946         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
947         return -EINVAL;
948 }
949
950 static void free_aggr_kprobe(struct kprobe *p)
951 {
952         arch_remove_kprobe(p);
953         kfree(p);
954 }
955
956 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
957 {
958         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
959 }
960 #endif /* CONFIG_OPTPROBES */
961
962 #ifdef CONFIG_KPROBES_ON_FTRACE
963 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
964         .func = kprobe_ftrace_handler,
965         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
966 };
967 static int kprobe_ftrace_enabled;
968
969 /* Must ensure p->addr is really on ftrace */
970 static int prepare_kprobe(struct kprobe *p)
971 {
972         if (!kprobe_ftrace(p))
973                 return arch_prepare_kprobe(p);
974
975         return arch_prepare_kprobe_ftrace(p);
976 }
977
978 /* Caller must lock kprobe_mutex */
979 static int arm_kprobe_ftrace(struct kprobe *p)
980 {
981         int ret = 0;
982
983         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
984                                    (unsigned long)p->addr, 0, 0);
985         if (ret) {
986                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
987                          p->addr, ret);
988                 return ret;
989         }
990
991         if (kprobe_ftrace_enabled == 0) {
992                 ret = register_ftrace_function(&kprobe_ftrace_ops);
993                 if (ret) {
994                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
995                         goto err_ftrace;
996                 }
997         }
998
999         kprobe_ftrace_enabled++;
1000         return ret;
1001
1002 err_ftrace:
1003         /*
1004          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1005          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1006          * empty filter_hash which would undesirably trace all functions.
1007          */
1008         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1009         return ret;
1010 }
1011
1012 /* Caller must lock kprobe_mutex */
1013 static int disarm_kprobe_ftrace(struct kprobe *p)
1014 {
1015         int ret = 0;
1016
1017         if (kprobe_ftrace_enabled == 1) {
1018                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1019                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1020                         return ret;
1021         }
1022
1023         kprobe_ftrace_enabled--;
1024
1025         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1026                            (unsigned long)p->addr, 1, 0);
1027         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1028                   p->addr, ret);
1029         return ret;
1030 }
1031 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1032 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1033 #define arm_kprobe_ftrace(p)    (-ENODEV)
1034 #define disarm_kprobe_ftrace(p) (-ENODEV)
1035 #endif
1036
1037 /* Arm a kprobe with text_mutex */
1038 static int arm_kprobe(struct kprobe *kp)
1039 {
1040         if (unlikely(kprobe_ftrace(kp)))
1041                 return arm_kprobe_ftrace(kp);
1042
1043         cpus_read_lock();
1044         mutex_lock(&text_mutex);
1045         __arm_kprobe(kp);
1046         mutex_unlock(&text_mutex);
1047         cpus_read_unlock();
1048
1049         return 0;
1050 }
1051
1052 /* Disarm a kprobe with text_mutex */
1053 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1054 {
1055         if (unlikely(kprobe_ftrace(kp)))
1056                 return disarm_kprobe_ftrace(kp);
1057
1058         cpus_read_lock();
1059         mutex_lock(&text_mutex);
1060         __disarm_kprobe(kp, reopt);
1061         mutex_unlock(&text_mutex);
1062         cpus_read_unlock();
1063
1064         return 0;
1065 }
1066
1067 /*
1068  * Aggregate handlers for multiple kprobes support - these handlers
1069  * take care of invoking the individual kprobe handlers on p->list
1070  */
1071 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1072 {
1073         struct kprobe *kp;
1074
1075         list_for_each_entry_rcu(kp, &p->list, list) {
1076                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1077                         set_kprobe_instance(kp);
1078                         if (kp->pre_handler(kp, regs))
1079                                 return 1;
1080                 }
1081                 reset_kprobe_instance();
1082         }
1083         return 0;
1084 }
1085 NOKPROBE_SYMBOL(aggr_pre_handler);
1086
1087 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1088                               unsigned long flags)
1089 {
1090         struct kprobe *kp;
1091
1092         list_for_each_entry_rcu(kp, &p->list, list) {
1093                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1094                         set_kprobe_instance(kp);
1095                         kp->post_handler(kp, regs, flags);
1096                         reset_kprobe_instance();
1097                 }
1098         }
1099 }
1100 NOKPROBE_SYMBOL(aggr_post_handler);
1101
1102 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1103                               int trapnr)
1104 {
1105         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1106
1107         /*
1108          * if we faulted "during" the execution of a user specified
1109          * probe handler, invoke just that probe's fault handler
1110          */
1111         if (cur && cur->fault_handler) {
1112                 if (cur->fault_handler(cur, regs, trapnr))
1113                         return 1;
1114         }
1115         return 0;
1116 }
1117 NOKPROBE_SYMBOL(aggr_fault_handler);
1118
1119 /* Walks the list and increments nmissed count for multiprobe case */
1120 void kprobes_inc_nmissed_count(struct kprobe *p)
1121 {
1122         struct kprobe *kp;
1123         if (!kprobe_aggrprobe(p)) {
1124                 p->nmissed++;
1125         } else {
1126                 list_for_each_entry_rcu(kp, &p->list, list)
1127                         kp->nmissed++;
1128         }
1129         return;
1130 }
1131 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1132
1133 void recycle_rp_inst(struct kretprobe_instance *ri,
1134                      struct hlist_head *head)
1135 {
1136         struct kretprobe *rp = ri->rp;
1137
1138         /* remove rp inst off the rprobe_inst_table */
1139         hlist_del(&ri->hlist);
1140         INIT_HLIST_NODE(&ri->hlist);
1141         if (likely(rp)) {
1142                 raw_spin_lock(&rp->lock);
1143                 hlist_add_head(&ri->hlist, &rp->free_instances);
1144                 raw_spin_unlock(&rp->lock);
1145         } else
1146                 /* Unregistering */
1147                 hlist_add_head(&ri->hlist, head);
1148 }
1149 NOKPROBE_SYMBOL(recycle_rp_inst);
1150
1151 void kretprobe_hash_lock(struct task_struct *tsk,
1152                          struct hlist_head **head, unsigned long *flags)
1153 __acquires(hlist_lock)
1154 {
1155         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1156         raw_spinlock_t *hlist_lock;
1157
1158         *head = &kretprobe_inst_table[hash];
1159         hlist_lock = kretprobe_table_lock_ptr(hash);
1160         raw_spin_lock_irqsave(hlist_lock, *flags);
1161 }
1162 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1163
1164 static void kretprobe_table_lock(unsigned long hash,
1165                                  unsigned long *flags)
1166 __acquires(hlist_lock)
1167 {
1168         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1169         raw_spin_lock_irqsave(hlist_lock, *flags);
1170 }
1171 NOKPROBE_SYMBOL(kretprobe_table_lock);
1172
1173 void kretprobe_hash_unlock(struct task_struct *tsk,
1174                            unsigned long *flags)
1175 __releases(hlist_lock)
1176 {
1177         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1178         raw_spinlock_t *hlist_lock;
1179
1180         hlist_lock = kretprobe_table_lock_ptr(hash);
1181         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1182 }
1183 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1184
1185 static void kretprobe_table_unlock(unsigned long hash,
1186                                    unsigned long *flags)
1187 __releases(hlist_lock)
1188 {
1189         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1190         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1191 }
1192 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1193
1194 /*
1195  * This function is called from finish_task_switch when task tk becomes dead,
1196  * so that we can recycle any function-return probe instances associated
1197  * with this task. These left over instances represent probed functions
1198  * that have been called but will never return.
1199  */
1200 void kprobe_flush_task(struct task_struct *tk)
1201 {
1202         struct kretprobe_instance *ri;
1203         struct hlist_head *head, empty_rp;
1204         struct hlist_node *tmp;
1205         unsigned long hash, flags = 0;
1206
1207         if (unlikely(!kprobes_initialized))
1208                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1209                 return;
1210
1211         INIT_HLIST_HEAD(&empty_rp);
1212         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1213         head = &kretprobe_inst_table[hash];
1214         kretprobe_table_lock(hash, &flags);
1215         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1216                 if (ri->task == tk)
1217                         recycle_rp_inst(ri, &empty_rp);
1218         }
1219         kretprobe_table_unlock(hash, &flags);
1220         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1221                 hlist_del(&ri->hlist);
1222                 kfree(ri);
1223         }
1224 }
1225 NOKPROBE_SYMBOL(kprobe_flush_task);
1226
1227 static inline void free_rp_inst(struct kretprobe *rp)
1228 {
1229         struct kretprobe_instance *ri;
1230         struct hlist_node *next;
1231
1232         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1233                 hlist_del(&ri->hlist);
1234                 kfree(ri);
1235         }
1236 }
1237
1238 static void cleanup_rp_inst(struct kretprobe *rp)
1239 {
1240         unsigned long flags, hash;
1241         struct kretprobe_instance *ri;
1242         struct hlist_node *next;
1243         struct hlist_head *head;
1244
1245         /* No race here */
1246         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1247                 kretprobe_table_lock(hash, &flags);
1248                 head = &kretprobe_inst_table[hash];
1249                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1250                         if (ri->rp == rp)
1251                                 ri->rp = NULL;
1252                 }
1253                 kretprobe_table_unlock(hash, &flags);
1254         }
1255         free_rp_inst(rp);
1256 }
1257 NOKPROBE_SYMBOL(cleanup_rp_inst);
1258
1259 /* Add the new probe to ap->list */
1260 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262         if (p->post_handler)
1263                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1264
1265         list_add_rcu(&p->list, &ap->list);
1266         if (p->post_handler && !ap->post_handler)
1267                 ap->post_handler = aggr_post_handler;
1268
1269         return 0;
1270 }
1271
1272 /*
1273  * Fill in the required fields of the "manager kprobe". Replace the
1274  * earlier kprobe in the hlist with the manager kprobe
1275  */
1276 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1277 {
1278         /* Copy p's insn slot to ap */
1279         copy_kprobe(p, ap);
1280         flush_insn_slot(ap);
1281         ap->addr = p->addr;
1282         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1283         ap->pre_handler = aggr_pre_handler;
1284         ap->fault_handler = aggr_fault_handler;
1285         /* We don't care the kprobe which has gone. */
1286         if (p->post_handler && !kprobe_gone(p))
1287                 ap->post_handler = aggr_post_handler;
1288
1289         INIT_LIST_HEAD(&ap->list);
1290         INIT_HLIST_NODE(&ap->hlist);
1291
1292         list_add_rcu(&p->list, &ap->list);
1293         hlist_replace_rcu(&p->hlist, &ap->hlist);
1294 }
1295
1296 /*
1297  * This is the second or subsequent kprobe at the address - handle
1298  * the intricacies
1299  */
1300 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1301 {
1302         int ret = 0;
1303         struct kprobe *ap = orig_p;
1304
1305         cpus_read_lock();
1306
1307         /* For preparing optimization, jump_label_text_reserved() is called */
1308         jump_label_lock();
1309         mutex_lock(&text_mutex);
1310
1311         if (!kprobe_aggrprobe(orig_p)) {
1312                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1313                 ap = alloc_aggr_kprobe(orig_p);
1314                 if (!ap) {
1315                         ret = -ENOMEM;
1316                         goto out;
1317                 }
1318                 init_aggr_kprobe(ap, orig_p);
1319         } else if (kprobe_unused(ap)) {
1320                 /* This probe is going to die. Rescue it */
1321                 ret = reuse_unused_kprobe(ap);
1322                 if (ret)
1323                         goto out;
1324         }
1325
1326         if (kprobe_gone(ap)) {
1327                 /*
1328                  * Attempting to insert new probe at the same location that
1329                  * had a probe in the module vaddr area which already
1330                  * freed. So, the instruction slot has already been
1331                  * released. We need a new slot for the new probe.
1332                  */
1333                 ret = arch_prepare_kprobe(ap);
1334                 if (ret)
1335                         /*
1336                          * Even if fail to allocate new slot, don't need to
1337                          * free aggr_probe. It will be used next time, or
1338                          * freed by unregister_kprobe.
1339                          */
1340                         goto out;
1341
1342                 /* Prepare optimized instructions if possible. */
1343                 prepare_optimized_kprobe(ap);
1344
1345                 /*
1346                  * Clear gone flag to prevent allocating new slot again, and
1347                  * set disabled flag because it is not armed yet.
1348                  */
1349                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1350                             | KPROBE_FLAG_DISABLED;
1351         }
1352
1353         /* Copy ap's insn slot to p */
1354         copy_kprobe(ap, p);
1355         ret = add_new_kprobe(ap, p);
1356
1357 out:
1358         mutex_unlock(&text_mutex);
1359         jump_label_unlock();
1360         cpus_read_unlock();
1361
1362         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1363                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1364                 if (!kprobes_all_disarmed) {
1365                         /* Arm the breakpoint again. */
1366                         ret = arm_kprobe(ap);
1367                         if (ret) {
1368                                 ap->flags |= KPROBE_FLAG_DISABLED;
1369                                 list_del_rcu(&p->list);
1370                                 synchronize_rcu();
1371                         }
1372                 }
1373         }
1374         return ret;
1375 }
1376
1377 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1378 {
1379         /* The __kprobes marked functions and entry code must not be probed */
1380         return addr >= (unsigned long)__kprobes_text_start &&
1381                addr < (unsigned long)__kprobes_text_end;
1382 }
1383
1384 static bool __within_kprobe_blacklist(unsigned long addr)
1385 {
1386         struct kprobe_blacklist_entry *ent;
1387
1388         if (arch_within_kprobe_blacklist(addr))
1389                 return true;
1390         /*
1391          * If there exists a kprobe_blacklist, verify and
1392          * fail any probe registration in the prohibited area
1393          */
1394         list_for_each_entry(ent, &kprobe_blacklist, list) {
1395                 if (addr >= ent->start_addr && addr < ent->end_addr)
1396                         return true;
1397         }
1398         return false;
1399 }
1400
1401 bool within_kprobe_blacklist(unsigned long addr)
1402 {
1403         char symname[KSYM_NAME_LEN], *p;
1404
1405         if (__within_kprobe_blacklist(addr))
1406                 return true;
1407
1408         /* Check if the address is on a suffixed-symbol */
1409         if (!lookup_symbol_name(addr, symname)) {
1410                 p = strchr(symname, '.');
1411                 if (!p)
1412                         return false;
1413                 *p = '\0';
1414                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1415                 if (addr)
1416                         return __within_kprobe_blacklist(addr);
1417         }
1418         return false;
1419 }
1420
1421 /*
1422  * If we have a symbol_name argument, look it up and add the offset field
1423  * to it. This way, we can specify a relative address to a symbol.
1424  * This returns encoded errors if it fails to look up symbol or invalid
1425  * combination of parameters.
1426  */
1427 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1428                         const char *symbol_name, unsigned int offset)
1429 {
1430         if ((symbol_name && addr) || (!symbol_name && !addr))
1431                 goto invalid;
1432
1433         if (symbol_name) {
1434                 addr = kprobe_lookup_name(symbol_name, offset);
1435                 if (!addr)
1436                         return ERR_PTR(-ENOENT);
1437         }
1438
1439         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1440         if (addr)
1441                 return addr;
1442
1443 invalid:
1444         return ERR_PTR(-EINVAL);
1445 }
1446
1447 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1448 {
1449         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1450 }
1451
1452 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1453 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1454 {
1455         struct kprobe *ap, *list_p;
1456
1457         ap = get_kprobe(p->addr);
1458         if (unlikely(!ap))
1459                 return NULL;
1460
1461         if (p != ap) {
1462                 list_for_each_entry_rcu(list_p, &ap->list, list)
1463                         if (list_p == p)
1464                         /* kprobe p is a valid probe */
1465                                 goto valid;
1466                 return NULL;
1467         }
1468 valid:
1469         return ap;
1470 }
1471
1472 /* Return error if the kprobe is being re-registered */
1473 static inline int check_kprobe_rereg(struct kprobe *p)
1474 {
1475         int ret = 0;
1476
1477         mutex_lock(&kprobe_mutex);
1478         if (__get_valid_kprobe(p))
1479                 ret = -EINVAL;
1480         mutex_unlock(&kprobe_mutex);
1481
1482         return ret;
1483 }
1484
1485 int __weak arch_check_ftrace_location(struct kprobe *p)
1486 {
1487         unsigned long ftrace_addr;
1488
1489         ftrace_addr = ftrace_location((unsigned long)p->addr);
1490         if (ftrace_addr) {
1491 #ifdef CONFIG_KPROBES_ON_FTRACE
1492                 /* Given address is not on the instruction boundary */
1493                 if ((unsigned long)p->addr != ftrace_addr)
1494                         return -EILSEQ;
1495                 p->flags |= KPROBE_FLAG_FTRACE;
1496 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1497                 return -EINVAL;
1498 #endif
1499         }
1500         return 0;
1501 }
1502
1503 static int check_kprobe_address_safe(struct kprobe *p,
1504                                      struct module **probed_mod)
1505 {
1506         int ret;
1507
1508         ret = arch_check_ftrace_location(p);
1509         if (ret)
1510                 return ret;
1511         jump_label_lock();
1512         preempt_disable();
1513
1514         /* Ensure it is not in reserved area nor out of text */
1515         if (!kernel_text_address((unsigned long) p->addr) ||
1516             within_kprobe_blacklist((unsigned long) p->addr) ||
1517             jump_label_text_reserved(p->addr, p->addr)) {
1518                 ret = -EINVAL;
1519                 goto out;
1520         }
1521
1522         /* Check if are we probing a module */
1523         *probed_mod = __module_text_address((unsigned long) p->addr);
1524         if (*probed_mod) {
1525                 /*
1526                  * We must hold a refcount of the probed module while updating
1527                  * its code to prohibit unexpected unloading.
1528                  */
1529                 if (unlikely(!try_module_get(*probed_mod))) {
1530                         ret = -ENOENT;
1531                         goto out;
1532                 }
1533
1534                 /*
1535                  * If the module freed .init.text, we couldn't insert
1536                  * kprobes in there.
1537                  */
1538                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1539                     (*probed_mod)->state != MODULE_STATE_COMING) {
1540                         module_put(*probed_mod);
1541                         *probed_mod = NULL;
1542                         ret = -ENOENT;
1543                 }
1544         }
1545 out:
1546         preempt_enable();
1547         jump_label_unlock();
1548
1549         return ret;
1550 }
1551
1552 int register_kprobe(struct kprobe *p)
1553 {
1554         int ret;
1555         struct kprobe *old_p;
1556         struct module *probed_mod;
1557         kprobe_opcode_t *addr;
1558
1559         /* Adjust probe address from symbol */
1560         addr = kprobe_addr(p);
1561         if (IS_ERR(addr))
1562                 return PTR_ERR(addr);
1563         p->addr = addr;
1564
1565         ret = check_kprobe_rereg(p);
1566         if (ret)
1567                 return ret;
1568
1569         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1570         p->flags &= KPROBE_FLAG_DISABLED;
1571         p->nmissed = 0;
1572         INIT_LIST_HEAD(&p->list);
1573
1574         ret = check_kprobe_address_safe(p, &probed_mod);
1575         if (ret)
1576                 return ret;
1577
1578         mutex_lock(&kprobe_mutex);
1579
1580         old_p = get_kprobe(p->addr);
1581         if (old_p) {
1582                 /* Since this may unoptimize old_p, locking text_mutex. */
1583                 ret = register_aggr_kprobe(old_p, p);
1584                 goto out;
1585         }
1586
1587         cpus_read_lock();
1588         /* Prevent text modification */
1589         mutex_lock(&text_mutex);
1590         ret = prepare_kprobe(p);
1591         mutex_unlock(&text_mutex);
1592         cpus_read_unlock();
1593         if (ret)
1594                 goto out;
1595
1596         INIT_HLIST_NODE(&p->hlist);
1597         hlist_add_head_rcu(&p->hlist,
1598                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1599
1600         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1601                 ret = arm_kprobe(p);
1602                 if (ret) {
1603                         hlist_del_rcu(&p->hlist);
1604                         synchronize_rcu();
1605                         goto out;
1606                 }
1607         }
1608
1609         /* Try to optimize kprobe */
1610         try_to_optimize_kprobe(p);
1611 out:
1612         mutex_unlock(&kprobe_mutex);
1613
1614         if (probed_mod)
1615                 module_put(probed_mod);
1616
1617         return ret;
1618 }
1619 EXPORT_SYMBOL_GPL(register_kprobe);
1620
1621 /* Check if all probes on the aggrprobe are disabled */
1622 static int aggr_kprobe_disabled(struct kprobe *ap)
1623 {
1624         struct kprobe *kp;
1625
1626         list_for_each_entry_rcu(kp, &ap->list, list)
1627                 if (!kprobe_disabled(kp))
1628                         /*
1629                          * There is an active probe on the list.
1630                          * We can't disable this ap.
1631                          */
1632                         return 0;
1633
1634         return 1;
1635 }
1636
1637 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1638 static struct kprobe *__disable_kprobe(struct kprobe *p)
1639 {
1640         struct kprobe *orig_p;
1641         int ret;
1642
1643         /* Get an original kprobe for return */
1644         orig_p = __get_valid_kprobe(p);
1645         if (unlikely(orig_p == NULL))
1646                 return ERR_PTR(-EINVAL);
1647
1648         if (!kprobe_disabled(p)) {
1649                 /* Disable probe if it is a child probe */
1650                 if (p != orig_p)
1651                         p->flags |= KPROBE_FLAG_DISABLED;
1652
1653                 /* Try to disarm and disable this/parent probe */
1654                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1655                         /*
1656                          * If kprobes_all_disarmed is set, orig_p
1657                          * should have already been disarmed, so
1658                          * skip unneed disarming process.
1659                          */
1660                         if (!kprobes_all_disarmed) {
1661                                 ret = disarm_kprobe(orig_p, true);
1662                                 if (ret) {
1663                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1664                                         return ERR_PTR(ret);
1665                                 }
1666                         }
1667                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1668                 }
1669         }
1670
1671         return orig_p;
1672 }
1673
1674 /*
1675  * Unregister a kprobe without a scheduler synchronization.
1676  */
1677 static int __unregister_kprobe_top(struct kprobe *p)
1678 {
1679         struct kprobe *ap, *list_p;
1680
1681         /* Disable kprobe. This will disarm it if needed. */
1682         ap = __disable_kprobe(p);
1683         if (IS_ERR(ap))
1684                 return PTR_ERR(ap);
1685
1686         if (ap == p)
1687                 /*
1688                  * This probe is an independent(and non-optimized) kprobe
1689                  * (not an aggrprobe). Remove from the hash list.
1690                  */
1691                 goto disarmed;
1692
1693         /* Following process expects this probe is an aggrprobe */
1694         WARN_ON(!kprobe_aggrprobe(ap));
1695
1696         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1697                 /*
1698                  * !disarmed could be happen if the probe is under delayed
1699                  * unoptimizing.
1700                  */
1701                 goto disarmed;
1702         else {
1703                 /* If disabling probe has special handlers, update aggrprobe */
1704                 if (p->post_handler && !kprobe_gone(p)) {
1705                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1706                                 if ((list_p != p) && (list_p->post_handler))
1707                                         goto noclean;
1708                         }
1709                         ap->post_handler = NULL;
1710                 }
1711 noclean:
1712                 /*
1713                  * Remove from the aggrprobe: this path will do nothing in
1714                  * __unregister_kprobe_bottom().
1715                  */
1716                 list_del_rcu(&p->list);
1717                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1718                         /*
1719                          * Try to optimize this probe again, because post
1720                          * handler may have been changed.
1721                          */
1722                         optimize_kprobe(ap);
1723         }
1724         return 0;
1725
1726 disarmed:
1727         hlist_del_rcu(&ap->hlist);
1728         return 0;
1729 }
1730
1731 static void __unregister_kprobe_bottom(struct kprobe *p)
1732 {
1733         struct kprobe *ap;
1734
1735         if (list_empty(&p->list))
1736                 /* This is an independent kprobe */
1737                 arch_remove_kprobe(p);
1738         else if (list_is_singular(&p->list)) {
1739                 /* This is the last child of an aggrprobe */
1740                 ap = list_entry(p->list.next, struct kprobe, list);
1741                 list_del(&p->list);
1742                 free_aggr_kprobe(ap);
1743         }
1744         /* Otherwise, do nothing. */
1745 }
1746
1747 int register_kprobes(struct kprobe **kps, int num)
1748 {
1749         int i, ret = 0;
1750
1751         if (num <= 0)
1752                 return -EINVAL;
1753         for (i = 0; i < num; i++) {
1754                 ret = register_kprobe(kps[i]);
1755                 if (ret < 0) {
1756                         if (i > 0)
1757                                 unregister_kprobes(kps, i);
1758                         break;
1759                 }
1760         }
1761         return ret;
1762 }
1763 EXPORT_SYMBOL_GPL(register_kprobes);
1764
1765 void unregister_kprobe(struct kprobe *p)
1766 {
1767         unregister_kprobes(&p, 1);
1768 }
1769 EXPORT_SYMBOL_GPL(unregister_kprobe);
1770
1771 void unregister_kprobes(struct kprobe **kps, int num)
1772 {
1773         int i;
1774
1775         if (num <= 0)
1776                 return;
1777         mutex_lock(&kprobe_mutex);
1778         for (i = 0; i < num; i++)
1779                 if (__unregister_kprobe_top(kps[i]) < 0)
1780                         kps[i]->addr = NULL;
1781         mutex_unlock(&kprobe_mutex);
1782
1783         synchronize_rcu();
1784         for (i = 0; i < num; i++)
1785                 if (kps[i]->addr)
1786                         __unregister_kprobe_bottom(kps[i]);
1787 }
1788 EXPORT_SYMBOL_GPL(unregister_kprobes);
1789
1790 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1791                                         unsigned long val, void *data)
1792 {
1793         return NOTIFY_DONE;
1794 }
1795 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1796
1797 static struct notifier_block kprobe_exceptions_nb = {
1798         .notifier_call = kprobe_exceptions_notify,
1799         .priority = 0x7fffffff /* we need to be notified first */
1800 };
1801
1802 unsigned long __weak arch_deref_entry_point(void *entry)
1803 {
1804         return (unsigned long)entry;
1805 }
1806
1807 #ifdef CONFIG_KRETPROBES
1808 /*
1809  * This kprobe pre_handler is registered with every kretprobe. When probe
1810  * hits it will set up the return probe.
1811  */
1812 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1813 {
1814         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1815         unsigned long hash, flags = 0;
1816         struct kretprobe_instance *ri;
1817
1818         /*
1819          * To avoid deadlocks, prohibit return probing in NMI contexts,
1820          * just skip the probe and increase the (inexact) 'nmissed'
1821          * statistical counter, so that the user is informed that
1822          * something happened:
1823          */
1824         if (unlikely(in_nmi())) {
1825                 rp->nmissed++;
1826                 return 0;
1827         }
1828
1829         /* TODO: consider to only swap the RA after the last pre_handler fired */
1830         hash = hash_ptr(current, KPROBE_HASH_BITS);
1831         raw_spin_lock_irqsave(&rp->lock, flags);
1832         if (!hlist_empty(&rp->free_instances)) {
1833                 ri = hlist_entry(rp->free_instances.first,
1834                                 struct kretprobe_instance, hlist);
1835                 hlist_del(&ri->hlist);
1836                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1837
1838                 ri->rp = rp;
1839                 ri->task = current;
1840
1841                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1842                         raw_spin_lock_irqsave(&rp->lock, flags);
1843                         hlist_add_head(&ri->hlist, &rp->free_instances);
1844                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1845                         return 0;
1846                 }
1847
1848                 arch_prepare_kretprobe(ri, regs);
1849
1850                 /* XXX(hch): why is there no hlist_move_head? */
1851                 INIT_HLIST_NODE(&ri->hlist);
1852                 kretprobe_table_lock(hash, &flags);
1853                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1854                 kretprobe_table_unlock(hash, &flags);
1855         } else {
1856                 rp->nmissed++;
1857                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1858         }
1859         return 0;
1860 }
1861 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1862
1863 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1864 {
1865         return !offset;
1866 }
1867
1868 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1869 {
1870         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1871
1872         if (IS_ERR(kp_addr))
1873                 return false;
1874
1875         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1876                                                 !arch_kprobe_on_func_entry(offset))
1877                 return false;
1878
1879         return true;
1880 }
1881
1882 int register_kretprobe(struct kretprobe *rp)
1883 {
1884         int ret = 0;
1885         struct kretprobe_instance *inst;
1886         int i;
1887         void *addr;
1888
1889         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1890                 return -EINVAL;
1891
1892         if (kretprobe_blacklist_size) {
1893                 addr = kprobe_addr(&rp->kp);
1894                 if (IS_ERR(addr))
1895                         return PTR_ERR(addr);
1896
1897                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1898                         if (kretprobe_blacklist[i].addr == addr)
1899                                 return -EINVAL;
1900                 }
1901         }
1902
1903         rp->kp.pre_handler = pre_handler_kretprobe;
1904         rp->kp.post_handler = NULL;
1905         rp->kp.fault_handler = NULL;
1906
1907         /* Pre-allocate memory for max kretprobe instances */
1908         if (rp->maxactive <= 0) {
1909 #ifdef CONFIG_PREEMPT
1910                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1911 #else
1912                 rp->maxactive = num_possible_cpus();
1913 #endif
1914         }
1915         raw_spin_lock_init(&rp->lock);
1916         INIT_HLIST_HEAD(&rp->free_instances);
1917         for (i = 0; i < rp->maxactive; i++) {
1918                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1919                                rp->data_size, GFP_KERNEL);
1920                 if (inst == NULL) {
1921                         free_rp_inst(rp);
1922                         return -ENOMEM;
1923                 }
1924                 INIT_HLIST_NODE(&inst->hlist);
1925                 hlist_add_head(&inst->hlist, &rp->free_instances);
1926         }
1927
1928         rp->nmissed = 0;
1929         /* Establish function entry probe point */
1930         ret = register_kprobe(&rp->kp);
1931         if (ret != 0)
1932                 free_rp_inst(rp);
1933         return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(register_kretprobe);
1936
1937 int register_kretprobes(struct kretprobe **rps, int num)
1938 {
1939         int ret = 0, i;
1940
1941         if (num <= 0)
1942                 return -EINVAL;
1943         for (i = 0; i < num; i++) {
1944                 ret = register_kretprobe(rps[i]);
1945                 if (ret < 0) {
1946                         if (i > 0)
1947                                 unregister_kretprobes(rps, i);
1948                         break;
1949                 }
1950         }
1951         return ret;
1952 }
1953 EXPORT_SYMBOL_GPL(register_kretprobes);
1954
1955 void unregister_kretprobe(struct kretprobe *rp)
1956 {
1957         unregister_kretprobes(&rp, 1);
1958 }
1959 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1960
1961 void unregister_kretprobes(struct kretprobe **rps, int num)
1962 {
1963         int i;
1964
1965         if (num <= 0)
1966                 return;
1967         mutex_lock(&kprobe_mutex);
1968         for (i = 0; i < num; i++)
1969                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1970                         rps[i]->kp.addr = NULL;
1971         mutex_unlock(&kprobe_mutex);
1972
1973         synchronize_rcu();
1974         for (i = 0; i < num; i++) {
1975                 if (rps[i]->kp.addr) {
1976                         __unregister_kprobe_bottom(&rps[i]->kp);
1977                         cleanup_rp_inst(rps[i]);
1978                 }
1979         }
1980 }
1981 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1982
1983 #else /* CONFIG_KRETPROBES */
1984 int register_kretprobe(struct kretprobe *rp)
1985 {
1986         return -ENOSYS;
1987 }
1988 EXPORT_SYMBOL_GPL(register_kretprobe);
1989
1990 int register_kretprobes(struct kretprobe **rps, int num)
1991 {
1992         return -ENOSYS;
1993 }
1994 EXPORT_SYMBOL_GPL(register_kretprobes);
1995
1996 void unregister_kretprobe(struct kretprobe *rp)
1997 {
1998 }
1999 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2000
2001 void unregister_kretprobes(struct kretprobe **rps, int num)
2002 {
2003 }
2004 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2005
2006 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2007 {
2008         return 0;
2009 }
2010 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2011
2012 #endif /* CONFIG_KRETPROBES */
2013
2014 /* Set the kprobe gone and remove its instruction buffer. */
2015 static void kill_kprobe(struct kprobe *p)
2016 {
2017         struct kprobe *kp;
2018
2019         p->flags |= KPROBE_FLAG_GONE;
2020         if (kprobe_aggrprobe(p)) {
2021                 /*
2022                  * If this is an aggr_kprobe, we have to list all the
2023                  * chained probes and mark them GONE.
2024                  */
2025                 list_for_each_entry_rcu(kp, &p->list, list)
2026                         kp->flags |= KPROBE_FLAG_GONE;
2027                 p->post_handler = NULL;
2028                 kill_optimized_kprobe(p);
2029         }
2030         /*
2031          * Here, we can remove insn_slot safely, because no thread calls
2032          * the original probed function (which will be freed soon) any more.
2033          */
2034         arch_remove_kprobe(p);
2035 }
2036
2037 /* Disable one kprobe */
2038 int disable_kprobe(struct kprobe *kp)
2039 {
2040         int ret = 0;
2041         struct kprobe *p;
2042
2043         mutex_lock(&kprobe_mutex);
2044
2045         /* Disable this kprobe */
2046         p = __disable_kprobe(kp);
2047         if (IS_ERR(p))
2048                 ret = PTR_ERR(p);
2049
2050         mutex_unlock(&kprobe_mutex);
2051         return ret;
2052 }
2053 EXPORT_SYMBOL_GPL(disable_kprobe);
2054
2055 /* Enable one kprobe */
2056 int enable_kprobe(struct kprobe *kp)
2057 {
2058         int ret = 0;
2059         struct kprobe *p;
2060
2061         mutex_lock(&kprobe_mutex);
2062
2063         /* Check whether specified probe is valid. */
2064         p = __get_valid_kprobe(kp);
2065         if (unlikely(p == NULL)) {
2066                 ret = -EINVAL;
2067                 goto out;
2068         }
2069
2070         if (kprobe_gone(kp)) {
2071                 /* This kprobe has gone, we couldn't enable it. */
2072                 ret = -EINVAL;
2073                 goto out;
2074         }
2075
2076         if (p != kp)
2077                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2078
2079         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2080                 p->flags &= ~KPROBE_FLAG_DISABLED;
2081                 ret = arm_kprobe(p);
2082                 if (ret)
2083                         p->flags |= KPROBE_FLAG_DISABLED;
2084         }
2085 out:
2086         mutex_unlock(&kprobe_mutex);
2087         return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(enable_kprobe);
2090
2091 /* Caller must NOT call this in usual path. This is only for critical case */
2092 void dump_kprobe(struct kprobe *kp)
2093 {
2094         pr_err("Dumping kprobe:\n");
2095         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2096                kp->symbol_name, kp->offset, kp->addr);
2097 }
2098 NOKPROBE_SYMBOL(dump_kprobe);
2099
2100 int kprobe_add_ksym_blacklist(unsigned long entry)
2101 {
2102         struct kprobe_blacklist_entry *ent;
2103         unsigned long offset = 0, size = 0;
2104
2105         if (!kernel_text_address(entry) ||
2106             !kallsyms_lookup_size_offset(entry, &size, &offset))
2107                 return -EINVAL;
2108
2109         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2110         if (!ent)
2111                 return -ENOMEM;
2112         ent->start_addr = entry;
2113         ent->end_addr = entry + size;
2114         INIT_LIST_HEAD(&ent->list);
2115         list_add_tail(&ent->list, &kprobe_blacklist);
2116
2117         return (int)size;
2118 }
2119
2120 /* Add all symbols in given area into kprobe blacklist */
2121 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2122 {
2123         unsigned long entry;
2124         int ret = 0;
2125
2126         for (entry = start; entry < end; entry += ret) {
2127                 ret = kprobe_add_ksym_blacklist(entry);
2128                 if (ret < 0)
2129                         return ret;
2130                 if (ret == 0)   /* In case of alias symbol */
2131                         ret = 1;
2132         }
2133         return 0;
2134 }
2135
2136 int __init __weak arch_populate_kprobe_blacklist(void)
2137 {
2138         return 0;
2139 }
2140
2141 /*
2142  * Lookup and populate the kprobe_blacklist.
2143  *
2144  * Unlike the kretprobe blacklist, we'll need to determine
2145  * the range of addresses that belong to the said functions,
2146  * since a kprobe need not necessarily be at the beginning
2147  * of a function.
2148  */
2149 static int __init populate_kprobe_blacklist(unsigned long *start,
2150                                              unsigned long *end)
2151 {
2152         unsigned long entry;
2153         unsigned long *iter;
2154         int ret;
2155
2156         for (iter = start; iter < end; iter++) {
2157                 entry = arch_deref_entry_point((void *)*iter);
2158                 ret = kprobe_add_ksym_blacklist(entry);
2159                 if (ret == -EINVAL)
2160                         continue;
2161                 if (ret < 0)
2162                         return ret;
2163         }
2164
2165         /* Symbols in __kprobes_text are blacklisted */
2166         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2167                                         (unsigned long)__kprobes_text_end);
2168
2169         return ret ? : arch_populate_kprobe_blacklist();
2170 }
2171
2172 /* Module notifier call back, checking kprobes on the module */
2173 static int kprobes_module_callback(struct notifier_block *nb,
2174                                    unsigned long val, void *data)
2175 {
2176         struct module *mod = data;
2177         struct hlist_head *head;
2178         struct kprobe *p;
2179         unsigned int i;
2180         int checkcore = (val == MODULE_STATE_GOING);
2181
2182         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2183                 return NOTIFY_DONE;
2184
2185         /*
2186          * When MODULE_STATE_GOING was notified, both of module .text and
2187          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2188          * notified, only .init.text section would be freed. We need to
2189          * disable kprobes which have been inserted in the sections.
2190          */
2191         mutex_lock(&kprobe_mutex);
2192         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2193                 head = &kprobe_table[i];
2194                 hlist_for_each_entry_rcu(p, head, hlist)
2195                         if (within_module_init((unsigned long)p->addr, mod) ||
2196                             (checkcore &&
2197                              within_module_core((unsigned long)p->addr, mod))) {
2198                                 /*
2199                                  * The vaddr this probe is installed will soon
2200                                  * be vfreed buy not synced to disk. Hence,
2201                                  * disarming the breakpoint isn't needed.
2202                                  *
2203                                  * Note, this will also move any optimized probes
2204                                  * that are pending to be removed from their
2205                                  * corresponding lists to the freeing_list and
2206                                  * will not be touched by the delayed
2207                                  * kprobe_optimizer work handler.
2208                                  */
2209                                 kill_kprobe(p);
2210                         }
2211         }
2212         mutex_unlock(&kprobe_mutex);
2213         return NOTIFY_DONE;
2214 }
2215
2216 static struct notifier_block kprobe_module_nb = {
2217         .notifier_call = kprobes_module_callback,
2218         .priority = 0
2219 };
2220
2221 /* Markers of _kprobe_blacklist section */
2222 extern unsigned long __start_kprobe_blacklist[];
2223 extern unsigned long __stop_kprobe_blacklist[];
2224
2225 static int __init init_kprobes(void)
2226 {
2227         int i, err = 0;
2228
2229         /* FIXME allocate the probe table, currently defined statically */
2230         /* initialize all list heads */
2231         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2232                 INIT_HLIST_HEAD(&kprobe_table[i]);
2233                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2234                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2235         }
2236
2237         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2238                                         __stop_kprobe_blacklist);
2239         if (err) {
2240                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2241                 pr_err("Please take care of using kprobes.\n");
2242         }
2243
2244         if (kretprobe_blacklist_size) {
2245                 /* lookup the function address from its name */
2246                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2247                         kretprobe_blacklist[i].addr =
2248                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2249                         if (!kretprobe_blacklist[i].addr)
2250                                 printk("kretprobe: lookup failed: %s\n",
2251                                        kretprobe_blacklist[i].name);
2252                 }
2253         }
2254
2255 #if defined(CONFIG_OPTPROBES)
2256 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2257         /* Init kprobe_optinsn_slots */
2258         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2259 #endif
2260         /* By default, kprobes can be optimized */
2261         kprobes_allow_optimization = true;
2262 #endif
2263
2264         /* By default, kprobes are armed */
2265         kprobes_all_disarmed = false;
2266
2267         err = arch_init_kprobes();
2268         if (!err)
2269                 err = register_die_notifier(&kprobe_exceptions_nb);
2270         if (!err)
2271                 err = register_module_notifier(&kprobe_module_nb);
2272
2273         kprobes_initialized = (err == 0);
2274
2275         if (!err)
2276                 init_test_probes();
2277         return err;
2278 }
2279
2280 #ifdef CONFIG_DEBUG_FS
2281 static void report_probe(struct seq_file *pi, struct kprobe *p,
2282                 const char *sym, int offset, char *modname, struct kprobe *pp)
2283 {
2284         char *kprobe_type;
2285         void *addr = p->addr;
2286
2287         if (p->pre_handler == pre_handler_kretprobe)
2288                 kprobe_type = "r";
2289         else
2290                 kprobe_type = "k";
2291
2292         if (!kallsyms_show_value())
2293                 addr = NULL;
2294
2295         if (sym)
2296                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2297                         addr, kprobe_type, sym, offset,
2298                         (modname ? modname : " "));
2299         else    /* try to use %pS */
2300                 seq_printf(pi, "%px  %s  %pS ",
2301                         addr, kprobe_type, p->addr);
2302
2303         if (!pp)
2304                 pp = p;
2305         seq_printf(pi, "%s%s%s%s\n",
2306                 (kprobe_gone(p) ? "[GONE]" : ""),
2307                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2308                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2309                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2310 }
2311
2312 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2313 {
2314         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2315 }
2316
2317 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2318 {
2319         (*pos)++;
2320         if (*pos >= KPROBE_TABLE_SIZE)
2321                 return NULL;
2322         return pos;
2323 }
2324
2325 static void kprobe_seq_stop(struct seq_file *f, void *v)
2326 {
2327         /* Nothing to do */
2328 }
2329
2330 static int show_kprobe_addr(struct seq_file *pi, void *v)
2331 {
2332         struct hlist_head *head;
2333         struct kprobe *p, *kp;
2334         const char *sym = NULL;
2335         unsigned int i = *(loff_t *) v;
2336         unsigned long offset = 0;
2337         char *modname, namebuf[KSYM_NAME_LEN];
2338
2339         head = &kprobe_table[i];
2340         preempt_disable();
2341         hlist_for_each_entry_rcu(p, head, hlist) {
2342                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2343                                         &offset, &modname, namebuf);
2344                 if (kprobe_aggrprobe(p)) {
2345                         list_for_each_entry_rcu(kp, &p->list, list)
2346                                 report_probe(pi, kp, sym, offset, modname, p);
2347                 } else
2348                         report_probe(pi, p, sym, offset, modname, NULL);
2349         }
2350         preempt_enable();
2351         return 0;
2352 }
2353
2354 static const struct seq_operations kprobes_seq_ops = {
2355         .start = kprobe_seq_start,
2356         .next  = kprobe_seq_next,
2357         .stop  = kprobe_seq_stop,
2358         .show  = show_kprobe_addr
2359 };
2360
2361 static int kprobes_open(struct inode *inode, struct file *filp)
2362 {
2363         return seq_open(filp, &kprobes_seq_ops);
2364 }
2365
2366 static const struct file_operations debugfs_kprobes_operations = {
2367         .open           = kprobes_open,
2368         .read           = seq_read,
2369         .llseek         = seq_lseek,
2370         .release        = seq_release,
2371 };
2372
2373 /* kprobes/blacklist -- shows which functions can not be probed */
2374 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2375 {
2376         return seq_list_start(&kprobe_blacklist, *pos);
2377 }
2378
2379 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2380 {
2381         return seq_list_next(v, &kprobe_blacklist, pos);
2382 }
2383
2384 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2385 {
2386         struct kprobe_blacklist_entry *ent =
2387                 list_entry(v, struct kprobe_blacklist_entry, list);
2388
2389         /*
2390          * If /proc/kallsyms is not showing kernel address, we won't
2391          * show them here either.
2392          */
2393         if (!kallsyms_show_value())
2394                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2395                            (void *)ent->start_addr);
2396         else
2397                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2398                            (void *)ent->end_addr, (void *)ent->start_addr);
2399         return 0;
2400 }
2401
2402 static const struct seq_operations kprobe_blacklist_seq_ops = {
2403         .start = kprobe_blacklist_seq_start,
2404         .next  = kprobe_blacklist_seq_next,
2405         .stop  = kprobe_seq_stop,       /* Reuse void function */
2406         .show  = kprobe_blacklist_seq_show,
2407 };
2408
2409 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2410 {
2411         return seq_open(filp, &kprobe_blacklist_seq_ops);
2412 }
2413
2414 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2415         .open           = kprobe_blacklist_open,
2416         .read           = seq_read,
2417         .llseek         = seq_lseek,
2418         .release        = seq_release,
2419 };
2420
2421 static int arm_all_kprobes(void)
2422 {
2423         struct hlist_head *head;
2424         struct kprobe *p;
2425         unsigned int i, total = 0, errors = 0;
2426         int err, ret = 0;
2427
2428         mutex_lock(&kprobe_mutex);
2429
2430         /* If kprobes are armed, just return */
2431         if (!kprobes_all_disarmed)
2432                 goto already_enabled;
2433
2434         /*
2435          * optimize_kprobe() called by arm_kprobe() checks
2436          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2437          * arm_kprobe.
2438          */
2439         kprobes_all_disarmed = false;
2440         /* Arming kprobes doesn't optimize kprobe itself */
2441         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2442                 head = &kprobe_table[i];
2443                 /* Arm all kprobes on a best-effort basis */
2444                 hlist_for_each_entry_rcu(p, head, hlist) {
2445                         if (!kprobe_disabled(p)) {
2446                                 err = arm_kprobe(p);
2447                                 if (err)  {
2448                                         errors++;
2449                                         ret = err;
2450                                 }
2451                                 total++;
2452                         }
2453                 }
2454         }
2455
2456         if (errors)
2457                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2458                         errors, total);
2459         else
2460                 pr_info("Kprobes globally enabled\n");
2461
2462 already_enabled:
2463         mutex_unlock(&kprobe_mutex);
2464         return ret;
2465 }
2466
2467 static int disarm_all_kprobes(void)
2468 {
2469         struct hlist_head *head;
2470         struct kprobe *p;
2471         unsigned int i, total = 0, errors = 0;
2472         int err, ret = 0;
2473
2474         mutex_lock(&kprobe_mutex);
2475
2476         /* If kprobes are already disarmed, just return */
2477         if (kprobes_all_disarmed) {
2478                 mutex_unlock(&kprobe_mutex);
2479                 return 0;
2480         }
2481
2482         kprobes_all_disarmed = true;
2483
2484         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2485                 head = &kprobe_table[i];
2486                 /* Disarm all kprobes on a best-effort basis */
2487                 hlist_for_each_entry_rcu(p, head, hlist) {
2488                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2489                                 err = disarm_kprobe(p, false);
2490                                 if (err) {
2491                                         errors++;
2492                                         ret = err;
2493                                 }
2494                                 total++;
2495                         }
2496                 }
2497         }
2498
2499         if (errors)
2500                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2501                         errors, total);
2502         else
2503                 pr_info("Kprobes globally disabled\n");
2504
2505         mutex_unlock(&kprobe_mutex);
2506
2507         /* Wait for disarming all kprobes by optimizer */
2508         wait_for_kprobe_optimizer();
2509
2510         return ret;
2511 }
2512
2513 /*
2514  * XXX: The debugfs bool file interface doesn't allow for callbacks
2515  * when the bool state is switched. We can reuse that facility when
2516  * available
2517  */
2518 static ssize_t read_enabled_file_bool(struct file *file,
2519                char __user *user_buf, size_t count, loff_t *ppos)
2520 {
2521         char buf[3];
2522
2523         if (!kprobes_all_disarmed)
2524                 buf[0] = '1';
2525         else
2526                 buf[0] = '0';
2527         buf[1] = '\n';
2528         buf[2] = 0x00;
2529         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2530 }
2531
2532 static ssize_t write_enabled_file_bool(struct file *file,
2533                const char __user *user_buf, size_t count, loff_t *ppos)
2534 {
2535         char buf[32];
2536         size_t buf_size;
2537         int ret = 0;
2538
2539         buf_size = min(count, (sizeof(buf)-1));
2540         if (copy_from_user(buf, user_buf, buf_size))
2541                 return -EFAULT;
2542
2543         buf[buf_size] = '\0';
2544         switch (buf[0]) {
2545         case 'y':
2546         case 'Y':
2547         case '1':
2548                 ret = arm_all_kprobes();
2549                 break;
2550         case 'n':
2551         case 'N':
2552         case '0':
2553                 ret = disarm_all_kprobes();
2554                 break;
2555         default:
2556                 return -EINVAL;
2557         }
2558
2559         if (ret)
2560                 return ret;
2561
2562         return count;
2563 }
2564
2565 static const struct file_operations fops_kp = {
2566         .read =         read_enabled_file_bool,
2567         .write =        write_enabled_file_bool,
2568         .llseek =       default_llseek,
2569 };
2570
2571 static int __init debugfs_kprobe_init(void)
2572 {
2573         struct dentry *dir;
2574         unsigned int value = 1;
2575
2576         dir = debugfs_create_dir("kprobes", NULL);
2577
2578         debugfs_create_file("list", 0400, dir, NULL,
2579                             &debugfs_kprobes_operations);
2580
2581         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2582
2583         debugfs_create_file("blacklist", 0400, dir, NULL,
2584                             &debugfs_kprobe_blacklist_ops);
2585
2586         return 0;
2587 }
2588
2589 late_initcall(debugfs_kprobe_init);
2590 #endif /* CONFIG_DEBUG_FS */
2591
2592 module_init(init_kprobes);